1
|
Kang CE, Kim JH, Lee NK, Paik HD. Paraprobiotic Levilactobacillus brevis KU15151 exhibits antioxidative and anti-inflammatory activities in LPS-induced A549 cells. Microb Pathog 2025; 198:107143. [PMID: 39579943 DOI: 10.1016/j.micpath.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Levilactobacillus brevis KU15151, isolated from kimchi, has been reported in previous studies to possess probiotic properties. Here, we sought to explore the potential of heat-killed L. brevis KU15151 in improving respiratory health by identifying its antioxidant and anti-inflammatory effects in LPS-induced A549 cells. Inactivated L. brevis KU15151 exhibited strong DPPH and ABTS radical-scavenging abilities (48.78 ± 3.95 % and 69.08 ± 1.09 %) and effectively reduced the production of reactive oxygen species (25.32 %). In addition, it was found to have anti-inflammatory effects by inhibiting phosphorylation of ERK 1/2 (0.556), JNK (0.476), p38 MAPK (0.580), p65 (0.579), and IκB-α (1.170), which are involved in MAPK and NF-κB signaling. It also suppressed the mRNA expression of pro-inflammatory cytokines (0.173-0.617), which are important factors in respiratory diseases. IL-6 (19.47 %) and eotaxin (50.19 %) levels were reduced as measured by ELISA. Therefore, heat-killed L. brevis KU15151 is expected to improve respiratory health.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Sun X, Cao S, Mao C, Sun F, Zhang X, Song Y. Post-translational modifications of p65: state of the art. Front Cell Dev Biol 2024; 12:1417502. [PMID: 39050887 PMCID: PMC11266062 DOI: 10.3389/fcell.2024.1417502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
P65, a protein subunit of NF-κB, is a widely distributed transcription factor in eukaryotic cells and exerts diverse regulatory functions. Post-translational modifications such as phosphorylation, acetylation, methylation and ubiquitination modulate p65 transcriptional activity and function, impacting various physiological and pathological processes including inflammation, immune response, cell death, proliferation, differentiation and tumorigenesis. The intricate interplay between these modifications can be antagonistic or synergistic. Understanding p65 post-translational modifications not only elucidates NF-κB pathway regulation but also facilitates the identification of therapeutic targets and diagnostic markers for associated clinical conditions.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Chen Y, Hung FY, Sugimoto K. Epigenomic reprogramming in plant regeneration: Locate before you modify. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102415. [PMID: 37437389 DOI: 10.1016/j.pbi.2023.102415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plants possess remarkable abilities for regeneration, and this developmental capability is strongly influenced by environmental conditions. Previous research has highlighted the positive effects of wound signaling and warm temperature on plant regeneration, and recent studies suggest that light and nutrient signals also influence the regenerative efficiencies. Several epigenetic factors, such as histone acetyl-transferases (HATs), POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), and H2A variants, play crucial roles in regulating the expression of genes implicated in plant regeneration. However, how these epigenetic factors recognize specific genomic regions to regulate regeneration genes is still unclear. In this article, we describe the latest studies of epigenetic regulation and discuss the functional coordination between transcription factors and epigenetic modifiers in plant regeneration.
Collapse
Affiliation(s)
- Yu Chen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Fu-Yu Hung
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
4
|
Koutsougianni F, Alexopoulou D, Uvez A, Lamprianidou A, Sereti E, Tsimplouli C, Ilkay Armutak E, Dimas K. P90 ribosomal S6 kinases: A bona fide target for novel targeted anticancer therapies? Biochem Pharmacol 2023; 210:115488. [PMID: 36889445 DOI: 10.1016/j.bcp.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The 90 kDa ribosomal S6 kinase (RSK) family of proteins is a group of highly conserved Ser/Thr kinases. They are downstream effectors of the Ras/ERK/MAPK signaling cascade. ERK1/2 activation directly results in the phosphorylation of RSKs, which further, through interaction with a variety of different downstream substrates, activate various signaling events. In this context, they have been shown to mediate diverse cellular processes like cell survival, growth, proliferation, EMT, invasion, and metastasis. Interestingly, increased expression of RSKs has also been demonstrated in various cancers, such as breast, prostate, and lung cancer. This review aims to present the most recent advances in the field of RSK signaling that have occurred, such as biological insights, function, and mechanisms associated with carcinogenesis. We additionally present and discuss the recent advances but also the limitations in the development of pharmacological inhibitors of RSKs, in the context of the use of these kinases as putative, more efficient targets for novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Fani Koutsougianni
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Dimitra Alexopoulou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Ayca Uvez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Andromachi Lamprianidou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Evangelia Sereti
- Dept of Translational Medicine, Medical Faculty, Lund University and Center for Molecular Pathology, Skäne University Hospital, Jan Waldenströms gata 59, SE 205 02 Malmö, Sweden
| | - Chrisiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece.
| |
Collapse
|
5
|
Shao C, Lu L. PAR2 Overexpression is Involved in the Occurrence of Hyperoxygen-Induced Bronchopulmonary Dysplasia in Rats. Fetal Pediatr Pathol 2023; 42:423-437. [PMID: 36657618 DOI: 10.1080/15513815.2023.2166799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia is a chronic lung disease commonly seen in preterm infants. It is characterized by delayed development of the alveoli and lung fibrosis. Protease-activated receptor 2 (PAR2) is an inflammatory driver that plays a proinflammatory role mainly through the P38 MAPK/NF-κB signaling pathway. METHODS Newborn rat pups were kept under air or oxygen at >60% concentration. Lung tissues were collected at postnatal days (P) 1, 4, 7, and 10 to observe pathological changes and take measurements. RESULTS In the hyperoxic group, P4 and P7 rats showed delayed alveolar development, septal thickening, and disturbances in alveolar structure.PAR2, P38 MAPK, NF-κB, and IL-18 expression at P4, P7, and P10 was significantly higher than in the air group. CONCLUSION PAR2 is involved in lung injury induced by persistent hyperoxia. Activated PAR2 promotes IL-18 overexpression through the P38 MAPK/NF-κB signaling pathway, which may be an important mechanism of PAR2-mediated lung injury in bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Chunyan Shao
- Department of Pediatrics, Chengdu Medical College, Chengdu, China
| | - Liqun Lu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
7
|
Feng Z, Sun R, Cong Y, Liu Z. Critical roles of G protein-coupled receptors in regulating intestinal homeostasis and inflammatory bowel disease. Mucosal Immunol 2022; 15:819-828. [PMID: 35732818 DOI: 10.1038/s41385-022-00538-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023]
Abstract
G protein-coupled receptors (GPCRs) are a group of membrane proteins that mediate most of the physiological responses to various signaling molecules such as hormones, neurotransmitters, and environmental stimulants. Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the gastrointestinal tract and presents a spectrum of heterogeneous disorders falling under two main clinical subtypes including Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis of IBD is multifactorial and is related to a genetically dysregulated mucosal immune response to environmental drivers, mainly microbiotas. Although many drugs, such as 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, have been approved for IBD treatment, none can cure IBD permanently. Emerging evidence indicates significant associations between GPCRs and the pathogenesis of IBD. Here, we provide an overview of the essential physiological functions and signaling pathways of GPCRs and their roles in mucosal immunity and IBD regulation.
