1
|
Song S, Li C, Xiao Y, Ye Z, Rong M, Zeng J. Beyond conventional therapies: MSCs in the battle against nerve injury. Regen Ther 2025; 28:280-291. [PMID: 39896446 PMCID: PMC11782851 DOI: 10.1016/j.reth.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Nerve damage can cause abnormal motor and sensory consequences, including lifelong paralysis if not surgically restored. The yearly cost of healthcare in the United States is projected to be $150 billion, and millions of Americans suffer from peripheral nerve injuries as a result of severe traumas and disorders. For nerve injuries, the outcome of conventional therapies is suboptimal and may have unfavorable side effects. However, mesenchymal stem cells (MSCs) have been proven to be a viable option for the reconstruction of injured nerve tissue and bring a ray of hope. These stem cells are derived from bone marrow, adipose tissue, and human umbilical cord blood and have the ability to secrete trophic factors, contribute to the immune system, and stimulate axonal regeneration. The purpose of this review is to examine the potential benefits of MSCs for enhancing functional recovery and patient prognosis by highlighting their characteristics and elucidating their mechanism of action in nerve injury healing.
Collapse
Affiliation(s)
- Shuo Song
- Central Laboratory, The Fourth People's Hospital of Shenzhen, Shenzhen 518118, China
| | - Cong Li
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Ya Xiao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jincheng Zeng
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Akhlaghpasand M, Tavanaei R, Allameh F, Hosseinpoor M, Toreyhi H, Golmohammadi M, Hajarizadeh A, Alikhani A, Hafizi M, Oraee-Yazdani M, Zali A, Oraee-Yazdani S. Improvement of Neurogenic Bladder Dysfunction Following Combined Cell Therapy with Mesenchymal Stem Cell and Schwann Cell in Spinal Cord Injury: A Randomized, Open-Label, Phase II Clinical Trial. World Neurosurg 2025; 194:123402. [PMID: 39522809 DOI: 10.1016/j.wneu.2024.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the efficacy of intrathecal combined administration of autologous bone marrow-derived mesenchymal stem cells (BMSCs) and Schwann cells (SCs) in urinary function improvement in complete spinal cord injury (SCI) patients for the first time. METHODS This study was a randomized phase II clinical trial, including treatment and control arms. Patients with traumatic complete SCI-induced neurogenic bladder were included. The treatment group received a single intrathecal combined injection of autologous BMSCs and SCs. The control group underwent no additional intervention. The outcome measures of the study were urodynamic study parameters, number of incontinence and urinary tract infection episodes, incontinence quality of life questionnaire, functional status, and sensorimotor improvements. RESULTS Among a total of 32 recruited patients, 13 and 16 were completely followed up in the treatment and control group, respectively. Changes in bladder compliance (P = 0.032), maximum pressure of detrusor during the filling phase (P = 0.013), maximum pressure of detrusor at the maximum urinary flow rate (P = 0.020), maximum urinary flow rate (P = 0.001), and postvoid residual volume (P = 0.001) after 6 months were significantly different between the 2 groups. The number of urinary incontinence episodes (P = 0.022) significantly reduced in the treatment group after 6 months compared with the baseline. The incontinence quality of life total and domain scores significantly improved in the treatment group compared with the control group after 6 months. CONCLUSIONS The combined intrathecal administration of BMSCs and SCs significantly improved the urodynamic study parameters, urinary incontinence rate, and incontinence quality of life in complete SCI-induced neurogenic bladder.
