1
|
Kim TH, Tran Le MT, Oh M, Vazquez-Hidalgo E, Chavez B, Lamkin DM, Abdou A, Tan XHM, Christodoulides A, Farris CM, Lee C, Chiou PY, Sloan EK, Katira P, Rowat AC. β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis. iScience 2025; 28:112676. [PMID: 40520106 PMCID: PMC12164020 DOI: 10.1016/j.isci.2025.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/06/2024] [Accepted: 05/13/2025] [Indexed: 06/18/2025] Open
Abstract
The ability of cancer cells to deform and generate force is implicated in metastasis. We previously showed that β-adrenergic agonists increase cancer cell stiffness, which was associated with enhanced motility and invasion. Here, we investigate how β-adrenoceptor (βAR) activation alters the mechanical behaviors of triple-negative breast cancer cells. We find that βAR activation increases traction forces in metastatic MDA-MB-231HM and MDA-MB-468 cells, but not in non-tumorigenic MCF10A cells. Using computational modeling, we show that βAR activation increases the number of active myosin motors via myosin light chain phosphorylation. To identify molecular regulators, we use a deformability assay to screen for pharmacologic and genetic perturbations. Our results define a βAR-RhoA-ROCK-non-muscle myosin II (NMII) signaling axis that modulates the mechanical behaviors of MDA-MB-231HM and MDA-MB-468 cells. These findings provide insight into how stress signaling regulates cancer cell mechanics and suggest potential targets to block metastasis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Minh-Tam Tran Le
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mijung Oh
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Esteban Vazquez-Hidalgo
- Mechanical Engineering Department, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Bryanna Chavez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald M. Lamkin
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Abdou
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xing Haw Marvin Tan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexei Christodoulides
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carly M. Farris
- Mechanical Engineering Department, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Changhoon Lee
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pei-Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica K. Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Parag Katira
- Mechanical Engineering Department, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP. Nonlinear dynamics of multi-omics profiles during human aging. NATURE AGING 2024; 4:1619-1634. [PMID: 39143318 PMCID: PMC11564093 DOI: 10.1038/s43587-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Aging is a complex process associated with nearly all diseases. Understanding the molecular changes underlying aging and identifying therapeutic targets for aging-related diseases are crucial for increasing healthspan. Although many studies have explored linear changes during aging, the prevalence of aging-related diseases and mortality risk accelerates after specific time points, indicating the importance of studying nonlinear molecular changes. In this study, we performed comprehensive multi-omics profiling on a longitudinal human cohort of 108 participants, aged between 25 years and 75 years. The participants resided in California, United States, and were tracked for a median period of 1.7 years, with a maximum follow-up duration of 6.8 years. The analysis revealed consistent nonlinear patterns in molecular markers of aging, with substantial dysregulation occurring at two major periods occurring at approximately 44 years and 60 years of chronological age. Distinct molecules and functional pathways associated with these periods were also identified, such as immune regulation and carbohydrate metabolism that shifted during the 60-year transition and cardiovascular disease, lipid and alcohol metabolism changes at the 40-year transition. Overall, this research demonstrates that functions and risks of aging-related diseases change nonlinearly across the human lifespan and provides insights into the molecular and biological pathways involved in these changes.
Collapse
Affiliation(s)
- Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Singapore, Singapore
| | - Chuchu Wang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Silva D, Quintas C, Gonçalves J, Fresco P. β 2-Adrenoceptor Activation Favor Acquisition of Tumorigenic Properties in Non-Tumorigenic MCF-10A Breast Epithelial Cells. Cells 2024; 13:262. [PMID: 38334654 PMCID: PMC10854540 DOI: 10.3390/cells13030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Noradrenaline and adrenaline, and their cognate receptors, are currently accepted to participate in cancer progression. They may also participate in cancer initiation, although their role in this phase is much less explored. The aim of this work was to study the influence of adrenergic stimulation in several processes related to breast cancer carcinogenesis, using several adrenergic agonists in the MCF-10A non-tumorigenic breast cells. Activation of the β-adrenoceptors promoted an epithelial phenotype in MCF-10A cells, revealed by an increased expression of the epithelial marker E-cadherin and a decrease in the mesenchymal markers, N-cadherin and vimentin. MCF-10A cell motility and migration were also impaired after the β-adrenoceptors activation. Concomitant with this effect, β-adrenoceptors decrease cell protrusions (lamellipodia and filopodia) while increasing cell adhesion. Activation of the β-adrenoceptors also decreases MCF-10A cell proliferation. When the MCF-10A cells were cultured under low attachment conditions, activation the of β- (likely β2) or of α2-adrenoceptors had protective effects against cell death, suggesting a pro-survival role of these adrenoceptors. Overall, our results showed that, in breast cells, adrenoceptor activation (mainly through β-adrenoceptors) may be a risk factor in breast cancer by inducing some cancer hallmarks, providing a mechanistic explanation for the increase in breast cancer incidences that may be associated with conditions that cause massive adrenergic stimulation, such as stress.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Mastos C, Xu X, Keen AC, Halls ML. Signalling of Adrenoceptors: Canonical Pathways and New Paradigms. Handb Exp Pharmacol 2024; 285:147-184. [PMID: 38227198 DOI: 10.1007/164_2023_704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The concept of G protein-coupled receptors initially arose from studies of the β-adrenoceptor, adenylyl cyclase, and cAMP signalling pathway. Since then both canonical G protein-coupled receptor signalling pathways and emerging paradigms in receptor signalling have been defined by experiments focused on adrenoceptors. Here, we discuss the evidence for G protein coupling specificity of the nine adrenoceptor subtypes. We summarise the ability of each of the adrenoceptors to activate proximal signalling mediators including cAMP, calcium, mitogen-activated protein kinases, and protein kinase C pathways. Finally, we highlight the importance of precise spatial and temporal control of adrenoceptor signalling that is controlled by the localisation of receptors at intracellular membranes and in larger protein complexes.
