1
|
Liu Y, Hong J, Peng R. SAA1 as a key mediator of immune inflammatory pathways in fungal keratitis through FOXO3a phosphorylation regulation. Cytokine 2025; 189:156898. [PMID: 40020519 DOI: 10.1016/j.cyto.2025.156898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVE Fungal keratitis (FK) is a severe ocular infection, with its underlying molecular mechanisms remaining incompletely understood. This study aimed to identify and investigate key genes involved in immune-inflammatory responses associated with FK pathogenesis using bioinformatics and in vitro assays. METHODS Transcriptomic data from the Gene Expression Omnibus (GEO) database (GSE58291) were analyzed using the limma package to identify differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to evaluate significant biological processes and pathways related to DEGs. Weighted gene co-expression network analysis (WGCNA) identified gene modules linked with FK-associated DEGs, and Venn diagram analysis highlighted core genes. Receiver operating characteristic (ROC) analysis assessed diagnostic potential. Immune cell composition was analyzed using CIBERSORT, and correlations between key genes and immune cells were evaluated. In vitro, human corneal epithelial cells (HCEC) were stimulated with Aspergillus fumigatus (A.F.), and pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) was assessed using enzyme-linked immunosorbent assay (ELISA). Western blot and quantitative real-time polymerase chain reaction (RT-qPCR) analyzed FOXO3a phosphorylation and gene expression changes post-SAA1 siRNA transfection. RESULTS A total of 101 DEGs were identified, with WGCNA revealing 6 co-expression network modules, with significant associations noted in yellow and black modules. Nine shared genes were identified in DEGs and modules, with SAA1 strongly linked to FK pathogenesis. SAA1 expression was positively correlated with neutrophils, T cells CD4 memory activated, T cells gamma delta, and activated mast cells. Upon stimulation with A.F., cytokine expression increased, peaking at 24 h. Inhibition of SAA1 reduced FOXO3a phosphorylation and pro-inflammatory cytokine levels, underscoring SAA1's role in FK inflammation via FOXO3a regulation. CONCLUSION SAA1 is a key gene in FK, promoting inflammation by modulating FOXO3a phosphorylation. This highlights its potential as a therapeutic target in managing FK-related inflammation.
Collapse
Affiliation(s)
- Yihe Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, PR China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, PR China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, PR China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, PR China
| | - Rongmei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, PR China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
2
|
Gao M, Xing C. Mechanism of EZH2-mediated histone methylation promoting bFGF-induced angiogenesis of human umbilical vein endothelial cells. Tissue Cell 2025; 96:102945. [PMID: 40339203 DOI: 10.1016/j.tice.2025.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
This study aims to explore the role of enhancer of zeste homolog 2 (EZH2)-mediated histone methylation in basic fibroblast growth factor (bFGF)-induced angiogenesis of human umbilical vein endothelial cells (HUVECs). EZH2, vascular endothelial growth factor A (VEGFA), miR-340-5p, and nuclear factor-erythroid 2-related factor 2 (NRF2) expressions in bFGF-induced HUVECs were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. After transfection of EZH2 siRNA, NRF2 siRNA, or miR-340-5p inhibitor, cell migration and angiopoiesis were assessed by Transwell and tube formation assays. Chromatin immunoprecipitation (ChIP) was performed to analyze the enrichment of EZH2 or trimethylated H3 lysine 27 (H3K27me3) on NRF2 promoter. The binding between NRF2 and miR-340-5p was verified by ChIP and dual-luciferase assay. EZH2 was highly expressed while miR-340-5p and NRF2 were poorly expressed in bFGF-induced HUVECs. Silence of EZH2 restrained HUVEC migration, and reduced the number of branches and tube length. Mechanically, EZH2 enhances the enrichment of H3K27me3 on the NRF2 promoter, thereby repressing NRF2 expression and further leading to transcriptional repression of miR-340-5p. In conclusion, EZH2 inhibits the NRF2/miR-340-5p axis and promotes bFGF-induced angiogenesis of HUVECs by increasing the H3K27me3 modification on the NRF2 promoter.
Collapse
Affiliation(s)
- Min Gao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China.
