1
|
Andzelm MM, Bolshakova S, Pettinari N, Tegtmeyer M, Meyer D, Johnson A, Mello CJ, Yu CT, Mazureac I, Genovese G, Maglieri A, Ichihara K, Hogan M, Hawes D, McCarroll SA, Nehme R. Human genetic variation shapes the response of neurons to interferons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.28.653507. [PMID: 40502006 PMCID: PMC12154771 DOI: 10.1101/2025.05.28.653507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
Inflammation is increasingly recognized as important to neuropathology, including more classic neuroimmune disease as well as neurodegenerative and neuropsychiatric disorders. Interferons (IFN) are important mediators of central nervous system inflammation. Individuals appear to vary in susceptibility to neuroinflammatory pathology, suggesting that identifying human genetic modifiers of the neuronal IFN response might provide insight into disease pathophysiology. To identify potential modifiers, we stimulated neuronal "cellular villages" of iPSC-derived neurons from over one hundred donors with IFN-alpha (IFNa) or IFN-gamma (IFNg). We then correlated allele states of common variable SNPs to gene expression to identify hundreds of expression quantitative trait loci (eQTLs), many of which emerged specifically upon IFN treatment. We characterized the distinct but overlapping neuronal transcriptional responses to IFNa and IFNg, and identified specific response QTLs. Functional annotation of STAT1 binding to the genome in response to IFN stimulus identified STAT1 binding sites as enriched for response-regulating human genetic variation and also enabled identification of loci with IFN-dependent allele-specific binding of STAT1. These results demonstrate how human genetic variation can influence IFN-dependent mechanisms in neurons in disease-relevant ways.
Collapse
Affiliation(s)
- Milena M Andzelm
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Sonia Bolshakova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Noah Pettinari
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dan Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Autumn Johnson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Curtis J Mello
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Connie T Yu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Ilinca Mazureac
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Adrianna Maglieri
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Kiku Ichihara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Marina Hogan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA, USA
| |
Collapse
|
2
|
Bettcher BM, de Oliveira FF, Willette AA, Michalowska MM, Machado LS, Rajbanshi B, Borelli WV, Tansey MG, Rocha A, Suryadevara V, Hu WT. Analysis and interpretation of inflammatory fluid markers in Alzheimer's disease: a roadmap for standardization. J Neuroinflammation 2025; 22:105. [PMID: 40234920 PMCID: PMC11998147 DOI: 10.1186/s12974-025-03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Growing interest in the role of the immune response in Alzheimer's Disease and related dementias (ADRD) has led to widespread use of fluid inflammatory markers in research studies. To standardize the use and interpretation of inflammatory markers in AD research, we build upon prior guidelines to develop consensus statements and recommendations to advance application and interpretation of these markers. In this roadmap paper, we propose a glossary of terms related to the immune response in the context of biomarker discovery/validation, discuss current conceptualizations of inflammatory markers in research, and recommend best practices to address key knowledge gaps. We also provide consensus principles to summarize primary conceptual, methodological, and interpretative issues facing the field: (1) a single inflammatory marker is likely insufficient to describe an entire biological cascade, and multiple markers with similar or distinct functions should be simultaneously measured in a panel; (2) association studies in humans are insufficient to infer causal relationships or mechanisms; (3) neuroinflammation displays time-dependent and disease context-dependent patterns; (4) neuroinflammatory mechanisms should not be inferred based solely on blood inflammatory marker changes; and (5) standardized reporting of CSF inflammatory marker assay validation and performance will improve incorporation of inflammatory markers into the biological AD criteria.
Collapse
Affiliation(s)
- Brianne M Bettcher
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12469 East 17th Place, Room 217- Campus Box F429, Aurora, CO, 80045, USA.
| | | | - Auriel A Willette
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging Research, Rutgers Institute for Health, Health Care Policy, and Aging Research, Rutgers Health, New Brunswick, USA
| | - Malgorzata M Michalowska
- Department of Clinical Neuroscience, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luiza Santos Machado
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Binita Rajbanshi
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California - San Francisco, San Francisco, USA
| | - Wyllians V Borelli
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Malú Gámez Tansey
- Department of Neurology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
| | - Andréia Rocha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | | | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging Research, Rutgers Institute for Health, Health Care Policy, and Aging Research, Rutgers Health, New Brunswick, USA
| |
Collapse
|
3
|
Clark DN, Brown SV, Xu L, Lee RL, Ragusa JV, Xu Z, Milner JD, Filiano AJ. Prolonged STAT1 signaling in neurons causes hyperactive behavior. Brain Behav Immun 2025; 124:1-8. [PMID: 39542073 PMCID: PMC11745914 DOI: 10.1016/j.bbi.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The interferon (IFN)-induced STAT1 signaling pathway is a canonical immune pathway that has also been implicated in regulating neuronal activity. The pathway is enriched in brains of individuals with autism spectrum disorder (ASD) and schizophrenia (SZ). Over-activation of the STAT1 pathway causes pathological transcriptional responses, however it is unclear how these responses might translate into behavioral phenotypes. We hypothesized that prolonged STAT1 signaling in neurons would be sufficient to cause behavioral deficits associated with neurodevelopmental disorders. In this study, we developed a novel mouse model with the clinical STAT1 gain-of-function mutation, T385M, in neurons. These mice were hyperactive and displayed neural hypoactivity with less neuron counts in the caudate putamen. Driving the STAT1 gain-of-function mutation exclusively in dopaminergic neurons, which project to the caudate putamen of the dorsal striatum, mimicked some hyperactive behaviors without a reduction of neurons. Moreover, we demonstrated that this phenotype is neuron specific, as mice with prolonged STAT1 signaling in all excitatory or inhibitory neurons or in microglia were not hyperactive. Overall, these findings suggest that STAT1 signaling in neurons is a crucial player in regulating striatal neuron activity and aspects of motor behavior.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Shelby V Brown
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Rae-Ling Lee
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joey V Ragusa
- Department of Pathology, Duke University, Durham, NC, USA
| | - Zhenghao Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA; Department of Pathology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Liu X, Zhao X, Qiu M, Yang J. Cell surface receptor-mediated signaling in CNS regeneration. Neuroscience 2024; 562:198-208. [PMID: 39486572 DOI: 10.1016/j.neuroscience.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Degenerative diseases and injuries of central nervous system (CNS) often cause nerve cell apoptosis and neural dysfunction. Protection of surviving cells or inducing the differentiation of stem cells into functional cells is considered to be an important way of neurorepair. In addition, transdifferentiation technology emerged recently is expected to provide new solutions for nerve regeneration. Cell surface receptors are transmembrane proteins embedded in cytoplasmic membrane, and play crucial roles in maintaining communication between extracellular signals and intracellular signaling processes. The extracellular microenvironment changed dramatically upon neural lesion, exploring the biological function of signals mediated by cell surface receptors will help to develop molecular strategies for nerve regeneration. An increasing number of studies have reported that cell surface receptor-mediated signaling affects the survival, differentiation, and functioning of neural cells, and even regulate their trans-lineage reprogramming. Here, we provide a review on the roles of cell surface receptors in CNS regeneration, thus providing new cues for better treatment of neurodegenerative diseases or nerve injury.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Immunology and International Cancer Center, Shenzhen University Medical School, Shenzhen 518000, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| | - Junlin Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| |
Collapse
|
5
|
Frasca A, Miramondi F, Butti E, Indrigo M, Balbontin Arenas M, Postogna FM, Piffer A, Bedogni F, Pizzamiglio L, Cambria C, Borello U, Antonucci F, Martino G, Landsberger N. Neural precursor cells rescue symptoms of Rett syndrome by activation of the Interferon γ pathway. EMBO Mol Med 2024; 16:3218-3246. [PMID: 39304759 PMCID: PMC11628625 DOI: 10.1038/s44321-024-00144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The beneficial effects of Neural Precursor Cell (NPC) transplantation in several neurological disorders are well established and they are generally mediated by the secretion of immunomodulatory and neurotrophic molecules. We therefore investigated whether Rett syndrome (RTT), that represents the first cause of severe intellectual disability in girls, might benefit from NPC-based therapy. Using in vitro co-cultures, we demonstrate that, by sensing the pathological context, NPC-secreted factors induce the recovery of morphological and synaptic defects typical of Mecp2 deficient neurons. In vivo, we prove that intracerebral transplantation of NPCs in RTT mice significantly ameliorates neurological functions. To uncover the molecular mechanisms underpinning the mediated benefic effects, we analyzed the transcriptional profile of the cerebellum of transplanted animals, disclosing the possible involvement of the Interferon γ (IFNγ) pathway. Accordingly, we report the capacity of IFNγ to rescue synaptic defects, as well as motor and cognitive alterations in Mecp2 deficient models, thereby suggesting this molecular pathway as a potential therapeutic target for RTT.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Federica Miramondi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Erica Butti
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Marzia Indrigo
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Maria Balbontin Arenas
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Francesca M Postogna
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Arianna Piffer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Francesco Bedogni
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
- Neuroscience and Mental Health Innovation Institute (NMHII), Cardiff University School of Medicine, Cardiff, CF24 4HQ, UK
| | - Lara Pizzamiglio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Ugo Borello
- Cellular and Developmental Biology Unit, Department of Biology, University of Pisa, I-56127, Pisa, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy.