Collapse
Affiliation(s)
- Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Jabloñski M, Rodríguez MS, Rivero EM, Bruque CD, Vanzulli S, Bruzzone A, Pérez Piñero C, Lüthy IA. The Beta2-adrenergic agonist salbutamol synergizes with paclitaxel on cell proliferation and tumor growth in triple negative breast cancer models. Cancer Chemother Pharmacol 2023; 92:485-499. [PMID: 37725114 DOI: 10.1007/s00280-023-04586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Globally breast cancer accounts for 24.5% in incidence and 15.5% in cancer deaths in women. The triple-negative subtype lacks any specific therapy and is treated with chemotherapy, resulting in significant side-effects. We aimed to investigate if the dose of chemotherapeutic drugs could be diminished by co-administering it with the β2-agonist salbutamol. METHODS Cell proliferation was measured by thymidine incorporation; gene expression, by real-time PCR and protein phosphorylation by WB. Apoptosis was assessed by acridine orange / ethidium bromide and TUNEL tests. Public patient databases were consulted. Cells were inoculated to nude mice and their growth assessed. RESULTS The β2-agonist salbutamol synergizes in MDA-MB-231 cells in vitro with paclitaxel and doxorubicin on cell proliferation through ADRB2 receptors, while the β-blocker propranolol does not. The expression of this receptor was assessed in patient databases and other cell lines. Triple negative samples had the lowest expression. Salbutamol and paclitaxel decreased MDA-MB-231 cell proliferation while their combination further inhibited it. The pathways involved were analyzed. When these cells were inoculated to nude mice, paclitaxel and salbutamol inhibited tumor growth. The combined effect was significantly greater. Paclitaxel increased the expression of MDR1 while salbutamol partially reversed this increase. CONCLUSION While the effect of salbutamol was mainly on cell proliferation, suboptimal concentrations of paclitaxel provoked a very important enhancement of apoptosis. The latter enhanced transporter proteins as MDR1, whose expression were diminished by salbutamol. The expression of ADRB2 should be assessed in the biopsy or tumor to eventually select patients that could benefit from salbutamol repurposing.
Collapse
Affiliation(s)
- Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ezequiel Mariano Rivero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Centre for Genomic Regulation, Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | | | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET), Bahía Blanca, Argentina
| | - Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Ayama-Canden S, Tondo R, Pineros Leyton ML, Ninane N, Demazy C, Dieu M, Fattaccioli A, Sauvage A, Tabarrant T, Lucas S, Bonifazi D, Michiels C. Indacaterol inhibits collective cell migration and IGDQ-mediated single cell migration in metastatic breast cancer MDA-MB-231 cells. Cell Commun Signal 2023; 21:301. [PMID: 37904233 PMCID: PMC10614342 DOI: 10.1186/s12964-023-01340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
Metastasis is the main cause of deaths related to breast cancer. This is particular the case for triple negative breast cancer. No targeted therapies are reported as efficient until now. The extracellular matrix, in particular the fibronectin type I motif IGDQ, plays a major role in regulating cell migration prior metastasis formation. This motif interacts with specific integrins inducing their activation and the migratory signal transduction.Here, we characterized the migratory phenotype of MDA-MB-231 cells, using functionalized IGDQ-exposing surfaces, and compared it to integrin A5 and integrin B3 knock-down cells. A multiomic analysis was developed that highlighted the splicing factor SRSF6 as a putative master regulator of cell migration and of integrin intracellular trafficking. Indacaterol-induced inhibition of SRSF6 provoked: i) the inhibition of collective and IGDQ-mediated cell migration and ii) ITGA5 sequestration into endosomes and lysosomes. Upon further studies, indacaterol may be a potential therapy to prevent cell migration and reduce metastasis formation in breast cancer. Video Abstract.
Collapse
Affiliation(s)
- Sophie Ayama-Canden
- URBC - NARILIS, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Rodolfo Tondo
- Cardiff University, Park Place, Main Building, Wales, CF10 3AT, UK
| | | | - Noëlle Ninane
- URBC - NARILIS, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Catherine Demazy
- URBC - NARILIS, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
- MaSUN, Mass Spectrometry Facility, University of Namur, 61, Rue de Bruxelles, 5000, Namur, Belgium
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, 61, Rue de Bruxelles, 5000, Namur, Belgium
| | - Antoine Fattaccioli
- URBC - NARILIS, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Aude Sauvage
- URBC - NARILIS, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Tijani Tabarrant
- LARN - NARILIS, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - Stéphane Lucas
- LARN - NARILIS, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - Davide Bonifazi
- Cardiff University, Park Place, Main Building, Wales, CF10 3AT, UK
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Carine Michiels
- URBC - NARILIS, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
7
|
Pérez Piñero C, Rivero EM, Gargiulo L, Rodríguez MS, Bruque CD, Bruzzone A, Lüthy IA. Adrenergic receptors in breast cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:37-63. [PMID: 36357079 DOI: 10.1016/bs.pmbts.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most diagnosed malignancy in women worldwide and in the majority of the countries. Breast cancers are classified on the expression of estrogen and progesterone receptor expression and overexpression of human epidermal growth factor receptor 2 (HER2) as luminal, HER2+ and triple negative breast cancer. The intrinsic molecular subtypes match this classification. Cancer diagnosis and treatment cause distress. In both acute and chronic stress, the secreted catecholamines adrenaline and noradrenaline trigger the "fight-or-flight" response. This chapter focuses on the actions of the β2 and α2 adrenergic receptors in several models of breast cancer. The actions of these receptors depend on the model used to investigate them. The β2-adrenergic receptors seem to exert a dual action. They can directly act on the epithelial cells inhibiting cell proliferation and migration/invasion and indirectly upon the immune microenvironment. The proportion of β2 receptors in each compartment could, therefore, lean the scale to an inhibition or to an exacerbation of tumor growth, invasion and metastasis. All the work points to a beneficial or neutral action of β-blockers on breast cancer. With respect to α2-adrenergic receptors, the investigation performed by our group suggest that the α2B and the α2C receptors are linked to enhanced cell proliferation and tumor growth acting through both the epithelial and the stromal (fibroblastic) compartments while α2A could be beneficial for patients. Some adrenergic compounds could be repurposed for breast cancer treatment due to their very low side effects and very well-known pharmacology.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | | | - Lucía Gargiulo
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - Carlos David Bruque
- Genética Molecular Humana y Bioinformática, Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas Bahía Blanca INIBIBB -CONICET, Buenos Aires, Argentina