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
3
|
Wang H, Yang Y, Yu H, Ma L, Qi X, Qu J, Zhang X, Li N, Dou S, Liu X, Wei C, Gao H. Self-Cascade API Nanozyme for Synergistic Anti-Inflammatory, Antioxidant, and Ferroptosis Modulation in the Treatment of Corneal Neovascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407751. [PMID: 39648573 DOI: 10.1002/smll.202407751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Corneal neovascularization is a common pathological ocular change that can severely impairs vision, potentially leading to blindness. Although steroids and non-steroidal anti-inflammatory drugs are the primary treatments, their side effects, such as ocular hypertension, eye irritation, and corneal lysis, limit their widespread use. In the present study, an active pharmaceutical ingredient (API) nanozyme (PC-DS NE) is developed through the metal-organic coordination of ferrous sulfate with the anti-inflammatory agent diclofenac sodium and the natural antioxidant proanthocyanidin. PC-DS NE exhibited a spheroid morphology with a particle size of 39.7 ± 5.2 nm, and could achieve the short-term release of diclofenac sodium and sustained release of proanthocyanidin. Notably, the PC-DS NE possessed favorable biocompatibility, self-cascade redox regulation capacity, and significant anti-inflammatory activity. In corneal alkali burn experiments, PC-DS NE effectively inhibited corneal neovascularization by scavenging reactive oxygen species, inhibiting the expression of inflammatory cytokines and pro-angiogenic factors, and down-regulating ferroptosis. These synergistic effects highlighted the potential of PC-DS NE as a promising treatment for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Yang Yang
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- The Affiliated Women's and Children's Hospital of Ningbo University, Ningbo, 315000, China
- Medical College, Qingdao University, Qingdao, 266073, China
| | - Huimin Yu
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- Medical College, Qingdao University, Qingdao, 266073, China
| | - Li Ma
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Xia Qi
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Junpeng Qu
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- Medical College, Qingdao University, Qingdao, 266073, China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Na Li
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Chao Wei
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Hua Gao
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| |
Collapse
|
4
|
Pan XY, Wang ZH, Wu XQ, Guo CR, Yang LX, Liu HR, Wang YH, Chen WJ, Wang JJ, Nan KH, Li LL. ROS scavenging and corneal epithelial wound healing by a self-crosslinked tissue-adhesive hydrogel based-on dual-functionalized hyaluronic acid. Int J Biol Macromol 2025; 293:139200. [PMID: 39730051 DOI: 10.1016/j.ijbiomac.2024.139200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Reactive oxygen species (ROS) scavenging is a viable approach to promote corneal epithelium wound healing. This study created a single-component hydrogel (HA Gel) with a novel dual-functionalized hyaluronic acid derivative (HA-GA-PBA) containing gallol and phenylboronic acid (PBA) moieties. Both of these moieties were dual-functional. Specifically, they not only functioned as structural building blocks for hydrogel formation, but also served as bioactive ingredients for therapeutic purpose. Dynamic covalent complexation between gallol and PBA moieties led to the self-crosslinked HA Gel, which was antioxidative and tissue-adhesive. It was demonstrated that the hydrogel enhanced the proliferation rate of human corneal epithelial cells by over 2.5 folds. When treating the mouse corneal alkali burn model with HA Gel, the corneal epithelial healing percentages reached 69.19 ± 9.41 % and 84.12 ± 6.09 % on day 3 and 5, respectively, which were significantly higher than the placebo group (51.14 ± 9.63 % and 67.32 ± 10.54 % on day 3 and 5, respectively). Meanwhile, reduced scar formation and inflammation was observed. These findings indicated HA Gel could find applications in various of ocular diseases for improved corneal epithelial wound healing.
Collapse
Affiliation(s)
- Xin-Yang Pan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zi-Han Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao-Qing Wu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chang-Rong Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lin-Xing Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hui-Ru Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuan-Hao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wen-Juan Chen
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing-Jie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kai-Hui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Ling-Li Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Gao Y, Mao J, Zhang R, Deng Q, Wang Y, Pan Y, Liudi S, Wang Y, Fan X, Yang Y, Wan S. Inhibiting PRMT1 protects against CoNV by regulating macrophages through the FGF2/PI3K/Akt pathway. Eur J Pharmacol 2024; 977:176673. [PMID: 38815785 DOI: 10.1016/j.ejphar.2024.176673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Corneal neovascularization (CoNV) is predominantly initiated by inflammatory processes, resulting in aberrant vascular proliferation and consequent visual impairment. Existing therapeutic interventions for CoNV demonstrate limited efficacy and potential for adverse reactions. Protein arginine methyltransferase 1 (PRMT1) is associated with the regulation of inflammation and M2 macrophage polarization. Nevertheless, the precise mechanism by which PRMT1 operates in CoNV remains uncertain. This study explored the impact of PRMT1 inhibition in a murine model of CoNV induced by alkali burn. Our findings indicated a direct relationship between PRMT1 levels and corneal damage. Moreover, our observations indicated an increase in fibroblast growth factor 2 (FGF2) expression in CoNV, which was reduced after treatment with a PRMT1 inhibitor. The inhibition of PRMT1 alleviated both corneal injury and CoNV, as evidenced by decreased corneal opacity and neovascularization. Immunofluorescence analysis and evaluation of inflammatory factor expression demonstrated that PRMT1 inhibition attenuated M2 macrophage polarization, a phenomenon that was reversed by the administration of recombinant FGF2 protein. These results were confirmed through experimentation on Human Umbilical Vein Endothelial Cells (HUVECs) and Mouse leukemia cells of monocyte macrophage cells (RAW264.7). Furthermore, it was established that FGF2 played a role in PI3K/Akt signal transduction, a critical regulatory pathway for M2 macrophage polarization. Importantly, the activity of this pathway was found to be suppressed by PRMT1 inhibitors. Mechanistically, PRMT1 was shown to promote M2 macrophage polarization, thereby contributing to CoNV, through the FGF2/PI3K/Akt pathway. Therefore, targeting PRMT1 may offer a promising therapeutic approach.