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy.
| |
Collapse
|
6
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Habean ML, Kaiser KE, Williams JL. Orchestrating Stress Responses in Multiple Sclerosis: A Role for Astrocytic IFNγ Signaling. Int J Mol Sci 2024; 25:7524. [PMID: 39062765 PMCID: PMC11276796 DOI: 10.3390/ijms25147524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that is characterized by the infiltration of peripheral immune cells into the central nervous system (CNS), secretion of inflammatory factors, demyelination, and axonal degeneration. Inflammatory mediators such as cytokines alter cellular function and activate resident CNS cells, including astrocytes. Notably, interferon (IFN)γ is a prominent pleiotropic cytokine involved in MS that contributes to disease pathogenesis. Astrocytes are dynamic cells that respond to changes in the cellular microenvironment and are highly responsive to many cytokines, including IFNγ. Throughout the course of MS, intrinsic cell stress is initiated in response to inflammation, which can impact the pathology. It is known that cell stress is pronounced during MS; however, the specific mechanisms relating IFNγ signaling to cell stress responses in astrocytes are still under investigation. This review will highlight the current literature regarding the impact of IFNγ signaling alone and in combination with other immune mediators on astrocyte synthesis of free oxygen radicals and cell death, and cover what is understood regarding astrocytic mitochondrial dysfunction and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Maria L. Habean
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Kaitlin E. Kaiser
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Chen YT, Lin TJ, Hung CY. Blood RNA-sequencing analysis in acrylamide-induced neurotoxicity and depressive symptoms in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:2316-2325. [PMID: 38152866 DOI: 10.1002/tox.24112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Acrylamide (ACR) is a by-product of the Maillard reaction, which occurs when food reacts at high temperatures. Occupational exposure is a risk factor for chronic ACR toxicity. ACR may cause neurotoxicity and depressive symptoms with high concentration in the blood; however, the underlying mechanism remains unknown. We showed the rats developed neurotoxic symptoms after being fed with ACR for 28 days, such as reduced activity and hind limb muscle weakness. We investigated whether ACR exposure causes gene expression differences by blood RNA sequencing and analyzed the differential expression of depressive symptoms-associated genes. The result indicated that IFN-γ the key regulator of neurotoxicity and depressive symptoms was induced by ACR. ACR induced the ubiquitin-mediated proteolysis pathway and JAK/STAT pathways gene expression. ACR upregulated the expression of IFN-γ, inducing neuroinflammation and neurotoxicity. ACR also upregulated the expression of JAK2, STAT1, PI3K, AKT, IκBα, UBE2D4, NF-κB, TNF-α, and iNOS in rat brain tissues and Neuro-2a cells. Thus, IFN-γ induction by ACR may induce depressive symptoms, and the ubiquitin-mediated proteolysis pathway and JAK/STAT pathways may involve in ACR neurotoxicity and depressive symptoms.
Collapse
Affiliation(s)
- Yng-Tay Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Jung Lin
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Yu Hung
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
11
|
Reagin KL, Lee RL, Cocciolone L, Funk KE. Antigen non-specific CD8 + T cells accelerate cognitive decline in aged mice following respiratory coronavirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573675. [PMID: 38260669 PMCID: PMC10802364 DOI: 10.1101/2024.01.02.573675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primarily a respiratory infection, numerous patients infected with SARS-CoV-2 present with neurologic symptoms, some continuing long after viral clearance as a persistent symptomatic phase termed "long COVID". Advanced age increases the risk of severe disease, as well as incidence of long COVID. We hypothesized that perturbations in the aged immune response predispose elderly individuals to severe coronavirus infection and post-infectious sequelae. Using a murine model of respiratory coronavirus, mouse hepatitis virus strain A59 (MHV-A59), we found that aging increased clinical illness and lethality to MHV infection, with aged animals harboring increased virus in the brain during acute infection. This was coupled with an unexpected increase in activated CD8+ T cells within the brains of aged animals but reduced antigen specificity of those CD8+ T cells. Aged animals demonstrated spatial learning impairment following MHV infection, which correlated with increased neuronal cell death and reduced neuronal regeneration in aged hippocampus. Using primary cell culture, we demonstrated that activated CD8+ T cells induce neuronal death, independent of antigen-specificity. Specifically, higher levels of CD8+ T cell-derived IFN-γ correlated with neuronal death. These results support the evidence that CD8+ T cells in the brain directly contribute to cognitive dysfunction following coronavirus infection in aged individuals.
Collapse
Affiliation(s)
- Katie L. Reagin
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Rae-Ling Lee
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Loren Cocciolone
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte
| |
Collapse
|
12
|
Li Y, Chen Y, Hu X, Ouyang F, Li J, Huang J, Ye J, Shan F, Luo Y, Yu S, Li Z, Yao F, Liu Y, Shi Y, Zheng M, Cheng L, Jing J. Fingolimod (FTY720) Hinders Interferon-γ-Mediated Fibrotic Scar Formation and Facilitates Neurological Recovery After Spinal Cord Injury. J Neurotrauma 2023; 40:2580-2595. [PMID: 36879472 DOI: 10.1089/neu.2022.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Following spinal cord injury (SCI), fibrotic scar inhibits axon regeneration and impairs neurological function recovery. It has been reported that T cell-derived interferon (IFN)-γ plays a pivotal role in promoting fibrotic scarring in neurodegenerative disease. However, the role of IFN-γ in fibrotic scar formation after SCI has not been declared. In this study, a spinal cord crush injury mouse was established. Western blot and immunofluorescence showed that IFN-γ was surrounded by fibroblasts at 3, 7, 14, and 28 days post-injury. Moreover, IFN-γ is mainly secreted by T cells after SCI. Further, in situ injection of IFN-γ into the normal spinal cord resulted in fibrotic scar formation and inflammation response at 7 days post-injection. After SCI, the intraperitoneal injection of fingolimod (FTY720), a sphingosine-1-phosphate receptor 1 (S1PR1) modulator and W146, an S1PR1 antagonist, significantly reduced T cell infiltration, attenuating fibrotic scarring via inhibiting IFN-γ/IFN-γR pathway, while in situ injection of IFN-γ diminished the effect of FTY720 on reducing fibrotic scarring. FTY720 treatment inhibited inflammation, decreased lesion size, and promoted neuroprotection and neurological recovery after SCI. These findings demonstrate that the inhibition of T cell-derived IFN-γ by FTY720 suppressed fibrotic scarring and contributed to neurological recovery after SCI.
Collapse
Affiliation(s)
- Yiteng Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yihao Chen
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Hu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangru Ouyang
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jianjian Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxin Huang
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jianan Ye
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangli Shan
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Luo
- Scientific Research and Experiment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuisheng Yu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziyu Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fei Yao
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanchang Liu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi Shi
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meige Zheng
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Cheng
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Blackhurst BM, Funk KE. Molecular and Cellular Mechanisms Underlying Neurologic Manifestations of Mosquito-Borne Flavivirus Infections. Viruses 2023; 15:2200. [PMID: 38005878 PMCID: PMC10674799 DOI: 10.3390/v15112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Flaviviruses are a family of enveloped viruses with a positive-sense RNA genome, transmitted by arthropod vectors. These viruses are known for their broad cellular tropism leading to infection of multiple body systems, which can include the central nervous system. Neurologic effects of flavivirus infection can arise during both acute and post-acute infectious periods; however, the molecular and cellular mechanisms underlying post-acute sequelae are not fully understood. Here, we review recent studies that have examined molecular and cellular mechanisms that may contribute to neurologic sequelae following infection with the West Nile virus, Japanese encephalitis virus, Zika virus, dengue virus, and St. Louis encephalitis virus. Neuronal death, either from direct infection or due to the resultant inflammatory response, is a common mechanism by which flavivirus infection can lead to neurologic impairment. Other types of cellular damage, such as oxidative stress and DNA damage, appear to be more specific to certain viruses. This article aims to highlight mechanisms of cellular damage that are common across several flavivirus members and mechanisms that are more unique to specific members. Our goal is to inspire further research to improve understanding of this area in the hope of identifying treatment options for flavivirus-associated neurologic changes.
Collapse
Affiliation(s)
| | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
14
|
Grigorescu C, Chalah MA, Ayache SS, Palm U. [Alexithymia in Multiple Sclerosis - Narrative Review]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:404-413. [PMID: 35948023 DOI: 10.1055/a-1882-6544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alexithymia is a multidimensional construct of personality implicating difficulties in identifying and describing another's feelings, and externally oriented thinking. It is broadly reported in psychiatric patients but has gained little attention regarding its occurrence and pathophysiology in multiple sclerosis (MS). This narrative review aims to address prevalence, etiology, neurobiological, and clinical findings of alexithymia. The prevalence of alexithymia in MS ranges from 10 to 53%. There seems to be an association with anxiety, depression, fatigue, and some aspects of social cognition, while the relationship with clinical and classical cognitive variables was rarely evaluated. Only a few studies referred to its pathophysiology assuming an aberrant interhemispheric transfer or regional cerebral abnormalities. The prevalence of alexithymia in MS and the potential negative impact on quality of life and interpersonal communication could severely impact clinical MS management and a screnning for these factors should be mandatory. Thus, further evaluation is needed concerning its relationship with clinical, emotional, and cognitive confounders. Large-scale studies employing neuroimaging techniques are needed for a better understanding of the neural underpinnings of this MS feature.
