1
|
Jajodia A, Mishra A, Doni Jayavelu N, Lambert K, Moss N, Yang Z, Cerosaletti K, Buckner JH, Hawkins RD. Functional dissection of noncoding variants associated with rheumatoid arthritis. Ann Rheum Dis 2025:S0003-4967(25)00890-8. [PMID: 40318978 DOI: 10.1016/j.ard.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES Noncoding variants are critical to our understanding of the genetic basis of diseases and disorders such as rheumatoid arthritis (RA). While genome-wide association studies have identified regions of the genome associated with disease, functional studies are still lagging that can identify potentially causative variants. METHODS In order to functionally fine-map RA-associated variants, we identified variants at enhancers marked in primary activated T helper cells and conducted massively parallel reporter assay in these cells. RESULTS We found that combinations of functional variant genotypes are often exclusive to patients with RA. We leveraged 3-dimensional genome architecture and expression quantitative trait loci data to identify target genes of enhancers exhibiting allelic differences in activity. We confirmed enhancer activity and target gene interactions by Clustered Regularly Interpaced Short Palindromic Repeats Cas9 (CRISPR-Cas9) deletion in primary T cells. CONCLUSIONS The identification of functional enhancer variants suggests possible causal variants, and their target genes reveal known and novel genes as likely drivers of RA, as well as a means for therapeutic intervention.
Collapse
Affiliation(s)
- Ajay Jajodia
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arpit Mishra
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Nicholas Moss
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Zongchen Yang
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Jane H Buckner
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Benaroya Research Institute at Virginia Mason, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
2
|
Kang J, Yu H, Xiang X, Ma YQ, Zhang L, Zhang Y, Wang ZT, Yang J, Zhang Z, Zou HR, Wang Y. The Histone Demethylase Inhibitor GSK-J4 Attenuates Periodontal Bone Loss and Inflammation in a Rat Model of Periodontitis. Curr Med Sci 2025; 45:382-390. [PMID: 40048054 DOI: 10.1007/s11596-025-00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE To investigate the treatment effect of the histone demethylase inhibitor GSK-J4, a small molecule that inhibits the demethylase activity of Jumonji domain-containing protein 3 (JMJD3), in the treatment of periodontitis. METHODS Gingival tissues from patients with moderate to severe chronic periodontitis and healthy controls were collected to evaluate JMJD3 expression via real-time quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC). Next, Sprague-Dawley (SD) rats were used to investigate the effect of GSK-J4 in vivo. The experimental periodontitis model was induced by upper first molar ligation and gingival sulcus injection of Porphyromonas gingivalis. The rats were divided into a healthy group, a periodontitis group, periodontitis plus GSK-J4 treatment groups (P + GSK-J4 15 mg/kg or 25 mg/kg), and a periodontitis plus dimethyl sulfoxide (DMSO) group (P + DMSO). After 4 weeks, maxillary molar segments were assessed via micro-computed tomography (CT) and hematoxylin and eosin (HE) staining. Serum tumor necrosis factor-α (TNF-α) levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Higher expression of the Jmjd3 gene and JMJD3 protein was detected in human inflamed gingiva than in healthy gingiva (P < 0.05). GSK-J4 administration reversed alveolar bone absorption [i.e., reduced alveolar bone crest (ABC)-cementoenamel junction (CEJ) distance], reduced inflammatory cell accumulation at the crest of the alveolar bone, and alleviated serum TNF-α levels in rats with periodontitis. Moreover, the number of H3K27me3-positive nuclei was greater in model rats treated with GSK J4 than in model rats. CONCLUSIONS The histone demethylase inhibitor GSK-J4 attenuated periodontal bone loss and inflammation in a rat periodontitis model by targeting JMJD3.
Collapse
Affiliation(s)
- Jian Kang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| | - Huan Yu
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Xu Xiang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
- Department of Oral and Maxillofacial Surgery, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
| | - Yong-Qiang Ma
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Le Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Pathology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
| | - Yuan Zhang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Zhi-Tao Wang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jing Yang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Implantology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
| | - Zheng Zhang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Hui-Ru Zou
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Endodontics, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
| | - Yue Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Xiao C, Su Z, Zhao J, Tan S, He M, Li Y, Liu J, Xu J, Hu Y, Li Z, Fan C, Liu X. Novel regulation mechanism of histone methyltransferase SMYD5 in rheumatoid arthritis. Cell Mol Biol Lett 2025; 30:38. [PMID: 40165083 PMCID: PMC11959843 DOI: 10.1186/s11658-025-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) are crucial for maintaining synovial homeostasis. SMYD5, a member of the histone lysine methyltransferase subfamily SMYDs, is involved in many pathological processes. This study aimed to investigate the role of SMYD5 in regulating synovial fibroblast homeostasis and the pathogenesis of rheumatoid arthritis (RA). METHODS Proteomic screening was conducted to assess SMYD5 expression in the synovium of patients with osteoarthritis (OA) and RA. In vitro, interleukin-1 beta (IL-1β) was used to induce proliferation and inflammation in FLS. Further, we performed loss-of-function and gain-of-function experiments to investigate the biological function of SMYD5. In vivo, adeno-associated virus (AAV) vectors carrying SMYD5 short-hairpin RNA (AAV-shSMYD5) were injected into the knee joints to knock down SMYD5 in a collagen-induced arthritis (CIA) mouse model to evaluate its role in joint damage. RESULTS We observed a significant elevation of SMYD5 expression in the synovial tissues of patients with RA and IL-1β-induced FLS. SMYD5 facilitated posttranslational modifications and activated downstream signaling pathways, thereby promoting proliferation and inflammation in FLS. Mechanistically, SMYD5 mediated the methylation of Forkhead box protein O1 (FoxO1), which accelerated its degradation through ubiquitination, resulting in substantial FLS proliferation. Additionally, SMYD5 promoted lactate release to activate NF-κB signaling pathways by upregulating hexokinases-2 (HK2) expression, a key glycolytic enzyme, thereby intensifying the inflammatory response in FLS. Supporting these findings, intraarticular delivery of AAV-mediated SMYD5 knockdown in the CIA mice model effectively alleviated joint swelling, bone erosion, and overall arthritis severity. CONCLUSIONS Together, these findings suggest that SMYD5 is a dual target for regulating synovial fibroblast homeostasis and the pathogenesis of RA. Targeting SMYD5 through local treatment strategies may provide a novel therapeutic approach for RA, particularly when combined with immunotherapy.
Collapse
Affiliation(s)
- Chenxi Xiao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhenghua Su
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jialin Zhao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Subei Tan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Mengting He
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yuhui Li
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jiayao Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jie Xu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yajie Hu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhongzheng Li
- The 9th Hospital of Ningbo, 68, Xiangbei Road, Jiangbei District, Ningbo, 315020, Zhejiang, China.
| | - Chunxiang Fan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| | - Xinhua Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| |
Collapse
|
4
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
5
|
He XB, Guo F, Zhang W, Fan J, Le W, Chen Q, Ma Y, Zheng Y, Lee SH, Wang HJ, Wu Y, Zhou Q, Yang R. JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain. Acta Neuropathol Commun 2024; 12:201. [PMID: 39716224 DOI: 10.1186/s40478-024-01912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons. Mice carrying Jmjd3 conditional knockout or undergoing pharmaceutical inhibition of JMJD3 showed consistent reduction of DA content in midbrain and striatum. Histological examination of both mice confirmed that TH and NURR1, two key molecules in DA biosynthesis pathway, were decreased in mDA neurons. Mechanistic experiments in vivo and in vitro further demonstrated that the transcriptions of Th and Nurr1 in mDA neurons were suppressed by JMJD3 deficiency, because of increased repressive H3K27me3 and attenuated bindings of JMJD3 and NURR1 on the promoters of both genes. On behavioral level, a significant prolonged inflammation-induced mechanical hyperalgesia was found in conditional knockout mice regardless of sex and age, whereas motor function appeared to be intact. Our findings establish a novel link between DA level in mDA neurons with intrinsic JMJD3 activity, and suggest prolonged chronic inflammatory pain as a major loss-of-function consequence.
