1
|
He F, Nichols RM, Agosto MA, Wensel TG. Roles of class III phosphatidylinositol 3-kinase, Vps34, in phagocytosis, autophagy, and endocytosis in retinal pigmented epithelium. iScience 2025; 28:112371. [PMID: 40330883 PMCID: PMC12052997 DOI: 10.1016/j.isci.2025.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Phosphatidylinositol-3-phosphate (PI(3)P) is important for multiple functions of retinal pigmented epithelial (RPE) cells, but its functions in RPE have not been studied. In RPE from mouse eyes and in cultured human RPE cells, PI(3)P-enriched membranes include endosomes, the trans-Golgi network, phagosomes, and autophagophores. Mouse RPE cells lacking activity of the PI-3 kinase, Vps34, lack detectable PI(3)P and die prematurely. Phagosomes containing rod discs accumulate, as do membrane aggregates positive for autophagosome markers. These autophagy-related membranes recruit LC3/Atg8 without Vps34, but phagosomes do not. Vps34 loss leads to accumulation of lysosomes which do not fuse with phagosomes or membranes with autophagy markers. Thus, Vps34-derived PI(3)P is not needed for initiation of phagocytosis or endocytosis, nor for formation of membranes containing autophagy markers. In contrast, Vps34 and PI(3)P are essential for intermediate and later stages, including membrane fusion with lysosomes.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph M. Nichols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Theodore G. Wensel
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Brinkmeier ML, Wang SQ, Pittman HA, Cheung LY, Prasov L. Myelin regulatory factor (MYRF) is a critical early regulator of retinal pigment epithelial development. PLoS Genet 2025; 21:e1011670. [PMID: 40233131 PMCID: PMC12052213 DOI: 10.1371/journal.pgen.1011670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 05/05/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice (Rx > Cre Myrffl/fl) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx > Cre Myrffl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b, along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream or parallel to Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for MYRF in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10.
Collapse
Affiliation(s)
- Michelle L. Brinkmeier
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Su Qing Wang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah A. Pittman
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y. Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Strobl EV, Gamazon E. Discovering root causal genes with high-throughput perturbations. eLife 2025; 13:RP100949. [PMID: 40042510 PMCID: PMC11882141 DOI: 10.7554/elife.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Root causal gene expression levels - or root causal genes for short - correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.
Collapse
Affiliation(s)
| | - Eric Gamazon
- Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
4
|
Narasimhan A, Min SH, Johnson LL, Roehrich H, Cho W, Her TK, Windschitl C, O'Kelly RD, Angelini L, Yousefzadeh MJ, McLoon LK, Hauswirth WW, Robbins PD, Skowronska‐Krawczyk D, Niedernhofer LJ. The Ercc1 -/Δ mouse model of XFE progeroid syndrome undergoes accelerated retinal degeneration. Aging Cell 2025; 24:e14419. [PMID: 39604117 PMCID: PMC11896507 DOI: 10.1111/acel.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of vision loss in older adults. AMD is caused by degeneration in the macula of the retina. The retina is the highest oxygen consuming tissue in our body and is prone to oxidative damage. DNA damage is one hallmark of aging implicated in loss of organ function. Genome instability has been associated with several disorders that result in premature vision loss. We hypothesized that endogenous DNA damage plays a causal role in age-related retinal changes. To address this, we used a genetic model of systemic depletion of expression of the DNA repair enzyme ERCC1-XPF. The neural retina and retinal pigment epithelium (RPE) from Ercc1-/Δ mice, which models a human progeroid syndrome, were compared to age-matched wild-type (WT) and old WT mice. By 3-months-of age, Ercc1-/Δ mice presented abnormal optokinetic and electroretinogram responses consistent with photoreceptor dysfunction and visual impairment. Ercc1-/Δ mice shared many ocular characteristics with old WT mice including morphological changes, elevated DNA damage markers (γ-H2AX and 53BP1), and increased cellular senescence in the neural retinal and RPE, as well as pathological angiogenesis. The RPE is essential for the metabolic health of photoreceptors. The RPE from Ercc1-/Δ mice displayed mitochondrial dysfunction causing a compensatory glycolytic shift, a characteristic feature of aging RPE. Hence, our study suggests spontaneous endogenous DNA damage promotes the hallmarks of age-related retinal degeneration.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Seok Hong Min
- Department of OphthalmologyUniversity of FloridaGainesvilleFloridaUSA
| | - Laura L. Johnson
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - William Cho
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision ResearchUniversity of California Irvine, School of MedicineIrvineCaliforniaUSA
| | - Tracy K. Her
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Caeden Windschitl
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ryan D. O'Kelly
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Luise Angelini
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
- Present address:
Department of MedicineColumbia University Medical CenterNew YorkNew YorkUSA
| | - Linda K. McLoon
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Paul D. Robbins