Collapse
Affiliation(s)
- Christina Grigorescu
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München
| | - Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Ulrich Palm
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München
- Medical Park Chiemseeblick, Bernau a. Chiemsee
| |
Collapse
|
15
|
Ribeiro R, Silva EG, Moreira FC, Gomes GF, Cussat GR, Silva BSR, da Silva MCM, de Barros Fernandes H, de Sena Oliveira C, de Oliveira Guarnieri L, Lopes V, Ferreira CN, de Faria AMC, Maioli TU, Ribeiro FM, de Miranda AS, Moraes GSP, de Oliveira ACP, Vieira LB. Chronic hyperpalatable diet induces impairment of hippocampal-dependent memories and alters glutamatergic and fractalkine axis signaling. Sci Rep 2023; 13:16358. [PMID: 37773430 PMCID: PMC10541447 DOI: 10.1038/s41598-023-42955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023] Open
Abstract
Chronic consumption of hyperpalatable and hypercaloric foods has been pointed out as a factor associated with cognitive decline and memory impairment in obesity. In this context, the integration between peripheral and central inflammation may play a significant role in the negative effects of an obesogenic environment on memory. However, little is known about how obesity-related peripheral inflammation affects specific neurotransmission systems involved with memory regulation. Here, we test the hypothesis that chronic exposure to a highly palatable diet may cause neuroinflammation, glutamatergic dysfunction, and memory impairment. For that, we exposed C57BL/6J mice to a high sugar and butter diet (HSB) for 12 weeks, and we investigated its effects on behavior, glial reactivity, blood-brain barrier permeability, pro-inflammatory features, glutamatergic alterations, plasticity, and fractalkine-CX3CR1 axis. Our results revealed that HSB diet induced a decrease in memory reconsolidation and extinction, as well as an increase in hippocampal glutamate levels. Although our data indicated a peripheral pro-inflammatory profile, we did not observe hippocampal neuroinflammatory features. Furthermore, we also observed that the HSB diet increased hippocampal fractalkine levels, a key chemokine associated with neuroprotection and inflammatory regulation. Then, we hypothesized that the elevation on glutamate levels may saturate synaptic communication, partially limiting plasticity, whereas fractalkine levels increase as a strategy to decrease glutamatergic damage.
Collapse
Affiliation(s)
- Roberta Ribeiro
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Emanuele Guimarães Silva
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Caixeta Moreira
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanni Freitas Gomes
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriela Reis Cussat
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Barbara Stehling Ramos Silva
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Maria Carolina Machado da Silva
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | | | - Carolina de Sena Oliveira
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | | | - Victoria Lopes
- Colégio Técnico, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Tatiani Uceli Maioli
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola Mara Ribeiro
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Luciene Bruno Vieira
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
16
|
Clark DN, O'Neil SM, Xu L, Steppe JT, Savage JT, Raghunathan K, Filiano AJ. Prolonged STAT1 activation in neurons drives a pathological transcriptional response. J Neuroimmunol 2023; 382:578168. [PMID: 37556887 PMCID: PMC10527980 DOI: 10.1016/j.jneuroim.2023.578168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Neurons require physiological IFN-γ signaling to maintain central nervous system (CNS) homeostasis, however, pathological IFN-γ signaling can cause CNS pathologies. The downstream signaling mechanisms that cause these drastically different outcomes in neurons has not been well studied. We hypothesized that different levels of IFN-γ signaling in neurons results in differential activation of its downstream transcription factor, signal transducer and activator of transduction 1 (STAT1), causing varying outcomes. Using primary cortical neurons, we showed that physiological IFN-γ elicited brief and transient STAT1 activation, whereas pathological IFN-γ induced prolonged STAT1 activation, which primed the pathway to be more responsive to a subsequent IFN-γ challenge. This is an IFN-γ specific response, as other IFNs and cytokines did not elicit such STAT1 activation nor priming in neurons. Additionally, we did not see the same effect in microglia or astrocytes, suggesting this non-canonical IFN-γ/STAT1 signaling is unique to neurons. Prolonged STAT1 activation was facilitated by continuous janus kinase (JAK) activity, even in the absence of IFN-γ. Finally, although IFN-γ initially induced a canonical IFN-γ transcriptional response in neurons, pathological levels of IFN-γ caused long-term changes in synaptic pathway transcripts. Overall, these findings suggest that IFN-γ signaling occurs via non-canonical mechanisms in neurons, and differential STAT1 activation may explain how neurons have both homeostatic and pathological responses to IFN-γ signaling.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC 27705, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Shane M O'Neil
- Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Justin T Steppe
- Department of Pathology, Duke University, Durham, NC 27705, USA
| | - Justin T Savage
- Department of Neurobiology, Duke University, Durham, NC 27705, USA
| | | | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC 27705, USA; Department of Pathology, Duke University, Durham, NC 27705, USA; Department of Neurosurgery, Duke University, Durham, NC 27705, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA.
| |
Collapse
|
17
|
Kuhn MK, Fleeman RM, Beidler LM, Snyder AM, Chan DC, Proctor EA. Amyloid-β Pathology-Specific Cytokine Secretion Suppresses Neuronal Mitochondrial Metabolism. Cell Mol Bioeng 2023; 16:405-421. [PMID: 37811007 PMCID: PMC10550897 DOI: 10.1007/s12195-023-00782-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease (AD) brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in AD patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of AD at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results We identified a pattern of up-regulated IFNγ, IP-10/CXCL10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions We identify a pattern of cytokine secretion predictive of progressing amyloid-β pathology in the 5xFAD mouse model of AD that reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00782-y.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
| | - Lynne M. Beidler
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA USA
| | - Amanda M. Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
18
|
Meyer-Arndt L, Kerkering J, Kuehl T, Infante AG, Paul F, Rosiewicz KS, Siffrin V, Alisch M. Inflammatory Cytokines Associated with Multiple Sclerosis Directly Induce Alterations of Neuronal Cytoarchitecture in Human Neurons. J Neuroimmune Pharmacol 2023; 18:145-159. [PMID: 36862362 PMCID: PMC10485132 DOI: 10.1007/s11481-023-10059-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/16/2023] [Indexed: 03/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) coined by inflammation and neurodegeneration. The actual cause of the neurodegenerative component of the disease is however unclear. We investigated here the direct and differential effects of inflammatory mediators on human neurons. We used embryonic stem cell-derived (H9) human neuronal stem cells (hNSC) to generate neuronal cultures. Neurons were subsequently treated with tumour necrosis factor alpha (TNFα), interferon gamma (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 17A (IL-17A) and interleukin 10 (IL-10) separately or in combination. Immunofluorescence staining and quantitative polymerase chain reaction (qPCR) were used to assess cytokine receptor expression, cell integrity and transcriptomic changes upon treatment. H9-hNSC-derived neurons expressed cytokine receptors for IFNγ, TNFα, IL-10 and IL-17A. Neuronal exposure to these cytokines resulted in differential effects on neurite integrity parameters with a clear decrease for TNFα- and GM-CSF-treated neurons. The combinatorial treatment with IL-17A/IFNγ or IL-17A/TNFα induced a more pronounced effect on neurite integrity. Furthermore, combinatorial treatments with two cytokines induced several key signalling pathways, i.e. NFκB-, hedgehog and oxidative stress signalling, stronger than any of the cytokines alone. This work supports the idea of immune-neuronal crosstalk and the need to focus on the potential role of inflammatory cytokines on neuronal cytoarchitecture and function.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Janis Kerkering
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Tess Kuehl
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Ana Gil Infante
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Kamil Sebastian Rosiewicz
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Marlen Alisch
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| |
Collapse
|
19
|
Antignano I, Liu Y, Offermann N, Capasso M. Aging microglia. Cell Mol Life Sci 2023; 80:126. [PMID: 37081238 PMCID: PMC10119228 DOI: 10.1007/s00018-023-04775-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Microglia are the tissue-resident macrophage population of the brain, specialized in supporting the CNS environment and protecting it from endogenous and exogenous insults. Nonetheless, their function declines with age, in ways that remain to be fully elucidated. Given the critical role played by microglia in neurodegenerative diseases, a better understanding of the aging microglia phenotype is an essential prerequisite in designing better preventive and therapeutic strategies. In this review, we discuss the most recent literature on microglia in aging, comparing findings in rodent models and human subjects.