Collapse
Affiliation(s)
- Xi-Biao He
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
| | - Fang Guo
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Wei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Fan
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Weidong Le
- Center for Translational Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Qi Chen
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Yongjun Ma
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- The Interdisciplinary Research Center of Biology and Chemistry, Chinese Academy of sciences, Shanghai, 200120, China
| | - Yong Zheng
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yi Wu
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Yang
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| |
Collapse
|
6
|
Li J, Chen J, Shao X, Zhang N, Wang Y, Li Y. Flaxseed Linusorb Alleviates Collagen-Induced Rheumatoid Arthritis in Rats via Inhibiting the TLR4/NF-κb/MAPK Signal Pathway and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27991-28004. [PMID: 39639764 DOI: 10.1021/acs.jafc.4c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Flaxseed linusorb (FL) has gradually garnered widespread attention in recent years because of its intriguing bioactivities like anti-inflammation, antimelanogenesis, and even anticancer effects. Based on its proven in vitro anti-inflammatory activity and mechanism, it is supposed that FL may also exhibit an in vivo effect in treating and preventing rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) rat models were established to investigate the potential therapeutic effect of FL, which were intervened with FL via gavage (50 and 100 mg/kg B.W.) and intraperitoneal injection (10 and 20 mg/kg B.W.). After FL treatment, RA clinical symptoms were significantly alleviated, including reduced toe swelling volume and mitigated bone damage in CIA rats. Moreover, a decline in the expression of pro-inflammatory factors (i.e., TNF-α, IL-1β, and IL-6) and RA-related proteins (i.e., MMP-3, COX-2, and 5-LOX) was observed to effectively block the TLR4/NF-κB/MAPK signaling pathway. In addition, FL was discovered to modulate the diversity and composition of intestinal microbiota in CIA rats, where the level of g_Parvibacte, g_Allobaculum, g_Enterococcus, and unclassified_o_Lactobacillales could be significantly increased, whereas the level of Gram-negative bacteria g_Parabacteroides, g_Parasutterella, and g_Paludicola was notably reduced. In conclusion, FL shows promise in RA treatment by inhibiting inflammatory pathways and regulating the gut microbiota.
Collapse
Affiliation(s)
- Jialong Li
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Xin Shao
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming 512500, China
| | - Ning Zhang
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
8
|
Damara A, Wegner J, Trzeciak ER, Kolb A, Nastaranpour M, Khatri R, Tuettenberg A, Kramer D, Grabbe S, Shahneh F. LL37/self-DNA complexes mediate monocyte reprogramming. Clin Immunol 2024; 265:110287. [PMID: 38909973 DOI: 10.1016/j.clim.2024.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
LL37 alone and in complex with self-DNA triggers inflammatory responses in myeloid cells and plays a crucial role in the development of systemic autoimmune diseases, like psoriasis and systemic lupus erythematosus. We demonstrated that LL37/self-DNA complexes induce long-term metabolic and epigenetic changes in monocytes, enhancing their responsiveness to subsequent stimuli. Monocytes trained with LL37/self-DNA complexes and those derived from psoriatic patients exhibited heightened glycolytic and oxidative phosphorylation rates, elevated release of proinflammatory cytokines, and affected naïve CD4+ T cells. Additionally, KDM6A/B, a demethylase of lysine 27 on histone 3, was upregulated in psoriatic monocytes and monocytes treated with LL37/self-DNA complexes. Inhibition of KDM6A/B reversed the trained immune phenotype by reducing proinflammatory cytokine production, metabolic activity, and the induction of IL-17-producing T cells by LL37/self-DNA-treated monocytes. Our findings highlight the role of LL37/self-DNA-induced innate immune memory in psoriasis pathogenesis, uncovering its impact on monocyte and T cell dynamics.
Collapse
Affiliation(s)
- Aman Damara
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Joanna Wegner
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Emily R Trzeciak
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Mahsa Nastaranpour
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Huang Y, Pan W, Ma J. SKP2-mediated ubiquitination and degradation of KLF11 promotes osteoarthritis via modulation of JMJD3/NOTCH1 pathway. FASEB J 2024; 38:e23640. [PMID: 38690715 DOI: 10.1096/fj.202300664rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Osteoarthritis (OA) is the main cause of cartilage damage and disability. This study explored the biological function of S-phase kinase-associated protein 2 (SKP2) and Kruppel-like factor 11 (KLF11) in OA progression and its underlying mechanisms. C28/I2 chondrocytes were stimulated with IL-1β to mimic OA in vitro. We found that SKP2, Jumonji domain-containing protein D3 (JMJD3), and Notch receptor 1 (NOTCH1) were upregulated, while KLF11 was downregulated in IL-1β-stimulated chondrocytes. SKP2/JMJD3 silencing or KLF11 overexpression repressed apoptosis and extracellular matrix (ECM) degradation in chondrocytes. Mechanistically, SKP2 triggered the ubiquitination and degradation of KLF11 to transcriptionally activate JMJD3, which resulted in activation of NOTCH1 through inhibiting H3K27me3. What's more, the in vivo study found that KLF11 overexpression delayed OA development in rats via restraining apoptosis and maintaining the balance of ECM metabolism. Taken together, ubiquitination and degradation of KLF11 regulated by SKP2 contributed to OA progression by activation of JMJD3/NOTCH1 pathway. Our findings provide promising therapeutic targets for OA.
Collapse
Affiliation(s)
- Yuanchi Huang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| | - Wenjie Pan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| |
Collapse
|
10
|
Montano EN, Bose M, Huo L, Tumurkhuu G, De Los Santos G, Simental B, Stotland AB, Wei J, Bairey Merz CN, Suda J, Martins G, Lalani S, Lawrenson K, Wang Y, Parker S, Venuturupalli S, Ishimori M, Wallace DJ, Jefferies CA. α-Ketoglutarate-Dependent KDM6 Histone Demethylases and Interferon-Stimulated Gene Expression in Lupus. Arthritis Rheumatol 2024; 76:396-410. [PMID: 37800478 PMCID: PMC10922114 DOI: 10.1002/art.42724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE We aimed to investigate the hypothesis that interferon (IFN)-stimulated gene (ISG) expression in systemic lupus erythematosus (SLE) monocytes is linked to changes in metabolic reprogramming and epigenetic regulation of ISG expression. METHODS Monocytes from healthy volunteers and patients with SLE at baseline or following IFNα treatment were analyzed by extracellular flux analysis, proteomics, metabolomics, chromatin immunoprecipitation, and gene expression. The histone demethylases KDM6A/B were inhibited using glycogen synthase kinase J4 (GSK-J4). GSK-J4 was tested in pristane and resiquimod (R848) models of IFN-driven SLE. RESULTS SLE monocytes had enhanced rates of glycolysis and oxidative phosphorylation compared to healthy control monocytes, as well as increased levels of isocitrate dehydrogenase and its product, α-ketoglutarate (α-KG). Because α-KG is a required cofactor for histone demethylases KDM6A and KDM6B, we hypothesized that IFNα may be driving "trained immune" responses through altering histone methylation. IFNα priming (day 1) resulted in a sustained increase in the expression of ISGs in primed cells (day 5) and enhanced expression on restimulation with IFNα. Importantly, decreased H3K27 trimethylation was observed at the promoters of ISGs following IFNα priming. Finally, GSK-J4 (KDM6A/B inhibitor) resulted in decreased ISG expression in SLE patient monocytes, as well as reduced autoantibody production, ISG expression, and kidney pathology in R848-treated BALB/c mice. CONCLUSION Our study suggests long-term IFNα exposure alters the epigenetic regulation of ISG expression in SLE monocytes via changes in immunometabolism, a mechanism reflecting trained immunity to type I IFN. Importantly, it opens the possibility that targeting histone-modifying enzymes, such as KDM6A/B, may reduce IFN responses in SLE.
Collapse
Affiliation(s)
- Erica N Montano
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Moumita Bose
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lihong Huo
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gantsetseg Tumurkhuu
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gabriela De Los Santos
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brianna Simental
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Janet Wei
- Smidt Heart Institute and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C Noel Bairey Merz
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jo Suda
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gislaine Martins
- Cedars-Sinai Medical Center and F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, USA
| | - Sarfaraz Lalani
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yizhou Wang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mariko Ishimori
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Caroline A Jefferies
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Gao Y, Zhang Y, Liu X. Rheumatoid arthritis: pathogenesis and therapeutic advances. MedComm (Beijing) 2024; 5:e509. [PMID: 38469546 PMCID: PMC10925489 DOI: 10.1002/mco2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the unresolved synovial inflammation for tissues-destructive consequence, which remains one of significant causes of disability and labor loss, affecting about 0.2-1% global population. Although treatments with disease-modifying antirheumatic drugs (DMARDs) are effective to control inflammation and decrease bone destruction, the overall remission rates of RA still stay at a low level. Therefore, uncovering the pathogenesis of RA and expediting clinical transformation are imminently in need. Here, we summarize the immunological basis, inflammatory pathways, genetic and epigenetic alterations, and metabolic disorders in RA, with highlights on the abnormality of immune cells atlas, epigenetics, and immunometabolism. Besides an overview of first-line medications including conventional DMARDs, biologics, and small molecule agents, we discuss in depth promising targeted therapies under clinical or preclinical trials, especially epigenetic and metabolic regulators. Additionally, prospects on precision medicine based on synovial biopsy or RNA-sequencing and cell therapies of mesenchymal stem cells or chimeric antigen receptor T-cell are also looked forward. The advancements of pathogenesis and innovations of therapies in RA accelerates the progress of RA treatments.