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Dorota Skowronska‐Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision ResearchUniversity of California Irvine, School of MedicineIrvineCaliforniaUSA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Chen Y, Zhang X, Zhang Y, Zhang S, Huo Y, Wu Y, Shen L, Mao J. Metabolomic Characteristics of Aqueous Humor in Wet Age-Related Macular Degeneration and the Impact of Anti-VEGF Treatment. Invest Ophthalmol Vis Sci 2025; 66:37. [PMID: 39937494 PMCID: PMC11827895 DOI: 10.1167/iovs.66.2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose To explore the alterations in metabolites of wet age-related macular degeneration (wAMD) by conducting metabolomics in aqueous humor from patients with wAMD and to assess the potential effects of anti-vascular endothelial growth factor (anti-VEGF) on these metabolites. Methods Metabolomic analysis was performed on the aqueous humor of 30 patients with wAMD receiving anti-VEGF treatments and 20 controls, via ultra-high performance liquid chromatography tandem mass spectrometry. The aqueous humor samples collected from untreated patients with wAMD were classified as the pre-wAMD group. Accordingly, the samples collected from patients with wAMD receiving one anti-VEGF treatment were designated as the post-wAMD group. Individuals were further classified into responders and nonresponders according to their reaction to the treatment. Principal component analysis, hierarchical cluster analysis, and the Kyoto Encyclopedia of Genes and Genomes annotation and enrichment analysis, were subsequently performed. Machine learning and receiver operating characteristic curve analyses were used to further analyze potential vital metabolites. Results Among the 1001 metabolites verified in the aqueous humor, 306 compounds separated patients with pre-wAMD from the control group, whereas 68 metabolites differentiated patients with post-wAMD and patients with pre-wAMD. Enrichment in metabolic pathways was noted in ABC transporters, thiamine metabolism, glycerophospholipid metabolism, mammalian target of rapamycin signaling pathway and tyrosine metabolism, and so on. Machine learning and receiver operating characteristic curves analysis suggested that δ-valerolactam could not only distinguish between patients with wAMD and the control group, but also differentiate between patients with post-wAMD and patients with pre-wAMD. Changes in acylcarnitine were observed in anti-VEGF responders with wAMD. Conclusions There were noticeable alterations in the aqueous humor of patients with wAMD involving many metabolites that are associated with ABC transporters, glycerophospholipid metabolism, and the mammalian target of rapamycin signaling pathway. It is possible that δ-valerolactam can be applied as a biomarker in wAMD.
Collapse
Affiliation(s)
- Yijing Chen
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
| | - Xiaoya Zhang
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanli Zhang
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shian Zhang
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Huo
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yubo Wu
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
| | - Lijun Shen
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianbo Mao
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine for Eye Diseases, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Lakkaraju A, Boya P, Csete M, Ferrington DA, Hurley JB, Sadun AA, Shang P, Sharma R, Sinha D, Ueffing M, Brockerhoff SE. How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration. Exp Eye Res 2025; 251:110219. [PMID: 39716681 DOI: 10.1016/j.exer.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024]
Abstract
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Patricia Boya
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | | | - Deborah A Ferrington
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Corydon TJ, Bek T. Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration. Prog Retin Eye Res 2025; 104:101323. [PMID: 39672501 DOI: 10.1016/j.preteyeres.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention. The article reviews current knowledge of the background, pathophysiological mechanisms, technologies, limitations, and future directions for gene therapy aimed at modifying the synthesis of compounds involved in acquired and senescent retinal disease. The authors have contributed to the field by developing gene therapy to reduce the expression of vascular endothelial growth factor (VEGF), as well as multiple gene therapy for simultaneous downregulation of the synthesis of VEGF and upregulation of pigment epithelium-derived factor (PEDF) using adeno-associated virus (AAV) vectors. It is suggested that such multi-target gene therapy might be included in future treatments of retinal diseases where the underlying mechanisms are complex and cannot be attributed to one specific mediator. Such diseases might include dry AMD (dAMD) with geographic atrophy, but also diabetic macular edema (DME) and retinal vein occlusion (RVO). Gene therapy can be expected to be most beneficial for the patients in need of multiple intra-vitreal injections and in whom the therapeutic response is insufficient. It is concluded, that in parallel with basic research, there is a need for clinical studies aimed at identifying factors that can be used to identify patients who will benefit from gene therapy already at the time of diagnosis of the retinal disease.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Hoegh Guldbergs Gade 10, Aarhus University, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
8
|
Ridley RB, Amontree AC, Lewin AS, Ildefonso CJ. Mitochondrial DNA Damage in the Retinal Pigmented Epithelium (RPE) and Its Role in RPE Pathobiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:375-379. [PMID: 39930225 DOI: 10.1007/978-3-031-76550-6_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Retinal pigmented epithelial (RPE) cells have critical functions in the retina. These cells rely heavily on their mitochondria to generate energy, offer metabolites for biosynthesis through the TCA cycle, regulate apoptosis, and process lipids from photoreceptors. Therefore, mitochondrial damage has significant consequences for the RPE and, by proxy, photoreceptors. Researchers have identified damaged mitochondrial DNA (mtDNA) accumulation in patient samples from aged and diseased individuals. These damages include point mutations and complete deletions of mtDNA segments. The most significant observation in these studies is a positive correlation between the accumulation of damaged mtDNA with the stage of AMD rather than aging. This chapter will discuss how mitochondrial dysfunction in the RPE can drive disease pathobiology by altering their physiological functions.