Collapse
Affiliation(s)
- Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ruicong Sun
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China.
| |
Collapse
|
8
|
Xiao X, Hu Q, Deng X, Shi K, Zhang W, Jiang Y, Ma X, Zeng J, Wang X. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol Res 2021; 175:106005. [PMID: 34843960 DOI: 10.1016/j.phrs.2021.106005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
As a source of various compounds, natural products have long been important and valuable for drug development. Kaempferol (KP) is the most common flavonol with bioactive activity and has been extracted from many edible plants and traditional Chinese medicines. It has a wide range of pharmacological effects on inflammation, oxidation, and tumour and virus regulation. The liver is an important organ and is involved in metabolism and activity. Because the pathological process of liver diseases is extremely complicated, liver diseases involving ALD, NASH, liver fibrosis, and HCC are often complicated and difficult to treat. Fortunately, there have been many reports that KP has a good pharmacological effect on a series of complex liver diseases. To fully understand the mechanism of KP and provide new ideas for its clinical application in the treatment of liver diseases, this article reviews the pharmacological mechanism and potential value of KP in different studies involving various liver diseases. In the trilogy of liver disease, high concentrations of ROS stimulate peroxidation and activate the inflammatory signal cascade, which involves signalling pathways such as MAPK/JAK-STAT/PERK/Wnt/Hipp, leading to varying degrees of cell degradation and liver damage. The development of liver disease is promoted in an inflammatory environment, which is conducive to the activation of TGF-β1, leading to increased expression of pro-fibrosis and pro-inflammatory genes. Inflammation and oxidative stress promote the formation of tumour microenvironments, and uncontrolled autophagy of cancer cells further leads to the development of liver cancer. The main pathway in this process is AMPK/PTEN/PI3K-Akt/TOR. KP can not only protect liver parenchymal cells through a variety of antioxidant and anti-apoptotic mechanisms but also reduces the immune inflammatory response in the liver microenvironment, thereby preventing cell apoptosis; it can also inhibit the ER stress response, prevent inflammation and inhibit tumour growth. KP exerts multiple therapeutic effects on liver disease by regulating precise signalling targets and is expected to become an emerging therapeutic opportunity to treat liver disease in the future.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaiyun Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaoyin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Imano H, Kato R, Nomura A, Tamura M, Yamaguchi Y, Ijiri Y, Wu H, Nakano T, Okada Y, Yamaguchi T, Izumi Y, Yoshiyama M, Asahi M, Hayashi T. Rivaroxaban Attenuates Right Ventricular Remodeling in Rats with Pulmonary Arterial Hypertension. Biol Pharm Bull 2021; 44:669-677. [PMID: 33612567 DOI: 10.1248/bpb.b20-01011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive condition that frequently results in right ventricular (RV) remodeling. The objectives of this study are to investigate effects of rivaroxaban on RV remodeling in a rat model of PAH, created with Sugen5416 and chronic hypoxia, and the in vitro effects of rivaroxaban on human cardiac microvascular endothelial cells (HCMECs). To create the PAH model, male Sprague-Dawley rats were subcutaneously injected with Sugen5416 (20 mg/kg) and exposed to 2 weeks of hypoxia (10% O2), followed by 2 weeks of exposure to normoxia. The animals were then divided into 2 groups with or without administration of rivaroxaban (12 mg/kg/d) for a further 4 weeks. HCMECs were cultured under hypoxic conditions (37 °C, 1% O2, 5% CO2) with Sugen5416 and with or without rivaroxaban. In the model rats, RV systolic pressure and Fulton index increased by hypoxia with Sugen5416 were significantly decreased when treated with rivaroxaban. In HCMECs, hypoxia with Sugen5416 increased the expression of protease-activated receptor-2 (PAR-2) and the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF-κB), while treatment with rivaroxaban significantly suppressed the expression of these proteins. Rivaroxaban attenuated RV remodeling in a rat model of PAH by reducing ERK, JNK and NF-κB activation. Rivaroxaban has the possibility of providing additive effects on RV remodeling in patients with PAH.
Collapse
Affiliation(s)
- Hideki Imano
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Ryuji Kato
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Atsuo Nomura
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College
| | - Maki Tamura
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Yudai Yamaguchi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Yoshio Ijiri
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical College
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical College
| | - Yoshikatsu Okada
- Department of Pathology, Faculty of Medicine, Osaka Medical College
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka City University Graduate School of Medicine
| | - Yasukatsu Izumi
- Department of Pharmacology, Osaka City University Graduate School of Medicine
| | - Minoru Yoshiyama
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College
| | - Tetsuya Hayashi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
10
|
Wang X, Khoshaba R, Shen Y, Cao Y, Lin M, Zhu Y, Cao Z, Liao DF, Cao D. Impaired Barrier Function and Immunity in the Colon of Aldo-Keto Reductase 1B8 Deficient Mice. Front Cell Dev Biol 2021; 9:632805. [PMID: 33644071 PMCID: PMC7907435 DOI: 10.3389/fcell.2021.632805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is downregulated in human ulcerative colitis (UC) and colorectal cancer, being a potential pathogenic factor of these diseases. Aldo-keto reductase 1B8 (AKR1B8) is the ortholog in mice of human AKR1B10. Targeted AKR1B8 deficiency disrupts homeostasis of epithelial self-renewal and leads to susceptibility to colitis and carcinogenesis. In this study, we found that in AKR1B8 deficient mice, Muc2 expression in colon was diminished, and permeability of colonic epithelium increased. Within 24 h, orally administered FITC-dextran penetrated into mesenteric lymph nodes (MLN) and liver in AKR1B8 deficient mice, but not in wild type controls. In the colon of AKR1B8 deficient mice, neutrophils and mast cells were markedly infiltrated, γδT cells were numerically and functionally impaired, and dendritic cell development was altered. Furthermore, Th1, Th2, and Th17 cells decreased, but Treg and CD8T cells increased in the colon and MLN of AKR1B8 deficient mice. In colonic epithelial cells of AKR1B8 deficient mice, p-AKT (T308 and S473), p-ERK1/2, p-IKBα, p-p65 (S536), and IKKα expression decreased, accompanied with downregulation of IL18 and CCL20 and upregulation of IL1β and CCL8. These data suggest AKR1B8 deficiency leads to abnormalities of intestinal epithelial barrier and immunity in colon.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Ramina Khoshaba
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States.,Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Yi Shen
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Yu Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Minglin Lin
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Yun Zhu
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Zhe Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Duan-Fang Liao
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
11
|
Lunin SM, Khrenov MO, Glushkova OV, Parfenyuk SB, Novoselova TV, Novoselova EG. Immune response in the relapsing-remitting experimental autoimmune encephalomyelitis in mice: The role of the NF-κB signaling pathway. Cell Immunol 2018; 336:20-27. [PMID: 30553438 DOI: 10.1016/j.cellimm.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 12/28/2022]
Abstract
Characteristics of the mouse model of relapsing-remitting experimental autoimmune encephalomyelitis (rEAE) closely resemble manifestations of multiple sclerosis in humans. In the present study, we investigated the mechanisms of inflammatory response, focusing on NF-κB pathway activation. Cytokine response in rEAE mice was multiphasic: the early phase was characterized by the increase in interferon-γ level in plasma. In the later stage, the level of interleukin-17, but not of interferon-γ, was increased. The early phase of rEAE was also accompanied by increased RelA/p65 phosphorylation at Ser276 in spleen cells, whereas the rEAE maintenance phase was characterized by RelA/p65 phosphorylation at Ser536 and IKK phosphorylation. The IKKα/β inhibitor reduced interleukin-17 and interferon-γ levels in plasma and alleviated rEAE symptoms. The IKKα/β inhibitor decreased IKK and p65(Ser536) phosphorylation, but doubled p65(Ser276) phosphorylation in rEAE mice. The increased RelA/p65(Ser276) phosphorylation coincided in time with the production of interferon-γ, Hsp72, and the early phase of IL-17 generation, whereas increased RelA/p65(Ser536) phosphorylation coincided with the activation of IKK, SAPK/JNK, and p53, as well as the late phase of IL-17 production, indicating the role of the RelA/p65 phosphorylation events in the induction and maintenance of rEAE.