Collapse
Affiliation(s)
- Yuelan Gao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiewen Mao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Deng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yujin Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yumiao Pan
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Shiwen Liudi
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430063, China
| | - Yang Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangli Fan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Hao XD, Liu JX, Zhang JS. Longevity factor FOXO3a: A potential therapeutic target for age-related ocular diseases. Life Sci 2024; 350:122769. [PMID: 38848943 DOI: 10.1016/j.lfs.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The forkhead box protein O3 (FOXO3a) belongs to the subgroup O of the forkhead transcription factor family and plays an important role in regulating the aging process by participating in the regulation of various life processes, including cell cycle arrest, apoptosis, autophagy, oxidative stress, and DNA repair. The eye is an organ that is affected by aging earlier. However, the functional role and potential clinical applications of FOXO3a in age-related eye diseases have not received widespread attention and lacked comprehensive and clear clarification. In this review, we demonstrated the relationship between FOXO3a and visual system health, summarized the functional roles of FOXO3a in various eye diseases, and potential ocular-related therapies and drugs targeting FOXO3a in visual system diseases through a review and summary of relevant literature. This review indicates that FOXO3a is an important factor in maintaining the normal function of various tissues in the eye, and is closely related to the occurrence and development of ophthalmic-related diseases. Based on its vital role in the normal function of the visual system, FOXO3a has potential clinical application value in related ophthalmic diseases. At present, multiple molecules and drugs targeting FOXO3a have been reported to have the potential for the treatment of related ophthalmic diseases, but further clinical trials are needed. In conclusion, this review can facilitate us to grasp the role of FOXO3a in the visual system and provide new views and bases for the treatment strategy research of age-related eye diseases.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jin-Xiu Liu
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing-Sai Zhang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
7
|
Deng Q, Gao Y, Wang Y, Mao J, Yan Y, Yang Z, Cong Y, Yang Y, Wan S. LSD1 inhibition by tranylcypromine hydrochloride reduces alkali burn-induced corneal neovascularization and ferroptosis by suppressing HIF-1α pathway. Front Pharmacol 2024; 15:1411513. [PMID: 39130627 PMCID: PMC11316257 DOI: 10.3389/fphar.2024.1411513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Background Corneal neovascularization (CNV) is a sight-threatening condition that necessitates epigenetic control. The role of lysine-specific demethylase 1 (LSD1) in CNV remains unclear, despite its established significance in tumor angiogenesis regulation. Methods An alkali burn-induced CNV mouse model was used in vivo. The effects of LSD1 inhibitor tranylcypromine hydrochloride (TCP) were examined through slit lamp, histological staining, and immunofluorescence. The expression of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) levels were assessed in corneal tissues. Oxidative stress and ferrous ion expression during CNV were determined using 4-HNE, GPX4, and FerroOrange staining. In vitro, a hypoxia-reoxygenation (H/R) model was established using human umbilical vein endothelial cells (HUVECs) to study LSD1 or hypoxia-inducible factor (HIF-1α) knockdown and lentiviral overexpression of HIF-1α. The effects on HUVECs migration, invasion, and angiogenesis were evaluated through cell scratching assay, transwell migration assay and tube formation assay. The role of ferroptosis was investigated using ROS staining, FerroOrange staining, and key ferroptosis proteins. Further, The JAK2/STAT3 pathway's involvement in CNV regulation was explored through in vivo experiments with subconjunctival injection of AG490. Results The results showed a substantial correlation between corneal damage and LSD1 levels. In addition, HIF-1α expression was also elevated after alkali burns, and subconjunctival injection of TCP reduced corneal inflammation and neovascularization. Corneal alkali burns increased ROS levels and reduced antioxidative stress indicators, accompanied by elevated ferrous ion levels, which were reversed by TCP injection. In vitro, TCP or