Collapse
Affiliation(s)
- Raela B Ridley
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ashley C Amontree
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Alfred S Lewin
- Department of Molecular Genetics & Microbiology, University College of Medicine, Gainesville, FL, USA
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
9
|
Usoltseva AS, Litwin C, Lee M, Hill C, Cai J, Chen Y. Role of LIPIN 1 in regulating metabolic homeostasis in the retinal pigment epithelium. FASEB J 2024; 38:e70249. [PMID: 39673553 PMCID: PMC11809763 DOI: 10.1096/fj.202400981r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Dysregulated lipid metabolism, characterized by the accumulation of lipid deposits on Bruch's membrane and in drusen, is considered a key pathogenic event in age-related macular degeneration (AMD). The imbalance of lipid production, usage, and transport in local tissues, particularly in the retinal pigment epithelium (RPE), is increasingly recognized as crucial in AMD development. However, the molecular mechanisms governing lipid metabolism in the RPE remain elusive. LIPIN1, a multifunctional protein acting as both a modulator of transcription factors and a phosphatidate phosphatase (PAP1), is known to play important regulatory roles in lipid metabolism and related biological functions, such as inflammatory responses. While deficits in LIPIN1 have been linked to multiple diseases, its specific roles in the retina and RPE remain unclear. In this study, we investigated LIPIN1 in RPE integrity and function using a tissue-specific knockout animal model. The clinical and histological examinations revealed age-dependent degeneration in the RPE and the retina, along with impaired lipid metabolism. Bulk RNA sequencing indicated a disturbance in lipid metabolic pathways. Moreover, these animals exhibited inflammatory markers reminiscent of human AMD features, including deposition of IgG and C3d on Bruch's membrane. Collectively, our findings indicate that LIPIN1 is a critical component of the complex regulatory network of lipid homeostasis in the RPE. Disruption of LIPIN1-mediated regulation impaired lipid balance and contributed to AMD-related pathogenic changes.
Collapse
Affiliation(s)
- Anna S. Usoltseva
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Christopher Litwin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Michael Lee
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Colton Hill
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Jiyang Cai
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Yan Chen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Dean McGee Eye Institute, Oklahoma City, OK, USA 73104
| |
Collapse
|
10
|
Strobl EV, Gamazon ER. Discovering Root Causal Genes with High Throughput Perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.574491. [PMID: 38260506 PMCID: PMC10802597 DOI: 10.1101/2024.01.13.574491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Root causal gene expression levels - or root causal genes for short - correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high throughput perturbations with single cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.
Collapse
|
11
|
Brinkmeier ML, Wang SQ, Pittman H, Cheung LY, Prasov L. Myelin regulatory factor ( Myrf ) is a critical early regulator of retinal pigment epithelial development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591281. [PMID: 38746430 PMCID: PMC11092522 DOI: 10.1101/2024.04.26.591281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice ( Rx>Cre Myrf fl/fl ) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx>Cre Myrf fl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b , along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream of Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for Myrf in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10 . SUMMARY STATEMENT Myrf regulates RPE development, melanogenesis, and is important for cell structure and survival, in part through regulation of Ermn , Upk3b and Sox10, and BMP/TGFb signaling.
Collapse
|
12
|
Kocherlakota S, Baes M. Benefits and Caveats in the Use of Retinal Pigment Epithelium-Specific Cre Mice. Int J Mol Sci 2024; 25:1293. [PMID: 38279294 PMCID: PMC10816505 DOI: 10.3390/ijms25021293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood-retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.
Collapse
Affiliation(s)
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Chen Y, Bounds SE, Ma X, Karmoker JR, Liu Y, Ma JX, Cai J. Interleukin-17-mediated protective cytokine signaling against degeneration of the retinal pigment epithelium. Proc Natl Acad Sci U S A 2023; 120:e2311647120. [PMID: 38085785 PMCID: PMC10742376 DOI: 10.1073/pnas.2311647120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Injuries to the retinal pigment epithelium (RPE) and outer retina often result in the accumulation of retinal microglia within the subretinal space. These subretinal microglia play crucial roles in inflammation and resolution, but the mechanisms governing their functions are still largely unknown. Our previous research highlighted the protective functions of choroidal γδ T cells in response to RPE injury. In the current study, we employed single-cell RNA sequencing approach to characterize the profiles of immune cells in mouse choroid. We found that γδ T cells were the primary producer of interleukin-17 (IL-17) in the choroid. IL-17 signaled through its receptor on the RPE, subsequently triggering the production of interleukin-6. This cascade of cytokines initiated a metabolic reprogramming of subretinal microglia, enhancing their capacity for lipid metabolism. RPE-specific knockout of IL-17 receptor A led to the dysfunction of subretinal microglia and RPE pathology. Collectively, our findings suggest that responding to RPE injury, the choroidal γδ T cells can initiate a protective signaling cascade that ensures the proper functioning of subretinal microglia.