Collapse
Affiliation(s)
- Ignazio Antignano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Yingxiao Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nina Offermann
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Melania Capasso
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| |
Collapse
|
20
|
Kuhn MK, Fleeman RM, Beidler LM, Snyder AM, Chan DC, Proctor EA. Alzheimer's disease-specific cytokine secretion suppresses neuronal mitochondrial metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536014. [PMID: 37066287 PMCID: PMC10104145 DOI: 10.1101/2023.04.07.536014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Introduction Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in Alzheimer's disease patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of Alzheimer's disease at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results We identified a pattern of up-regulated IFNγ, IP-10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions An Alzheimer's disease-specific pattern of cytokine secretion reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Lynne M. Beidler
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M. Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
21
|
Jacques C, Floris I. Special Focus on the Cellular Anti-Inflammatory Effects of Several Micro-Immunotherapy Formulations: Considerations Regarding Intestinal-, Immune-Axis-Related- and Neuronal-Inflammation Contexts. J Inflamm Res 2022; 15:6695-6717. [PMID: 36536643 PMCID: PMC9759027 DOI: 10.2147/jir.s389614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION Chronic inflammation is a pernicious underlying status, well-known for its contribution to the progressive development of various diseases. In this regard, Micro-immunotherapy (MI) might be a promising therapeutic strategy. MI employs low doses (LD) and ultra-low doses (ULD) of immune regulators in their formulations. In particular, as both IL-1β and TNF-α are often used at ULD in MI medicines (MIM), a special emphasis has been made on formulations that include these factors in their compositions. METHODS Several in vitro models have been employed in order to assess the effects of two unitary MIM consisting of ULD of IL-1β and TNF-α (u-MIM-1 and u-MIM-2, respectively), and four complex MIM (c-MIM-1, -2, -3 and -4) characterized by the presence of ULD of IL-1β and TNF-α amongst other factors. Thus, we first investigated the anti-inflammatory effects of u-MIM-1 and u-MIM-2 in a model of inflamed colon carcinoma cells. In addition, the anti-inflammatory potential of c-MIM-1, -2, -3 and -4, was assessed in in vitro models of intestinal and neuronal inflammation. RESULTS The results revealed that u-MIM-1 and u-MIM-2 both induced a slight decrease in the levels of IL-1β and TNF-α transcripts. Regarding the c-MIMs' effects, c-MIM-1 displayed the capability to restore the altered transepithelial electrical resistance in inflamed-HCoEpiC cells. Moreover, c-MIM-1 also slightly increased the expression of the junction-related protein claudin-1, both at the mRNA and protein levels. In addition, our in vitro investigations on c-MIM-2 and c-MIM-3 revealed their immune-modulatory effects in LPS-inflamed human monocytes, macrophages, and granulocytes, on the secretion of cytokines such as TNF-α, PGE2, and IL-6. Finally, c-MIM-4 restored the cell viability of LPS/IFN-γ-inflamed rat cortical neurons, while reducing the secretion of TNF-α in rat glial cells. DISCUSSION Our results shed the light on the potential role of these MIM formulations in managing several chronic inflammation-related conditions.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Nantes, France
| | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Nantes, France
| |
Collapse
|
22
|
Clark DN, Begg LR, Filiano AJ. Unique aspects of IFN-γ/STAT1 signaling in neurons. Immunol Rev 2022; 311:187-204. [PMID: 35656941 PMCID: PMC10120860 DOI: 10.1111/imr.13092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 01/05/2023]
Abstract
The IFN-γ/STAT1 immune signaling pathway impacts many homeostatic and pathological aspects of neurons, beyond its canonical role in controlling intracellular pathogens. Well known for its potent pro-inflammatory and anti-viral functions in the periphery, the IFN-γ/STAT1 pathway is rapidly activated then deactivated to prevent excessive inflammation; however, neurons utilize unique IFN-γ/STAT1 activation patterns, which may contribute to the non-canonical neuron-specific downstream effects. Though it is now well-established that the immune system interacts and supports the CNS in health and disease, many aspects regarding IFN-γ production in the CNS and how neurons respond to IFN-γ are unclear. Additionally, it is not well understood how the diversity of the IFN-γ/STAT1 pathway is regulated in neurons to control homeostatic functions, support immune surveillance, and prevent pathologies. In this review, we discuss the neuron-specific mechanisms and kinetics of IFN-γ/STAT1 activation, the potential sources and entry sites of IFN-γ in the CNS, and the diverse set of homeostatic and pathological effects IFN-γ/STAT1 signaling in neurons has on CNS health and disease. We will also highlight the different contexts and conditions under which IFN-γ-induced STAT1 activation has been studied in neurons, and how various factors might contribute to the vast array of downstream effects observed.
Collapse
Affiliation(s)
- Danielle N. Clark
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Lauren R. Begg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anthony J. Filiano
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Döhne N, Falck A, Janach GMS, Byvaltcev E, Strauss U. Interferon-γ augments GABA release in the developing neocortex via nitric oxide synthase/soluble guanylate cyclase and constrains network activity. Front Cell Neurosci 2022; 16:913299. [PMID: 36035261 PMCID: PMC9401097 DOI: 10.3389/fncel.2022.913299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-γ (IFN-γ), a cytokine with neuromodulatory properties, has been shown to enhance inhibitory transmission. Because early inhibitory neurotransmission sculpts functional neuronal circuits, its developmental alteration may have grave consequences. Here, we investigated the acute effects of IFN-γ on γ-amino-butyric acid (GABA)ergic currents in layer 5 pyramidal neurons of the somatosensory cortex of rats at the end of the first postnatal week, a period of GABA-dependent cortical maturation. IFN-γ acutely increased the frequency and amplitude of spontaneous/miniature inhibitory postsynaptic currents (s/mIPSC), and this could not be reversed within 30 min. Neither the increase in amplitude nor frequency of IPSCs was due to upregulated interneuron excitability as revealed by current clamp recordings of layer 5 interneurons labeled with VGAT-Venus in transgenic rats. As we previously reported in more mature animals, IPSC amplitude increase upon IFN-γ activity was dependent on postsynaptic protein kinase C (PKC), indicating a similar activating mechanism. Unlike augmented IPSC amplitude, however, we did not consistently observe an increased IPSC frequency in our previous studies on more mature animals. Focusing on increased IPSC frequency, we have now identified a different activating mechanism-one that is independent of postsynaptic PKC but is dependent on inducible nitric oxide synthase (iNOS) and soluble guanylate cyclase (sGC). In addition, IFN-γ shifted short-term synaptic plasticity toward facilitation as revealed by a paired-pulse paradigm. The latter change in presynaptic function was not reproduced by the application of a nitric oxide donor. Functionally, IFN-γ-mediated alterations in GABAergic transmission overall constrained early neocortical activity in a partly nitric oxide-dependent manner as revealed by microelectrode array field recordings in brain slices analyzed with a spike-sorting algorithm. In summary, with IFN-γ-induced, NO-dependent augmentation of spontaneous GABA release, we have here identified a mechanism by which inflammation in the central nervous system (CNS) plausibly modulates neuronal development.
Collapse
Affiliation(s)
- Noah Döhne
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alice Falck
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriel M. S. Janach
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Egor Byvaltcev
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience, Lobachevsky State, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ulf Strauss
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
26
|
Brummer T, Zipp F, Bittner S. T cell-neuron interaction in inflammatory and progressive multiple sclerosis biology. Curr Opin Neurobiol 2022; 75:102588. [PMID: 35732103 DOI: 10.1016/j.conb.2022.102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune condition of the central nervous system (CNS) characterized by acute inflammatory relapses, chronic neuro-axonal degeneration, and subsequent disability progression. T cells - in interaction with B cells and CNS-resident glial cells - are key initiators and drivers of neurodegeneration in MS. However, it is not entirely clear how encephalitogenic T cells orchestrate the local immune response within the brain and how they overtake disease stage-specific roles in MS pathogenesis. This review highlights recent advances in understanding direct and indirect T cell-neuron interactions in inflammatory and progressive MS. Finally, we discuss new diagnostic tools such as neurofilament light chain (NfL), which is on the cusp of becoming a key factor in clinical and therapeutic decision-making.
Collapse
Affiliation(s)
- Tobias Brummer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
27
|
Zhang Y, Chu JMT, Wong GTC. Cerebral Glutamate Regulation and Receptor Changes in Perioperative Neuroinflammation and Cognitive Dysfunction. Biomolecules 2022; 12:biom12040597. [PMID: 35454185 PMCID: PMC9029551 DOI: 10.3390/biom12040597] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/23/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is intricately linked to learning and memory. Its activity depends on the expression of AMPA and NMDA receptors and excitatory amino transporters on neurons and glial cells. Glutamate transporters prevent the excess accumulation of glutamate in synapses, which can lead to aberrant synaptic signaling, excitotoxicity, or cell death. Neuroinflammation can occur acutely after surgical trauma and contributes to the development of perioperative neurocognitive disorders, which are characterized by impairment in multiple cognitive domains. In this review, we aim to examine how glutamate handling and glutamatergic function are affected by neuroinflammation and their contribution to cognitive impairment. We will first summarize the current data regarding glutamate in neurotransmission, its receptors, and their regulation and trafficking. We will then examine the impact of inflammation on glutamate handling and neurotransmission, focusing on changes in glial cells and the effect of cytokines. Finally, we will discuss these changes in the context of perioperative neuroinflammation and the implications they have for perioperative neurocognitive disorders.