Collapse
Affiliation(s)
- Ying Gao
- Department of RheumatologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yunkai Zhang
- Naval Medical CenterNaval Medical UniversityShanghaiChina
| | - Xingguang Liu
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
12
|
Wang J, Liu L, Li Z, Wang H, Ren Y, Wang K, Liu Y, Tao X, Zheng L. JMJD3 regulate H3K27me3 modification via interacting directly with TET1 to affect spermatogonia self-renewal and proliferation. BMC Genomics 2024; 25:225. [PMID: 38424516 PMCID: PMC10905883 DOI: 10.1186/s12864-024-10120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In epigenetic modification, histone modification and DNA methylation coordinate the regulation of spermatogonium. Not only can methylcytosine dioxygenase 1 (TET1) function as a DNA demethylase, converting 5-methylcytosine to 5-hydroxymethylcytosine, it can also form complexes with other proteins to regulate gene expression. H3K27me3, one of the common histone modifications, is involved in the regulation of stem cell maintenance and tumorigenesis by inhibiting gene transcription. METHODS we examined JMJD3 at both mRNA and protein levels and performed Chip-seq sequencing of H3K27me3 in TET1 overexpressing cells to search for target genes and signaling pathways of its action. RESULTS This study has found that JMJD3 plays a leading role in spermatogonia self-renewal and proliferation: at one extreme, the expression of the self-renewal gene GFRA1 and the proliferation-promoting gene PCNA was upregulated following the overexpression of JMJD3 in spermatogonia; at the other end of the spectrum, the expression of differentiation-promoting gene DAZL was down-regulated. Furthermore, the fact that TET1 and JMJD3 can form a protein complex to interact with H3K27me3 has also been fully proven. Then, through analyzing the sequencing results of CHIP-Seq, we found that TET1 targeted Pramel3 when it interacted with H3K27me3. Besides, TET1 overexpression not only reduced H3K27me3 deposition at Pramel3, but promoted its transcriptional activation as well, and the up-regulation of Pramel3 expression was verified in JMJD3-overexpressing spermatogonia. CONCLUSION In summary, our study identified a novel link between TET1 and H3K27me3 and established a Tet1-JMJD3-H3K27me3-Pramel3 axis to regulate spermatogonia self-renewal and proliferation. Judging from the evidence offered above, we can safely conclude that this study provides new ideas for further research regarding the mechanism of spermatogenesis and spermatogenesis disorders on an apparent spectrum.
Collapse
Affiliation(s)
- Jin Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingling Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zebin Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haoyu Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kaisheng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinjie Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liming Zheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Lai J, Liu X, Su H, Zhu Y, Xin K, Huang M, Luo S, Tang H. Emodin inhibits bladder inflammation and fibrosis in mice with interstitial cystitis by regulating JMJD3. Acta Cir Bras 2023; 38:e385123. [PMID: 38055393 DOI: 10.1590/acb385123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/23/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Interstitial cystitis/bladder pain syndrome (IC/BPS) is a devastating urological chronic pelvic pain condition. In search of a potential treatment, we investigated the effect of emodin on IC/BPS inflammation and fibrosis, and explore the potential mechanism. METHODS An experimental model of interstitial cystitis was induced by cyclophosphamide, and human bladder smooth muscle cells were treated with lipopolysaccharide to establish the cell model in vitro. In both models, inflammation- and fibrosis-related indexes were measured after emodin administration. Furthermore, the specific antagonists were used to dig for the mechanisms underlying the response to emodin treatment. RESULTS Emodin significantly ameliorated management of cystitis, reduced the amount of inflammatory cytokines (tumor necrosis factor-α, monocyte chemoattractant protein-1, interleukin-1β, interleukin-8, and interleukin-6) in models, as well as reducing the synthesis of fibrosis marker including collagen1, collagen3, vimentin, fibronectin and α-smooth muscle actin. Further mechanism studies demonstrated that emodin inhibited inflammatory reaction and fibrosis through blocking lysine-specific demethylase 6B (JMJD3) expression via JAK/STAT, NF-κB and TGF-β/SMAD pathways. CONCLUSIONS Our study reveals the critical role of emodin-JMJD3 signaling in interstitial cystitis by regulating inflammation, fibrosis, and extracellular matrix deposition in cells and tissues, and these findings provide an avenue for effective treatment of patients with cystitis.
Collapse
Affiliation(s)
- Junyu Lai
- Southwest Medical University - Affiliated TCM Hospital - Department of Urology - Luzhou (Sichuan) - China
| | - Xing Liu
- Southwest Medical University - Affiliated Hospital - Department of Urology - Luzhou (Sichuan) - China
| | - Hongwei Su
- Southwest Medical University - Affiliated TCM Hospital - Department of Urology - Luzhou (Sichuan) - China
| | - Yongsheng Zhu
- Southwest Medical University - Affiliated TCM Hospital - Department of Urology - Luzhou (Sichuan) - China
| | - Ke Xin
- Southwest Medical University - Affiliated Hospital - Department of Urology - Luzhou (Sichuan) - China
| | - Mingwei Huang
- Southwest Medical University - Affiliated TCM Hospital - Department of Urology - Luzhou (Sichuan) - China
| | - Songtao Luo
- Southwest Medical University - Affiliated TCM Hospital - Department of Urology - Luzhou (Sichuan) - China
| | - Hai Tang
- Southwest Medical University - Affiliated TCM Hospital - Department of Urology - Luzhou (Sichuan) - China
| |
Collapse
|
14
|
Sylvestre M, Barbier N, Sibut V, Nayar S, Monvoisin C, Leonard S, Saint-Vanne J, Martin A, Guirriec M, Latour M, Jouan F, Baulande S, Bohec M, Verdière L, Mechta-Grigoriou F, Mourcin F, Bertheuil N, Barone F, Tarte K, Roulois D. KDM6B drives epigenetic reprogramming associated with lymphoid stromal cell early commitment and immune properties. SCIENCE ADVANCES 2023; 9:eadh2708. [PMID: 38019914 PMCID: PMC10686565 DOI: 10.1126/sciadv.adh2708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation.
Collapse
Affiliation(s)
- Marvin Sylvestre
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Nicolas Barbier
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Vonick Sibut
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Saba Nayar
- Centre for Translational inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Céline Monvoisin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Simon Leonard
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, F-35043 Nantes, France
| | - Julien Saint-Vanne
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - Ansie Martin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Marion Guirriec
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Maëlle Latour
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - Florence Jouan
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, F-75005 Paris, France
| | - Mylène Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, F-75005 Paris, France
| | - Léa Verdière
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, INSERM, U830, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| | - Frédéric Mourcin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Nicolas Bertheuil
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- Department of Plastic Surgery, CHU Rennes, F-35033 Rennes, France
| | | | - Karin Tarte
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - David Roulois
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| |
Collapse
|
15
|
Zhang S, Niu Q, Tong L, Liu S, Wang P, Xu H, Li B, Zhang H. Identification of the susceptible genes and mechanism underlying the comorbid presence of coronary artery disease and rheumatoid arthritis: a network modularization analysis. BMC Genomics 2023; 24:411. [PMID: 37474895 PMCID: PMC10360345 DOI: 10.1186/s12864-023-09519-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE The comorbidities of coronary artery disease (CAD) and rheumatoid arthritis (RA) are mutual risk factors, which lead to higher mortality, but the biological mechanisms connecting the two remain unclear. Here, we aimed to identify the risk genes for the comorbid presence of these two complex diseases using a network modularization approach, to offer insights into clinical therapy and drug development for these diseases. METHOD The expression profile data of patients CAD with and without RA were obtained from the GEO database (GSE110008). Based on the differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) was used to construct a gene network, detect co-expression modules, and explore their relation to clinical traits. The Zsummary index, gene significance (GS), and module membership (MM) were utilized to screen the important differentiated modules and hub genes. The GO and KEGG pathway enrichment analysis were applied to analyze potential mechanisms. RESULT Based on the 278 DEGs obtained, 41 modules were identified, of which 17 and 24 modules were positively and negatively correlated with the comorbid occurrence of CAD and RA (CAD&RA), respectively. Thirteen modules with Zsummary < 2 were found to be the underlying modules, which may be related to CAD&RA. With GS ≥ 0.5 and MM ≥ 0.8, 49 hub genes were identified, such as ADO, ABCA11P, POT1, ZNF141, GPATCH8, ATF6 and MIA3, etc. The area under the curve values of the representative seven hub genes under the three models (LR, KNN, SVM) were greater than 0.88. Enrichment analysis revealed that the biological functions of the targeted modules were mainly involved in cAMP-dependent protein kinase activity, demethylase activity, regulation of calcium ion import, positive regulation of tyrosine, phosphorylation of STAT protein, and tissue migration, etc. CONCLUSION: Thirteen characteristic modules and 49 susceptibility hub genes were identified, and their corresponding molecular functions may reflect the underlying mechanism of CAD&RA, hence providing insights into the development of clinical therapies against these diseases.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Tong
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sihong Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huamin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
16
|
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 2023; 9:188. [PMID: 37353521 DOI: 10.1038/s41420-023-01489-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs inhibitors in immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tong Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yijin Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenting Lv
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoqing Li
- Biological Targeted Therapy Key Laboratory in Hubei, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Zhu M, Ding Q, Lin Z, Fu R, Zhang F, Li Z, Zhang M, Zhu Y. New Targets and Strategies for Rheumatoid Arthritis: From Signal Transduction to Epigenetic Aspect. Biomolecules 2023; 13:biom13050766. [PMID: 37238636 DOI: 10.3390/biom13050766] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint damage and even permanent disability, seriously affecting patients' quality of life. At present, the complete cure for RA is not achievable, only to relieve the symptoms to reduce the pain of patients. Factors such as environment, genes, and sex can induce RA. Presently, non-steroidal anti-inflammatory drugs, DRMADs, and glucocorticoids are commonly used in treating RA. In recent years, some biological agents have also been applied in clinical practice, but most have side effects. Therefore, finding new mechanisms and targets for treating RA is necessary. This review summarizes some potential targets discovered from the perspective of epigenetics and RA mechanisms.