Collapse
Affiliation(s)
- Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Tavanaei
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Allameh
- Men's Health and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maede Hosseinpoor
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Golmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hajarizadeh
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Alikhani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hafizi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
An J, Chen B, Zhang R, Tian D, Shi K, Zhang L, Zhang G, Wang J, Yang H. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury. Mol Neurobiol 2025; 62:1291-1315. [PMID: 39312070 DOI: 10.1007/s12035-024-04490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, with a high rate of disability and mortality. Due to the complicated pathological process of SCI, there is no effective clinical treatment strategy at present. Although mesenchymal stem cells (MSCs) are effective in the treatment of SCI, their application is limited by factors such as low survival rate, cell dedifferentiation, tumorigenesis, blood-brain barrier, and immune rejection. Fortunately, there is growing evidence that most of the biological and therapeutic effects of MSCs may be mediated by the release of paracrine factors, which are extracellular vesicles called exosomes. Exosomes are small endosomal vesicles with bilaminar membranes that have recently been recognized as key mediators for communication between cells and tissues through the transfer of proteins, lipids, nucleic acids, cytokines, and growth factors. Mesenchymal stem cell-derived exosomes (MSC-exos) play a critical role in SCI repair by promoting angiogenesis and axonal growth, regulating inflammation and immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be used to transport genetic material or drugs to target cells, and their relatively small size allows them to permeate the blood-brain barrier. Studies have demonstrated that some exosomal miRNAs derived from MSCs play a significant role in the treatment of SCI. In this review, we summarize recent research advances in MSC-exos and exosomal miRNAs in SCI therapy to better understand this emerging cell-free therapeutic strategy and discuss the advantages and challenges of MSC-exos in future clinical applications.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, 550081, Guizhou, China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Kuohao Shi
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Gaorong Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Jingchao Wang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
4
|
Alvi MA, Pedro KM, Quddusi AI, Fehlings MG. Advances and Challenges in Spinal Cord Injury Treatments. J Clin Med 2024; 13:4101. [PMID: 39064141 PMCID: PMC11278467 DOI: 10.3390/jcm13144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.
Collapse
Affiliation(s)
- Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Karlo M. Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ayesha I. Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
5
|
Trinh QD, Mai HN, Pham DT. Application of mesenchymal stem cells for neurodegenerative diseases therapy discovery. Regen Ther 2024; 26:981-989. [PMID: 39524179 PMCID: PMC11550585 DOI: 10.1016/j.reth.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases are central or peripheral nervous system disorders associated with progressive brain cell degeneration. Common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis have been widely studied. However, current therapeutics only reduce the symptoms and do not ameliorate the pathogenesis of these diseases. Recent studies suggested the roles of neuroinflammation, apoptosis, and oxidative stress in neurodegenerative diseases. Mesenchymal stem cells (MSCs) exert anti-apoptotic, anti-inflammatory, and antioxidative effects. Therefore, investigating the effects of MSCs and their applications may lead to the discovery of more effective therapies for neurodegenerative diseases. In this study, we review different approaches used to identify therapies for neurodegenerative diseases using MSCs.
Collapse
Affiliation(s)
- Quynh Dieu Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Huynh Nhu Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Duc Toan Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
6
|
Xu L, Min H, Saha A, Gunaratne A, Schwartzman J, Parrott R, Kurtzberg J, Filiano AJ. Mesenchymal stromal cells suppress microglial activation and tumor necrosis factor production. Cytotherapy 2024; 26:185-193. [PMID: 38054911 DOI: 10.1016/j.jcyt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AIMS White matter diseases are commonly associated with microglial activation and neuroinflammation. Mesenchymal stromal cells (MSCs) have immunomodulatory properties and thus have the potential to be developed as cell therapy for white matter disease. MSCs interact with resident macrophages to alter the trajectory of inflammation; however, the impact MSCs have on central nervous system macrophages and the effect this has on the progression of white matter disease are unclear. METHODS In this study, we utilized numerous assays of varying complexity to model different aspects of white matter disease. These assays ranged from an in vivo spinal cord acute demyelination model to a simple microglial cell line activation assay. Our goal was to investigate the influence of human umbilical cord tissue MSCs on the activation of microglia. RESULTS MSCs reduced the production of tumor necrosis factor (TNF) by microglia and decreased demyelinated lesions in the spinal cord after acute focal injury. To determine if MSCs could directly suppress the activation of microglia and to develop an efficient potency assay, we utilized isolated primary microglia from mouse brains and the Immortalized MicroGlial Cell Line (IMG). MSCs suppressed the activation of microglia and the release of TNF after stimulation with lipopolysaccharide, a toll-like receptor agonist. CONCLUSIONS In this study, we demonstrated that MSCs altered the immune response after acute injury in the spinal cord. In numerous assays, MSCs suppressed activation of microglia and release of the pro-inflammatory cytokine TNF. Of these assays, IMG could be standardized and used as an effective potency assay to determine the efficacy of MSCs for treating white matter disease or other neuroinflammatory conditions associated with microglial activation.