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Silva D, Quintas C, Gonçalves J, Fresco P. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis. J Cell Physiol 2022; 237:2107-2127. [PMID: 35243626 DOI: 10.1002/jcp.30707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common and deadliest type of cancer in women. Stress exposure has been associated with carcinogenesis and the stress released neurotransmitters, noradrenaline and adrenaline, and their cognate receptors, can participate in the carcinogenesis process, either by regulating tumor microenvironment or by promoting systemic changes. This work intends to provide an overview of the research done in this area and try to unravel the role of adrenergic ligands in the context of breast carcinogenesis. In the initiation phase, adrenergic signaling may favor neoplastic transformation of breast epithelial cells whereas, during cancer progression, may favor the metastatic potential of breast cancer cells. Additionally, adrenergic signaling can alter the function and activity of other cells present in the tumor microenvironment towards a protumor phenotype, namely macrophages, fibroblasts, and by altering adipocyte's function. Adrenergic signaling also promotes angiogenesis and lymphangiogenesis and, systemically, may induce the formation of preneoplastic niches, cancer-associated cachexia and alterations in the immune system which contribute for the loss of quality of life of breast cancer patients and their capacity to fight cancer. Most studies points to a major contribution of β2 -adrenoceptor activated pathways on these effects. The current knowledge of the mechanistic pathways activated by β2 -adrenoceptors in physiology and pathophysiology, the availability of selective drugs approved for clinical use and a deeper knowledge of the basic cellular and molecular pathways by which adrenergic stimulation may influence cancer initiation and progression, opens the possibility to use new therapeutic alternatives to improve efficacy of breast cancer treatments.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Lu J, Liu G, Wang Z, Cao J, Chen Y, Dong Y. Restraint stress induces uterine microenvironment disorder in mice during early pregnancy through the β 2-AR/cAMP/PKA pathway. Stress 2021; 24:514-528. [PMID: 33280472 DOI: 10.1080/10253890.2020.1855419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During pregnancy, uterus undergoes the environment adaptation as part of a program of development. In the world, one in four people worldwide suffer from mental illness, especially pregnant women. β-Adrenergic receptor (β-AR) is an important regulator that converts environmental stimuli into intracellular signals in mice uterus. CD-1 (ICR) mice undergone restraint stress, which was a case in model to simulate the psychological stress. The plasma and implantation sites in uterus were obtained and examined. PCR analysis demonstrated that β2-AR expression levels in embryo day (E) 3, 5 and 7 were kept at a significantly higher level (p < 0.05) under restraint stress and higher than β1-AR and β3-AR in different gestation ages. The β2-AR protein levels were obviously increased (p < 0.05) due to the markedly elevated norepinephrine (NE) concentration (p < 0.05). In our previous study, restraint stress can induce the apoptosis and inflammation. Also, the matrix metalloprotein-9 (MMP-9) was decreased significantly (p < 0.05) under restraint stress. Meanwhile, Caspase3, p-NF-κB p65 and p-ERK1/2 were obviously increased (p < 0.05) in the work. In vitro studies showed that the p-ERK1/2 and Caspase-3 levels were raised (p < 0.05) after β2-AR was activated. However, they were decreased when PKA was blocked. The protein levels of Caspase-3 were reduced when ERK and NF-κB were blocked (p < 0.05). In conclusion, the β2-AR/cAMP/PKA pathway promoted apoptosis and affected the development of the uterus through the ERK and NF-κB signaling pathway. The findings of this study may provide evidence for female reproduction under psychological stress.
Collapse
Affiliation(s)
- Jiayin Lu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Guanhui Liu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jing Cao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
10
|
β-Adrenoceptor Activation in Breast MCF-10A Cells Induces a Pattern of Catecholamine Production Similar to that of Tumorigenic MCF-7 Cells. Int J Mol Sci 2020; 21:ijms21217968. [PMID: 33120955 PMCID: PMC7672553 DOI: 10.3390/ijms21217968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022] Open
Abstract
Adrenaline, which participates in the neuroendocrine response that occurs during stress and perimenopause, may be tumorigenic. This exploratory study aimed at investigating whether non-tumorigenic and tumorigenic human breast epithelial cell lines are able to synthesize adrenaline. The study was carried out in non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) human breast cell lines. Expression of enzymes involved in adrenaline synthesis was characterized by RT-qPCR, immunocytochemistry and western blot. Catecholamines and analogue compounds were quantified by HPLC-ECD. Functional assessment of the impact of drugs on cells’ tumorigenic potential was assessed by determination of cell viability and clonogenic ability. Both MCF-10A and MCF-7 cells produce catecholamines, but the capacity to produce adrenaline is lower in MCF-10A cells. β-adrenoceptor activation increases the capacity of MCF-10A cells to produce adrenaline and favor both cell viability and colony formation. It is concluded that exposure of human breast epithelial cells to β-adrenoceptor agonists increases cell proliferation and the capacity to produce adrenaline, creating an autocrine potential to spread these adrenergic effects in a feed-forward loop. It is conceivable that these effects are related to tumorigenesis, bringing a new perspective to understand the claimed anticancer effects of propranolol and the increase in breast cancer incidence caused by stress or during perimenopause.
Collapse
|
11
|
Bravo-Calderón DM, Assao A, Garcia NG, Coutinho-Camillo CM, Roffé M, Germano JN, Oliveira DT. Beta adrenergic receptor activation inhibits oral cancer migration and invasiveness. Arch Oral Biol 2020; 118:104865. [PMID: 32801034 DOI: 10.1016/j.archoralbio.2020.104865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to verify β2-AR expression in oral squamous cell carcinoma cell lines (SCC-9 and SCC-25), and to investigate the role of this receptor in migration and invasion of these neoplastic cells. DESIGN SCC-9 and SCC-25 cells were investigated for gene and protein expression of β2-AR. Cell migration and invasion were analyzed by wound healing assay and transwell invasion camera system. Different concentrations (0.1, 1 and 10 μM) of norepinephrine were used to stimulate, and 1 μM propranolol was used to block the beta-adrenergic receptors on cancer cells. Differences in median values of SCC-9 and SCC-25 and β2-AR protein expression were analyzed by Friedman test and in case of significant differences; pairwise comparisons were performed using Bonferroni correction. RESULTS The results showed that the β2-AR gene and protein expression were observed in both oral cancer cell lines. The concentration of 10 μM of norepinephrine significantly inhibited (p ≤ 0.05) migration of SCC-9 and SCC-25 cell lines. Furthermore, there was a significant reduction (p ≤ 0.05) in the effect of norepinephrine on cell migration when the β2-AR was inhibited by propranolol. The blockade by propranolol showed a tendency to reverse the effect of norepinephrine on the invasiveness of SCC-9 and SCC-25. CONCLUSIONS The use of beta-adrenergic receptor agonists could become an adjuvant therapeutic target in the treatment of this malignancy.