Collapse
Affiliation(s)
- Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Rong Fu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Fuyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Mei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
18
|
Mei Y, Xin Y, Li X, Yin H, Xiong F, Yang M, Wu H. Aberrant expression of JMJD3 in SLE promotes B-cell differentiation. Immunobiology 2023; 228:152347. [PMID: 36791533 DOI: 10.1016/j.imbio.2023.152347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease distinguished by multiple organ dysfunction, which is related to a variety of causative factors. B-cell overactivation is a key factor in SLE. However, the pathogenesis underlying anomalous B cells has not been well elucidated. B-cell fate is regulated in diverse epigenetic ways apart from traditional ways. As one of the mechanisms of epigenetics, histone modification mainly affects transcription and translation by changing the chemical groups on histones by histone modification enzymes. JMJD3, a histone demethylase, can promote T-cell proliferation in SLE patients, which exacerbates SLE. However, the mechanism of JMJD3 in B cells in SLE has not been studied. Here, we found that the mean fluorescence intensity (MFI) of JMJD3 in classical memory B cells (CMBs) was higher than that in naïve B cells (NBs) from human tonsil tissue; JMJD3 was overexpressed in B cells from the peripheral blood of SLE patients compared with healthy controls (HCs). In vitro, our experiment showed that JMJD3 could regulate B-cell differentiation by promoting naïve B-cell differentiation into CD27+ B cells, and Blimp-1 and Bcl-6 also decreased after inhibitor treatment. These findings provide a new direction for the pathogenesis of SLE and may supply a new idea for subsequent drug development.
Collapse
Affiliation(s)
- Yang Mei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yue Xin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xi Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Heng Yin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Feng Xiong
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
19
|
Gao Y, Wang N, Jia D. JMJD3 downregulates IL4i1 aggravating lipopolysaccharide-induced acute lung injury via H3K27 and H3K4 demethylation. ENVIRONMENTAL TOXICOLOGY 2023; 38:754-769. [PMID: 36537648 DOI: 10.1002/tox.23725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The pro-inflammation M1 to anti-inflammation M2 macrophage ratio contribute to the severity of lipopolysaccharide (LPS)-induced acute lung injury (ALI). JMJD3 aggravates the inflammatory reaction through affecting epigenetic modification and macrophage's phenotype to deteriorate ALI. To explore the mechanism underlying the upregulation of the macrophage M1/M2 ratio through JMJD3, we developed an ALI mouse model using intratracheal LPS, LPS-stimulated RAW 264.7 cells, and inhibited JMJD3 using GSK-J4. H3K27me3 and H3K4me3 were investigated as JMJD3-mediated epigenetic alteration sites in vivo and in vitro. C/EBPβ and KDM5A were validated as linking factors between H3K27 and H3K4. IL4i1 was investigated as a JMJD3-mediated targeted gene to regulate the macrophage M1/M2 ratio. Chromatin immunoprecipitation was used to evaluate the relationship between H3K27me3 and C/ebpβ, C/EBPβ and Kdm5a, H3K4me3 and Il4i1. Inhibiting JMJD3 with GSK-J4 can relieve inflammation and pathological performance in ALI. JMJD3 can reduce IL4i1 expression to increase the macrophage M1/M2 ratio and aggravated ALI which process was mediated via JMJD3-indcued H3K27me3 and H3K4me3 demethylation, latter H3K4me3 demethylation inhibited IL4i1 transcription. Inhibiting JMJD3 with GSK-J4 can increase IL4i1 expression, subsequently decreasing the expressions of M1 and increasing of M2 in vivo. The over-expression IL4i1 in LPS-stimulated macrophage or inhibiting JMJD3 with GSK-J4 can both reverse the increase of the macrophage M1/M2 ratio in vitro. C/EBPβ and KDM5A were upregulated by LPS simulation, which linked JMJD3-induced H3K27-H3K4 demethylation. JMJD3 inhibited IL4i1 to increase the macrophage M1/M2 phenotype ratio and aggravate LPS-induced ALI. Using GSK-J4 to inhibit JMJD3 may facilitate the treatment of LPS-induced ALI.
Collapse
Affiliation(s)
- Yizhuo Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Wang
- Occupational Disease and Occupational Health Prevention and Control Institute, Liaoning Center for Disease Control and Prevention, Shenyang, Liaoning, China
| | - Dong Jia
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
21
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
22
|
Abu-Hanna J, Patel JA, Anastasakis E, Cohen R, Clapp LH, Loizidou M, Eddama MMR. Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: a review of the literature. Clin Epigenetics 2022; 14:98. [PMID: 35915507 PMCID: PMC9344682 DOI: 10.1186/s13148-022-01305-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
Histone 3 lysine 27 (H3K27) demethylation constitutes an important epigenetic mechanism of gene activation. It is mediated by the Jumonji C domain-containing lysine demethylases KDM6A and KDM6B, both of which have been implicated in a wide myriad of diseases, including blood and solid tumours, autoimmune and inflammatory disorders, and infectious diseases. Here, we review and summarise the pre-clinical evidence, both in vitro and in vivo, in support of the therapeutic potential of inhibiting H3K27-targeting demethylases, with a focus on the small-molecule inhibitor GSK-J4. In malignancies, KDM6A/B inhibition possesses the ability to inhibit proliferation, induce apoptosis, promote differentiation, and heighten sensitivity to currently employed chemotherapeutics. KDM6A/B inhibition also comprises a potent anti-inflammatory approach in inflammatory and autoimmune disorders associated with inappropriately exuberant inflammatory and autoimmune responses, restoring immunological homeostasis to inflamed tissues. With respect to infectious diseases, KDM6A/B inhibition can suppress the growth of infectious pathogens and attenuate the immunopathology precipitated by these pathogens. The pre-clinical in vitro and in vivo data, summarised in this review, suggest that inhibiting H3K27 demethylases holds immense therapeutic potential in many diseases.
Collapse
Affiliation(s)
- Jeries Abu-Hanna
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | - Jigisha A Patel
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | | | - Richard Cohen
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK.,Department of Gastroenterology, University College London Hospital, London, UK
| | - Lucie H Clapp
- Institute of Cardiovascular Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | - Mohammad M R Eddama
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK. .,Department of Gastroenterology, University College London Hospital, London, UK.
| |
Collapse
|
23
|
TGF-β1-induced bone marrow mesenchymal stem cells (BMSCs) migration via histone demethylase KDM6B mediated inhibition of methylation marker H3K27me3. Cell Death Dis 2022; 8:339. [PMID: 35902563 PMCID: PMC9334584 DOI: 10.1038/s41420-022-01132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
Abstract
Mesenchymal stem cells (MSCs) are widely used in clinical research and therapy. Since the number of MSCs migration is extremely crucial at the lesion site, exploring the mechanisms to enhance the migration of MSCs is necessary. Therefore, this study focused on the epigenetic mechanisms in MSCs migration. TGF-β1 stimulated bone marrow mesenchymal stem cells (BMSCs) to promote cell migration at lesion sites in vitro and in vivo. The mRNA and protein levels of several migration-related genes (N cadherin, CXCR4, FN1) were enhanced. The trimethylation marker H3K27me3 recruitment on the promoter of these genes were studied to dissect the epigenetic mechanisms. TGF-β1 elevated the levels of KDM6B leading to removal of repression marker H3K27me3 in the promoter region of N cadherins and FN1. Congruently, knockdown of demethylase KDM6B substantially affected the TGF-β1 induced BMSCs migration. This promoted the down-regulation of various migration-related genes. Collectively, epigenetic regulation played an important role in BMSCs migration, and H3K27me3 was at least partially involved in the migration of BMSCs induced by TGF-β1.
Collapse
|
24
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
25
|
Jauch-Speer SL, Herrera-Rivero M, Ludwig N, Véras De Carvalho BC, Martens L, Wolf J, Imam Chasan A, Witten A, Markus B, Schieffer B, Vogl T, Rossaint J, Stoll M, Roth J, Fehler O. C/EBPδ-induced epigenetic changes control the dynamic gene transcription of S100a8 and S100a9. eLife 2022; 11:75594. [PMID: 35543413 PMCID: PMC9122501 DOI: 10.7554/elife.75594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout (KO)-based screening approach in immortalized murine monocytes, we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterized by S100a8 and S100a9 overexpression.