Collapse
|
28
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
29
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
30
|
Sun J, Zhan C, Deng Z, Luo W, Chen Q, Jiang M, Zhong N, Lai K. Expression of interferon-γ and its effect on cough hypersensitivity in chronic refractory cough patients. Thorax 2022; 77:621-624. [PMID: 34996851 DOI: 10.1136/thoraxjnl-2021-218403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
Chronic refractory cough (CRC) is characterised by cough hypersensitivity. Interferon-γ (IFN-γ) has been reported to induce calcium influx, action potentials of vagal neurons in vitro and cough response in guinea pigs. While the effect of IFN-γ in CRC patients remains unknown. Here, via flow-cytometry and inhalation cough challenge, we found CRC patients had significantly increased levels of sputum IFN-γ+CD4+ T cells, IFN-γ+CD8+ T cells as well as supernatant of IFN-γ. The average number of coughs in CRC patients increased as the concentration of inhaled IFN-γ went up in IFN-γ cough challenge. Two or more coughs and five or more coughs elicited by inhaled IFN-γ in CRC patients occurred in 7 of 10 and 2 of 10, respectively. Preinhaled IFN-γ (100 µg/mL) increased the capsaicin cough sensitivity in CRC patients but not healthy volunteers. Targeting IFN-γ may be a potential effective anti-tussive strategy in CRC patients.
Collapse
Affiliation(s)
- Jiayang Sun
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chen Zhan
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zheng Deng
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Luo
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiaoli Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Jiang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kefang Lai
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Wang Y, Ge X, Yu S, Cheng Q. Achyranthes bidentata polypeptide alleviates neurotoxicity of lipopolysaccharide-activated microglia via PI3K/Akt dependent NOX2/ROS pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1522. [PMID: 34790728 PMCID: PMC8576683 DOI: 10.21037/atm-21-4027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/02/2021] [Indexed: 01/02/2023]
Abstract
Background Achyranthes bidentata polypeptide fraction k (ABPPk) has been shown to protect ischemic stroke and Parkinson’s disease, and can inhibit neuroinflammation in lipopolysaccharide (LPS)-activated BV2 microglia. However, the effect of ABPPk responsible for alleviating microglial neurotoxicity remains unknown. Methods Primary microglia were cultured to investigate the effect of ABPPk on LPS-induced neuroinflammation. Microglia conditioned medium (MCM) was collected to stimulate primary cortical neurons and then the neuronal viability, lactate dehydrogenase (LDH) release, intracellular calcium influx, mitochondria membrane potential (MMP) were assessed, respectively. Postnatal day 5 Sprague-Dawley rat pups were intracerebral injected with LPS to establish an LPS-induced brain injury model. Double immunohistochemical staining for NeuN and Iba1 was performed to evaluate the effects of ABPPk on LPS-induced neuronal damage and microglial activation. TUNEL assay was conducted to detect cell apoptosis in LPS-injected brain. The effect of ABPPk on LPS-induced NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production as well as the phosphorylation of protein kinase B (Akt) was detected. Moreover, LY294002 (a specific PI3K inhibitor) and SC79 (a specific Akt activator) were used to further reveal the underlying mechanism. Results ABPPk pretreatment inhibited LPS-induced NLRP3 and cleaved caspase 1 expressions as well as the mRNA levels of IL-1β and IL-18. Moreover, ABPPk inhibited glutamate release from LPS-activated microglia in a concentration-dependent manner. MCM stimulation resulted in characteristic neuronal toxicity including neuronal viability decrease, LDH release increase, calcium overload, and MMP drop. However, ABPPk pretreatment on microglia reduced the neurotoxicity of MCM. LPS intracerebral injection led to neuronal damage, microglial activation and cell apoptosis in the brain, while ABPPk preadministration significantly inhibited LPS-induced microglial activation and alleviated the brain injury. ABPPk pretreatment inhibited NOX2 expression and ROS production in LPS-activated primary microglia. Signaling pathway analysis showed that ABPPk promoted the phosphorylation of Akt in microglia and inhibited LPS-upregulated NOX2 expression, ROS production, and glutamate release, which can be eliminated by pharmacological inhibition of PI3K. Specific Akt activator could inhibit LPS-induced NOX2 expression, ROS production and glutamate release. Conclusions The present results suggested that ABPPk could alleviate neurotoxicity of LPS-activated microglia via PI3K/Akt dependent NOX2/ROS pathway.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiangyu Ge
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
32
|
Tan PH, Ji J, Yeh CC, Ji RR. Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Front Immunol 2021; 12:783725. [PMID: 34804074 PMCID: PMC8602180 DOI: 10.3389/fimmu.2021.783725] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-β are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-β can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts, MA, United States
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Chun-Chang Yeh
- Department of Anesthesiology of Tri-Service General Hospital & National Defense Medical Center, Taipei City, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
33
|
Łuczkowska K, Rutka M, Rogińska D, Paczkowska E, Baumert B, Milczarek S, Górska M, Kulig P, Osękowska B, Janowski M, Safranow K, Sommerfeld K, Borowiecka E, Zawodny P, Koclęga A, Helbig G, Machaliński B. The Potential Role of Proinflammatory Cytokines and Complement Components in the Development of Drug-Induced Neuropathy in Patients with Multiple Myeloma. J Clin Med 2021; 10:jcm10194584. [PMID: 34640602 PMCID: PMC8509696 DOI: 10.3390/jcm10194584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 01/15/2023] Open
Abstract
The launch of novel chemotherapeutic agents-in particular, proteasome inhibitors and immunomodulatory drugs-dramatically changed multiple myeloma (MM) therapy, improving the response rate and prolonging progression-free survival. However, none of the anti-MM drugs are deprived of side effects. Peripheral neuropathy (PN) seems to be one of the most pressing problems. Despite extensive research in this area, the pathogenesis of drug-induced peripheral neuropathy (DiPN) has not yet been fully elucidated. In the present study, we aimed to assess the potential relationship between proinflammatory factors and the development of PN in MM patients with particular emphasis on the application of VTD (bortezomib, thalidomide, dexamethasone) regimen. Our analysis identified increased concentrations of CCL2, IL-1β, and IFN-γ in plasma of MM patients during treatment, both with and without symptoms of PN, compared with untreated neuropathy-free MM patients. At the same time, the plasma concentration of IL-1β in patients with neuropathy was significantly increased compared with patients without PN before and during treatment. Moreover, the results were enhanced at the transcript level by performing global mRNA expression analysis using microarray technology. The most significant changes were observed in the expression of genes responsible for regulating immunological and apoptotic processes. An in-depth understanding of the mechanisms responsible for the development of DiPN might in the future reduce the incidence of PN and accelerate diagnosis, allowing the choice of neuropathy-free treatment strategies for MM.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Magdalena Rutka
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Bartłomiej Baumert
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Sławomir Milczarek
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Martyna Górska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Bogumiła Osękowska
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Michał Janowski
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Krzysztof Sommerfeld
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Ewa Borowiecka
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Piotr Zawodny
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Anna Koclęga
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-027 Katowice, Poland; (A.K.); (G.H.)
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-027 Katowice, Poland; (A.K.); (G.H.)
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
- Correspondence:
| |
Collapse
|
34
|
Olson CA, Iñiguez AJ, Yang GE, Fang P, Pronovost GN, Jameson KG, Rendon TK, Paramo J, Barlow JT, Ismagilov RF, Hsiao EY. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia. Cell Host Microbe 2021; 29:1378-1392.e6. [PMID: 34358434 PMCID: PMC8429275 DOI: 10.1016/j.chom.2021.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota. Depleting the microbiome reduces CI, whereas transplantation of the risk-associated microbiome or monocolonization with Bilophila wadsworthia confers CI in mice fed a standard diet. B. wadsworthia and the risk-associated microbiome disrupt hippocampal synaptic plasticity, neurogenesis, and gene expression. The CI is associated with microbiome-dependent increases in intestinal interferon-gamma (IFNg)-producing Th1 cells. Inhibiting Th1 cell development abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction.