Collapse
Affiliation(s)
- Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Hyunjung Min
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Arjun Saha
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Aruni Gunaratne
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | | | - Roberta Parrott
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Anthony J Filiano
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Neurosurgery, Duke University, Durham, North Carolina, USA; Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
7
|
de Laorden EH, Simón D, Milla S, Portela-Lomba M, Mellén M, Sierra J, de la Villa P, Moreno-Flores MT, Iglesias M. Human placenta-derived mesenchymal stem cells stimulate neuronal regeneration by promoting axon growth and restoring neuronal activity. Front Cell Dev Biol 2023; 11:1328261. [PMID: 38188022 PMCID: PMC10766706 DOI: 10.3389/fcell.2023.1328261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%-14% and axonal length per neuron rates of 19-26, μm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells derived from the placenta, present a hopeful outlook for the potential therapeutic application of hPMSCs in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Elvira H. de Laorden
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Diana Simón
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Santiago Milla
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Portela-Lomba
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Marian Mellén
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Javier Sierra
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pedro de la Villa
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Teresa Moreno-Flores
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maite Iglesias
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
8
|
Hwang J, Jang S, Kim C, Lee S, Jeong HS. Role of Stem Cell-Derived Exosomes and microRNAs in Spinal Cord Injury. Int J Mol Sci 2023; 24:13849. [PMID: 37762150 PMCID: PMC10530823 DOI: 10.3390/ijms241813849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurological disorders represent a global health problem. Current pharmacological treatments often lead to short-term symptomatic relief but have dose-dependent side effects, such as inducing orthostatic arterial hypotension due to the blockade of alpha receptors, cardiotoxic effects due to impaired repolarization, and atrioventricular block and tachycardia, including ventricular fibrillation. These challenges have driven the medical community to seek effective treatments for this serious global health threat. Mesenchymal stem cells (MSCs) are pluripotent cells with anti-inflammatory, anti-apoptotic, and immunomodulatory properties, providing a promising alternative due to their ability to differentiate, favorable culture conditions, in vitro manipulation ability, and robust properties. Although MSCs themselves rarely differentiate into neurons at the site of injury after transplantation in vivo, paracrine factors secreted by MSCs can create environmental conditions for cell-to-cell communication and have shown therapeutic effects. Recent studies have shown that the pleiotropic effects of MSCs, particularly their immunomodulatory potential, can be attributed primarily to these paracrine factors. Exosomes derived from MSCs are known to play an important role in these effects. Many studies have evaluated the potential of exosome-based therapies for the treatment of various neurological diseases. In addition to exosomes, various miRNAs derived from MSCs have been identified to regulate genes and alleviate neuropathological changes in neurodegenerative diseases. This review explores the burgeoning field of exosome-based therapies, focusing on the effects of MSC-derived exosomes and exosomal miRNAs, and summarizes recent findings that shed light on the potential of exosomes in the treatment of neurological disorders. The insights gained from this review may pave the way for innovative and effective treatments for these complex conditions. Furthermore, we suggest the therapeutic effects of exosomes and exosomal miRNAs from MSCs, which have a rescue potential in spinal cord injury via diverse signaling pathways.
Collapse
Affiliation(s)
- Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Choonghyo Kim
- Department of Neurosurgery, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Sungjoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| |
Collapse
|
9
|
Zhiguo F, Ji W, Shenyuan C, Guoyou Z, Chen K, Hui Q, Wenrong X, Zhai X. A swift expanding trend of extracellular vesicles in spinal cord injury research: a bibliometric analysis. J Nanobiotechnology 2023; 21:289. [PMID: 37612689 PMCID: PMC10463993 DOI: 10.1186/s12951-023-02051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Extracellular vesicles (EVs) in the field of spinal cord injury (SCI) have garnered significant attention for their potential applications in diagnosis and therapy. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. A search of articles in Web of Science (WoS) from January 1, 1991, to May 1, 2023, yielded 359 papers that were analyzed using various online analysis tools. These articles have been cited 10,842 times with 30.2 times per paper. The number of publications experienced explosive growth starting in 2015. China and the United States led this research initiative. Keywords were divided into 3 clusters, including "Pathophysiology of SCI", "Bioactive components of EVs", and "Therapeutic effects of EVs in SCI". By integrating the average appearing year (AAY) of keywords in VoSviewer with the time zone map of the Citation Explosion in CiteSpace, the focal point of research has undergone a transformative shift. The emphasis has moved away from pathophysiological factors such as "axon", "vesicle", and "glial cell" to more mechanistic and applied domains such as "activation", "pathways", "hydrogels" and "therapy". In conclusions, institutions are expected to allocate more resources towards EVs-loaded hydrogel therapy and the utilization of innovative materials for injury mitigation.