Collapse
Affiliation(s)
| | | | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | - Leonie Martens
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jonas Wolf
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Birgit Markus
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Wang JJ, Wang X, Xian YE, Chen ZQ, Sun YP, Fu YW, Wu ZK, Li PX, Zhou ES, Yang ZT. The JMJD3 histone demethylase inhibitor GSK-J1 ameliorates lipopolysaccharide-induced inflammation in a mastitis model. J Biol Chem 2022; 298:102017. [PMID: 35526564 PMCID: PMC9168612 DOI: 10.1016/j.jbc.2022.102017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
|
27
|
Feng S, Peden EK, Guo Q, Lee TH, Li Q, Yuan Y, Chen C, Huang F, Cheng J. Downregulation of the endothelial histone demethylase JMJD3 is associated with neointimal hyperplasia of arteriovenous fistulas in kidney failure. J Biol Chem 2022; 298:101816. [PMID: 35278430 PMCID: PMC9052161 DOI: 10.1016/j.jbc.2022.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.
Collapse
Affiliation(s)
- Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China; Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Tae Hoon Lee
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Yuhui Yuan
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Changyi Chen
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Fengzhang Huang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
28
|
Yang C, Li D, Teng D, Zhou Y, Zhang L, Zhong Z, Yang GJ. Epigenetic Regulation in the Pathogenesis of Rheumatoid Arthritis. Front Immunol 2022; 13:859400. [PMID: 35401513 PMCID: PMC8989414 DOI: 10.3389/fimmu.2022.859400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease. The etiology of RA remains undetermined and the pathogenesis is complex. There remains a paucity of ideal therapeutic drugs and treatment strategies. The epigenetic modifications affect and regulate the function and characteristics of genes through mechanisms, including DNA methylation, histone modification, chromosome remodeling, and RNAi, thereby exerting a significant impact on the living state of the body. Recently, the phenomenon of epigenetic modification in RA has garnered growing research interest. The application of epigenetically modified methods is the frontier field in the research of RA pathogenesis. This review highlights the research on the pathogenesis of RA based on epigenetic modification in the recent five years, thereby suggesting new methods and strategies for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehong Teng
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Yueru Zhou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Guan-Jun Yang,
| | - Guan-Jun Yang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Zhangfeng Zhong, ; Guan-Jun Yang,
| |
Collapse
|
29
|
Borkiewicz L. Histone 3 Lysine 27 Trimethylation Signature in Breast Cancer. Int J Mol Sci 2021; 22:12853. [PMID: 34884658 PMCID: PMC8657745 DOI: 10.3390/ijms222312853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer development and progression rely on complicated genetic and also epigenetic changes which regulate gene expression without altering the DNA sequence. Epigenetic mechanisms such as DNA methylation, histone modifications, and regulation by lncRNAs alter protein expression by either promoting gene transcription or repressing it. The presence of so-called chromatin modification marks at various gene promoters and gene bodies is associated with normal cell development but also with tumorigenesis and progression of different types of cancer, including the most frequently diagnosed breast cancer. This review is focused on the significance of one of the abundant post-translational modifications of histone 3- trimethylation of lysine 27 (H3K27me3), which was shown to participate in tumour suppressor genes' silencing. Unlike other reviews in the field, here the overview of existing evidence linking H3K27me3 status with breast cancer biology and the tumour outcome is presented especially in the context of diverse breast cancer subtypes. Moreover, the potential of agents that target H3K27me3 for the treatment of this complex disease as well as H3K27 methylation in cross-talk with other chromatin modifications and lncRNAs are discussed.
Collapse
Affiliation(s)
- Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
30
|
Li L, Bai L, Yang K, Zhang J, Gao Y, Jiang M, Yang Y, Zhang X, Wang L, Wang X, Qiao Y, Xu JT. KDM6B epigenetically regulated-interleukin-6 expression in the dorsal root ganglia and spinal dorsal horn contributes to the development and maintenance of neuropathic pain following peripheral nerve injury in male rats. Brain Behav Immun 2021; 98:265-282. [PMID: 34464689 DOI: 10.1016/j.bbi.2021.08.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochemistry, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mechanical allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, separately, alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Results of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Kangli Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Mingjun Jiang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
31
|
José Alcaraz M. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 2021; 194:114815. [PMID: 34715065 DOI: 10.1016/j.bcp.2021.114815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Synovial cells play a key role in joint destruction during chronic inflammation. In particular, activated synovial fibroblasts (SFs) undergo intrinsic alterations leading to an aggressive phenotype mediating cartilage destruction and bone erosion in rheumatoid arthritis (RA). Recent research has revealed a number of targets to control arthritogenic changes in SFs. Therefore, identification of SF phenotypes, control of epigenetic changes, modulation of cellular functions, or regulation of the activity of cation channels and different signaling pathways has been investigated. Although many of these approaches have shown efficacy in vitro and in animal models of RA, further research is needed to select the most relevant targets for drug development. This review is focused on the role of SFs as a potential strategy to discover novel therapeutic targets in RA aimed at preserving joint architecture and function.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, and Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
32
|
Wang Y, Xu J, Cheng Z. YAP1 promotes high glucose-induced inflammation and extracellular matrix deposition in glomerular mesangial cells by modulating NF-κB/JMJD3 pathway. Exp Ther Med 2021; 22:1349. [PMID: 34659495 PMCID: PMC8515513 DOI: 10.3892/etm.2021.10784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious microvascular complications of late-stage diabetes. Glomerular mesangial cell (GMC) proliferation and excessive extracellular matrix (ECM) deposition are the main pathological characteristics associated with the occurrence and development of DN. Yes-associated protein 1 (YAP1) can bind to several transcription factors and is associated with the development of various diseases. However, the effects of YAP1 on DN remain unclear. The aim of the present study was to explore the regulatory effect and potential mechanism of YAP1 in glucose-induced inflammation and ECM deposition in high-glucose-treated GMCs. In the present study, HBZY-1 cell models treated with high glucose were constructed, and the effects of YAP1 on the proliferation, inflammation, ECM deposition and fibrosis of HBZY-1 cells were detected. The results showed that YAP1 was highly expressed in HBZY-1 cells treated with high glucose and that YAP1 silencing decreased cell viability, the levels of inflammatory cytokines, ECM deposition and the degree of fibrosis in cells. Further experiments revealed that NF-κB/Jumonji domain-containing protein D3 (JMJD3) signaling pathway inhibitors alleviated the promoting effect of YAP1 overexpression on inflammatory response and ECM deposition in HBZY-1 cells treated with high glucose. In conclusion, it was demonstrated that YAP1 can promote high glucose-induced inflammation and ECM deposition by activating the NF-κB/JMJD3 signaling pathway in GMCs.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jinmei Xu
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhifeng Cheng
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
33
|
Yin B, Ma Q, Zhao L, Song C, Wang C, Yu F, Shi Y, Ye L. Epigenetic Control of Autophagy Related Genes Transcription in Pulpitis via JMJD3. Front Cell Dev Biol 2021; 9:654958. [PMID: 34434926 PMCID: PMC8381646 DOI: 10.3389/fcell.2021.654958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is an intracellular self-cannibalization process delivering cytoplasmic components to lysosomes for digestion. Autophagy has been reported to be involved in pulpitis, but the regulation of autophagy during pulpitis progression is largely unknown. To figure out the epigenetic regulation of autophagy during pulpitis, we screened several groups of histone methyltransferases and demethylases in response to TNFα treatment. It was found JMJD3, a histone demethylase reducing di- and tri-methylation of H3K27, regulated the expression of several key autophagy genes via demethylation of H3K27me3 at the gene promoters. Our study highlighted the epigenetic regulation of autophagy genes during pulpitis, which will potentially provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qingge Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lingyi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Yu Y, Wang Z, Ding Q, Yu X, Yang Q, Wang R, Fang Y, Qi W, Liao J, Hu W, Zhu Y. The Preparation of a Novel Poly(Lactic Acid)-Based Sustained H 2S Releasing Microsphere for Rheumatoid Arthritis Alleviation. Pharmaceutics 2021; 13:742. [PMID: 34069878 PMCID: PMC8157395 DOI: 10.3390/pharmaceutics13050742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease that mainly erodes joints and surrounding tissues, and if it is not treated in time, it can cause joint deformities and loss of function. S-propargyl-cysteine (SPRC) is an excellent endogenous hydrogen sulfide donor which can relieve the symptoms of RA through the promotion of H2S release via the CSE/H2S pathway in vivo. However, the instant release of H2S in vivo could potentially limit its further clinical use. To solve this problem, in this study, a SPRC-loaded poly(lactic acid) (PLA) microsphere (SPRC@PLA) was prepared, which could release SPRC in vitro in a sustained manner, and further promote sustained in vivo H2S release. Furthermore, its therapeutical effect on RA in rats was also studied. A spherical-like SPRC@PLA was successfully prepared with a diameter of approximately 31.61 μm, yielding rate of 50.66%, loading efficiency of 6.10% and encapsulation efficiency of 52.71%. The SPRC@PLA showed significant prolonged in vitro SPRC release, to 4 days, and additionally, an in vivo H2S release around 3 days could also be observed. In addition, a better therapeutical effect and prolonged administration interval toward RA rats was also observed in the SPRC@PLA group.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Xiangbin Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, China;