siRNAs inhibited H/R-induced ferroptosis and angiogenesis in HUVECs by affecting specific protein expressions and MDA, SOD, and GSH levels. HIF-1α levels, associated with ROS production, ferroptosis, and angiogenesis, increased during H/R, but were reversed by TCP or siRNA administration. HIF-1α overexpression counteracted the effects of LSD1 inhibition. Additionally, AG490 injection effectively reduced HIF-1α and VEGFA expression in the CNV model. Discussion These findings suggest that LSD1 inhibition via the HIF-1α-driven pathway prevents angiogenesis, oxidative stress, and ferroptosis in corneal alkali burn-induced CNV, highlighting LSD1 as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Zhou T, Zhang L, He L, Lan Y, Ding L, Li L, Wang Z. GSK-126 Attenuates Cell Apoptosis in Ischemic Brain Injury by Modulating the EZH2-H3K27me3-Bcl2l1 Axis. Mol Neurobiol 2024; 61:3369-3383. [PMID: 37989985 DOI: 10.1007/s12035-023-03808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Whether epigenetic modifications participate in the cell apoptosis after ischemic stroke remains unclear. Histone 3 tri-methylation at lysine 27 (H3K27me3) is a histone modification that leads to gene silencing and is involved in the pathogenesis of ischemic stroke. Since the expression of many antiapoptotic genes is inhibited in the ischemic brains, here we aimed to offer an epigenetic solution to cell apoptosis after stroke by reversing H3K27me3 levels after ischemia. GSK-126, a specific inhibitor of enhancer of zeste homolog 2 (EZH2), significantly decreased H3K27me3 levels and inhibited middle cerebral artery occlusion (MCAO) induced and oxygen glucose deprivation (OGD) induced cell apoptosis. Moreover, GSK-126 attenuated the apoptosis caused by oxidative stress, excitotoxicity, and excessive inflammatory responses in vitro. The role of H3K27me3 in regulating of the expression of the antiapoptotic molecule B cell lymphoma-2 like 1 (Bcl2l1) explained the antiapoptotic effect of GSK-126. In conclusion, we found that GSK-126 could effectively protect brain cells from apoptosis after cerebral ischemia, and this role of GSK-126 is closely related to an axis that regulates Bcl2l1 expression, beginning with the regulation of EZH2-dependent H3K27me3 modification.
Collapse
Affiliation(s)
- Tai Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Lei Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li He
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yan Lan
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Lei Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li Li
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
- Laboratory of Clinical and Experimental Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
- Laboratory of Clinical and Experimental Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
9
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Aydin E, Callahan DL, Chong L, Azizoglu S, Gokhale M, Suphioglu C. The Plight of the Metabolite: Oxidative Stress and Tear Film Destabilisation Evident in Ocular Allergy Sufferers across Seasons in Victoria, Australia. Int J Mol Sci 2024; 25:4019. [PMID: 38612830 PMCID: PMC11012581 DOI: 10.3390/ijms25074019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Ocular allergy (OA) is characterised by ocular surface itchiness, redness, and inflammation in response to allergen exposure. The primary aim of this study was to assess differences in the human tear metabolome and lipidome between OA and healthy controls (HCs) across peak allergy (spring-summer) and off-peak (autumn-winter) seasons in Victoria, Australia. A total of 19 participants (14 OA, 5 HCs) aged 18-45 were recruited and grouped by allergy questionnaire score. Metabolites and lipids from tear samples were analysed using mass spectrometry. Data were analysed using TraceFinder and Metaboanalyst. Metabolomics analysis showed 12 differentially expressed (DE) metabolites between those with OA and the HCs during the peak allergy season, and 24 DE metabolites were found in the off-peak season. The expression of niacinamide was upregulated in OA sufferers vs. HCs across both seasons (p ≤ 0.05). A total of 6 DE lipids were DE between those with OA and the HCs during the peak season, and 24 were DE in the off-peak season. Dysregulated metabolites affected oxidative stress, inflammation, and homeostasis across seasons, suggesting a link between OA-associated itch and ocular surface damage via eye rubbing. Tear lipidome changes were minimal between but suggested tear film destabilisation and thinning. Such metabolipodome findings may pave new and exciting ways for effective diagnostics and therapeutics for OA sufferers in the future.