Collapse
Affiliation(s)
- Yan Chen
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Sarah E. Bounds
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Xiang Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - James Regun Karmoker
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Yin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Jiyang Cai
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| |
Collapse
|
14
|
Jarrell ZR, Lee CM, Kim KH, He X, Smith MR, Raha JR, Bhatnagar N, Orr M, Kang SM, Chen Y, Jones DP, Go YM. Metabolic reprograming and increased inflammation by cadmium exposure following early-life respiratory syncytial virus infection-the involvement of protein S-palmitoylation. Toxicol Sci 2023; 197:kfad112. [PMID: 37941452 PMCID: PMC10823773 DOI: 10.1093/toxsci/kfad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Early-life respiratory syncytial virus (RSV) infection (eRSV) is one of the leading causes of serious pulmonary disease in children. eRSV is associated with higher risk of developing asthma and compromised lung function later in life. Cadmium (Cd) is a toxic metal, widely present in the environment and in food. We recently showed that eRSV re-programs metabolism and potentiates Cd toxicity in the lung, and our transcriptome-metabolome-wide study showed strong associations between S-palmitoyl transferase expression and Cd-stimulated lung inflammation and fibrosis signaling. Limited information is available on the mechanism by which eRSV re-programs metabolism and potentiates Cd toxicity in the lung. In the current study, we used a mouse model to examine the role of protein S-palmitoylation (Pr-S-Pal) in low dose Cd-elevated lung metabolic disruption and inflammation following eRSV. Mice exposed to eRSV were later treated with Cd (3.3 mg CdCl2/L) in drinking water for 6 weeks (RSV+Cd). The role of Pr-S-Pal was studied using a palmitoyl transferase inhibitor, 2-bromopalmitate (BP, 10 µM). Inflammatory marker analysis showed that cytokines, chemokines and inflammatory cells were highest in the RSV+Cd group, and BP decreased inflammatory markers. Lung metabolomics analysis showed that pathways including phenylalanine, tyrosine and tryptophan, phosphatidylinositol and sphingolipid were altered across treatments. BP antagonized metabolic disruption of sphingolipid and glycosaminoglycan metabolism by RSV+Cd, consistent with BP effect on inflammatory markers. This study shows that Cd exposure following eRSV has a significant impact on subsequent inflammatory response and lung metabolism, which is mediated by Pr-S-Pal, and warrants future research for a therapeutic target.
Collapse
Affiliation(s)
- Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Xiaojia He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Matthew R Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | - Jannatul R Raha
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Yan Chen
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
15
|
Kocherlakota S, Das Y, Swinkels D, Vanmunster M, Callens M, Vinckier S, Vaz FM, Sinha D, Van Veldhoven PP, Fransen M, Baes M. The murine retinal pigment epithelium requires peroxisomal β-oxidation to maintain lysosomal function and prevent dedifferentiation. Proc Natl Acad Sci U S A 2023; 120:e2301733120. [PMID: 37862382 PMCID: PMC10614831 DOI: 10.1073/pnas.2301733120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/14/2023] [Indexed: 10/22/2023] Open
Abstract
Retinal pigment epithelium (RPE) cells have to phagocytose shed photoreceptor outer segments (POS) on a daily basis over the lifetime of an organism, but the mechanisms involved in the digestion and recycling of POS lipids are poorly understood. Although it was frequently assumed that peroxisomes may play an essential role, this was never investigated. Here, we show that global as well as RPE-selective loss of peroxisomal β-oxidation in multifunctional protein 2 (MFP2) knockout mice impairs the digestive function of lysosomes in the RPE at a very early age, followed by RPE degeneration. This was accompanied by prolonged mammalian target of rapamycin activation, lipid deregulation, and mitochondrial structural anomalies without, however, causing oxidative stress or energy shortage. The RPE degeneration caused secondary photoreceptor death. Notably, the deterioration of the RPE did not occur in an Mfp2/rd1 mutant mouse line, characterized by absent POS shedding. Our findings prove that peroxisomal β-oxidation in the RPE is essential for handling the polyunsaturated fatty acids present in ingested POS and shed light on retinopathy in patients with peroxisomal disorders. Our data also have implications for gene therapy development as they highlight the importance of targeting the RPE in addition to the photoreceptor cells.
Collapse
Affiliation(s)
- Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Yannick Das
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Maarten Vanmunster
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Manon Callens
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Insituut voor Biotechnologie, Leuven3000, Belgium
- Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105AZ, The Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Center, Amsterdam1105AZ, The Netherlands
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Paul P. Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| |
Collapse
|
16
|
Cai M, Zhao Y, Wang H, Liu S, Jiang H. Smith-Kingsmore syndrome with nystagmus as the initial symptom. ACTA EPILEPTOLOGICA 2023; 5:24. [PMID: 40217313 PMCID: PMC11960324 DOI: 10.1186/s42494-023-00135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/03/2023] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Smith-Kingsmore syndrome (SKS) is a rare autosomal dominant disorder caused by de novo mutations of gene MTOR in most cases and germline mosaicism in a few cases. The first case of SKS was reported in 2013. The incidence of SKS remains unknown. The clinical manifestations of SKS are diverse, and common features are macrocephaly, intellectual disability, and seizures. Some patients with SKS have special facial features. CASE PRESENTATION The case was a 5-month-old baby girl, who was admitted to the hospital for nystagmus, delayed development for 2 months, and intermittent convulsions for 2 days. The patient had a head circumference of 42 cm (+ 2SD), and showed facial deformity, low limb muscle tension, large areas of pigmentation, as well as mosaic patchy and strip-like pigment loss in her trunk and limbs. Meanwhile, her development was lagging behind peers. Physical examination did not reveal other abnormalities. She was diagnosed with SKS based on whole-exome sequencing combined with clinical symptoms and signs. She successively received treatment with adrenocorticotropic hormone, methylprednisolone sodium succinate, topiramate, levetiracetam, and zonisamide to reduce the number of convulsions in a short time, but drug resistance appeared thereafter. After combined treatment with multiple antiseizure medications, the patient still had seizures, but the amplitude of limb movement during the seizures was reduced compared to that before treatment. CONCLUSIONS This case expanded the phenotypic spectrum of SKS for diagnosis. We also review the related literature to promote the awareness, diagnosis, clinical management, and follow-up of SKS patients with MTOR mutations.