Collapse
Affiliation(s)
- S M Lunin
- Institute of Cell Biophysics, Pushchino, Moscow Region 142290, Russia.
| | - M O Khrenov
- Institute of Cell Biophysics, Pushchino, Moscow Region 142290, Russia
| | - O V Glushkova
- Institute of Cell Biophysics, Pushchino, Moscow Region 142290, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics, Pushchino, Moscow Region 142290, Russia
| | - T V Novoselova
- Institute of Cell Biophysics, Pushchino, Moscow Region 142290, Russia
| | - E G Novoselova
- Institute of Cell Biophysics, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
12
|
Factor Xa inhibition by rivaroxaban attenuates cardiac remodeling due to intermittent hypoxia. J Pharmacol Sci 2018; 137:274-282. [PMID: 30055890 DOI: 10.1016/j.jphs.2018.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
Patients with obstructive sleep apnea (OSA) have a high prevalence of atrial fibrillation (AF). Rivaroxaban, a coagulation factor Xa inhibitor, has recently been reported to show pleiotropic effects. This study investigated the influence of rivaroxaban on cardiac remodeling caused by intermittent hypoxia (IH). Male C57BL/6J mice were exposed to IH (repeated cycles of 5% oxygen for 1.5 min followed by 21% oxygen for 5 min) for 28 days with/without rivaroxaban (12 mg/kg/day) or FSLLRY, a protease-activated receptor (PAR)-2 antagonist (10 μg/kg/day). IH caused endothelial cell degeneration in the small arteries of the right atrial myocardium and increased the level of %fibrosis and 4-hydroxy-2-nonenal protein adducts in the left ventricular myocardium. IH also increased the expression of PAR-2 as well as the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and nuclear factor-kappa B (NF-κB) were increased in human cardiac microvascular endothelial cells. However, rivaroxaban and FSLLRY significantly suppressed these changes. These findings demonstrate that rivaroxaban attenuates both atrial and ventricular remodeling induced by IH through the prevention of oxidative stress and fibrosis by suppressing the activation of ERK and NF-κB pathways via PAR-2. Treatment with rivaroxaban could potentially become a novel therapeutic strategy for cardiac remodeling in patients with OSA and AF.
Collapse
|
13
|
Jiang Y, Yau MK, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP. A Potent Antagonist of Protease-Activated Receptor 2 That Inhibits Multiple Signaling Functions in Human Cancer Cells. J Pharmacol Exp Ther 2018; 364:246-257. [PMID: 29263243 DOI: 10.1124/jpet.117.245027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 01/15/2023] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell surface protein linked to G-protein dependent and independent intracellular signaling pathways that produce a wide range of physiological responses, including those related to metabolism, inflammation, pain, and cancer. Certain proteases, peptides, and nonpeptides are known to potently activate PAR2. However, no effective potent PAR2 antagonists have been reported yet despite their anticipated therapeutic potential. This study investigates antagonism of key PAR2-dependent signaling properties and functions by the imidazopyridazine compound I-191 (4-(8-(tert-butyl)-6-(4-fluorophenyl)imidazo[1,2-b]pyridazine-2-carbonyl)-3,3-dimethylpiperazin-2-one) in cancer cells. At nanomolar concentrations, I-191 inhibited PAR2 binding of and activation by structurally distinct PAR2 agonists (trypsin, peptide, nonpeptide) in a concentration-dependent manner in cells of the human colon adenocarcinoma grade II cell line (HT29). I-191 potently attenuated multiple PAR2-mediated intracellular signaling pathways leading to Ca2+ release, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, Ras homologue gene family, member A (RhoA) activation, and inhibition of forskolin-induced cAMP accumulation. The mechanism of action of I-191 was investigated using binding and calcium mobilization studies in HT29 cells where I-191 was shown to be noncompetitive and a negative allosteric modulator of the agonist 2f-LIGRL-NH2 The compound alone did not activate these PAR2-mediated pathways, even at high micromolar concentrations, indicating no bias in these signaling properties. I-191 also potently inhibited PAR2-mediated downstream functional responses, including expression and secretion of inflammatory cytokines and cell apoptosis and migration, in human colon adenocarcinoma grade II cell line (HT29) and human breast adenocarcinoma cells (MDA-MB-231). These findings indicate that I-191 is a potent PAR2 antagonist that inhibits multiple PAR2-induced signaling pathways and functional responses. I-191 may be a valuable tool for characterizing PAR2 functions in cancer and in other cellular, physiological, and disease settings.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mei-Kwan Yau
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Weijun Xu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Jiang Y, Yau MK, Kok WM, Lim J, Wu KC, Liu L, Hill TA, Suen JY, Fairlie DP. Biased Signaling by Agonists of Protease Activated Receptor 2. ACS Chem Biol 2017; 12:1217-1226. [PMID: 28169521 DOI: 10.1021/acschembio.6b01088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer, and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing, and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mei-Kwan Yau
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - W. Mei Kok
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacky Y. Suen
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
段 园, 唐 旭, 王 凤, 马 祥. PAR-2信号通路与功能性胃肠病. Shijie Huaren Xiaohua Zazhi 2017; 25:1159-1165. [DOI: 10.11569/wcjd.v25.i13.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
功能性胃肠病(functional gastrointestinal disorders, FGIDs)是一组排除器质性病变的胃肠道疾病, 其症状复杂且无特异性. 该类疾病在人群中患病率不断升高, 虽不致死, 但伴随精神症状大大降低了患者生活质量, 病情反复且周期长, 给患者家庭和社会造成了一定经济压力. 探索其发病机制以制定更佳治疗策略成为当前重任. 近年研究证实蛋白酶激活受体2(protease-activated receptor 2, PAR-2)在FGIDs发病机制中的作用确切, 相关研究亦越来越深入. 但众多研究各持一角, 不免混杂, 故本文就近几年PAR-2的相关研究作了梳理, 以便后续研究能有所借鉴, 看到不足, 并能做进一步的深入研究.