Collapse
Affiliation(s)
- Esrin Aydin
- NeuroAllergy Research Lab (NARL), School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
- School of Medicine, Deakin University, Waurn Ponds 3216, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia
| | - Luke Chong
- School of Medicine, Deakin University, Waurn Ponds 3216, Australia
| | - Serap Azizoglu
- School of Medicine, Deakin University, Waurn Ponds 3216, Australia
| | - Moneisha Gokhale
- School of Medicine, Deakin University, Waurn Ponds 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Lab (NARL), School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
- School of Medicine, Deakin University, Waurn Ponds 3216, Australia
| |
Collapse
|
11
|
Qin H, Liu C, Li C, Feng C, Bo Huang. Advances in bi-directional relationships for EZH2 and oxidative stress. Exp Cell Res 2024; 434:113876. [PMID: 38070859 DOI: 10.1016/j.yexcr.2023.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Over the past two decades, polycomb repressive complex 2(PRC2) has emerged as a vital repressive complex in overall cell fate determination. In mammals, enhancer of zeste homolog 2 (EHZ2), which is the core component of PRC2, has also been recognized as an important regulator of inflammatory, redox, tumorigenesis and damage repair signalling networks. To exert these effects, EZH2 must regulate target genes epigenetically or interact directly with other gene expression-regulating factors, such as LncRNAs and microRNAs. Our review provides a comprehensive summary of research advances, discoveries and trends regarding the regulatory mechanisms between EZH2 and reactive oxygen species (ROS). First, we outline novel findings about how EZH2 regulates the generation of ROS at the molecular level. Then, we summarize how oxidative stress controls EHZ2 alteration (upregulation, downregulation, or phosphorylation) via various molecules and signalling pathways. Finally, we address why EZH2 and oxidative stress have an undefined relationship and provide potential future research ideas.
Collapse
Affiliation(s)
- Heng Qin
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China.
| |
Collapse
|
12
|
Lin Y, Su H, Zou B, Huang M. EZH2 Promotes Corneal Endothelial Cell Apoptosis by Mediating H3K27me3 and Inhibiting HO-1 Transcription. Curr Eye Res 2023; 48:1122-1132. [PMID: 37800319 DOI: 10.1080/02713683.2023.2257401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE This paper aims to explore the molecular mechanism of Enhancer of Zeste Homolog 2 (EZH2)-mediated H3K27me3 in human corneal endothelial cells (HCEC) apoptosis by inhibiting Heme oxygenase-1 (HO-1) transcription to provide a potential target for the treatment of corneal apoptosis. METHODS HCECs were cultured in vitro and transfected with si-EZH2, pcDNA3.1-EZH2, pcDNA3.1-HO-1, GSK-J4 (an effective H3K27me3 demethylase inhibitor), and corresponding controls. Western Blot assay was used to detect the levels of EZH2, HO-1, H3K27me3, and apoptosis-related proteins (Bcl-2, Bax, and Cleaved-caspase-3) in HCECs; CCK-8 assay was conducted to detect cell viability and flow cytometry to analyze the apoptosis. HO-1 mRNA levels were detected by RT-qPCR and changes in H3K27me3 levels on the HO-1 promoter were detected by chromatin immunoprecipitation. RESULTS HCECs transfected with si-EZH2 showed significantly lower EZH2 mRNA and protein levels, higher HCEC viability, lower apoptosis rates, higher antiapoptotic protein Bcl-2 expression, lower proapoptotic protein (Bax and Cleaved-caspase-3) levels, and significantly higher HO-1 expression. HCECs transfected with pcDNA3.1-EZH2 showed the opposite results. EZH2 repressed HO-1 transcription by mediating H3K27me3. H3K27me27 was enriched in the HO-1 promoter and overexpression of EZH2 increased H3K27me27 levels. Promotion of H3K27me3 partially reversed the mitigating effect of si-EZH2 on HCEC apoptosis. Overexpression of HO-1 partially reversed the apoptosis-promoting effects of EZH2 and H3K27me3 on HCECs. CONCLUSIONS EZH2 promotes HCE cell apoptosis by mediating H3K27me3 to inhibit HO-1 transcription.