Collapse
Affiliation(s)
- Diego Mauricio Bravo-Calderón
- Department of Surgery, Stomatology, Pathology and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Brazil.
| | - Agnes Assao
- Department of Surgery, Stomatology, Pathology and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Brazil.
| | - Natália Galvão Garcia
- Department of Surgery, Stomatology, Pathology and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Brazil.
| | | | - Martin Roffé
- International Research Center, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.
| | | | - Denise Tostes Oliveira
- Department of Surgery, Stomatology, Pathology and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Brazil.
| |
Collapse
|
12
|
Lismont E, Verbakel L, Vogel E, Corbisier J, Degroot GN, Verdonck R, Verlinden H, Marchal E, Springael JY, Vanden Broeck J. Can BRET-based biosensors be used to characterize G-protein mediated signaling pathways of an insect GPCR, the Schistocerca gregaria CRF-related diuretic hormone receptor? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103392. [PMID: 32387240 DOI: 10.1016/j.ibmb.2020.103392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 05/26/2023]
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound receptors that are considered prime candidates for the development of novel insect pest management strategies. However, the molecular signaling properties of insect GPCRs remain poorly understood. In fact, most studies on insect GPCR signaling are limited to analysis of fluctuations in the secondary messenger molecules calcium (Ca2+) and/or cyclic adenosine monophosphate (cAMP). In the current study, we characterized a corticotropin-releasing factor-related diuretic hormone (CRF-DH) receptor of the desert locust, Schistocerca gregaria. This Schgr-CRF-DHR is mainly expressed in the nervous system and in brain-associated endocrine organs. The neuropeptide Schgr-CRF-DH induced Ca2+-dependent aequorin-based bioluminescent responses in CHO cells co-expressing this receptor with the promiscuous Gα16 protein. Furthermore, when co-expressed with the cAMP-dependent bioluminescence resonance energy transfer (BRET)-based CAMYEL biosensor in HEK293T cells, this receptor elicited dose-dependent agonist-induced responses with an EC50 in the nanomolar range (4.02 nM). In addition, we tested if vertebrate BRET-based G protein biosensors, can also be used to detect direct Gα protein subunit activation by an insect GPCR. Therefore, we analyzed ten different human BRET-based G protein biosensors, representing members of all four Gα protein subfamilies; Gαs, Gαi/o, Gαq/11 and Gα12/13. Our data demonstrate that stimulation of Schgr-CRF-DHR by Schgr-CRF-DH can dose-dependently activate Gαi/o and Gαs biosensors, while no significant effects were observed with the Gαq/11 and Gα12/13 biosensors. Our study paves the way for future biosensor-based studies to analyze the signaling properties of insect GPCRs in both fundamental science and applied research contexts.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elise Vogel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | | | | | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium; Imec, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
13
|
Agonist Effects of Propranolol on Non-Tumor Human Breast Cells. Cells 2020; 9:cells9041036. [PMID: 32331276 PMCID: PMC7226086 DOI: 10.3390/cells9041036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
The β-blocker propranolol (PROP) has been proposed as a repurposed treatment for breast cancer. The similarity of action between β-agonists and antagonists found on breast cells encouraged us to compare PROP and isoproterenol (ISO, agonist) signaling pathways on a human breast cell line. Cell proliferation was measured by cell counting and DNA-synthesis. Cell adhesion was measured counting the cells that remained adhered to the plastic after different treatments. Changes in actin cytoskeleton were observed by fluorescence staining and Western Blot. ISO and PROP caused a diminution of cell proliferation and an increase of cell adhesion, reverted by the pure β-antagonist ICI-118551. ISO and PROP induced a reorganization of actin cytoskeleton increasing F-actin, p-COFILIN and p-LIMK. While ISO elicited a marked enhancement of cAMP concentrations and an increase of vasodilator-stimulated phosphoprotein (VASP) and cAMP response element-binding protein (CREB) phosphorylation, PROP did not. Clathrin-mediated endocytosis inhibition or β-arrestin1 dominant-negative mutant abrogated PROP-induced cell adhesion and COFILIN phosphorylation. The fact that PROP has been proposed as an adjuvant drug for breast cancer makes it necessary to determine the specific action of PROP in breast models. These results provide an explanation for the discrepancies observed between experimental results and clinical evidence.
Collapse
|
14
|
Zeng H, Li H, Yue M, Fan Y, Cheng J, Wu X, Xu R, Yang W, Li M, Tang J, Chen H, Kuang B, Fan G, Zhu Q, Shao L. Isoprenaline protects intestinal stem cells from chemotherapy-induced damage. Br J Pharmacol 2020; 177:687-700. [PMID: 31648381 DOI: 10.1111/bph.14883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Damage to intestinal epithelial cells and mucosa limits the effectiveness of several anti-cancer chemotherapeutic agents but the underlying mechanism (s) remain unknown. Little is known of how enteric nervous system regulates proliferation, differentiation, impairment, and regeneration of intestinal stem cells. Here we have investigated the effects of isoprenaline on the damaged intestinal stem cells induced by chemotherapeutic treatments in mice. EXPERIMENTAL APPROACH The effects of inhibiting sympathetic and parasympathetic nerves on intestinal stem cells were examined in male C57BL/6J mice. Protection by isoprenaline of intestinal stem cells was assessed in the presence or absence of 5-fluorouracil (5FU) or cisplatin. Cellular apoptosis, cell cycle, PI3K/Akt signalling, and NF-κB signalling in intestinal stem cells were mechanistically evaluated. KEY RESULTS The sympathetic nerve inhibitor 6-OHDA decreased the number and function of intestinal stem cells. 5FU or cisplatin treatment damaged both intestinal stem cells and sympathetic nerves. Notably, isoprenaline accelerated the recovery of intestinal stem cells after 5FU or cisplatin treatment. This protective effect of isoprenaline on damaged intestinal stem cells was mediated by β2 -adrenoceptors. The benefits of isoprenaline were mainly mediated by inhibiting cellular apoptosis induced by 5FU treatment, which might contribute to fine-tuning regulating NF-κB signalling pathway by isoprenaline administration. CONCLUSIONS AND IMPLICATIONS Treatment with isoprenaline is a new approach to ameliorate the damage to intestinal stem cells following exposure to cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Huihong Zeng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Huan Li
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Mengzhen Yue
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Ying Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jiaoqi Cheng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Xincheng Wu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Rui Xu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Wuping Yang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Manjun Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiahui Tang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Bohai Kuang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Qingxian Zhu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Bell-shaped agonist activation of 5-HT1A receptor-coupled Gαi3 G-proteins: Receptor density-dependent switch in receptor signaling. Cell Signal 2019; 63:109383. [DOI: 10.1016/j.cellsig.2019.109383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/26/2023]