Collapse
|
16
|
Jeong SC, Cho Y, Song MK, Lee E, Ryu JC. Epidermal growth factor receptor (EGFR)-MAPK-nuclear factor(NF)-κB-IL8: A possible mechanism of particulate matter(PM) 2.5-induced lung toxicity. ENVIRONMENTAL TOXICOLOGY 2017; 32:1628-1636. [PMID: 28101945 DOI: 10.1002/tox.22390] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/16/2017] [Accepted: 12/22/2016] [Indexed: 05/20/2023]
Abstract
Airway inflammation plays a central role in the pathophysiology of diverse pulmonary diseases. In this study, we investigated whether exposure to particulate matter (PM) 2.5, a PM with an aerodynamic diameter of less than 2.5 µm, enhances inflammation-related toxicity in the human respiratory system through activation of the epidermal growth factor receptor (EGFR) signaling pathway. Through cytokine antibody array analysis of two extracts of PM2.5 [water (W-PM2.5 ) and organic (O-PM2.5 ) soluble extracts] exposed to A549 (human alveolar epithelial cell), we identified eight cytokines changed their expression with W-PM2.5 and three cytokines with O-PM2.5 . Among them, epidermal growth factor (EGF) was commonly up-regulated by W-PM2.5 and O-PM2.5 . Then, in both groups, we can identify the increase in EGF receptor protein levels. Likewise, increases in the phosphorylation of ERK1/2 MAP kinase and acetylation of nuclear factor(NF)-κB were detected. We also detected an increase in IL-8 that was related to inflammatory response. And using the erlotinib as an inhibitor of EGFR, we identified the erlotinib impaired the phosphorylation of EGFR, ERK1/2, acetylation of NF-κB proteins and decreased IL-8. Furthermore, at in vivo model, we were able to identify similar patterns. These results suggest that PM2.5 may contribute to an abnormality in the human respiratory system through EGFR, MAP kinase, NF-κB, and IL-8 induced toxicity signaling. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1628-1636, 2017.
Collapse
Affiliation(s)
- Seung-Chan Jeong
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- Department of Preventive Medicine, Korea University, Korea Project for Reducing Light Pollution Effects to Human and Ecosystem, Korea
| | - Yoon Cho
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Mi-Kyung Song
- National Center for Efficacy evaluation for Respiratory disease product, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 53212, Republic of Korea
| | - Eunil Lee
- Department of Preventive Medicine, Korea University, Korea Project for Reducing Light Pollution Effects to Human and Ecosystem, Korea
| | - Jae-Chun Ryu
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- Department of Pharmacology and Toxicology, Human and Environmental Toxicology, Korea University of Science and Technology, Gajeong-Ro 217, Yuseong-gu, Daejeon, 305-350, Korea
| |
Collapse
|
17
|
Huang ZW, Lien GS, Lin CH, Jiang CP, Chen BC. p300 and C/EBPβ-regulated IKKβ expression are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Pharmacol Res 2017; 121:33-41. [PMID: 28428115 DOI: 10.1016/j.phrs.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic lung inflammatory diseases. Thrombin and interleukin (IL)-8/C-X-C chemokine ligand 8 (CXCL8) play critical roles in lung inflammation. Our previous study showed that c-Src-dependent IκB kinase (IKK)/IκBα/nuclear factor (NF)-κB and mitogen-activated protein kinase kinase kinase 1 (MEKK1)/extracellular signal-regulated kinase (ERK)/ribosomal S6 protein kinase (RSK)-dependent CAAT/enhancer-binding protein β (C/EBPβ) activation are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. In this study, we aimed to investigate the roles of p300 and C/EBPβ-reliant IKKβ expression in thrombin-induced IL-8/CXCL8 expression. Thrombin-induced increases in IL-8/CXCL8-luciferase activity and IL-8/CXCL8 release were inhibited by p300 small interfering (siRNA). Thrombin-caused histone H3 acetylation was attenuated by p300 siRNA. Stimulation of cells with thrombin for 12h resulted in increases in IKKβ expression and phosphorylation in human lung epithelial cells. However, thrombin did not affect p65 expression. Moreover, 12h of thrombin stimulation produced increases in IKKβ expression and phosphorylation, and IκBα phosphorylation, which were inhibited by C/EBPβ siRNA. Finally, treatment of cells with thrombin caused increases in p300 and C/EBPβ complex formation, p65 and C/EBPβ complex formation, and recruitment of p300, p65, and C/EBPβ to the IL-8/CXCL8 promoter. These results imply that p300-dependent histone H3 acetylation and C/EBPβ-regulated IKKβ expression contribute to thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Results of this study will help clarify C/EBPβ signaling pathways involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Zheng-Wei Huang
- Graduate Institute of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ping Jiang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Proteasome inhibitors exacerbate interleukin-8 production induced by protease-activated receptor 2 in intestinal epithelial cells. Cytokine 2016; 86:41-46. [DOI: 10.1016/j.cyto.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022]
|
19
|
Lieu T, Savage E, Zhao P, Edgington-Mitchell L, Barlow N, Bron R, Poole DP, McLean P, Lohman RJ, Fairlie DP, Bunnett NW. Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2. Br J Pharmacol 2016; 173:2752-65. [PMID: 27423137 PMCID: PMC4995288 DOI: 10.1111/bph.13554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that cleave PAR2 at different sites to activate distinct signalling pathways. Although PAR2 is a therapeutic target for inflammatory and painful diseases, the divergent mechanisms of proteolytic activation complicate the development of therapeutically useful antagonists. EXPERIMENTAL APPROACH We investigated whether the PAR2 antagonist GB88 inhibits protease-evoked activation of nociceptors and protease-stimulated oedema and hyperalgesia in rodents. KEY RESULTS Intraplantar injection of trypsin, cathespsin-S or elastase stimulated mechanical and thermal hyperalgesia and oedema in mice. Oral GB88 or par2 deletion inhibited the algesic and proinflammatory actions of all three proteases, but did not affect basal responses. GB88 also prevented pronociceptive and proinflammatory effects of the PAR2-selective agonists 2-furoyl-LIGRLO-NH2 and AC264613. GB88 did not affect capsaicin-evoked hyperalgesia or inflammation. Trypsin, cathepsin-S and elastase increased [Ca(2+) ]i in rat nociceptors, which expressed PAR2. GB88 inhibited this activation of nociceptors by all three proteases, but did not affect capsaicin-evoked activation of nociceptors or inhibit the catalytic activity of the three proteases. CONCLUSIONS AND IMPLICATIONS GB88 inhibits the capacity of canonical and biased protease agonists of PAR2 to cause nociception and inflammation.
Collapse
Affiliation(s)
- T Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - E Savage
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - P Zhao
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - L Edgington-Mitchell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - N Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - R Bron
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - D P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
- Departments of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - P McLean
- Takeda Pharmaceuticals, Zurich, Switzerland
| | - R-J Lohman
- Centre for Inflammation and Disease Research and Centre for Pain Research, Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - D P Fairlie
- Centre for Inflammation and Disease Research and Centre for Pain Research, Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - N W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
- Departments of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Kryczek I, Wang L, Wu K, Li W, Zhao E, Cui T, Wei S, Liu Y, Wang Y, Vatan L, Szeliga W, Greenson JK, Roliński J, Zgodzinski W, Huang E, Tao K, Wang G, Zou W. Inflammatory regulatory T cells in the microenvironments of ulcerative colitis and colon carcinoma. Oncoimmunology 2016; 5:e1105430. [PMID: 27622054 DOI: 10.1080/2162402x.2015.1105430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022] Open
Abstract
Foxp3(+)CD4(+) regulatory T (Treg) cells are thought to express negligible levels of effector cytokines, and inhibit immune responses and inflammation. Here, we have identified a population of IL-8(+)Foxp3(+)CD4(+) T cells in human peripheral blood, which is selectively increased in the microenvironments of ulcerative colitis and colon carcinoma. Phenotypically, this population is minimally overlapping with IL-17(+)Foxp3(+)CD4(+) T cells, and is different from IL-8(-)Foxp3(+)CD4(+) T cells in the same microenvironment. 40-60% of IL-8(+)Foxp3(+)CD4(+) T cells exhibit naive phenotype and express CD127, whereas IL-8(-)Foxp3(+)CD4(+) cells are basically memory T cells and express minimal CD127. The levels of CXCR5 expression are higher in IL-8(+)Foxp3(+) cells than in IL-8(-)Foxp3(+) cells. IL-2 and TGFβ induce IL-8(+)Foxp3(+) T cells. Exogenous Foxp3 expression promotes IL-8(+)Foxp3(+) T cells and inhibits effector cytokine IFNγ and IL-2 expression. Furthermore, Foxp3 binds to IL-8 proximal promoter and increases its activity. Functionally, IL-8(+)Foxp3(+) T cells inhibit T cell proliferation and effector cytokine production, but stimulate inflammatory cytokine production in the colon tissues, and promote neutrophil trafficking through IL-8. Thus, IL-8(+)Foxp3(+) cells may be an "inflammatory" Treg subset, and possess inflammatory and immunosuppressive dual biological activities. Given their dual roles and localization, these cells may be in a unique position to support tumor initiation and development in human chronic inflammatory environment.