Collapse
Affiliation(s)
- Meiling Cai
- Department of Pediatric, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanfei Zhao
- Department of Pediatric, The First Hospital of Jilin University, Changchun, 130021, China
| | - He Wang
- Department of Pediatric, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shicheng Liu
- Department of Pediatric, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Huiyi Jiang
- Department of Pediatric, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
17
|
Sharp ZD, Strong R. Rapamycin, the only drug that has been consistently demonstrated to increase mammalian longevity. An update. Exp Gerontol 2023; 176:112166. [PMID: 37011714 PMCID: PMC10868408 DOI: 10.1016/j.exger.2023.112166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Affiliation(s)
- Zelton Dave Sharp
- Department of Molecular Medicine and Institute of Biotechnology, San Antonio, TX, United States of America; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States of America; Mays Cancer Center, San Antonio, TX, United States of America.
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States of America; Department of Pharmacology, UT Health, San Antonio, TX, United States of America; Research Service of the South Texas Veterans Health Care System, San Antonio, TX 78229, United States of America.
| |
Collapse
|
18
|
Sirolimus loaded chitosan functionalized PLGA nanoparticles protect against sodium iodate-induced retinal degeneration. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
19
|
O-GlcNAcylation regulates phagocytosis by promoting Ezrin localization at the cell cortex. J Genet Genomics 2023:S1673-8527(23)00042-5. [PMID: 36796536 DOI: 10.1016/j.jgg.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
O-GlcNAcylation is a post-translational modification that serves as a cellular nutrient sensor and participates in multiple physiological and pathological processes. However, it remains uncertain whether O-GlcNAcylation is involved in the regulation of phagocytosis. Here, we demonstrate a rapid increase in protein O-GlcNAcylation in response to phagocytotic stimuli. Knockout of O-GlcNAc transferase or pharmacological inhibition of O-GlcNAcylation dramatically blocks phagocytosis, resulting in the disruption of retinal structure and function. Mechanistic studies reveal that O-GlcNAc transferase interacts with Ezrin, a membrane-cytoskeleton linker protein, to catalyze its O-GlcNAcylation. Our data further show that Ezrin O-GlcNAcylation promotes its localization to the cell cortex, thereby stimulating the membrane-cytoskeleton interaction needed for efficient phagocytosis. These findings identify a previously unrecognized role for protein O-GlcNAcylation in phagocytosis with important implications in both health and diseases.
Collapse
|
20
|
Intartaglia D, Giamundo G, Conte I. Autophagy in the retinal pigment epithelium: a new vision and future challenges. FEBS J 2022; 289:7199-7212. [PMID: 33993621 PMCID: PMC9786786 DOI: 10.1111/febs.16018] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized monolayer of polarized, pigmented epithelial cells that resides between the vessels of the choriocapillaris and the neural retina. The RPE is essential for the maintenance and survival of overlying light-sensitive photoreceptors, as it participates in the formation of the outer blood-retinal barrier, phagocytosis, degradation of photoreceptor outer segment (POS) tips, maintenance of the retinoid cycle, and protection against light and oxidative stress. Autophagy is an evolutionarily conserved 'self-eating' process, designed to maintain cellular homeostasis. The daily autophagy demands in the RPE require precise gene regulation for the digestion and recycling of intracellular and POS components in lysosomes in response to light and stress conditions. In this review, we discuss selective autophagy and focus on the recent advances in our understanding of the mechanism of cell clearance in the RPE for visual function. Understanding how this catabolic process is regulated by both transcriptional and post-transcriptional mechanisms in the RPE will promote the recognition of pathological pathways in genetic disease and shed light on potential therapeutic strategies to treat visual impairments in patients with retinal disorders associated with lysosomal dysfunction.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy,Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
21
|
Qi X, Walton DA, Plafker KS, Boulton ME, Plafker SM. Sulforaphane recovers cone function in an Nrf2-dependent manner in middle-aged mice undergoing RPE oxidative stress. Mol Vis 2022; 28:378-393. [PMID: 36338670 PMCID: PMC9603948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. METHODS Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. RESULTS SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. CONCLUSIONS These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
22
|
Abstract
The mechanistic target of rapamycin (mTOR) is assembled into signaling complexes of mTORC1 or mTORC2, and plays key roles in cell metabolism, stress response, and nutrient and growth factor sensing. Accumulating evidence from human and animal model studies has demonstrated a pathogenic role of hyperactive mTORC1 in age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) is a primary injury site in AMD. In mouse models of RPE-specific deletion of Tuberous sclerosis 1 (Tsc1), which encodes an upstream suppressor of mTORC1, the hyperactivated mTORC1 metabolically reprogrammed the RPE and led to the degeneration of the outer retina and choroid (CH). In the current study, we use single-cell RNA sequencing (scRNA-seq) to identify an RPE mTORC1 downstream protein, dopamine- and cyclic AMP-regulated phosphoprotein of molecular weight 32,000 (DARPP-32). DARPP-32 was not found in healthy RPE but localized to drusen and basal linear deposits in human AMD eyes. In animal models, overexpressing DARPP-32 by adeno-associated virus (AAV) led to abnormal RPE structure and function. The data indicate that DARPP-32 is a previously unidentified signaling protein subjected to mTORC1 regulation and may contribute to RPE degeneration in AMD.