|
16
|
Civciristov S, Halls ML. Signalling in response to sub-picomolar concentrations of active compounds: Pushing the boundaries of GPCR sensitivity. Br J Pharmacol 2019; 176:2382-2401. [PMID: 30801691 DOI: 10.1111/bph.14636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
There is evidence for ultra-sensitive responses to active compounds at concentrations below picomolar levels by proteins and receptors found in species ranging from bacteria to mammals. We have recently shown that such ultra-sensitivity is also demonstrated by a wide range of prototypical GPCRs, and we have determined the molecular mechanisms behind these responses for three family A GPCRs: the relaxin receptor, RXFP1; the β2 -adrenoceptor; and the M3 muscarinic ACh receptor. Interestingly, there are reports of similar ultra-sensitivity by more than 15 human GPCR families, in addition to other human receptors and channels. These occur through a diverse range of signalling pathways and produce modulation of important physiological processes, including neuronal transmission, chemotaxis, gene transcription, protein/ion uptake and secretion, muscle contraction and relaxation, and phagocytosis. Here, we summarise the accumulating evidence of ultra-sensitive receptor signalling to show that this is a common, though currently underappreciated, property of GPCRs. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Gruber TD, Krishnamurthy C, Grimm JB, Tadross MR, Wysocki LM, Gartner ZJ, Lavis LD. Cell-Specific Chemical Delivery Using a Selective Nitroreductase-Nitroaryl Pair. ACS Chem Biol 2018; 13:2888-2896. [PMID: 30111097 DOI: 10.1021/acschembio.8b00524] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The utility of small molecules to probe or perturb biological systems is limited by the lack of cell-specificity. "Masking" the activity of small molecules using a general chemical modification and "unmasking" it only within target cells overcomes this limitation. To this end, we have developed a selective enzyme-substrate pair consisting of engineered variants of E. coli nitroreductase (NTR) and a 2-nitro- N-methylimidazolyl (NM) masking group. To discover and optimize this NTR-NM system, we synthesized a series of fluorogenic substrates containing different nitroaromatic masking groups, confirmed their stability in cells, and identified the best substrate for NTR. We then engineered the enzyme for improved activity in mammalian cells, ultimately yielding an enzyme variant (enhanced NTR, or eNTR) that possesses up to 100-fold increased activity over wild-type NTR. These improved NTR enzymes combined with the optimal NM masking group enable rapid, selective unmasking of dyes, indicators, and drugs to genetically defined populations of cells.
Collapse
Affiliation(s)
- Todd D Gruber
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Chithra Krishnamurthy
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Jonathan B Grimm
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Michael R Tadross
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Laura M Wysocki
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Luke D Lavis
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| |
Collapse
|
18
|
Civciristov S, Ellisdon AM, Suderman R, Pon CK, Evans BA, Kleifeld O, Charlton SJ, Hlavacek WS, Canals M, Halls ML. Preassembled GPCR signaling complexes mediate distinct cellular responses to ultralow ligand concentrations. Sci Signal 2018; 11:eaan1188. [PMID: 30301787 PMCID: PMC7416780 DOI: 10.1126/scisignal.aan1188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell surface signaling proteins, participate in nearly all physiological processes, and are the targets of 30% of marketed drugs. Typically, nanomolar to micromolar concentrations of ligand are used to activate GPCRs in experimental systems. We detected GPCR responses to a wide range of ligand concentrations, from attomolar to millimolar, by measuring GPCR-stimulated production of cyclic adenosine monophosphate (cAMP) with high spatial and temporal resolution. Mathematical modeling showed that femtomolar concentrations of ligand activated, on average, 40% of the cells in a population provided that a cell was activated by one to two binding events. Furthermore, activation of the endogenous β2-adrenergic receptor (β2AR) and muscarinic acetylcholine M3 receptor (M3R) by femtomolar concentrations of ligand in cell lines and human cardiac fibroblasts caused sustained increases in nuclear translocation of extracellular signal-regulated kinase (ERK) and cytosolic protein kinase C (PKC) activity, respectively. These responses were spatially and temporally distinct from those that occurred in response to higher concentrations of ligand and resulted in a distinct cellular proteomic profile. This highly sensitive signaling depended on the GPCRs forming preassembled, higher-order signaling complexes at the plasma membrane. Recognizing that GPCRs respond to ultralow concentrations of neurotransmitters and hormones challenges established paradigms of drug action and provides a previously unappreciated aspect of GPCR activation that is quite distinct from that typically observed with higher ligand concentrations.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cindy K Pon
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Oded Kleifeld
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Steven J Charlton
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
- Excellerate Bioscience Ltd, MediCity, Nottingham NG90 6BH, UK
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
19
|
Isoproterenol-induced beta-2 adrenergic receptor activation negatively regulates interleukin-2 signaling. Biochem J 2018; 475:2907-2923. [PMID: 30120106 DOI: 10.1042/bcj20180503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Abstract
Regulation of intracellular signaling pathways in lymphocytes is critical for cell homeostasis and immune response. Interleukin-2 (IL-2), a key regulator of lymphocytes, signals following receptor-ligand engagement and subsequent recruitment and activation of effector proteins including JAKs and STATs. Lymphocytes can also be regulated by the central nervous system through the β2 adrenergic receptor (β2AR) pathway which can affect cell trafficking, proliferation, differentiation, and cytokine production. The cross-talk between these two signaling pathways represents an important mechanism that has yet to be fully elucidated. The present study provides evidence for communication between the IL-2 receptor (IL-2R) and β2AR. Treatment of human lymphoid cell lines with the β2AR agonist isoproterenol (ISO) alone increased cAMP levels and mediated a stimulatory response by activating AKT and ERK to promote cell viability. Interestingly, ISO activation of β2AR also induced threonine phosphorylation of the IL-2Rβ. In contrast, ISO treatment prior to IL-2 stimulation produced an inhibitory signal that disrupted IL-2 induced activation of the JAK/STAT, MEK/ERK, and PI3K pathways by inhibiting the formation of the IL-2R beta-gamma chain complex, and subsequently cell proliferation. Moreover, γc-family cytokines-mediated STAT5 activation was also inhibited by ISO. These results suggest a molecular mechanism by which β2AR signaling can both stimulate and suppress lymphocyte responses and thus explain how certain therapeutic agents, such as vasodilators, may impact immune responsiveness.