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| |
Collapse
|
35
|
Ji M, Ryu HJ, Hong JH. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 2021; 10:285-297. [PMID: 33890482 PMCID: PMC8077181 DOI: 10.1302/2046-3758.104.bjr-2020-0331.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| | - Hee Jung Ryu
- Department of Rheumatology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
36
|
Schett G, Tanaka Y, Isaacs JD. Why remission is not enough: underlying disease mechanisms in RA that prevent cure. Nat Rev Rheumatol 2021; 17:135-144. [PMID: 33303993 DOI: 10.1038/s41584-020-00543-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 01/04/2023]
Abstract
Cure is the aspirational aim for the treatment of all diseases, including chronic inflammatory conditions such as rheumatoid arthritis (RA); however, it has only been during the twenty-first century that remission, let alone cure, has been a regularly achievable target in RA. Little research has been carried out on how to cure RA, and the term 'cure' still requires definition for this disease. Even now, achieving a cure seems to be a rare occurrence among individuals with RA. Therefore, this Review is aimed at addressing the obstacles to the achievement of cure in RA. The differences between remission and cure in RA are first defined, followed by a discussion of the underlying factors (referred to as drivers) that prevent the achievement of cure in RA by triggering sustained immune activation and effector cytokine production. Such drivers include adaptive immune system activation, mesenchymal tissue priming and so-called 'remote' (non-immune and non-articular) factors. Strategies to target these drivers are also presented, with an emphasis on the development of strategies that could complement currently used cytokine inhibition and thereby improve the likelihood of curing RA.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum fur Immuntherapie, FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
KDM6B is an androgen regulated gene and plays oncogenic roles by demethylating H3K27me3 at cyclin D1 promoter in prostate cancer. Cell Death Dis 2021; 12:2. [PMID: 33414463 PMCID: PMC7791132 DOI: 10.1038/s41419-020-03354-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, plays oncogenic or antitumoral roles in malignant tumors depending on the type of tumor cell. However, how this histone modifier affects the progression of prostate cancer (PCa) is still unknown. Here we analyzed sequenced gene expression data and tissue microarray to explore the expression features and prognostic value of KDM6B in PCa. Further, we performed in vitro cell biological experiments and in vivo nude mouse models to reveal the biological function, upstream and downstream regulation mechanism of KDM6B. In addition, we investigated the effects of a KDM6B inhibitor, GSK-J4, on PCa cells. We showed that KDM6B overexpression was observed in PCa, and elevated KDM6B expression was associated with high Gleason Score, low serum prostate-specific antigen level and shorted recurrence-free survival. Moreover, KDM6B prompted proliferation, migration, invasion and cell cycle progression and suppressed apoptosis in PCa cells. GSK-J4 administration could significantly suppress the biological function of KDM6B in PCa cells. KDM6B is involved in the development of castration-resistant prostate cancer (CRPC), and combination of MDV3100 plus GSK-J4 is effective for CRPC and MDV3100-resistant CRPC. Mechanism exploration revealed that androgen receptor can decrease the transcription of KDM6B and that KDM6B demethylates H3K27me3 at the cyclin D1 promoter and cooperates with smad2/3 to prompt the expression of cyclin D1. In conclusion, our study demonstrates that KDM6B is an androgen receptor regulated gene and plays oncogenic roles by promoting cyclin D1 transcription in PCa and GSK-J4 has the potential to be a promising agent for the treatment of PCa.
Collapse
|
38
|
Mu YR, Zhou MY, Cai L, Liu MM, Li R. Overexpression of Aquaporin 1 in Synovium Aggravates Rat Collagen-Induced Arthritis Through Regulating β-Catenin Signaling: An in vivo and in vitro Study. J Inflamm Res 2020; 13:701-712. [PMID: 33116749 PMCID: PMC7550268 DOI: 10.2147/jir.s271664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Previous studies have confirmed that aquaporin 1 (AQP1) is up-regulated in synovium of rheumatoid arthritis (RA), but its exact pathogenic mechanisms in RA are unclear. This study revealed the pathogenic role of AQP1 in rat collagen-induced arthritis (CIA) and the underlying mechanisms related to β-catenin signaling. Materials and Methods Secondary paw swelling and pathological changes of ankle joints were used to evaluate the severity of rat CIA. Synovial AQP1 and β-catenin expression were measured by immunohistochemistry (IHC) and Western blot assay. AQP1 siRNA was applied to knockdown AQP1 in cultured CIA fibroblast-like synoviocyte (FLS). Assays of MTT, PCNA immunofluorescence and transwell were performed to detect cell proliferation, migration and invasion. The protein levels of β-catenin pathway members and ratio of TOP/FOP luciferase activity were also measured. Results In vivo, we revealed that synovial AQP1 and β-catenin expressions in CIA rats were higher than normal rats, and synovial AQP1 expression of CIA rats increased in parallel with secondary paw swelling and total pathological score on joint damage. Correlation analysis of IHC results indicated that synovial AQP1 expression positively correlated with β-catenin expression in CIA rat. In vitro, AQP1 siRNA apparently reduced the proliferation, migration and invasion of CIA FLS by inhibiting β-catenin signaling pathway. As an activator of β-catenin signaling, lithium chloride (an inhibitor of GSK-3β) reversed the inhibitory effects of AQP1 siRNA on the cultured CIA FLS. Conclusion We concluded that the overexpression of synovial AQP1 aggravated rat CIA by promoting the activation of FLS through β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu-Rong Mu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Meng-Yuan Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ming-Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
39
|
Ding Q, Shao C, Rose P, Zhu YZ. Epigenetics and Vascular Senescence-Potential New Therapeutic Targets? Front Pharmacol 2020; 11:535395. [PMID: 33101015 PMCID: PMC7556287 DOI: 10.3389/fphar.2020.535395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Epigenetics is defined as the heritable alterations of gene expression without changes to the coding sequence of DNA. These alterations are mediated by processes including DNA methylation, histone modifications, and non-coding RNAs mechanisms. Vascular aging consists of both structural and functional changes in the vasculature including pathological processes that drive progression such as vascular cell senescence, inflammation, oxidation stress, and calcification. As humans age, these pathological conditions gradually accumulate, driven by epigenetic alterations, and are linked to various aging-related diseases. The development of drugs targeting a spectrum of epigenetic processes therefore offers novel treatment strategies for the targeting of age-related diseases. In our previous studies, we identified HDAC4, JMJD3, Fra-1, and GATA4 as potential pharmacological targets for regulating vascular inflammation, injury, and senescence.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.,School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chunhong Shao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
40
|
Long non-coding RNA PVT1 can regulate the proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes by targeting microRNA-145-5p. Hum Cell 2020; 33:1081-1090. [PMID: 32918701 DOI: 10.1007/s13577-020-00419-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) function in rheumatoid arthritis (RA). The present work was designed to explore the roles of lncRNA PVT1 in RA and the related mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine mRNA level. The binding sites between PVT1 and miR-145-5p were verified by a dual-luciferase reporter assay. Furthermore, RA-FLSs were treated with TNF-α to establish the RA model. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Flow cytometry and TUNEL assays were performed to detect cell apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of inflammatory cytokines. PVT1 was significantly increased and miR-145-5p was decreased in synovial tissues of RA patients. miR-145-5p is a target miRNA of PVT1, and the levels of PVT1 and miR-145-5p in synovial tissues of RA patients were negatively correlated. In RA-FLSs, tumour necrosis factor-α (TNF-α) led to increased PVT1 levels and decreased miR-145-5p levels. Knockdown of PVT1 inhibited TNF-α-induced RA-FLS over-proliferation and reversed TNF-α-induced RA-FLS apoptosis reduction. Moreover, knockdown of PVT1 inhibited TNF-α-induced production of interleukin (IL)-1β and IL-6 and the activation of NF-κB through miR-145-5p. PVT1 can regulate apoptosis and inflammatory responses in RA-FLSs by targeting miR-145-5p.