Collapse
|
23
|
Tong Y, Zhang Z, Wang S. Role of Mitochondria in Retinal Pigment Epithelial Aging and Degeneration. FRONTIERS IN AGING 2022; 3:926627. [PMID: 35912040 PMCID: PMC9337215 DOI: 10.3389/fragi.2022.926627] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 12/17/2022]
Abstract
Retinal pigment epithelial (RPE) cells form a monolayer between the neuroretina and choroid. It has multiple important functions, including acting as outer blood-retina barrier, maintaining the function of neuroretina and photoreceptors, participating in the visual cycle and regulating retinal immune response. Due to high oxidative stress environment, RPE cells are vulnerable to dysfunction, cellular senescence, and cell death, which underlies RPE aging and age-related diseases, including age-related macular degeneration (AMD). Mitochondria are the powerhouse of cells and a major source of cellular reactive oxygen species (ROS) that contribute to mitochondrial DNA damage, cell death, senescence, and age-related diseases. Mitochondria also undergo dynamic changes including fission/fusion, biogenesis and mitophagy for quality control in response to stresses. The role of mitochondria, especially mitochondrial dynamics, in RPE aging and age-related diseases, is still unclear. In this review, we summarize the current understanding of mitochondrial function, biogenesis and especially dynamics such as morphological changes and mitophagy in RPE aging and age-related RPE diseases, as well as in the biological processes of RPE cellular senescence and cell death. We also discuss the current preclinical and clinical research efforts to prevent or treat RPE degeneration by restoring mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Yao Tong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Zunyi Zhang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Department of Ophthalmology, Tulane University, New Orleans, LA, United States
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
24
|
Emilsson V, Gudmundsson EF, Jonmundsson T, Jonsson BG, Twarog M, Gudmundsdottir V, Li Z, Finkel N, Poor S, Liu X, Esterberg R, Zhang Y, Jose S, Huang CL, Liao SM, Loureiro J, Zhang Q, Grosskreutz CL, Nguyen AA, Huang Q, Leehy B, Pitts R, Aspelund T, Lamb JR, Jonasson F, Launer LJ, Cotch MF, Jennings LL, Gudnason V, Walshe TE. A proteogenomic signature of age-related macular degeneration in blood. Nat Commun 2022; 13:3401. [PMID: 35697682 PMCID: PMC9192739 DOI: 10.1038/s41467-022-31085-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/01/2022] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the most common causes of visual impairment in the elderly, with a complex and still poorly understood etiology. Whole-genome association studies have discovered 34 genomic regions associated with AMD. However, the genes and cognate proteins that mediate the risk, are largely unknown. In the current study, we integrate levels of 4782 human serum proteins with all genetic risk loci for AMD in a large population-based study of the elderly, revealing many proteins and pathways linked to the disease. Serum proteins are also found to reflect AMD severity independent of genetics and predict progression from early to advanced AMD after five years in this population. A two-sample Mendelian randomization study identifies several proteins that are causally related to the disease and are directionally consistent with the observational estimates. In this work, we present a robust and unique framework for elucidating the pathobiology of AMD.
Collapse
Affiliation(s)
- Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| | | | | | | | - Michael Twarog
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Nancy Finkel
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Stephen Poor
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Xin Liu
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Robert Esterberg
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Yiyun Zhang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Sandra Jose
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Chia-Ling Huang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Sha-Mei Liao
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Joseph Loureiro
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Qin Zhang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Cynthia L Grosskreutz
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Andrew A Nguyen
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Qian Huang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Barrett Leehy
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Rebecca Pitts
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland
| | - John R Lamb
- Novartis Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Fridbert Jonasson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Ophthalmology, University Hospital, Reykjavik, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Tony E Walshe
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Renormalization of metabolic coupling treats age-related degenerative disorders: an oxidative RPE niche fuels the more glycolytic photoreceptors. Eye (Lond) 2022; 36:278-283. [PMID: 34974542 PMCID: PMC8807833 DOI: 10.1038/s41433-021-01726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Retinitis pigmentosa is characterized by a dysregulation within the metabolic coupling of the retina, particularly between the glycolytic photoreceptors and the oxidative retina pigment epithelium. This phenomenon of metabolic uncoupling is seen in both aging and retinal degenerative diseases, as well as across a variety of cell types in human biology. Given its crucial role in the health and maintenance of these cell types, the metabolic pathways involved present a suitable area for therapeutic intervention. Herein, this review covers the scope of this delicate metabolic interplay, its dysregulation, how it relates to the retina as well other cell types, and finally concludes with a summary of various strategies aimed at reinstating normal metabolic coupling within the retina, and future directions within the field.