Collapse
|
20
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
21
|
Li JX, Fu WP, Zhang J, Zhang XH, Sun C, Dai LM, Zhong L, Yu L, Zhang YP. A functional SNP upstream of the ADRB2 gene is associated with COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:917-925. [PMID: 29588580 PMCID: PMC5859892 DOI: 10.2147/copd.s151153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Previous studies have suggested that β2-adrenergic receptor (ADRB2) is associated with COPD. However, the role of genetic polymorphisms in ADRB2 on COPD has not been evaluated yet. Methods In this study, SNaPshot genotyping, luciferase assay, chromatin immunoprecipitation and real-time polymerase chain reaction were adopted to investigate the association between ADRB2 genetic polymorphisms and COPD, comprehensively. Results One single nucleotide polymorphism (rs12654778), located upstream of ADRB2, showed a significant association with COPD by the logistic regression analysis after adjusting for age, sex and smoking history (p=0.04) in 200 COPD patients and 222 controls from southwest Chinese population. Furthermore, the luciferase assay indicated that rs12654778-A allele reduced the relative promoter activity by ~26% compared with rs12654778-G allele (p=0.0034). The chromatin immunoprecipitation analysis demonstrated that rs12654778 modulated the binding affinity of transcription factor neurofibromin 1. In addition, a significantly reduced expression of ADRB2 in COPD patients was observed, compared with normal controls (p=0.017). Conclusion Our findings suggest a previously unknown mechanism linking allele-specific effects of rs12654778 on ADRB2 expression to COPD onset, for the first time.
Collapse
MESH Headings
- Adult
- Aged
- Binding Sites
- Case-Control Studies
- Cell Line
- Chi-Square Distribution
- China
- Female
- Forced Expiratory Volume
- Gene Frequency
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- Logistic Models
- Lung/metabolism
- Lung/physiopathology
- Male
- Middle Aged
- Neurofibromin 1/metabolism
- Odds Ratio
- Phenotype
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Risk Factors
- Vital Capacity
Collapse
Affiliation(s)
- Jin-Xiu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan
- Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University
| | - Wei-Ping Fu
- Department of Respiratory Critical Care Medicine
| | - Jing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan
- Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University
| | - Chang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan
- College of Life Sciences
| | - Lu-Ming Dai
- Department of Respiratory Critical Care Medicine
| | - Li Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan
- College of Life Sciences
- Provincial Demonstration Center for Experimental Biology Education, Shaanxi Normal University, Xi’an
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan
- Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University
| | - Ya-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Pavuluri S, Sharp JA, Lefevre C, Nicholas KR. The Effect of Mammary Extracellular Matrix in Controlling Oral and Mammary Cancer Cells. Asian Pac J Cancer Prev 2018; 19:57-63. [PMID: 29373893 PMCID: PMC5844637 DOI: 10.22034/apjcp.2018.19.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Extracellular matrix (ECM) plays an important role in the normal physiology of tissues and progression to disease. Earlier studies and our external microarray data analysis indicated that mammary matrix from involuting tissue showed upregulation of genes involved in ECM remodeling. The present study examines the fate of mammary and oral cancer cells grown in the ECM from lactating mammary gland. Our findings show that non-tumorigenic cells, MCF10A and DOK cells did not proliferate but the tumorigenic and metastatic cells, SCC25 and MDA-MB-231, underwent apoptosis when grown on mammary ECM isolated from lactating mice. In addition, the cytokinesis marker, CEP55, was repressed in the oral and breast cancer cells. In contrast, these cells proliferated normally on mammary ECM isolated from mice undergoing involution. External microarray data analysis of mammary tissue further revealed over expression (~16 fold) of QSOX1 gene, which promotes cellular quiescence, in lactating mammary gland. A recent study has indicated that QSOX1 overexpression in breast cancer cells led to reduced proliferation and tumorigenic properties. This extracellular protein in mammary ECM may be responsible for reduced cellular proliferation. The present study has shown that ECM from lactating mammary gland can regulate signals to oral and breast cancer cells to halt cell division. This preliminary observation provided insights into the potential role of ECM factors present in lactating mammary gland as therapeutic targets to control cancer cell division. This preliminary study is an attempt to understand not only the requirement of ECM remodeling factors essential for the growth and survival of cancer cells but also the factors present in the lactation matrix that simultaneously halts cell division and selectively inhibits the growth of cancer cells.
Collapse
Affiliation(s)
- Sivapriya Pavuluri
- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, India
| | | | | | | |
Collapse
|
23
|
Huang B, Li Y, Cheng D, He G, Liu X, Ma L. β-Arrestin–biased β-adrenergic signaling promotes extinction learning of cocaine reward memory. Sci Signal 2018; 11:11/512/eaam5402. [PMID: 29317519 DOI: 10.1126/scisignal.aam5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bing Huang
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Youxing Li
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Deqin Cheng
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guanhong He
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xing Liu
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Wnorowski A. To block it, or not to block it? J Cancer Res Clin Oncol 2017; 143:2631-2633. [PMID: 28349195 PMCID: PMC5693973 DOI: 10.1007/s00432-017-2400-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 02/08/2023]
Affiliation(s)
- Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Collegium Pharmaceuticum, Chodzki 4a01a, 20-093, Lublin, Poland.