Collapse
Affiliation(s)
- Ying Lin
- Department of Ophthalmology, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Huanjun Su
- Department of Ophthalmology, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Baoyi Zou
- Department of Optometry, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Minli Huang
- Department of Optometry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
14
|
Guo XX, Pu Q, Hu JJ, Chang XJ, Li AL, Li XY. The role of regulated necrosis in inflammation and ocular surface diseases. Exp Eye Res 2023:109537. [PMID: 37302745 DOI: 10.1016/j.exer.2023.109537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In recent decades, numerous types of regulated cell death have been identified, including pyroptosis, ferroptosis and necroptosis. Regulated necrosis is characterized by a series of amplified inflammatory responses that result in cell death. Therefore, it has been suggested to play an essential role in the pathogenesis of ocular surface diseases. The cell morphological features and molecular mechanisms of regulated necrosis are discussed in this review. Furthermore, it summarizes the role of ocular surface diseases, such as dry eye, keratitis, and cornea alkali burn, as potential disease prevention and treatment targets.
Collapse
Affiliation(s)
- Xiao-Xiao Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing-Jie Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xue-Jiao Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ao-Ling Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
15
|
Peng Y, Bui CH, Zhang XJ, Chen JS, Tham CC, Chu WK, Chen LJ, Pang CP, Yam JC. The role of EZH2 in ocular diseases: a narrative review. Epigenomics 2023; 15:557-570. [PMID: 37458071 DOI: 10.2217/epi-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
EZH2, acting as a catalytic subunit of PRC2 to catalyze lysine 27 in histone H3, induces the suppression of gene expression. EZH2 can regulate cell proliferation and differentiation of retinal progenitors, which are required for physiological retinal development. Meanwhile, an abnormal level of EZH2 has been observed in ocular tumors and other pathological tissues. This review summarizes the current knowledge on EZH2 in retinal development and ocular diseases, including inherited retinal diseases, ocular tumors, corneal injury, cataract, glaucoma, diabetic retinopathy and age-related retinal degeneration. We highlight the potential of targeting EZH2 as a precision therapeutic target in ocular diseases.
Collapse
Affiliation(s)
- Yu Peng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Christine Ht Bui
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Xiu J Zhang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Jian S Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410000, China
- Aier Eye Institute, Changsha, Hunan Province, 410000, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong Province, 510000, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Eye Hospital, Kowloon, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Wai K Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Li J Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Chi P Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Eye Hospital, Kowloon, 999077, Hong Kong
- Department of Ophthalmology, Hong Kong Children's Hospital, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| |
Collapse
|
16
|
Scuderi SA, Filippone A, Basilotta R, Mannino D, Casili G, Capra AP, Chisari G, Colarossi L, Sava S, Campolo M, Esposito E, Paterniti I. GSK343, an Inhibitor of Enhancer of Zeste Homolog 2, Reduces Glioblastoma Progression through Inflammatory Process Modulation: Focus on Canonical and Non-Canonical NF-κB/IκBα Pathways. Int J Mol Sci 2022; 23:ijms232213915. [PMID: 36430394 PMCID: PMC9694970 DOI: 10.3390/ijms232213915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GB) is a tumor of the central nervous system characterized by high proliferation and invasiveness. The standard treatment for GB includes radiotherapy and chemotherapy; however, new therapies are needed. Particular attention was given to the role of histone methyltransferase enhancer of zeste-homolog-2 (EZH2) in GB. Recently, several EZH2-inhibitors have been developed, particularly GSK343 is well-known to regulate apoptosis and autophagy processes; however, its abilities to modulate canonical/non-canonical NF-κB/IκBα pathways or an immune response in GB have not yet been investigated. Therefore, this study investigated for the first time the effect of GSK343 on canonical/non-canonical NF-κB/IκBα pathways and the immune response, by an in vitro, in vivo and ex vivo model of GB. In vitro results demonstrated that GSK343 treatments 1, 10 and 25 μM significantly reduced GB cell viability, showing the modulation of canonical/non-canonical NF-κB/IκBα pathway activation. In vivo GSK343 reduced subcutaneous tumor mass, regulating canonical/non-canonical NF-κB/IκBα pathway activation and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Ex vivo results confirmed the anti-proliferative effect of GSK343 and also demonstrated its ability to regulate immune response through CXCL9, CXCL10 and CXCL11 expression in GB. Thus, GSK343 could represent a therapeutic strategy to counteract GB progression, thanks to its ability to modulate canonical/non-canonical NF-κB/IκBα pathways and immune response.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