Collapse
|
26
|
Pan HY, Valapala M. Regulation of Autophagy by the Glycogen Synthase Kinase-3 (GSK-3) Signaling Pathway. Int J Mol Sci 2022; 23:1709. [PMID: 35163631 PMCID: PMC8836041 DOI: 10.3390/ijms23031709] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital cellular mechanism that benefits cellular maintenance and survival during cell stress. It can eliminate damaged or long-lived organelles and improperly folded proteins to maintain cellular homeostasis, development, and differentiation. Impaired autophagy is associated with several diseases such as cancer, neurodegenerative diseases, and age-related macular degeneration (AMD). Several signaling pathways are associated with the regulation of the autophagy pathway. The glycogen synthase kinase-3 signaling pathway was reported to regulate the autophagy pathway. In this review, we will discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy. Autophagy and lysosomal function are regulated by transcription factor EB (TFEB). GSK-3 was shown to be involved in the regulation of TFEB nuclear expression in an mTORC1-dependent manner. In addition to mTORC1, GSK-3β also regulates TFEB via the protein kinase C (PKC) and the eukaryotic translation initiation factor 4A-3 (eIF4A3) signaling pathways. In addition to TFEB, we will also discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy by modulating other signaling molecules and autophagy inducers including, mTORC1, AKT and ULK1. In summary, this review provides a comprehensive understanding of the role of the GSK-3 signaling pathway in the regulation of autophagy.
Collapse
Affiliation(s)
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
27
|
Abstract
Respiratory syncytial virus (RSV) infection causes serious pulmonary disease and death in high-risk infants and elderly. Cadmium (Cd) is a toxic environmental metal contaminant and constantly exposed to humans. Limited information is available on Cd toxicity after early-life respiratory virus infection. In this study, we examined the effects of low-dose Cd exposure following early-life RSV infection on lung metabolism and inflammation using mouse and fibroblast culture models. C57BL/6J mice at 8 days old were exposed to RSV 2 times with a 4-week interval. A subset of RSV-infected mice was subsequently treated with Cd at a low dose in drinking water (RSV infection at infant age [RSVinf]+Cd) for 16 weeks. The results of inflammatory marker analysis showed that the levels of cytokines and chemokines were substantially higher in RSVinf+Cd group than other groups, implying that low-dose Cd following early-life RSV infection enhanced lung inflammation. Moreover, histopathology data showed that inflammatory cells and thickening of the alveolar walls as a profibrotic signature were evident in RSVinf+Cd. The metabolomics data revealed that RSVinf+Cd-caused metabolic disruption in histamine and histidine, vitamin D and urea cycle, and pyrimidine pathway accompanying with mechanistic target of rapamycin complex-1 activation. Taken together, our study demonstrates for the first time that cumulative Cd exposure following early-life RSV infection has a significant impact on subsequent inflammation and lung metabolism. Thus, early-life respiratory infection may reprogram metabolism and potentiate Cd toxicity, enhance inflammation, and cause fibrosis later in life.
Collapse
|
28
|
Villarejo-Zori B, Jiménez-Loygorri JI, Zapata-Muñoz J, Bell K, Boya P. New insights into the role of autophagy in retinal and eye diseases. Mol Aspects Med 2021; 82:101038. [PMID: 34620506 DOI: 10.1016/j.mam.2021.101038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a fundamental homeostatic pathway that mediates the degradation and recycling of intracellular components. It serves as a key quality control mechanism, especially in non-dividing cells such as neurons. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. The retina is a light-sensitive tissue located in the back of the eye that detects and processes visual images. Vision is a highly demanding process, making the eye one of the most metabolically active tissues in the body and photoreceptors display glycolytic metabolism, even in the presence of oxygen. The retina and eye are also exposed to other stressors that can impair their function, including genetic mutations and age-associated changes. Autophagy, among other pathways, is therefore a key process for the preservation of retinal homeostasis. Here, we review the roles of both canonical and non-canonical autophagy in normal retinal function. We discuss the most recent studies investigating the participation of autophagy in eye diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy and its role protecting photoreceptors in several forms of retinal degeneration. Finally, we consider the therapeutic potential of strategies that target autophagy pathways to treat prevalent retinal and eye diseases.
Collapse
Affiliation(s)
- Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Katharina Bell
- Singapore Eye Research Institute, Singapore National Eye Centre, Republic of Singapore
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain.
| |
Collapse
|
29
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|
30
|
Yang JL, Zou TD, Yang F, Yang ZL, Zhang HB. Inhibition of mTOR signaling by rapamycin protects photoreceptors from degeneration in rd1 mice. Zool Res 2021; 42:482-486. [PMID: 34235896 PMCID: PMC8317187 DOI: 10.24272/j.issn.2095-8137.2021.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that begins with defective rod photoreceptor function, followed by impaired cone function, and complete blindness in its late stage. To date, however, there is no effective treatment for RP. By carrying a nonsense mutation in the Pde6b gene, rd1 mice display elevated cGMP in conjunction with higher intracellular Ca2+ in their rod photoreceptors, resulting in fast retinal degeneration. Ca2+ has been linked to activation of the mammalian target of rapamycin (mTOR) pathway. The mTOR pathway integrates extracellular and intracellular signals to sense the supply of nutrients and plays a central role in regulating protein and lipid synthesis as well as apoptosis and autophagy. In the present study, we showed that mTOR and phosphorylated mTOR (p-mTOR, activated form of mTOR) are up-regulated in rd1 photoreceptors at postnatal day 10 (P10), a pre-degenerative stage. Moreover, the downstream effectors of mTOR, such as pS6K and S6K, are also increased, suggesting activation of the mTOR signaling pathway. Intravitreal administration of rapamycin, a negative regulator of mTOR, inhibits the mTOR pathway in rd1 photoreceptors. Consequently, the progression of retinal degeneration is slower and retinal function is enhanced, possibly mediated by activation of autophagy in the photoreceptors. Taken together, these results highlight rapamycin as a potential therapeutic avenue for retinal degeneration.