| |
Collapse
|
25
|
Gargiulo L, May M, Rivero EM, Copsel S, Lamb C, Lydon J, Davio C, Lanari C, Lüthy IA, Bruzzone A. A Novel Effect of β-Adrenergic Receptor on Mammary Branching Morphogenesis and its Possible Implications in Breast Cancer. J Mammary Gland Biol Neoplasia 2017; 22:43-57. [PMID: 28074314 DOI: 10.1007/s10911-017-9371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms that govern normal mammary gland development is crucial to the comprehension of breast cancer etiology. β-adrenergic receptors (β-AR) are targets of endogenous catecholamines such as epinephrine that have gained importance in the context of cancer biology. Differences in β2-AR expression levels may be responsible for the effects of epinephrine on tumor vs non-tumorigenic breast cell lines, the latter expressing higher levels of β2-AR. To study regulation of the breast cell phenotype by β2-AR, we over-expressed β2-AR in MCF-7 breast cancer cells and knocked-down the receptor in non-tumorigenic MCF-10A breast cells. In MCF-10A cells having knocked-down β2-AR, epinephrine increased cell proliferation and migration, similar to the response by tumor cells. In contrast, in MCF-7 cells overexpressing the β2-AR, epinephrine decreased cell proliferation and migration and increased adhesion, mimicking the response of the non-tumorigenic MCF-10A cells, thus underscoring that β2-AR expression level is a key player in cell behavior. β-adrenergic stimulation with isoproterenol induced differentiation of breast cells growing in 3-dimension cell culture, and also the branching of murine mammary epithelium in vivo. Branching induced by isoproterenol was abolished in fulvestrant or tamoxifen-treated mice, demonstrating that the effect of β-adrenergic stimulation on branching is dependent on the estrogen receptor (ER). An ER-independent effect of isoproterenol on lumen architecture was nonetheless found. Isoproterenol significantly increased the expression of ERα, Ephrine-B1 and fibroblast growth factors in the mammary glands of mice, and in MCF-10A cells. In a poorly differentiated murine ductal carcinoma, isoproterenol also decreased tumor growth and induced tumor differentiation. This study highlights that catecholamines, through β-AR activation, seem to be involved in mammary gland development, inducing mature duct formation. Additionally, this differentiating effect could be resourceful in a breast tumor context.
Collapse
Affiliation(s)
- Lucía Gargiulo
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - María May
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ezequiel M Rivero
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Sabrina Copsel
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Caroline Lamb
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - John Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Isabel A Lüthy
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET-Universidad Nacional del Sur, Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
26
|
Pagano F, Angelini F, Siciliano C, Tasciotti J, Mangino G, De Falco E, Carnevale R, Sciarretta S, Frati G, Chimenti I. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation. Pharmacol Res 2017; 127:41-48. [PMID: 28099883 DOI: 10.1016/j.phrs.2017.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023]
Abstract
Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Camilla Siciliano
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Julia Tasciotti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Giorgio Mangino
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Roberto Carnevale
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Italy.
| |
Collapse
|
27
|
Santulli G, Iaccarino G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016; 93:65-72. [PMID: 27062709 PMCID: PMC5036981 DOI: 10.1016/j.maturitas.2016.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
Both cardiovascular disease and aging are associated with changes in the sympathetic nervous system. Indeed, mounting evidence indicates that adrenergic receptors are functionally involved in numerous processes underlying both aging and cardiovascular disorders, in particular heart failure. This article will review the pathophysiological role of the sympathetic nervous system in heart failure and cardiovascular aging.
Collapse
Affiliation(s)
- Gaetano Santulli
- College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA.
| | - Guido Iaccarino
- Division of Internal Medicine, Department of Medicine and Surgery, University of Salerno, Italy.
| |
Collapse
|
28
|
Cheng TYD, Shelver WL, Hong CC, McCann SE, Davis W, Zhang Y, Ambrosone CB, Smith DJ. Urinary Excretion of the β-Adrenergic Feed Additives Ractopamine and Zilpaterol in Breast and Lung Cancer Patients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7632-7639. [PMID: 27641640 PMCID: PMC5510757 DOI: 10.1021/acs.jafc.6b02723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
β2-Adrenergic agonists (β-agonists) have been legally used in the U.S. for almost two decades to increase lean muscle mass in meat animals. Despite a cardiotoxic effect after high-dose exposure, there has been limited research on human β-agonist exposures related to meat consumption. We quantified urinary concentrations of ractopamine and zilpaterol, two FDA-approved β-agonist feed additives, and examined the extent to which the concentrations were associated with estimated usual meat intake levels. Overnight urine samples from 324 newly diagnosed breast cancer patients and spot urine samples from 46 lung cancer patients at the time of diagnosis, prior to treatment, were collected during 2006-2010 and 2014-2015, respectively. Urinary ractopamine and zilpaterol concentrations were measured by LC-MS/MS. Ractopamine and zilpaterol, respectively, were detected in 8.1% and 3.0% of the urine samples collected (n = 370). Only 1.1% (n = 4) of the urine samples had zilpaterol concentrations above the limit of quantification, with the mean value of 0.07 ng/mL in urine. The presence of detectable ractopamine and zilpaterol levels were not associated with meat consumption estimated from a food frequency questionnaire, including total meat (P = 0.13 and 0.74, respectively), total red meat (P = 0.72 and 0.74), unprocessed red meat (P = 0.74 and 0.73), processed red meat (P = 0.72 and 0.15), and poultry intake (P = 0.67 for ractopamine). Our data suggest that the amount of meat-related exposure of β-agonists was low.
Collapse
Affiliation(s)
- Ting-Yuan David Cheng
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Weilin L. Shelver
- USDA-Agricultural Research Service, Biosciences Research Laboratory, Fargo, ND
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Susan E. McCann
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Yali Zhang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | | | - David J. Smith
- USDA-Agricultural Research Service, Biosciences Research Laboratory, Fargo, ND
| |
Collapse
|
29
|
Galandrin S, Onfroy L, Poirot MC, Sénard JM, Galés C. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. Int J Biochem Cell Biol 2016; 77:251-63. [PMID: 27107932 DOI: 10.1016/j.biocel.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed.