Collapse
Affiliation(s)
- Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lin Wang
- Departments of Clinical Laboratory and Surgery, and Medical Research Center, Union Hospital, Huazhong University of Science and Technology School of Medicine , Wuhan, China
| | - Ke Wu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Departments of Clinical Laboratory and Surgery, and Medical Research Center, Union Hospital, Huazhong University of Science and Technology School of Medicine, Wuhan, China
| | - Wei Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Departments of Clinical Laboratory and Surgery, and Medical Research Center, Union Hospital, Huazhong University of Science and Technology School of Medicine, Wuhan, China
| | - Ende Zhao
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Departments of Clinical Laboratory and Surgery, and Medical Research Center, Union Hospital, Huazhong University of Science and Technology School of Medicine, Wuhan, China
| | - Tracy Cui
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Yan Liu
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Yin Wang
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Wojciech Szeliga
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Joel K Greenson
- Department of Pathology, University of Michigan , Ann Arbor, MI, USA
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland; 2nd Department of General Surgery, Medical University of Lublin, Lublin, Poland
| | - Witold Zgodzinski
- 2nd Department of General Surgery, Medical University of Lublin , Lublin, Poland
| | - Emina Huang
- Department of Colorectal Surgery, Cleveland Clinic, Western Reserve University , Cleveland, Ohio, USA
| | - Kaixiong Tao
- Departments of Clinical Laboratory and Surgery, and Medical Research Center, Union Hospital, Huazhong University of Science and Technology School of Medicine , Wuhan, China
| | - Guobin Wang
- Departments of Clinical Laboratory and Surgery, and Medical Research Center, Union Hospital, Huazhong University of Science and Technology School of Medicine , Wuhan, China
| | - Weiping Zou
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
21
|
Jensen DD, Zhao P, Jimenez-Vargas NN, Lieu T, Gerges M, Yeatman HR, Canals M, Vanner SJ, Poole DP, Bunnett NW. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. J Biol Chem 2016; 291:11285-99. [PMID: 27030010 PMCID: PMC4900274 DOI: 10.1074/jbc.m115.710681] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.
Collapse
Affiliation(s)
- Dane D Jensen
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nestor N Jimenez-Vargas
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Marina Gerges
- From the Monash Institute of Pharmaceutical Sciences and
| | | | - Meritxell Canals
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Stephen J Vanner
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia, the Departments of Anatomy and Neuroscience and
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia, Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia, and
| |
Collapse
|
22
|
Morales-Ibanez O, Affò S, Rodrigo-Torres D, Blaya D, Millán C, Coll M, Perea L, Odena G, Knorpp T, Templin MF, Moreno M, Altamirano J, Miquel R, Arroyo V, Ginès P, Caballería J, Sancho-Bru P, Bataller R. Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis. Gut 2016; 65:840-51. [PMID: 25652085 PMCID: PMC4524790 DOI: 10.1136/gutjnl-2014-307979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Alcoholic hepatitis (AH) is often associated with advanced fibrosis, which negatively impacts survival. We aimed at identifying kinases deregulated in livers from patients with AH and advanced fibrosis in order to discover novel molecular targets. DESIGN Extensive phosphoprotein analysis by reverse phase protein microarrays was performed in AH (n=12) and normal human livers (n=7). Ribosomal S6 kinase (p90RSK) hepatic expression was assessed by qPCR, Western blot and immunohistochemistry. Kaempferol was used as a selective pharmacological inhibitor of the p90RSK pathway to assess the regulation of experimentally-induced liver fibrosis and injury, using in vivo and in vitro approaches. RESULTS Proteomic analysis identified p90RSK as one of the most deregulated kinases in AH. Hepatic p90RSK gene and protein expression was also upregulated in livers with chronic liver disease. Immunohistochemistry studies showed increased p90RSK staining in areas of active fibrogenesis in cirrhotic livers. Therapeutic administration of kaempferol to carbon tetrachloride-treated mice resulted in decreased hepatic collagen deposition, and expression of profibrogenic and proinflammatory genes, compared to vehicle administration. In addition, kaempferol reduced the extent of hepatocellular injury and degree of apoptosis. In primary hepatic stellate cells, kaempferol and small interfering RNA decreased activation of p90RSK, which in turn regulated key profibrogenic actions. In primary hepatocytes, kaempferol attenuated proapoptotic signalling. CONCLUSIONS p90RSK is upregulated in patients with chronic liver disease and mediates liver fibrogenesis in vivo and in vitro. These results suggest that the p90RSK pathway could be a new therapeutic approach for liver diseases characterised by advanced fibrosis.
Collapse
Affiliation(s)
- Oriol Morales-Ibanez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain,Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvia Affò
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Daniel Rodrigo-Torres
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Delia Blaya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Millán
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mar Coll
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Luis Perea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gemma Odena
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas Knorpp
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Baden-Württemberg, Germany
| | - Markus F Templin
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Baden-Württemberg, Germany
| | - Montserrat Moreno
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - José Altamirano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain,Liver Unit, Internal Medicine Department, Vall D’Hebron Institut de Recerca, Barcelona, Catalonia, Spain
| | - Rosa Miquel
- Pathology Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Vicente Arroyo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain,Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Pere Ginès
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain,Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Juan Caballería
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain,Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Pau Sancho-Bru
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ramon Bataller
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain,Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Tanaka T, Iino M. Nuclear Translocation of p65 is Controlled by Sec6 via the Degradation of IκBα. J Cell Physiol 2016; 231:719-30. [PMID: 26247921 DOI: 10.1002/jcp.25122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
Nuclear factor-κB (NF-κB) is an inducible transcription factor that mediates immune and inflammatory responses. NF-κB pathways are also involved in cell adhesion, differentiation, proliferation, autophagy, senescence, and protection against apoptosis. The deregulation of NF-κB activity is found in a number of disease states, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease. The 90 kDa ribosomal S6 kinase (p90RSK) family, which is serine/threonine kinases, is phosphorylated by extracellular signal-regulated kinase1/2 (ERK1/2) and is related to NF-κB pathways. Our previous studies revealed that Sec6, a component of the exocyst complex, plays specific roles in cell-cell adhesion and cell cycle arrest. However, the mechanism by which Sec6 regulates the NF-κB signaling pathway is unknown. We demonstrated that Sec6 knockdown inhibited the degradation of IκBα and delayed the nucleus-cytoplasm translocation of p65 in HeLa cells transfected with Sec6 siRNAs after treatment with tumor necrosis factor alpha (TNF-α). Furthermore, the binding of p65 and cAMP response element binding protein (CREB) binding protein (CBP) or p300 decreased and NF-κB related genes which were inhibitors of NF-κB alpha (IκBα), A20, B cell lymphoma protein 2 (Bcl-2), and monocyte chemoattractant protein-1 (MCP-1) were low in cells transfected with Sec6 siRNAs in response to TNF-α stimulation. Sec6 knockdown decreased the expression of p90RSKs and the phosphorylation of ERK or p90RSK1 at Ser380 or IκBα at Ser32. The present study suggests that Sec6 regulates NF-κB transcriptional activity via the control of the phosphorylation of IκBα, p90RSK1, and ERK.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan.,Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| |
Collapse
|
24
|
Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells 2016; 5:cells5010012. [PMID: 26999213 PMCID: PMC4810097 DOI: 10.3390/cells5010012] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.