Collapse
|
41
|
Long F, Wang Q, Yang D, Zhu M, Wang J, Zhu Y, Liu X. Targeting JMJD3 histone demethylase mediates cardiac fibrosis and cardiac function following myocardial infarction. Biochem Biophys Res Commun 2020; 528:671-677. [PMID: 32513540 DOI: 10.1016/j.bbrc.2020.05.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 01/19/2023]
Abstract
Myocardial fibrosis is the pathological consequence of injury-induced fibroblastto-myofibroblast transition, resulting in increased stiffness and diminished cardiac function. Histone modification has been shown to play an important role in the pathogenesis of cardiac fibrosis. Here, we identified H3K27me3 demethylase JMJD3/KDM6B promotes cardiac fibrosis via regulation of fibrogenic pathways. Using neonatal rat cardiac fibroblasts (NRCF), we show that the expression of endogenous JMJD3 is induced by angiotensin II (Ang II), while the principle extracellular matrix (ECM) such as fibronectin, CTGF, collagen I and III are increased. We find that JMJD3 inhibition markedly enhances the suppressive mark (H3K27me3) at the beta (β)-catenin promoter in activated cardiac fibroblasts, and then substantially decreases expression of fibrogenic gene. Both inhibition of β-catenin-mediated transcription with ICG-001 and genetic loss of β-catenin can prevent Ang II-induced ECM deposition. Most importantly, in vivo inhibition of JMJD3 rescues myocardial ischemia-induced cardiac fibrosis and cardiac dysfunction. Collectively, our findings are the first to report a novel role of histone demethylase JMJD3 in the pro-fibrotic cardiac fibroblast phenotype, pharmacological targeting of JMJD3 might represent a promising therapeutic approach for the treatment of human cardiac fibrosis and other fibrotic diseases.
Collapse
Affiliation(s)
- Fen Long
- Department of Pharmacology, School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, PR China
| | - Qing Wang
- Department of Pharmacology, School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, PR China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, PR China
| | - Menglin Zhu
- Department of Pharmacology, School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, PR China
| | - Jinghuan Wang
- Department of Pharmacology, School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, PR China
| | - YiZhun Zhu
- Department of Pharmacology, School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, PR China; State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, PR China
| | - Xinhua Liu
- Department of Pharmacology, School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
42
|
Wang J, Kong X, Hu H, Shi S. Knockdown of long non-coding RNA PVT1 induces apoptosis of fibroblast-like synoviocytes through modulating miR-543-dependent SCUBE2 in rheumatoid arthritis. J Orthop Surg Res 2020; 15:142. [PMID: 32293498 PMCID: PMC7158104 DOI: 10.1186/s13018-020-01641-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Rheumatoid arthritis (RA), a kind of autoimmune disorder, is featured by many physical symptoms and proliferation of fibroblast-like synoviocytes (FLSs). The relevance of long non-coding RNAs (lncRNAs) in the progression of RA has been probed. Hence, the goal of this report was to investigate the action of plasmacytoma variant translocation 1 (PVT1), a lncRNA, in FLSs and the basic mechanism. Methods Initially, RA rats were developed to evaluate the expression of PVT1, microRNA-543 (miR-543), and signal peptide-CUB-EGF-like containing protein 2 (SCUBE2) in synovial tissues. Enhancement or loss of PVT1 or miR-543 was achieved to explore their effects on proliferation, cell cycle, and apoptosis of FLSs. The interaction between PVT1 and miR-543 and between miR-543 and its putative target SCUBE2 was examined to elucidate the correlations. Finally, the protein expression of proliferation- and apoptosis-associated genes were assessed by western blot assays. Results PVT1 was overexpressed in synovial tissues from RA patients through microarray expression profiles. The PVT1 and SCUBE2 expression was boosted, and miR-543 was reduced in synovial tissues of rats with RA. PVT1 specifically bound to miR-543, and miR-543 negatively regulated SCUBE2 expression. Overexpression of PVT1 or silencing of miR-543 enhanced SCUBE2 expression, thereby promoting proliferation and interleukin-1β (IL-1β) secretion, while inhibiting apoptosis rate of FLSs. Conversely, si-SCUBE2 reversed the role of miR-543 inhibitor. Conclusion The key findings support that PVT1 knockdown has the potency to hinder RA progression by inhibiting SCUBE2 expression to sponge miR-543.
Collapse
Affiliation(s)
- Junxia Wang
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Xianghui Kong
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Haijian Hu
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China
| | - Shunfang Shi
- Department of Rheumatism, Linyi Central Hospital, No. 17, Jiankang Road, Yishui Town, Linyi, 276400, Shandong, People's Republic of China.
| |
Collapse
|
43
|
Uddin MN, Yao Y, Mondal T, Matala R, Manley K, Lin Q, Lawrence DA. Immunity and autoantibodies of a mouse strain with autistic-like behavior. Brain Behav Immun Health 2020; 4:100069. [PMID: 34589851 PMCID: PMC8474232 DOI: 10.1016/j.bbih.2020.100069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Female and male mice of the BTBR T + Itpr3 tf /J (BTBR) strain have behaviors that resemble autism spectrum disorder. In comparison to C57BL/6 (B6) mice, BTBR mice have elevated humoral immunity, in that they have naturally high serum IgG levels and generate high levels of IgG antibodies, including autoantibodies to brain antigens. This study focused on the specificities of autoantibodies and the immune cells and their transcription factors that might be responsible for the autoantibodies. BTBR IgG autoantibodies bind to neurons better than microglia and with highest titer to nuclear antigens. Two of the antigens identified were alpha-enolase (ENO1) and dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial (DLST). Surprisingly based on IgG levels, the blood and spleens of BTBR mice have more CD4+ and CD8+ T cells, but fewer B cells than B6 mice. The high levels of autoantibodies in BTBR relates to their splenic T follicular helper (Tfh) cell levels, which likely are responsible for the higher number of plasma cells in BTBR mice than B6 mice. BTBR mice have increased gene expression of interleukin-21 receptor (I l -21 r) and Paired Box 5 (Pax5), which are known to aid B cell differentiation to plasma cells, and an increased Lysine Demethylase 6B (Kdm6b)/DNA Methyltransferase 1 (Dnmt1) ratio, which increases gene expression. Identification of gene expression and immune activities of BTBR mice may aid understanding of mechanisms associated with autism since neuroimmune network interactions have been posited and induction of autoantibodies may drive the neuroinflammation associated with autism.
Collapse
Key Words
- ASD, autism spectrum disorder
- Ab, antibody
- Ag, antigen
- Alpha-enolase
- Autism
- Autoantibody
- BM, bone marrow
- BTBR
- Dlst, dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial
- Dnmt1
- Dnmt1, DNA Methyltransferase 1
- Eno1, alpha-enolase
- IL-21r
- IL21R, interleukin-21 receptor
- Kdm6b
- Kdm6b, Lysine Demethylase 6B
- Pax5
- Pax5, Paired Box 5
- Plasma cell
- T follicular helper cell
- Tfh, T follicular helper cell
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Yunyi Yao
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Tapan Mondal
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Rosemary Matala
- University at Albany School of Public Health, Rensselaer, NY, USA
| | - Kevin Manley
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - David A Lawrence
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA.,University at Albany School of Public Health, Rensselaer, NY, USA
| |
Collapse
|
44
|
Saferding V, Blüml S. Innate immunity as the trigger of systemic autoimmune diseases. J Autoimmun 2019; 110:102382. [PMID: 31883831 DOI: 10.1016/j.jaut.2019.102382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
The innate immune system consists of a variety of elements controlling and participating in virtually all aspects of inflammation and immunity. It is crucial for host defense, but on the other hand its improper activation is also thought to be responsible for the generation of autoimmunity and therefore diseases such as autoimmune arthritides like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS) or inflammatory bowel disease. The innate immune system stands both at the beginning as well as the end of autoimmunity. On one hand, it regulates the activation of the adaptive immune system and the breach of self-tolerance, as antigen presenting cells (APCs), especially dendritic cells, are essential for the activation of naïve antigen specific T cells, a crucial step in the development of autoimmunity. Various factors controlling the function of dendritic cells have been identified that directly regulate lymphocyte homeostasis and in some instances the generation of organ specific autoimmunity. Moreover, microbial cues have been identified that are prerequisites for the generation of several specific autoimmune diseases. On the other hand, the innate immune system is also responsible for mediating the resulting organ damage underlying the clinical symptoms of a given autoimmune disease via production of proinflammatory cytokines that amplify local inflammation and further activate other immune or parenchymal cells in the vicinity, the generation of matrix degrading and proteolytic enzymes or reactive oxygen species directly causing tissue damage. In the last decades, molecular characterization of cell types and their subsets as well as both positive and negative regulators of immunity has led to the generation of various scenarios of how autoimmunity develops, which eventually might lead to the development of targeted interventions for autoimmune diseases. In this review, we try to summarize the elements that are contributing to the initiation and perpetuation of autoimmune responses.