Collapse
Affiliation(s)
- Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Mathias Charles Poirot
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France; Service de Pharmacologie Clinique, Faculté de médecine, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, F-31000 Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France.
| |
Collapse
|
30
|
Pon CK, Lane JR, Sloan EK, Halls ML. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J 2015; 30:1144-54. [PMID: 26578688 DOI: 10.1096/fj.15-277798] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023]
Abstract
Activation of the sympathetic nervous system by stress increases breast cancer metastasis in vivo. Preclinical studies suggest that stress activates β-adrenoceptors (βARs) to enhance metastasis from primary tumors and that β-blockers may be protective in breast cancer. However, the subtype of βAR that mediates this effect, as well as the signaling mechanisms underlying increased tumor cell dissemination, remain unclear. We show that the β2AR is the only functionally relevant βAR subtype in the highly metastatic human breast cancer cell line MDA-MB-231HM. β2AR activation results in elevated cAMP (formoterol pEC50 9.86 ± 0.32), increased intracellular Ca(2+) (formoterol pEC50 8.20 ± 0.33) and reduced phosphorylated ERK (pERK; formoterol pIC50 11.62 ± 0.31). We demonstrate that a highly amplified positive feedforward loop between the cAMP and Ca(2+) pathways is responsible for efficient inhibition of basal pERK. Importantly, activation of the β2AR increased invasion (formoterol area under the curve [AUC] relative to vehicle: 1.82 ± 0.36), which was dependent on the cAMP/Ca(2+) loop (formoterol AUC in the presence of 2'5'-dideoxyadenosine 0.64 ± 0.03, or BAPTA-AM 0.45 ± 0.23) but independent of inhibition of basal pERK1/2 (vehicle AUC with U0126 0.60 ± 0.30). Specifically targeting the positive feedforward cAMP/Ca(2+) loop may be beneficial for the development of therapeutics to slow disease progression in patients with breast cancer.
Collapse
Affiliation(s)
- Cindy K Pon
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - J Robert Lane
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Erica K Sloan
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Michelle L Halls
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Gargiulo L, Copsel S, Rivero EM, Galés C, Sénard JM, Lüthy IA, Davio C, Bruzzone A. Differential β₂-adrenergic receptor expression defines the phenotype of non-tumorigenic and malignant human breast cell lines. Oncotarget 2015; 5:10058-69. [PMID: 25375203 PMCID: PMC4259405 DOI: 10.18632/oncotarget.2460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/06/2014] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is the most frequent malignancy in women. Several reports demonstrated that adrenergic receptors (ARs) are involved in breast cancer. Here we observed that epinephrine (Epi), an endogenous AR agonist, caused opposite effects in non-tumorigenic (MCF-10A and HBL-100) and tumor cells (MCF-7 and MDA-MB-231). Thus, Epi, in non-tumor breast cells, as well as isoproterenol (β-agonist), in all cell lines, maintained a benign phenotype, decreasing cell proliferation and migration, and stimulating cell adhesion. β-AR expression and cAMP levels were higher in MCF-10A than in MCF-7 cells. β2-AR knock-down caused a significant increase of cell proliferation and migration, and a decrease of cell adhesion both in basal and in Iso-stimulated conditions. Coincidently, β2-AR over-expression induced a significant decrease of cell proliferation and migration, and an increase of cell adhesion. Therefore, β2-AR is implied in cell phenotype and its agonists or antagonists could eventually complement cancer therapy.
Collapse
Affiliation(s)
- Lucía Gargiulo
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| | - Sabrina Copsel
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina. Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 (1113) CABA, Argentina
| | - Ezequiel M Rivero
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier, F-31432 Toulouse, France
| | - Isabel A Lüthy
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 (1113) CABA, Argentina
| | - Ariana Bruzzone
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| |
Collapse
|
32
|
Abstract
BACKGROUND The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. METHODS The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. RESULTS ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. CONCLUSIONS GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.
Collapse
|
33
|
β2-Adrenergic receptors in immunity and inflammation: stressing NF-κB. Brain Behav Immun 2015; 45:297-310. [PMID: 25459102 DOI: 10.1016/j.bbi.2014.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/11/2023] Open
Abstract
β2-Adrenergic receptors (β2-ARs) transduce the effects of (nor)epinephrine on a variety of cell types and act as key mediators of the body's reaction to stress. β2-ARs are also expressed on immune cells and there is ample evidence for their role in immunomodulation. A key regulator of the immune response and a target for regulation by stress-induced signals is the transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB shapes the course of both innate and adaptive immune responses and plays an important role in susceptibility to disease. In this review, we summarise the literature that has been accumulated in the past 20years on adrenergic modulation of NF-κB function. We here focus on the molecular basis of the reported interactions and show that both physiological and pharmacological triggers of β2-ARs intersect with the NF-κB signalling cascade at different levels. Importantly, the action of β2-AR-derived signals on NF-κB activity appears to be highly cell type specific and gene selective, providing opportunities for the development of selective NF-κB modulators.
Collapse
|
34
|
Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. Serelaxin-mediated signal transduction in human vascular cells: bell-shaped concentration-response curves reflect differential coupling to G proteins. Br J Pharmacol 2014; 172:1005-19. [PMID: 25297987 DOI: 10.1111/bph.12964] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/16/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE In a recently conducted phase III clinical trial, RELAX-AHF, serelaxin infusion over 48 h improved short- and long-term clinical outcomes in patients with acute heart failure. In this study we used human primary cells from the umbilical vasculature to better understand the signalling mechanisms activated by serelaxin. EXPERIMENTAL APPROACH We examined the acute effects of serelaxin on signal transduction mechanisms in primary human umbilical vascular cells and its chronic actions on markers of cardiovascular function and disease. KEY RESULTS The RXFP1 receptor, the cognate serelaxin receptor, was expressed at the cell surface in HUVECs and human umbilical vein smooth muscle cells (HUVSMCs), human umbilical artery smooth muscle cells (HUASMCs) and human cardiac fibroblasts (HCFs), but not human umbilical artery endothelial cells. In HUVECs and HUVSMCs, serelaxin increased cAMP, cGMP accumulation and pERK1/2, and the concentration-response curves (CRCs) were bell-shaped. Similar bell-shaped CRCs for cGMP and pERK1/2 were observed in HCFs, whereas in HUASMCs, serelaxin increased cAMP, cGMP and pERK1/2 with sigmoidal CRCs. Gαi/o and lipid raft disruption, but not Gαs inhibition, altered the serelaxin CRC for cAMP and cGMP accumulation in HUVSMC but not HUASMC. Longer term serelaxin exposure increased the expression of neuronal NOS, VEGF, ETβ receptors and MMPs (gelatinases) in RXFP1 receptor-expressing cells. CONCLUSIONS AND IMPLICATIONS Serelaxin caused acute and chronic changes in human umbilical vascular cells that were cell background dependent. Bell-shaped CRCs that were observed only in venous cells and fibroblasts involved Gαi/o located within membrane lipid rafts.
Collapse
Affiliation(s)
- M Sarwar
- Drug Discovery Biology, Monash Institute of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | | | | | | | |
Collapse
|