- Correspondence:
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| |
Collapse
|
17
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
18
|
Shi Y, Li J, Chen H, Hu Y, Tang L, Wang Y, Zang X, Ma X, Huang G, Zhou X, Tao M, lv Z, Chen S, Qiu A, Zhuang S, Liu N. Inhibition of EZH2 suppresses peritoneal angiogenesis by targeting a VEGFR2/ERK1/2/HIF‐1α dependent signaling pathway. J Pathol 2022; 258:164-178. [PMID: 35792675 DOI: 10.1002/path.5987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Lunxian Tang
- Emergency department of critical care medicine, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Xiujuan Zang
- Department of Nephrology Shanghai Songjiang District Central Hospital Shanghai PR China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Guansen Huang
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Zexin lv
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Si Chen
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine Tongji University Shanghai PR China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School Brown University Providence RI USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| |
Collapse
|
19
|
Lee HJ, Yoon CH, Kim HJ, Ko JH, Ryu JS, Jo DH, Kim JH, Kim D, Oh JY. Ocular microbiota promotes pathological angiogenesis and inflammation in sterile injury-driven corneal neovascularization. Mucosal Immunol 2022; 15:1350-1362. [PMID: 35986099 DOI: 10.1038/s41385-022-00555-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Microbiota promotes or inhibits the pathogenesis of a range of immune-mediated disorders. Although recent studies have elucidated the role of gut microbiota in ocular disease, the effect of ocular microbiota remains unclear. Herein, we explored the role of ocular commensal bacteria in non-infectious corneal inflammation and angiogenesis in a mouse model of suture-induced corneal neovascularization. Results revealed that the ocular surface harbored a microbial community consisting mainly of Actinobacteria, Firmicutes and Proteobacteria. Elimination of the ocular commensal bacteria by oral broad-spectrum antibiotics or topical fluoroquinolone significantly suppressed corneal inflammation and neovascularization. Disease amelioration was associated with reduced numbers of CD11b+Ly6C+ and CD11b+Ly6G+ myeloid cells, not Foxp3+ regulatory T cells, in the spleen, blood, and draining lymph nodes. Therapeutic concentrations of fluoroquinolone, however, did not directly affect immune cells or vascular endothelial cells. In addition, data from a clinical study showed that antibiotic treatment in combination with corticosteroids, as compared with corticosteroid monotherapy, induced faster remission of corneal inflammation and new vessels in pediatric patients with non-infectious marginal keratitis. Altogether, our findings demonstrate a pathogenic role of ocular microbiota in non-infectious inflammatory disorders leading to sight-threatening corneal neovascularization, and suggest a therapeutic potential of targeting commensal microbes in treating ocular inflammation.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyeon Ji Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Hun Kim
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Donghyun Kim
- Department of Biological Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
20
|
Wang K, Jiang L, Zhong Y, Zhang Y, Yin Q, Li S, Zhang X, Han H, Yao K. Ferrostatin-1-loaded liposome for treatment of corneal alkali burn via targeting ferroptosis. Bioeng Transl Med 2022; 7:e10276. [PMID: 35600640 PMCID: PMC9115688 DOI: 10.1002/btm2.10276] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Alkali burn is a potentially blinding corneal injury. During the progression of alkali burn-induced injury, overwhelmed oxidative stress in the cornea triggers cell damage, including oxidative changes in cellular macromolecules and lipid peroxidation in membranes, leading to impaired corneal transparency, decreased vision, or even blindness. In this study, we identified that ferroptosis, a type of lipid peroxidation-dependent cell death, mediated alkali burn-induced corneal injury. Ferroptosis-targeting therapy protected the cornea from cell damage and neovascularization. However, the specific ferroptosis inhibitor ferrostatin-1 (Fer-1) is hydrophobic and cannot be directly applied in the clinic. Therefore, we developed Fer-1-loaded liposomes (Fer-1-NPs) to improve the bioavailability of Fer-1. Our study demonstrated that Fer-1-NPs exerted remarkable curative effects regarding corneal opacity and neovascularization in vivo. The efficacy was comparable to that of dexamethasone, but without appreciable side effects. The significant suppression of ferroptosis (induced by lipid peroxidation and mitochondria disruption), inflammation, and neovascularization might be the mechanisms underlying the therapeutic effect of Fer-1-NPs. Moreover, the Fer-1-NPs treatment showed no signs of cytotoxicity, hematologic toxicity, or visceral organ damage, which further confirmed the biocompatibility. Overall, Fer-1-NPs provide a new prospect for safe and effective therapy for corneal alkali burn.