Collapse
Affiliation(s)
- Frank Christian
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Emma L Smith
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
25
|
Yang L, Ma Y, Han W, Li W, Cui L, Zhao X, Tian Y, Zhou Z, Wang W, Wang H. Proteinase-activated receptor 2 promotes cancer cell migration through RNA methylation-mediated repression of miR-125b. J Biol Chem 2015; 290:26627-26637. [PMID: 26354435 PMCID: PMC4646319 DOI: 10.1074/jbc.m115.667717] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/05/2015] [Indexed: 01/08/2023] Open
Abstract
Proteinase activated-receptor 2 (PAR2) participates in cancer metastasis promoted by serine proteinases. The current study aimed to test the molecular mechanism by which PAR2 promotes cancer cell migration. In different cancer cells, activation of PAR2 by activating peptide (PAR2-AP) dramatically increased cell migration, whereas knock down of PAR2 inhibited cellular motility. The PAR2 activation also repressed miR-125b expression while miR-125b mimic successfully blocked PAR2-induced cell migration. Moreover, Grb associated-binding protein 2 (Gab2) was identified as a novel target gene of miR-125b and it mediated PAR2-induced cell migration. The correlation of PAR2 with miR-125b and Gab2 was further supported by the findings obtained from human colorectal carcinoma specimens. Remarkably, knock down of NOP2/Sun domain family, member 2 (NSun2), a RNA methyltransferase, blocked the reduction in miR-125b induced by PAR2. Furthermore, PAR2 activation increased the level of N(6)-methyladenosine (m(6)A)-containing pre-miR-125b in NSun2-dependent manner. Taken together, our results demonstrated that miR-125b mediates PAR2-induced cancer cell migration by targeting Gab2 and that NSun2-dependent RNA methylation contributes to the down-regulation of miR-125b by PAR2 signaling. These findings suggest a novel epigenetic mechanism by which microenvironment regulates cancer cell migration by altering miRNA expression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Binding Sites
- Cell Line, Tumor
- Cell Movement/drug effects
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- HT29 Cells
- Humans
- Methylation/drug effects
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/genetics
- Methyltransferases/metabolism
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Oligopeptides/pharmacology
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Protein Binding
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, PAR-2/genetics
- Receptor, PAR-2/metabolism
- Signal Transduction
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Lan Yang
- From the State Key Laboratory of Molecular Oncology
| | - Yiming Ma
- From the State Key Laboratory of Molecular Oncology
| | - Wenxiao Han
- From the State Key Laboratory of Molecular Oncology
| | - Weiwei Li
- From the State Key Laboratory of Molecular Oncology
| | - Liang Cui
- Department of Abdominal Surgical Oncology, and
| | - Xinhua Zhao
- From the State Key Laboratory of Molecular Oncology
| | - Yantao Tian
- Department of Abdominal Surgical Oncology, and
| | - Zhixiang Zhou
- Department of Gastrointestinal Surgical Oncology, Cancer Institute/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100021 Beijing, PR China and
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, PR China
| | - Hongying Wang
- From the State Key Laboratory of Molecular Oncology,
| |
Collapse
|
26
|
Jensen DD, Halls ML, Murphy JE, Canals M, Cattaruzza F, Poole DP, Lieu T, Koon HW, Pothoulakis C, Bunnett NW. Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals. J Biol Chem 2014; 289:20283-94. [PMID: 24898255 DOI: 10.1074/jbc.m114.578179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the intracellular trafficking of G protein-coupled receptors controls specific signaling events, it is unclear how the spatiotemporal control of signaling contributes to complex pathophysiological processes such as inflammation. By using bioluminescence resonance energy transfer and superresolution microscopy, we found that substance P (SP) induces the association of the neurokinin 1 receptor (NK1R) with two classes of proteins that regulate SP signaling from plasma and endosomal membranes: the scaffolding proteins β-arrestin (βARRs) 1 and 2 and the transmembrane metallopeptidases ECE-1c and ECE-1d. In HEK293 cells and non-transformed human colonocytes, we observed that G protein-coupled receptor kinase 2 and βARR1/2 terminate plasma membrane Ca(2+) signaling and initiate receptor trafficking to endosomes that is necessary for sustained activation of ERKs in the nucleus. βARRs deliver the SP-NK1R endosomes, where ECE-1 associates with the complex, degrades SP, and allows the NK1R, freed from βARRs, to recycle. Thus, both ECE-1 and βARRs mediate the resensitization of NK1R Ca(2+) signaling at the plasma membrane. Sustained exposure of colonocytes to SP activates NF-κB and stimulates IL-8 secretion. This proinflammatory signaling is unaffected by inhibition of the endosomal ERK pathway but is suppressed by ECE-1 inhibition or βARR2 knockdown. Inhibition of protein phosphatase 2A, which also contributes to sustained NK1R signaling at the plasma membrane, similarly attenuates IL-8 secretion. Thus, the primary function of βARRs and ECE-1 in SP-dependent inflammatory signaling is to promote resensitization, which allows the sustained NK1R signaling from the plasma membrane that drives inflammation.