Collapse
Affiliation(s)
- Fan Zhiguo
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Wu Ji
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Chen Shenyuan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhang Guoyou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| | - Qian Hui
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xu Wenrong
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
10
|
Preferred Migration of Mitochondria toward Cells and Tissues with Mitochondrial Damage. Int J Mol Sci 2022; 23:ijms232415734. [PMID: 36555376 PMCID: PMC9779580 DOI: 10.3390/ijms232415734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.
Collapse
|
11
|
The Effect of Different Routes of Xenogeneic Mesenchymal Stem Cell Transplantation on the Regenerative Potential of Spinal Cord Injury. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Ahmadi F, Zargari M, Nasiry D, Khalatbary AR. Synergistic neuroprotective effects of hyperbaric oxygen and methylprednisolone following contusive spinal cord injury in rat. J Spinal Cord Med 2022; 45:930-939. [PMID: 33830902 PMCID: PMC9661982 DOI: 10.1080/10790268.2021.1896275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Recent studies revealed the neuroprotective effects of hyperbaric oxygen (HBO) on spinal cord injury (SCI). Meanwhile, the use of methylprednisolone (MP) is one of the current protocols with limited effects in SCI patients. Accordingly, the aim of the present study was to investigate the effect of combined HBO and MP treatment on SCI. DESIGN The present study was conducted on five groups of rats each as follows: Sham group (underwent laminectomy alone at T9 level vertebra); SCI group (underwent moderate contusive SCI); MP group (underwent SCI and received MP); HBO group (underwent SCI and received HBO); HBO + MP group (underwent SCI and simultaneously received MP and HBO). Blood serum and Spinal cord tissue samples were taken 48 h after SCI for analysis of serum ferric reducing antioxidant power (FRAP) and tissue malodialdehyde (MDA) levels as well as immunohistochemistry of caspase-3 and tumor necrosis factor-alpha (TNF-α). Neurological function was evaluated by the Basso-Beattie-Bresnehan (BBB) locomotion scores until the end of experiments. Additionally, histopathology was assessed at the end of the study. SETTING Mazandaran University of Medical Sciences, Sari, Iran. RESULTS Combination therapy with HBO and MP in the HBO + MP group significantly decreased MDA as well as increased FRAP levels compared to other treatment groups. Meanwhile, attenuated TNF-α and Caspase-3 expression could be significantly detected in the HBO + MP group. At the end of treatment, the neurological outcome was significantly improved and the extent of injured spinal tissue was also significantly reduced in the HBO + MP compared to other treatment groups. CONCLUSION The results suggest that combined therapy with MP and HBO has synergistic effects on SCI treatment.