Collapse
Affiliation(s)
- Christine A. Olson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ,
| | - Alonso J. Iñiguez
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Grace E. Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ping Fang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Geoffrey N. Pronovost
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelly G. Jameson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tomiko K. Rendon
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Paramo
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacob T. Barlow
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91108, USA
| | - Rustem F. Ismagilov
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91108, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ,
| |
Collapse
|
35
|
Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021; 96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Simone Schilling
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
37
|
Huang L, Lafaille JJ, Yang G. Learning-dependent dendritic spine plasticity is impaired in spontaneous autoimmune encephalomyelitis. Dev Neurobiol 2021; 81:736-745. [PMID: 33949123 DOI: 10.1002/dneu.22827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/12/2022]
Abstract
Cognitive impairment is often observed in multiple sclerosis and its animal models, experimental autoimmune encephalomyelitis (EAE). Using mice with immunization-induced EAE, we have previously shown that the stability of cortical synapses is markedly decreased before the clinical onset of EAE. In this study, we examined learning-dependent structural synaptic plasticity in a spontaneous EAE model. Transgenic mice expressing myelin basic protein-specific T cell receptor genes develop EAE spontaneously at around 8 weeks of age. Using in vivo two-photon microscopy, we found that the elimination and formation rates of postsynaptic dendritic spines in somatosensory and motor cortices increased weeks before detectable signs of EAE and remained to be high during the disease onset. Despite the elevated basal spine turnover, motor learning-induced spine formation was reduced in presymptomatic EAE mice, in line with their impaired ability to retain learned motor skills. Additionally, we found a substantial elevation of IFN-γ mRNA in the brain of 4-week-old presymptomatic mice, and treatment of anti-IFN-γ antibody reduced dendritic spine elimination in the cortex. Together, these findings reveal synaptic instability and failure to form new synapses after learning as early brain pathology of EAE, which may contribute to cognitive and behavioral deficits seen in autoimmune diseases.
Collapse
Affiliation(s)
- Lianyan Huang
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.,Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan J Lafaille
- Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Guang Yang
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.,Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
38
|
Wittrahm R, Takalo M, Marttinen M, Kuulasmaa T, Mäkinen P, Kemppainen S, Martiskainen H, Rauramaa T, Pike I, Leinonen V, Natunen T, Haapasalo A, Hiltunen M. MECP2 Increases the Pro-Inflammatory Response of Microglial Cells and Phosphorylation at Serine 423 Regulates Neuronal Gene Expression upon Neuroinflammation. Cells 2021; 10:860. [PMID: 33918872 PMCID: PMC8070522 DOI: 10.3390/cells10040860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MECP2) is a critical transcriptional regulator for synaptic function. Dysfunction of synapses, as well as microglia-mediated neuroinflammation, represent the earliest pathological events in Alzheimer's disease (AD). Here, expression, protein levels, and activity-related phosphorylation changes of MECP2 were analyzed in post-mortem human temporal cortex. The effects of wild type and phosphorylation-deficient MECP2 variants at serine 423 (S423) or S80 on microglial and neuronal function were assessed utilizing BV2 microglial monocultures and co-cultures with mouse cortical neurons under inflammatory stress conditions. MECP2 phosphorylation at the functionally relevant S423 site nominally decreased in the early stages of AD-related neurofibrillary pathology in the human temporal cortex. Overexpression of wild type MECP2 enhanced the pro-inflammatory response in BV2 cells upon treatment with lipopolysaccharide (LPS) and interferon-γ (IFNγ) and decreased BV2 cell phagocytic activity. The expression of the phosphorylation-deficient MECP2-S423A variant, but not S80A, further increased the pro-inflammatory response of BV2 cells. In neurons co-cultured with BV2 cells, the MECP2-S423A variant increased the expression of several genes, which are important for the maintenance and protection of neurons and synapses upon inflammatory stress. Collectively, functional analyses in different cellular models suggest that MECP2 may influence the inflammatory response in microglia independently of S423 and S80 phosphorylation, while the S423 phosphorylation might play a role in the activation of neuronal gene expression, which conveys neuroprotection under neuroinflammation-related stress.
Collapse
Affiliation(s)
- Rebekka Wittrahm
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| | - Mari Takalo
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| | - Mikael Marttinen
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Teemu Kuulasmaa
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| | - Petra Mäkinen
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| | - Susanna Kemppainen
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| | - Henna Martiskainen
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, 70029 Kuopio, Finland;
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, London WC1H 9BB, UK;
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, 70029 Kuopio, Finland;
- Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland;
| | - Mikko Hiltunen
- Institute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, Finland; (R.W.); (M.T.); (M.M.); (T.K.); (P.M.); (S.K.); (H.M.); (T.N.)
| |
Collapse
|
39
|
Reischer G, Heinke B, Sandkühler J. Interferon-γ facilitates the synaptic transmission between primary afferent C-fibres and lamina I neurons in the rat spinal dorsal horn via microglia activation. Mol Pain 2021; 16:1744806920917249. [PMID: 32264753 PMCID: PMC7144669 DOI: 10.1177/1744806920917249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated an important role of the pro-inflammatory cytokine interferon-γ in neuropathic pain. Interferon-γ is upregulated in the lumbar spinal cord of nerve-injured rodents and intrathecal injection of interferon-γ has been shown to induce neuropathic pain-like behaviours in naive rodents. A potential mechanism in the pathogenesis of neuropathic pain is a long-lasting amplification of nociceptive synaptic transmission in lamina I of the spinal dorsal horn. Here, we tested the effects of interferon-γ on the properties of the first synapse in nociceptive pathways in the superficial spinal dorsal horn. We performed whole-cell patch-clamp recordings in lamina I neurons in a spinal cord slice preparation with dorsal roots attached from young rats. We determined the effects of acute (at least 25 min) or longer lasting (4–8 h) treatment of the transversal slices with recombinant rat interferon-γ on spontaneous excitatory postsynaptic currents or on monosynaptic Aδ- and C-fibre-evoked excitatory postsynaptic currents, respectively. Prolonged treatment with interferon-γ facilitated monosynaptic C-fibre-evoked excitatory postsynaptic currents and this effect could be blocked by co-application of minocycline an inhibitor of microglial activation. In contrast, Aδ-fibre-evoked excitatory postsynaptic currents were not affected by the prolonged interferon-γ treatment. Acute interferon-γ application in the bathing solution did not change strength of monosynaptic Aδ- or C-fibre synapses in lamina I. However, the rate, but not the amplitude, of spontaneous excitatory postsynaptic currents recorded in lamina I neurons was decreased. This effect could not be blocked by the application of minocycline. Long-lasting treatment of rat spinal cord slices with interferon-γ induced an input specific facilitation of synaptic strength in spinal nociceptive pathways. Enhanced transmission between C-fibres and spinal lamina I neurons was mediated by the activation of microglial cells. We showed that the pro-inflammatory cytokine interferon-γ modifies the processing of information at the first synaptic relay station in nociceptive pathways.
Collapse
Affiliation(s)
- Gerda Reischer
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bernhard Heinke
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Golan M, Krivitsky A, Mausner-Fainberg K, Benhamou M, Vigiser I, Regev K, Kolb H, Karni A. Increased Expression of Ephrins on Immune Cells of Patients with Relapsing Remitting Multiple Sclerosis Affects Oligodendrocyte Differentiation. Int J Mol Sci 2021; 22:ijms22042182. [PMID: 33671716 PMCID: PMC7927032 DOI: 10.3390/ijms22042182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
The effect of the inflammatory response on regenerative processes in the brain is complex. This complexity is even greater when the cause of the tissue damage is an autoimmune response. Multiple sclerosis (MS) is an immune-mediated disease in which demyelination foci are formed in the central nervous system. The degree of repair through oligodendrocyte regeneration and remyelination is insufficient. Ephrins are membrane-bound ligands activating tyrosine kinase signaling proteins that are known to have an inhibitory effect on oligodendrocyte regeneration. In this study, we examined the expression of ephrins on immune cells of 43 patients with relapsing-remitting (RR) MS compared to 27 matched healthy controls (HC). We found an increased expression of ephrin-A2, -A3 and -B3, especially on T cell subpopulations. We also showed overexpression of ephrins on immune cells of patients with RR-MS that increases the forward signaling pathway and that expression of ephrins on immune cells has an inhibitory effect on the differentiation of oligodendrocyte precursor cells (OPCs) in vitro. Our study findings support the concept that the immune activity of T cells in patients with RR-MS has an inhibitory effect on the differentiation capacity of OPCs through the expression and forward signaling of ephrins.