Collapse
Affiliation(s)
| | - Stephan Blüml
- Department of Rheumatology, Medical University Vienna, Austria.
| |
Collapse
|
45
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Hou C, Wang D, Zhang L. MicroRNA‑34a‑3p inhibits proliferation of rheumatoid arthritis fibroblast‑like synoviocytes. Mol Med Rep 2019; 20:2563-2570. [PMID: 31524250 PMCID: PMC6691200 DOI: 10.3892/mmr.2019.10516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial inflammation. Fibroblast‑like synoviocytes (FLS) serve a vital role in the initiation and perpetuation of the immune response in patients with RA. The present study aimed to investigate the potential role of microRNA (miR)‑34a‑3p in the pathogenesis of RA. FLS were collected from patients with RA and osteoarthritis (OA). The miR‑34a‑3p mimics and inhibitor vectors were constructed and transfected into RAFLS using Lipofectamine® 2000. Cell proliferation was determined by Cell Counting kit‑8 assay and cell cycle progression was analyzed by flow cytometry. In addition, the expression levels of cell cycle control genes, matrix metalloproteinase (MMP)‑1 and MMP‑9, and pro‑inflammatory cytokines were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The potential targets of miR‑34a‑3p were predicted by TargetScan and MiRWalk; the target genes were further verified using a luciferase reporter assay. The expression levels of miR‑34a‑3p were generally lower in RAFLS compared with in OAFLS. miR‑34a‑3p overexpression significantly inhibited the proliferation of FLS (P<0.01) by suppressing the expression levels of cyclin‑dependent kinase 2, cell division cycle 25A and cyclin D1 (P<0.01), and arresting FLS cell cycle progression at the G1 phase. Furthermore, the expression levels of MMP‑1 and 9 were markedly decreased, as were the mRNA and protein expression levels of pro‑inflammatory cytokines (tumor necrosis factor α and interleukin 6; P<0.01). Murine double minute 4 (MDM4) was predicted and verified as a potential target gene of miR‑34a‑3p; the 547‑554 nt position of the MDM4 3'‑untranslated region harbored one potential binding site for miR‑204‑3p. The results of the present study indicated that miR‑34a‑3p may be considered a promising therapeutic target for RA through inhibiting FLS proliferation and suppressing the production of pro‑inflammatory cytokines and MMPs.
Collapse
Affiliation(s)
- Chunfeng Hou
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Dan Wang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lihua Zhang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
47
|
Zhang CW, Wu X, Liu D, Zhou W, Tan W, Fang YX, Zhang Y, Liu YQ, Li GQ. Long non-coding RNA PVT1 knockdown suppresses fibroblast-like synoviocyte inflammation and induces apoptosis in rheumatoid arthritis through demethylation of sirt6. J Biol Eng 2019; 13:60. [PMID: 31303891 PMCID: PMC6604378 DOI: 10.1186/s13036-019-0184-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Background As a type of chronic autoimmune joint disease, rheumatoid arthritis (RA) is a disorder, characterized by a variety of physical symptoms as well as RA fibroblast-like synoviocyte (RA-FLS) proliferation. More recently, long non-coding RNAs (lncRNAs) have been implicated in the progression of various diseases including the progression of RA. Hence, the aim of the current study was to investigate the role by which the lncRNA, plasmacytoma variant translocation 1 (PVT1), influences RA-FLSs and its ability to modulate the methylation of sirtuin 6 (sirt6). Methods RA rat models were initially established to determine the expression of PVT1 and sirt6 in synovial tissues and RA-FLSs. Elevation or depletion of PVT1 or sirt6 was achieved by means of transformation with plasmids in order to investigate their effects on RA-FLS proliferation, inflammation and apoptosis. The localization of PVT1 and its binding ability to the sirt6 promoter region were also explored in an attempt to elucidate the correlation between PVT1 and sirt6 methylation. Results High expression of PVT1 and low expression of sirt6 were detected in the synovial tissues and RA-FLSs of the rat models. RA-FLSs treated with sh-PVT1 or oe-sirt6 exhibited suppressed cell proliferation, inflammation and induced apoptosis. PVT1 was predominately localized in the nucleus while evidence was obtained indicating that it could bind to the sirt6 promoter to induce sirt6 methylation, thus inhibiting sirt6 transcription. PVT1 knockdown was observed to restore sirt6 expression through decreasing sirt6 methylation, thereby alleviating RA. Conclusion The key findings of the study provide evidence suggesting that, PVT1 knockdown is able to restrain RA progression by inhibiting sirt6 methylation to restore its expression.
Collapse
Affiliation(s)
- Chun-Wang Zhang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China.,2Clinical Medical College, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Xia Wu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China.,2Clinical Medical College, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Dan Liu
- 3Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, 225000 People's Republic of China
| | - Wei Zhou
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China
| | - Wei Tan
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China
| | - Yu-Xuan Fang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China.,2Clinical Medical College, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Yu Zhang
- 4Medical College of Yangzhou University, Yangzhou, 225000 People's Republic of China
| | - Yan-Qing Liu
- 4Medical College of Yangzhou University, Yangzhou, 225000 People's Republic of China
| | - Guo-Qing Li
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China
| |
Collapse
|
48
|
Lai J, Ge M, Shen S, Yang L, Jin T, Cao D, Xu H, Zheng X, Qiu S, Wang K, Wei Q, Li H, Ai J. Activation of NFKB-JMJD3 signaling promotes bladder fibrosis via boosting bladder smooth muscle cell proliferation and collagen accumulation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2403-2410. [PMID: 31102789 DOI: 10.1016/j.bbadis.2019.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Chronic cystitis is characterized by the hyperplasia and fibrosis of the bladder wall as well as attenuated compliance of the bladder. To further unravel its underlying molecular mechanism, the role of NFκB-JMJD3 signaling pathway in cystitis induced bladder fibrosis was investigated. Jmjd3 and Col1/3 expression was detected in a cystitis mouse model that was developed by intraperitoneal injection of cyclophosphamide (CYP). Human bladder smooth muscle cells (hBSMCs) were stimulated in vitro with lipopolysaccharide (LPS), and the cell proliferation and collagen accumulation were detected using EdU, CCK8, flow cytometry, qPCR, western blotting and immunofluorescence assays. Furthermore, the effects of NFκB and JMJD3 on cell proliferation and collagen accumulation were investigated using its selective antagonists, JSH23 and GSK-J4, respectively. CYP induced cystitis significantly increased Jmjd3, Col1 and Col3 expression in the bladder muscle cells. Furthermore, LPS stimulation markedly activated NFκB signaling and elevated JMJD3 expression in hBSMCs, and the activation of NFκB-JMJD3 signaling significantly promoted cell proliferation and collagen accumulation by upregulating CCND1 and COL1/3 expression, respectively. Our study reveals the critical role of NFκB-JMJD3 signaling in cystitis induced bladder reconstruction by regulating hBSMC proliferation and extracellular matrix (ECM) deposition, and these findings provide an avenue for effective treatment of patients with cystitis.
Collapse
Affiliation(s)
- Junyu Lai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China; Department of Urology, the Affiliated TCM Hospital of Southwest Medical University, China
| | - Manqing Ge
- Department of Anorectal Surgery, the Affiliated TCM Hospital of Southwest Medical University, China
| | - Sikui Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Tao Jin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China.
| |
Collapse
|
49
|
Jaikhan P, Buranrat B, Itoh Y, Chotitumnavee J, Kurohara T, Suzuki T. Identification of ortho-hydroxy anilide as a novel scaffold for lysine demethylase 5 inhibitors. Bioorg Med Chem Lett 2019; 29:1173-1176. [DOI: 10.1016/j.bmcl.2019.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023]
|
50
|
Lobo-Alves SC, de Oliveira LA, Petzl-Erler ML. Region 1p13.2 including the RSBN1, PTPN22, AP4B1 and long non-coding RNA genes does not bear risk factors for endemic pemphigus foliaceus (fogo selvagem). Int J Immunogenet 2019; 46:139-145. [PMID: 30884100 DOI: 10.1111/iji.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
Pemphigus foliaceus (PF) is an autoimmune skin disease characterized by autoantibodies directed mainly against desmoglein-1. The purpose of this study was to determine whether differential susceptibility to endemic PF in Brazil (fogo selvagem) is associated with polymorphisms at the cytogenetic location 1p13.2. Four single nucleotide polymorphisms that together tag 28 SNPs on a segment of approximately 312,000 bp encompassing the protein-coding genes MAGI3, PHTF1, RSBN1, PTPN22, BCL2L15, AP4B1, DCLRE1B, the pseudogenes MTND5P20, RPS2P14 (AL133517.1) and the long non-coding RNA genes AL137856.1, and AP4B1-AS1 were used as markers for association analysis in a case-control study. Allele, genotype and haplotype frequencies of rs33996649, rs2476601, rs3789604 and rs3195954 were compared between patient and control samples. No significant association was found. Lack of association with rs2476601 of the PTPN22 gene agrees with previous results for pemphigus vulgaris and the Tunisian form of endemic pemphigus foliaceus. The other three SNPs had never been analysed before in any form of pemphigus. We conclude that variants in structural and regulatory sites of region 1p13.2 are not susceptibility factors for fogo selvagem. We suggest careful investigation of this genomic region in diseases that had been previously associated with PTPN22, since there are several other genes relevant for immune-mediated diseases located in 1p13.2.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Liana Alves de Oliveira
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|