Collapse
Affiliation(s)
- Jia-Liang Yang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Tong-Dan Zou
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Fang Yang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zheng-Lin Yang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Hou-Bin Zhang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China. E-mail:
| |
Collapse
|
31
|
Niu Z, Shi Y, Li J, Qiao S, Du S, Chen L, Tian H, Wei L, Cao H, Wang J, Gao L. Protective effect of rapamycin in models of retinal degeneration. Exp Eye Res 2021; 210:108700. [PMID: 34245755 DOI: 10.1016/j.exer.2021.108700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022]
Abstract
Age-related macular degeneration (AMD) is a complex retinal disease with no viable treatment strategy. The causative mechanistic pathway for this disease is not yet clear. Therefore, it is highly warranted to screen effective drugs to treat AMD. Rapamycin are known to inhibit inflammation and has been widely used in the clinic as an immunosuppressant. This study aimed to investigate the protective effect of rapamycin on the AMD retinal degeneration model. The AMD models were established by injection of 35 mg/kg sodium iodate (NaIO3) into the tail vein. Then the treated mice intraperitoneally received rapamycin (2 mg/kg) once a day. The histomorphological analysis showed that rapamycin could inhibit retinal structure damage and apoptosis. Experiments revealed that rapamycin significantly attenuated inflammatory response and oxidative stress. Our experimental results demonstrated that rapamycin has protected the retinal against degeneration induced by NaIO3. The therapeutic effect was more significant after 7 days of treatment. Therefore, our study potentially provides a powerful experimental support for the treatment of AMD.
Collapse
Affiliation(s)
- Zhanyu Niu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jiande Li
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Shufan Qiao
- Colloge of Life Sciences, Northwest Normal University, Lanzhou, 730000, China.
| | - Shaobo Du
- School of Stomatology of Lanzhou University, Lanzhou, 730000, China.
| | - Linchi Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Huanbing Tian
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Li Wei
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Ji Wang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
32
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
33
|
Bullock J, Polato F, Abu-Asab M, Bernardo-Colón A, Aflaki E, Agbaga MP, Becerra SP. Degradation of Photoreceptor Outer Segments by the Retinal Pigment Epithelium Requires Pigment Epithelium-Derived Factor Receptor (PEDF-R). Invest Ophthalmol Vis Sci 2021; 62:30. [PMID: 33605986 PMCID: PMC7900850 DOI: 10.1167/iovs.62.2.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To examine the contribution of pigment epithelium-derived factor receptor (PEDF-R) to the phagocytosis process. Previously, we identified PEDF-R, the protein encoded by the PNPLA2 gene, as a phospholipase A2 in the retinal pigment epithelium (RPE). During phagocytosis, RPE cells ingest abundant phospholipids and protein in the form of photoreceptor outer segment (POS) tips, which are then hydrolyzed. The role of PEDF-R in RPE phagocytosis is not known. Methods Mice in which PNPLA2 was conditionally knocked out (cKO) in the RPE were generated. Mouse RPE/choroid explants were cultured. Human ARPE-19 cells were transfected with siPNPLA2 silencing duplexes. POSs were isolated from bovine retinas. The phospholipase A2 inhibitor bromoenol lactone was used. Transmission electron microscopy, immunofluorescence, lipid labeling, pulse-chase experiments, western blots, and free fatty acid and β-hydroxybutyrate assays were performed. Results The RPE of the cKO mice accumulated lipids, as well as more abundant and larger rhodopsin particles, compared to littermate controls. Upon POS exposure, RPE explants from cKO mice released less β-hydroxybutyrate compared to controls. After POS ingestion during phagocytosis, rhodopsin degradation was stalled both in cells treated with bromoenol lactone and in PNPLA2-knocked-down cells relative to their corresponding controls. Phospholipase A2 inhibition lowered β-hydroxybutyrate release from phagocytic RPE cells. PNPLA2 knockdown also resulted in a decline in fatty acids and β-hydroxybutyrate release from phagocytic RPE cells. Conclusions PEDF-R downregulation delayed POS digestion during phagocytosis. The findings imply that the efficiency of RPE phagocytosis depends on PEDF-R, thus identifying a novel contribution of this protein to POS degradation in the RPE.
Collapse
Affiliation(s)
- Jeanee Bullock
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC, United States
| | - Federica Polato
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elma Aflaki
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Martin-Paul Agbaga
- Departments of Cell Biology and Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - S. Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
34
|
Tan LX, Germer CJ, La Cunza N, Lakkaraju A. Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biol 2020; 37:101781. [PMID: 33162377 PMCID: PMC7767764 DOI: 10.1016/j.redox.2020.101781] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|