Collapse
Affiliation(s)
- Maya Golan
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Avivit Krivitsky
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karin Mausner-Fainberg
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Moshe Benhamou
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ifat Vigiser
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Keren Regev
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Hadar Kolb
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
| | - Arnon Karni
- The Neuroimmunology and Multiple Sclerosis Unit, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (M.G.); (A.K.); (K.M.-F.); (M.B.); (I.V.); (K.R.); (H.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
41
|
do Carmo Neto JR, Vinicius da Silva M, Braga YLL, Florencio da Costa AW, Fonseca SG, Nagib PRA, Nunes Celes MR, Oliveira MAP, Machado JR. Correlation between intestinal BMP2, IFNγ, and neural death in experimental infection with Trypanosoma cruzi. PLoS One 2021; 16:e0246692. [PMID: 33561140 PMCID: PMC7872263 DOI: 10.1371/journal.pone.0246692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Megacolon is one of the main late complications of Chagas disease, affecting approximately 10% of symptomatic patients. However, studies are needed to understand the mechanisms involved in the progression of this condition. During infection by Trypanosoma cruzi (T. cruzi), an inflammatory profile sets in that is involved in neural death, and this destruction is known to be essential for megacolon progression. One of the proteins related to the maintenance of intestinal neurons is the type 2 bone morphogenetic protein (BMP2). Intestinal BMP2 homeostasis is directly involved in the maintenance of organ function. Thus, the aim of this study was to correlate the production of intestinal BMP2 with immunopathological changes in C57Bl/6 mice infected with the T. cruzi Y strain in the acute and chronic phases. The mice were infected with 1000 blood trypomastigote forms. After euthanasia, the colon was collected, divided into two fragments, and a half was used for histological analysis and the other half for BMP2, IFNγ, TNF-α, and IL-10 quantification. The infection induced increased intestinal IFNγ and BMP2 production during the acute phase as well as an increase in the inflammatory infiltrate. In contrast, a decreased number of neurons in the myenteric plexus were observed during this phase. Collagen deposition increased gradually throughout the infection, as demonstrated in the chronic phase. Additionally, a BMP2 increase during the acute phase was positively correlated with intestinal IFNγ. In the same analyzed period, BMP2 and IFNγ showed negative correlations with the number of neurons in the myenteric plexus. As the first report of BMP2 alteration after infection by T. cruzi, we suggest that this imbalance is not only related to neuronal damage but may also represent a new route for maintaining the intestinal proinflammatory profile during the acute phase.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Arthur Wilson Florencio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Patricia Resende Alô Nagib
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Milton Adriano Pelli Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
42
|
Akyuva Y, Nazıroğlu M, Yıldızhan K. Selenium prevents interferon-gamma induced activation of TRPM2 channel and inhibits inflammation, mitochondrial oxidative stress, and apoptosis in microglia. Metab Brain Dis 2021; 36:285-298. [PMID: 33044639 DOI: 10.1007/s11011-020-00624-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Microglia as the primary immune cells of brain act protective effects against injuries and infections in the central nervous system. Inflammation via excessive Ca2+ influx and oxygen radical species (ROS) generation is a known factor in many neurodegenerative disorders. Importantly, the Ca2+ permeable TRPM2 channel is activated by oxidative stress. Thus, TRPM2 could provide the excessive Ca2+ influx in the microglia. Although TRPM2 expression level is high in inflammatory cells, the interplay between mouse microglia and TRPM2 channel during inflammation is not fully identified. Thus, it is important to understand the mechanisms and factors involved in order to enhance neuronal regeneration and repair. The data presented here indicate that TRPM2 channels were activated in microglia cells by interferon-gamma (IFNγ). The IFNγ treatment further increased apoptosis (early and late) and cytokine productions (TNF-α, IL-1β, and IL-6) which were due to increased lipid peroxidation and ROS generations as well as increased activations of caspase -3 (Casp-3) and - 9 (Casp-9). However, selenium treatment diminished activations of TRPM2, cytokine, Casp-3, and Casp-9, and levels of lipid peroxidation and mitochondrial ROS production in the microglia that were treated with IFNγ. Moreover, addition of either PARP1 inhibitors (PJ34 or DPQ) or TRPM2 blockers (2-APB or ACA) potentiated the modulator effects of selenium. These results clearly suggest that IFNγ leads to TRPM2 activation in microglia cells; whereas, selenium prevents IFNγ-mediated TRPM2 activation and cytokine generation. Together the interplay between IFNγ released from microglia cells is importance in brain inflammation and may affect oxidative cytotoxicity in the microglia. Graphical abstract Summary of pathways involved in IFNγ-induced TRPM2 activation and microglia death through excessive reactive oxygen species (ROS): Modulator role of selenium (Se). The IFNγ causes the microglia activation. Nudix box domain of TRPM2 is sensitive to ROS. The ROS induces DNA damage and ADPR-ribose (ADPR) production in the nucleus via PARP1 enzyme activation. ADPR and ROS-induced TRPM2 activation stimulates excessive Ca2+ influx. ROS are produced in the mitochondria through the increase of free cytosolic Ca2+ (via TRPM2 activation) by the IFNγ treatment, although they are diminished by the TRPM2 channel blocker (ACA and 2-APB) and PARP1 inhibitor treatments. The main mechanism in the cell death and inflammatory effects of IFNγ is mediated by stimulation of ROS-mediated caspase (caspase -3 and - 9) activations and cytokine production (TNF-α, IL-1β, and IL-6) via TRPM2 activation, respectively. The apoptotic, inflammatory, and oxidant actions of IFNγ are modulated through TRPM2 inhibition by the Se treatment.
Collapse
Affiliation(s)
- Yener Akyuva
- Departmant of Neurosurgery, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey.
- Neuroscience Research Center (NÖROBAM), Suleyman Demirel University, TR-32260, Isparta, Turkey.
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
43
|
Pan X, Li R, Guo H, Zhang W, Xu X, Chen X, Ding L. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1. Front Pharmacol 2021; 11:539261. [PMID: 33519429 PMCID: PMC7838064 DOI: 10.3389/fphar.2020.539261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) which is upregulated in various epithelial tumors, plays a central role in the evasion of the immune system. In addition to monoclonal antibodies that blocking PD1/PD-L1 axis, finding small molecule compounds that can suppress PD-L1 expression might be another substitutable strategy for PD1/PD-L1 based therapy. Here, we found that dihydropyridine calcium channel blockers dose-dependently reduced the expression of PD-L1, both in the cytoplasm and cell surface. IFNγ induced PD-L1 transcription was consistently suppressed by Lercanidipine in 24 h, whereas, the half-life of PD-L1 protein was not significantly affected. IFNγ trigged significant STAT1 phosphorylation, which was eliminated by Lercanidipine. Similarly, STAT1 phosphorylation could also be abolished by extracellular calcium chelating agent EGTA and intracellular calcium chelator BAPTA-AM. Furthermore, Lercanidipine enhanced killing ability of T cells by down-regulating PD-L1. Taken together, our studies suggest that calcium signal is a crucial factor that mediates the transcription of PD-L1 and regulation of calcium can be used as a potential strategy for PD-L1 inhibition.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Run Li
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Stojić-Vukanić Z, Hadžibegović S, Nicole O, Nacka-Aleksić M, Leštarević S, Leposavić G. CD8+ T Cell-Mediated Mechanisms Contribute to the Progression of Neurocognitive Impairment in Both Multiple Sclerosis and Alzheimer's Disease? Front Immunol 2020; 11:566225. [PMID: 33329528 PMCID: PMC7710704 DOI: 10.3389/fimmu.2020.566225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Neurocognitive impairment (NCI) is one of the most relevant clinical manifestations of multiple sclerosis (MS). The profile of NCI and the structural and functional changes in the brain structures relevant for cognition in MS share some similarities to those in Alzheimer's disease (AD), the most common cause of neurocognitive disorders. Additionally, despite clear etiopathological differences between MS and AD, an accumulation of effector/memory CD8+ T cells and CD8+ tissue-resident memory T (Trm) cells in cognitively relevant brain structures of MS/AD patients, and higher frequency of effector/memory CD8+ T cells re-expressing CD45RA (TEMRA) with high capacity to secrete cytotoxic molecules and proinflammatory cytokines in their blood, were found. Thus, an active pathogenetic role of CD8+ T cells in the progression of MS and AD may be assumed. In this mini-review, findings supporting the putative role of CD8+ T cells in the pathogenesis of MS and AD are displayed, and putative mechanisms underlying their pathogenetic action are discussed. A special effort was made to identify the gaps in the current knowledge about the role of CD8+ T cells in the development of NCI to "catalyze" translational research leading to new feasible therapeutic interventions.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Senka Hadžibegović
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Olivier Nicole
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Sanja Leštarević
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
45
|
Zubareva OE, Postnikova TY, Grifluk AV, Schwarz AP, Smolensky IV, Karepanov AA, Vasilev DS, Veniaminova EA, Rotov AY, Kalemenev SV, Zaitsev AV. Exposure to bacterial lipopolysaccharidein early life affects the expression of ionotropic glutamate receptor genes and is accompanied by disturbances in long-term potentiation and cognitive functions in young rats. Brain Behav Immun 2020; 90:3-15. [PMID: 32726683 DOI: 10.1016/j.bbi.2020.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023] Open
Abstract
Infections in childhood play an essential role in the pathogenesis of cognitive and psycho-emotional disorders. One of the possible mechanisms of these impairments is changes in the functional properties of NMDA and AMPA glutamate receptors in the brain. We suggest that bacterial infections during the early life period, which is critical for excitatory synapse maturation, can affect the subunit composition of NMDA and AMPA receptors. In the present study, we investigated the effect of repetitive lipopolysaccharide (LPS) intraperitoneal (i.p.) administration (25 μg/kg/day on P14, 16, and 18), mimicking an infectious disease, on the expression of subunits of NMDA and AMPA receptors in young rats. We revealed a substantial decrease of GluN2B subunit expression in the hippocampus at P23 using Western blot analysis and real-time polymerase chain reaction assay. Moderate changes were also found in GluN1, GluN2A, and GluA1 mRNA expression. The LPS-treated rats exhibited decreased exploratory and locomotor activity in the open field test and the impairment of spatial learning in the Morris water maze. Behavioral impairments were accompanied by a significant reduction in long-term hippocampal synaptic potentiation. Our data indicate that LPS-treatment in the critical period for excitatory synapse maturation alters ionotropic glutamate receptor gene expression, disturbs synaptic plasticity, and alters behavior.