Collapse
Affiliation(s)
- Kai Wang
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Li Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesHangzhou Normal UniversityHangzhouChina
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yin Zhang
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Qichuan Yin
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaobo Zhang
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
21
|
Gao X, Peng Y, Fang Z, Li L, Ming S, Dong H, Li R, Zhu Y, Zhang W, Zhu B, Liao J, Wang Z, Liu M, Lin W, Zeng J, Gao X. Inhibition of EZH2 ameliorates hyperoxaluria-induced kidney injury through the JNK/FoxO3a pathway. Life Sci 2021; 291:120258. [PMID: 34952043 DOI: 10.1016/j.lfs.2021.120258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
AIMS Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, has been shown to play a role in kidney diseases. However, its role in hyperoxaluria-induced renal tubular epithelial cells (TECs) injury remains unclear. MATERIALS AND METHODS A hyperoxaluria rat model was established by providing 0.5% ammonium chloride and drinking water containing 1% ethylene glycol. TECs were exposed to oxalate stress. The 3-DZNeP, a selective EZH2 inhibitor, was administered in vivo and in vitro. Cell viability, ROS production, and apoptosis ratio were evaluated. Crystal deposition was detected by Von Kossa staining and kidney tissue injury was detected by HE staining and TUNEL. EZH2, H3K27me3, cleaved-caspase3, IL-6, and MCP-1 were examined by western blot or immunohistochemistry. KEY FINDINGS Inhibition of EZH2 by 3-DZNeP significantly attenuated hyperoxaluria-induced oxidative and inflammatory injury and CaOx crystal deposition in vivo. Similarly, inhibition of EZH2 using 3-DZNeP or shRNA restored cell viability, suppressed LDH release and the production of intracellular ROS in vitro. Furthermore, the MAPK signaling pathway and FoxO3a levels were activated or elevated in TECs exposed to oxalate. EZH2 inhibition using 3-DZNeP blocked these effects. CC90003 (ERK inhibitor) or SB203580 (p38 inhibitor) did not significantly affect the expression of FoxO3a in TECs treated with 3-DZNeP and oxalate; only SP600125 (JNK inhibitor) significantly decreased FoxO3a expression. SIGNIFICANCE EZH2 inhibition protects against oxalate-induced TECs injury and reduces CaOx crystal deposition in the kidney may by modulating the JNK/FoxO3a pathway; EZH2 may be a promising therapeutic target in TECs injury.
Collapse
Affiliation(s)
- Xiaomin Gao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yonghan Peng
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ling Li
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Shaoxiong Ming
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hao Dong
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Rui Li
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Baoyi Zhu
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Junhao Liao
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Zeyu Wang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Min Liu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Weijian Lin
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Jianwen Zeng
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China.
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China.
| |
Collapse
|
22
|
Liao K, Cui Z, Zeng Y, Liu J, Wang Y, Wang Z, Tang S, Chen J. Inhibition of enhancer of zeste homolog 2 prevents corneal myofibroblast transformation in vitro. Exp Eye Res 2021; 208:108611. [PMID: 33992624 DOI: 10.1016/j.exer.2021.108611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Corneal fibroblast can be transformed into corneal myofibroblasts by TGF-β1. Enhancer of zeste homolog 2 (EZH2) upregulation has been observed in the occurrence of other fibrotic disorders. We investigated the role of EZH2 in the progression of corneal fibrosis and the antifibrotic effect of EZH2 inhibition in corneal fibroblasts (CFs). METHODS Primary CFs were isolated from corneal limbi and the CFs were treated with TGF-β1 to induce fibrosis. EPZ-6438 and EZH2 siRNA were used to inhibit EZH2 expression. Myofibroblast activation and extracellular matrix (ECM) protein synthesis was detected by quantitative real-time PCR, western blotting, and immunofluorescence staining assay. The functions of myofibroblast were evaluated by cell migration and collagen gel contraction assays. Molecular mechanisms involved in EZH2 inhibition were investigated by RNA sequencing. RESULTS TGF-β1 activated EZH2 expression in CFs. Treatment with EPZ-6438 (5 μM) and EZH2 siRNA considerably suppressed corneal myofibroblast activation and ECM protein synthesis in CFs induced by TGF-β1 when compared to the control group. EPZ-6438 (5 μM) suppressed cell migration and gel contraction in CFs. RNA sequencing results revealed that antifibrotic genes were activated after EZH2 inhibition to suppress corneal myofibroblast activation. CONCLUSION Inhibition of EZH2 suppresses corneal myofibroblast activation and ECM protein synthesis, and could serve as a novel therapeutic target for preventing corneal scarring.
Collapse
Affiliation(s)
- Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yong Zeng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jian Liu
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yini Wang
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
| |
Collapse
|