Collapse
Affiliation(s)
- Dane D Jensen
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Murphy
- the Department of Surgery, University of California, San Francisco, California 94143
| | - Meritxell Canals
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fiore Cattaruzza
- the Department of Surgery, University of California, San Francisco, California 94143
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, the Departments of Anatomy and Neuroscience and
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hon-Wai Koon
- the Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Charalabos Pothoulakis
- the Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, Pharmacology, University of Melbourne, Melbourne 3010, Australia, and
| |
Collapse
|
27
|
Maeda S, Ohno K, Uchida K, Igarashi H, Goto-Koshino Y, Fujino Y, Tsujimoto H. Intestinal protease-activated receptor-2 and fecal serine protease activity are increased in canine inflammatory bowel disease and may contribute to intestinal cytokine expression. J Vet Med Sci 2014; 76:1119-27. [PMID: 24829081 PMCID: PMC4155192 DOI: 10.1292/jvms.14-0060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serine proteases elicit
cellular responses via protease-activated receptor-2 (PAR-2) which is known to regulate
inflammation and the immune response. Although the gastrointestinal tract is exposed to
large amounts of proteolytic enzymes, the role of PAR-2 in canine inflammatory bowel
disease (IBD) remains unclear. The objective of this study was to investigate the effects
of PAR-2 activation on inflammatory cytokine/chemokine gene expression in canine intestine
and the expression of intestinal PAR-2 and fecal serine protease activity in dogs with
IBD. Duodenal biopsies from healthy dogs were cultured and treated ex
vivo with trypsin or PAR-2 agonist peptide, and inflammatory cytokine/chemokine
gene expression in the tissues was then quantified by real-time PCR. PAR-2 mRNA and
protein expression levels in the duodenal mucosa were examined by real-time PCR and
immunohistochemistry, respectively. Fecal serine protease activity was determined by
azocasein assay. In ex vivo-cultured duodenum, trypsin and PAR-2 agonist
peptide induced significant up-regulation of mRNA expression levels of interleukin-1 β
(IL-1β), IL-8, mucosae-associated epithelial chemokine (MEC) and fractalkine, and this
up-regulation was inhibited by a serine protease inhibitor. Duodenal PAR-2 mRNA and
protein expression levels were higher in dogs with IBD than in healthy control dogs. Fecal
serine protease activity was significantly elevated in dogs with IBD, and the level of
activity correlated positively with the clinical severity score. These results suggest
that PAR-2 may contribute to the pathogenesis of canine IBD by inducing expression of
inflammatory mediators in response to luminal serine proteases.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Lin CH, Nai PL, Bien MY, Yu CC, Chen BC. Thrombin-Induced CCAAT/Enhancer-Binding Protein β Activation and IL-8/CXCL8 Expression via MEKK1, ERK, and p90 Ribosomal S6 Kinase 1 in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:338-48. [DOI: 10.4049/jimmunol.1203323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Yau MK, Liu L, Fairlie DP. Toward drugs for protease-activated receptor 2 (PAR2). J Med Chem 2013; 56:7477-97. [PMID: 23895492 DOI: 10.1021/jm400638v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PAR2 has a distinctive functional phenotype among an unusual group of GPCRs called protease activated receptors, which self-activate after cleavage of their N-termini by mainly serine proteases. PAR2 is the most highly expressed PAR on certain immune cells, and it is activated by multiple proteases (but not thrombin) in inflammation. PAR2 is expressed on many types of primary human cells and cancer cells. PAR2 knockout mice and PAR2 agonists and antagonists have implicated PAR2 as a promising target in inflammatory conditions; respiratory, gastrointestinal, metabolic, cardiovascular, and neurological dysfunction; and cancers. This article summarizes salient features of PAR2 structure, activation, and function; opportunities for disease intervention via PAR2; pharmacological properties of published or patented PAR2 modulators (small molecule agonists and antagonists, pepducins, antibodies); and some personal perspectives on limitations of assessing their properties and on promising new directions for PAR2 modulation.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
30
|
Moens U, Kostenko S, Sveinbjørnsson B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes (Basel) 2013; 4:101-33. [PMID: 24705157 PMCID: PMC3899974 DOI: 10.3390/genes4020101] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Sergiy Kostenko
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| |
Collapse
|
31
|
Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 2012; 52:819-37. [PMID: 22178977 DOI: 10.1016/j.freeradbiomed.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Histone acetylation via CBP/p300 coordinates the expression of proinflammatory cytokines in the activation phase of inflammation, particularly through mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducers and activators of transcription (STAT) pathways. In contrast, histone deacetylases (HDACs) and protein phosphatases are mainly involved in the attenuation phase of inflammation. The role of reactive oxygen species (ROS) in the inflammatory cascade is much more important than expected. Mitochondrial ROS act as signal-transducing molecules that trigger proinflammatory cytokine production via inflammasome-independent and inflammasome-dependent pathways. The major source of ROS in acute inflammation seems to be NADPH oxidases, whereas NF-κB, protein phosphatases, and HDACs are the major targets of ROS and redox signaling in this process. There is a cross-talk between oxidative stress and proinflammatory cytokines through serine/threonine protein phosphatases, tyrosine protein phosphatases, and MAPKs that greatly contributes to amplification of the uncontrolled inflammatory cascade and tissue injury in acute pancreatitis. Chromatin remodeling during induction of proinflammatory genes would depend primarily on phosphorylation of transcription factors and their binding to gene promoters together with recruitment of histone acetyltransferases. PP2A should be considered a key modulator of the inflammatory cascade in acute pancreatitis through the ERK/NF-κB pathway and histone acetylation.
Collapse
Affiliation(s)
- Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
32
|
Gobbetti T, Cenac N, Motta JP, Rolland C, Martin L, Andrade-Gordon P, Steinhoff M, Barocelli E, Vergnolle N. Serine protease inhibition reduces post-ischemic granulocyte recruitment in mouse intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:141-52. [PMID: 22067907 DOI: 10.1016/j.ajpath.2011.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/26/2011] [Accepted: 09/20/2011] [Indexed: 01/17/2023]
Abstract
Proteases and proteinase-activated receptor (PAR) activation are involved in several intestinal inflammatory conditions. We hypothesized that serine proteases and PAR activation could also modulate the intestinal injury induced by ischemia-reperfusion (I-R). C57Bl/6 mice were subjected to 90 minutes of intestinal ischemia followed or not by reperfusion. Sham-operated animals served as controls. After ischemia, plasma and tissue serine protease activity levels were increased compared to the activity measured in plasma and tissues from sham-operated mice. This increase was maintained or further enhanced after 2 and 5 hours of reperfusion, respectively. Trypsin (25 kDa) was detected in tissues both after ischemia and 2 hours of reperfusion. Treatment with FUT-175 (10 mg/kg), a potent serine protease inhibitor, increased survival after I-R, inhibited tissue protease activity, and significantly decreased intestinal myeloperoxidase (MPO) activity and chemokine and adhesion molecule expression. We investigated whether serine proteases modulate granulocyte recruitment by a PAR-dependent mechanism. MPO levels and adhesion molecule expression were significantly reduced in I-R groups pre-treated with the PAR(1) antagonist SCH-79797 (5 mg/kg) and in Par(2)(-/-)mice, compared, respectively, to vehicle-treated group and wild-type littermates. Thus, increased proteolytic activity and PAR activation play a pathogenic role in intestinal I-R injury. Inhibition of PAR-activating serine proteases could be beneficial to reduce post-ischemic intestinal inflammation.
Collapse
Affiliation(s)
- Thomas Gobbetti
- INSERM, U1043, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ma L, Dorling A. The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 2011; 34:63-72. [PMID: 21809138 DOI: 10.1007/s00281-011-0281-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/11/2022]
Abstract
Inflammation and coagulation constitute two host defence systems with complementary physiological roles in limiting tissue damage, restoring homeostasis and eliminating invading pathogens, functions reliant on effective regulation of both processes at a variety of levels. Dysfunctional activation or regulation of either pathway may lead to pathology and contribute to human diseases as diverse as myocardial infarction and septic shock. The serine protease thrombin, a key protein in the coagulation pathway, can activate cellular signalling directly via proteolytic cleavage of the N-terminal domain of a family of G protein-coupled receptors or indirectly through the generation of molecules such as activated protein C. These events transmit signals to many cell types and can elicit the production of various pro-inflammatory mediators such as cytokines, chemokines and growth factors, thereby influencing cell activation, differentiation, survival and migration. This review discusses recent progress in understanding how thrombin and protease-activated receptors influence biological processes, highlighting the detrimental and protective cellular effects of thrombin and its signalling pathways.