Collapse
Affiliation(s)
- Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of Neurobiology of the Brain Integrative Functions, Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Tatyana Y Postnikova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra V Grifluk
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander P Schwarz
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ilya V Smolensky
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anton A Karepanov
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Dmitry S Vasilev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Veniaminova
- Laboratory of Neurobiology of the Brain Integrative Functions, Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Y Rotov
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey V Kalemenev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
46
|
IFN- γ Correlations with Pain Assessment, Radiological Findings, and Clinical Intercourse in Patient after Lumbar Microdiscectomy: Preliminary Study. DISEASE MARKERS 2020; 2020:1318930. [PMID: 33110454 PMCID: PMC7578716 DOI: 10.1155/2020/1318930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023]
Abstract
Objectives We investigated the influence of pain decrease after lumbar microdiscectomy on the interferon gamma (IFN-γ) serum level in patients with lumbar disc herniations. The study challenges the mechanism of sciatica pain and the role of IFN-γ in radicular pain development. Material and Methods. We performed clinical and immunoenzymatic assessment in a group of 27 patients with lumbar radicular pain due to disc herniations before and 3 months after surgery. Clinical status was assessed with the use of the Numeric Rating Scale (NRS), the Pain Rating Index and Pain Intensity Index of McGill Pain Questionnaire (SF-MPQ), the Oswestry Disability Index (ODI), and Beck Depression Inventory (BDI). The plasma concentrations of IFN-γ were ascertained by an immunoenzymatic method. Results We observe significant correlations between the results of the pain in the back region assessment NRS back scale after the surgery with the level of IFN-γ before the procedure (rs = 0.528; p = 0.008) and after the procedure (rs = 0.455; p = 0.025). These are moderate and positive correlations—the decrease in pain is correlated with the lower IFN-γ level. Additionally, there are significant correlations between the results of the PRI scale and the IFN-γ level. The PRI score before surgery correlates positively with IFN-γ after surgery (rs = 0.462; p = 0.023), and the PRI score after surgery correlates positively with IFN before surgery (rs = 0.529; p = 0.005) and after surgery (rs = 0.549; p = 0.003). All correlations are moderate in severity—severe pain before surgery correlates with a higher level of IFN-γ after surgery and also higher IFN-γ before surgery. There were significant differences in the IFN-γ level before (Z = −2.733; p = 0.006) and after (Z = −2.391; p = 0.017) surgery in the groups of patients with and without nerve compression. In the group of patients with nerve compression, the level of IFN-γ before and after surgery was lower. Conclusions Less pain ratio after operation correlates with the level of IFN-γ. In the group of patients without significant nerve compression confirmed by MRI scans, the level of IFN-γ before and after surgery was higher than that in the group with nerve root compression.
Collapse
|
47
|
Creisher PS, Chandwani MN, Kamte YS, Covvey JR, Ganesan P, O’Donnell LA. Type II interferon signaling in the brain during a viral infection with age-dependent pathogenesis. Dev Neurobiol 2020; 80:213-228. [PMID: 32866337 PMCID: PMC8513332 DOI: 10.1002/dneu.22778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/13/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023]
Abstract
Viral infections of the central nervous system (CNS) often cause disease in an age-dependent manner, with greater neuropathology during the fetal and neonatal periods. Transgenic CD46+ mice model these age-dependent outcomes through a measles virus infection of CNS neurons. Adult CD46+ mice control viral spread and survive the infection in an interferon gamma (IFNγ)-dependent manner, whereas neonatal CD46+ mice succumb despite similar IFNγ expression in the brain. Thus, we hypothesized that IFNγ signaling in the adult brain may be more robust, potentially due to greater basal expression of IFNγ signaling proteins. To test this hypothesis, we evaluated the expression of canonical IFNγ signaling proteins in the neonatal and adult brain, including the IFNγ receptor, Janus kinase (JAK) 1/2, and signal transducer and activator of transcription-1 (STAT1) in the absence of infection. We also analyzed the expression and activation of STAT1 and IFNγ-stimulated genes during MV infection. We found that neonatal brains have equivalent or greater JAK/STAT1 expression in the hippocampus and the cerebellum than adults. IFNγ receptor expression varied by cell type in the brain but was widely expressed on neuronal and glial cells. During MV infection, increased STAT1 expression and activation correlated with viral load in the hippocampus regardless of age, but not in the cerebellum where viral load was consistently undetectable in adults. These results suggest the neonatal brain is capable of initiating IFNγ signaling during a viral infection, but that downstream STAT1 activation is insufficient to limit viral spread.
Collapse
Affiliation(s)
- Patrick S. Creisher
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Manisha N. Chandwani
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Yashika S. Kamte
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Jordan R. Covvey
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Priya Ganesan
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Lauren A. O’Donnell
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| |
Collapse
|
48
|
Nakazato Y, Fujita Y, Nakazato M, Yamashita T. Neurons promote encephalitogenic CD4 + lymphocyte infiltration in experimental autoimmune encephalomyelitis. Sci Rep 2020; 10:7354. [PMID: 32355314 PMCID: PMC7192891 DOI: 10.1038/s41598-020-64363-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by neuroinflammation, leading to demyelination and axonal degeneration. Neuronal excitotoxity mediated by Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) results in neuronal damage in experimental autoimmune encephalitis (EAE), an animal model of MS. Here, we define a critical role of excitatory neurons in the pathogenesis of CD4+ lymphocyte accumulation in EAE. We silenced the activity of excitatory neurons in a mouse model of targeted EAE using inhibitory designer receptors exclusively activated by designer drugs (DREADD) under a CaMKIIα promoter. Neuronal silencing mitigated clinical disease scores in EAE, reduced the expression of c-fos, Tnfα, Ccl2, and Ccr2 mRNAs in targeted EAE lesions, and prevented the migration of CD4+ lymphocytes towards neurons. Ccl2 shRNA treatment of targeted EAE suppressed the migration of CD4+ lymphocytes and alleviated the motor deficits of EAE. Our findings indicate that neuronal activation in EAE promotes the migration of CCR2+ CD4+ lymphocytes and that neuronal silencing with an inhibitory DREADD alleviates clinical and molecular markers of disease. Neuronal CCL2 is thought to be involved in promoting lymphocytes migration.
Collapse
Affiliation(s)
- Yuki Nakazato
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Internal Medicine, Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masamitsu Nakazato
- Department of Internal Medicine, Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan. .,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan. .,Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan. .,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
49
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Janach GMS, Reetz O, Döhne N, Stadler K, Grosser S, Byvaltcev E, Bräuer AU, Strauss U. Interferon-γ acutely augments inhibition of neocortical layer 5 pyramidal neurons. J Neuroinflammation 2020; 17:69. [PMID: 32087716 PMCID: PMC7035745 DOI: 10.1186/s12974-020-1722-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interferon-γ (IFN-γ, a type II IFN) is present in the central nervous system (CNS) under various conditions. Evidence is emerging that, in addition to its immunological role, IFN-γ modulates neuronal morphology, function, and development in several brain regions. Previously, we have shown that raising levels of IFN-β (a type I IFN) lead to increased neuronal excitability of neocortical layer 5 pyramidal neurons. Because of shared non-canonical signaling pathways of both cytokines, we hypothesized a similar neocortical role of acutely applied IFN-γ. METHODS We used semi-quantitative RT-PCR, immunoblotting, and immunohistochemistry to analyze neuronal expression of IFN-γ receptors and performed whole-cell patch-clamp recordings in layer 5 pyramidal neurons to investigate sub- and suprathreshold excitability, properties of hyperpolarization-activated cyclic nucleotide-gated current (Ih), and inhibitory neurotransmission under the influence of acutely applied IFN-γ. RESULTS We show that IFN-γ receptors are present in the membrane of rat's neocortical layer 5 pyramidal neurons. As expected from this and the putative overlap in IFN type I and II alternative signaling pathways, IFN-γ diminished Ih, mirroring the effect of type I IFNs, suggesting a likewise activation of protein kinase C (PKC). In contrast, IFN-γ did neither alter subthreshold nor suprathreshold neuronal excitability, pointing to augmented inhibitory transmission by IFN-γ. Indeed, IFN-γ increased electrically evoked inhibitory postsynaptic currents (IPSCs) on neocortical layer 5 pyramidal neurons. Furthermore, amplitudes of spontaneous IPSCs and miniature IPSCs were elevated by IFN-γ, whereas their frequency remained unchanged. CONCLUSIONS The expression of IFN-γ receptors on layer 5 neocortical pyramidal neurons together with the acute augmentation of inhibition in the neocortex by direct application of IFN-γ highlights an additional interaction between the CNS and immune system. Our results strengthen our understanding of the role of IFN-γ in neocortical neurotransmission and emphasize its impact beyond its immunological properties, particularly in the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Olivia Reetz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Konstantin Stadler
- Industrial Ecology Programme, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Sabine Grosser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Egor Byvaltcev
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja U Bräuer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|