Collapse
Affiliation(s)
- Liang Ma
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, UK
| | | |
Collapse
|
34
|
Queiroz KCS, Van 't Veer C, Van Den Berg Y, Duitman J, Versteeg HH, Aberson HL, Groot AP, Verstege MI, Roelofs JJTH, Te Velde AA, Spek CA. Tissue factor-dependent chemokine production aggravates experimental colitis. Mol Med 2011; 17:1119-26. [PMID: 21717035 DOI: 10.2119/molmed.2011.00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/21/2011] [Indexed: 12/29/2022] Open
Abstract
Tissue factor (TF) is traditionally known as the initiator of blood coagulation, but TF also plays an important role in inflammatory processes. Considering the pivotal role of coagulation in inflammatory bowel disease, we assessed whether genetic ablation of TF limits experimental colitis. To this end, wild-type and TF-deficient (TFlow) mice were treated with 1.5% dextran sulfate sodium (DSS) for 7 d, and effects on disease severity, cytokine production and leukocyte recruitment were examined. Clinical and histological parameters showed that the severity of colitis was reduced in both heterozygous and homozygous TFlow mice compared with controls. Most notably, edema, granulocyte numbers at the site of inflammation and cytokine levels were reduced in TFlow mice. Although anticoagulant treatment with dalteparin of wild-type mice reduced local fibrin production and cytokine levels to a similar extent as in TFlow mice, it did not affect clinical and histological parameters of experimental colitis. Mechanistic studies revealed that TF expression did not influence the intrinsic capacity of granulocytes to migrate. Instead, TF enhanced granulocyte migration into the colon by inducing high levels of the granulocyte chemoattractant keratinocyte-derived chemokine (KC). Taken together, our data indicate that TF plays a detrimental role in experimental colitis by signal transduction-dependent KC production in colon epithelial cells, thereby provoking granulocyte influx with subsequent inflammation and organ damage.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anti-Inflammatory mechanisms of the proteinase-activated receptor 2-inhibiting peptide in human synovial cells. J Biomed Sci 2011; 18:43. [PMID: 21682866 PMCID: PMC3135512 DOI: 10.1186/1423-0127-18-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/17/2011] [Indexed: 02/04/2023] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease which affects the entire joint structure, including the synovial membrane. Disease progression was shown to involve inflammatory changes mediated by proteinase-activated receptor (PAR)-2. Previous studies demonstrated that PAR-2 messenger (m)RNA and protein levels increased in OA synovial cells, suggesting that PAR-2 is a potential therapeutic target of the disease. Methods We designed a PAR-2-inhibiting peptide (PAR2-IP) by changing an isoleucine residue in the PAR-2-activating peptide (PAR2-AP), SLIGKV, to alanine, generating the SLAGKV peptide. We used it to test PAR-2-mediated inflammatory responses, including the expressions of cyclooxygenase (COX)-2 and matrix metalloproteinase (MMP)-1 and activation of nuclear factor (NF)-κB in human synovial cells. As a control, expressions of COX-2 and MMP-1 were induced by trypsin at both the mRNA and protein levels. Results The PAR2-AP increased the expression of COX-2 more dramatically than that of MMP-1. When we treated cells with the designed PAR2-IP, the trypsin-induced COX-2 level was completely inhibited at a moderate concentration of the PAR2-IP. With further examination of trypsin-induced NF-κB activation, we observed sufficient inhibitory effects of the PAR2-IP in synoviosarcoma cells and primary synovial cells from OA patients. Conclusions Our study suggests that the PAR2-IP inhibits trypsin-induced NF-κB activation, resulting in a reduction in inflammatory COX-2 expression in synovial cells. Application of PAR2-IP is suggested as a potential therapeutic strategy for OA.
Collapse
|
36
|
Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:513-23. [PMID: 21703428 DOI: 10.1016/j.ajpath.2011.03.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 01/15/2023]
Abstract
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated by proteolytic cleavage and generation of a tethered ligand. High PAR1 expression has been documented in a variety of invasive cancers of epithelial origin. In the present study, we investigated the contribution of the four PAR family members to motility of lung carcinomas and primary tumor samples from patients. We found that of the four PARs, only PAR1 expression was highly increased in the lung cancer cell lines. Primary lung cancer cells isolated from patient lung tumors migrated at a 10- to 40-fold higher rate than epithelial cells isolated from nonmalignant lung tissue. Cell-penetrating pepducin inhibitors were generated against the first (i1) and third (i3) intracellular loops of PAR1 and tested for their ability to inhibit PAR1-driven migration and extracellular regulated kinase (ERK)1/2 activity. The PAR1 pepducins showed significant inhibition of cell migration in both primary and established cell lines similar to silencing of PAR1 expression with short hairpin RNA (shRNA). Unlike i1 pepducins, the i3 loop pepducins were effective inhibitors of PAR1-mediated ERK activation and tumor growth. Comparable in efficacy with Bevacizumab, monotherapy with the PAR1 i3 loop pepducin P1pal-7 provided significant 75% inhibition of lung tumor growth in nude mice. We identify the PAR1-ERK1/2 pathway as a feasible target for therapy in lung cancer.
Collapse
|
37
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Xu A, Prophete C, Chen LC, Emala CW, Cohen MD. Interactive effect of cigarette smoke extract and world trade center dust particles on airway cell cytotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:887-902. [PMID: 21623534 DOI: 10.1080/15287394.2011.573719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Rescue workers and residents exposed to the environment surrounding the collapse of the World Trade Center (WTC) on September 11, 2001, have suffered a disproportionate incidence of chronic lung disease attributed to the inhalation of airborne dust. To date, the pathophysiology of this lung disease is poorly understood. The aim of this study was to examine whether airborne dust contaminants recovered from the surrounding area 24-48 h after the collapse of the WTC demonstrate direct cytotoxicity to two airway cell types that were most directly exposed to inhaled dust, airway epithelial and smooth muscle cells. It was also of interest to determine whether the presence of these dusts could modulate the effects of cigarette smoke on these cell types in that some of the individuals who responded to the collapse site were also smokers. Human cultured airway epithelial (BEAS-2B) cells were exposed to 10% cigarette smoke extract (CSE), WTC dust particles (10-53 μm; 0.01-0.5 μg/μl), or a combination of the two for 2-24 h. Cell viability was measured by determining mitochondrial integrity (MTT assays) and apoptosis (poly-ADP-ribose polymerase [PARP] immunoblotting). Conditioned cell culture media recovered from the CSE- and/or WTC dust-exposed BEAS-2B cells were then applied to cultured human airway smooth muscle cells that were subsequently assayed for mitochondrial integrity and their ability to synthesize cyclic AMP (a regulator of airway smooth muscle constriction). BEAS-2B cells underwent necrotic cell death following exposure to WTC dust or CSE for 2-24 h without evidence of apoptosis. Smooth muscle cells demonstrated cellular toxicity and enhanced cyclic AMP synthesis following exposure to conditioned media from WTC- or CSE-exposed epithelial cells. These acute toxicity assays of WTC dust and CSE offer insights into lung cell toxicity that may contribute to the pathophysiology of chronic lung disease in workers and residents exposed to WTC dust. These studies clearly showed that WTC dust (at least the supercoarse particle fraction) or CSE alone exerted direct adverse effects on airway epithelial and smooth muscle cells, and altered the signaling properties of airway smooth muscle cells. In addition the combination of CSE and WTC exerted an interactive effect on cell toxicity. It remains to be determined whether these initial cell death events might account, in part, for the chronic lung effects associated with WTC dust exposure among First Responders and others.
Collapse
Affiliation(s)
- Alice Xu
- Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|