Collapse
Affiliation(s)
- Fahimeh Ahmadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of biochemistry and genetic/Molecular and cell biology research center, Faculty of Medicine, Mazandaran University of medical sciences, Sari, Iran
| | - Davood Nasiry
- Department of Biology and Anatomical Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Correspondence to: Ali Reza Khalatbary, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Mirzaie J, Nasiry D, Ayna Ö, Raoofi A, Delbari A, Rustamzadeh A, Nezhadi A, Jamalpoor Z. Neuroprotective effects of lovastatin against traumatic spinal cord injury in rats. J Chem Neuroanat 2022; 125:102148. [PMID: 36031087 DOI: 10.1016/j.jchemneu.2022.102148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Lovastatin, as a drug of statins subgroup, has been conceptualized to have anti-inflammatory, antioxidant, and anti-apoptotic properties. Accordingly, the present study aimed to investigate the neuroprotective ramification of lovastatin on spinal cord injury (SCI). MATERIAL AND METHODS Seventy-five female adult Wistar rats were divided into five groups (n = 15). In addition to non-treated (Control group) and laminectomy alone (Sham group), SCI animals were randomly assigned to non-treated spinal cord injury (SCI group), treated with 2 mg/kg of lovastatin (Lova 2 group), and treated with 5 mg/kg of lovastatin (Lova 5 group). At the end of the study, to evaluate the treatments, MDA, CAT, SOD, and GSH factors were evaluated biochemically, apoptosis and gliosis were assessed by immunohistochemical while measuring caspase-3 and GFAP antibodies, and inflammation was estimated by examining the expression of IL-10, TNF-α, and IL-1β genes. The stereological method was used to appraise the total volume of the spinal cord at the site of injury, the volume of the central cavity created, and the density of neurons and glial cells in the traumatic area. In addition, Basso-Beattie-Bresnehan (BBB) and narrow beam test (NBT) were utilized to rate neurological functions. RESULTS Our results exposed the fact that biochemical factors (except MDA), stereological parameters, and neurological functions were significantly ameliorated in both lovastatin-treated groups, especially in Lova 5 ones, compared to the SCI group. The expression of the IL-10 gene was significantly upregulated in both lovastatin-treated groups compared to the SCI group and was considerably heighten in Lova 5 group. Expression of TNF-α and IL-1β, as well as the rate of apoptosis and GFAP positive cells significantly decreased in both lovastatin treated groups compared to the SCI group, and it was more pronounced in the Lova 5 ones. CONCLUSION Overall, using lovastatin, especially at a dose of 5 mg/kg, has a dramatic neuroprotective impact on SCI treatment.
Collapse
Affiliation(s)
- Jafar Mirzaie
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ömer Ayna
- Kiev Medical University, Dermatology Departments, Kiev, Ukraine
| | - Amir Raoofi
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Feng Y, Li Y, Shen PP, Wang B. Gene-Modified Stem Cells for Spinal Cord Injury: a Promising Better Alternative Therapy. Stem Cell Rev Rep 2022; 18:2662-2682. [PMID: 35587330 DOI: 10.1007/s12015-022-10387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/18/2022]
Abstract
Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.
Collapse
Affiliation(s)
- Yirui Feng
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
15
|
Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol 2022; 21:659-670. [DOI: 10.1016/s1474-4422(21)00464-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
|
16
|
Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, Zhang Z, Yi J, You Y, Li Z, Wang H, Zhang X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J Nanobiotechnology 2022; 20:65. [PMID: 35109874 PMCID: PMC8811988 DOI: 10.1186/s12951-022-01273-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Stem cell-derived exosomes have recently been regarded as potential drugs for treating spinal cord injury (SCI) by reducing reactive oxygen species (ROS) and suppressing M1 macrophage polarization. However, the roles of ROS and exosomes in the process of M1 macrophage polarization are not known. Herein, we demonstrated that ROS can induce M1 macrophage polarization and have a concentration-dependent effect. ROS can induce M1 macrophage polarization through the MAPK-NFκB P65 signaling pathway. Dental pulp stem cell (DPSC)-derived exosomes can reduce macrophage M1 polarization through the ROS-MAPK-NFκB P65 signaling pathway in treating SCI. This study suggested that DPSC-derived exosomes might be a potential drug for treating SCI. Disruption of the cycle between ROS and M1 macrophage polarization might also be a potential effective treatment by reducing secondary damage.
Collapse
Affiliation(s)
- Chao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Fanqi Hu
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Genlong Jiao
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Yue Guo
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Pan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Yuning Zhang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhen Zhang
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Jing Yi
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yonggang You
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhizhong Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China.
| | - Hua Wang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Xuesong Zhang
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Liu B, Zheng W, Dai L, Fu S, Shi E. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects against spinal cord ischemia reperfusion injury. Tissue Cell 2021; 74:101678. [PMID: 34823099 DOI: 10.1016/j.tice.2021.101678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
At present, much more studies have focused on the therapeutic effect of exosome-delivered microRNAs on diseases. Previous study has shown that miR-455-5p is downregulated in ischemic stroke, but little is known about the role of exosome-delivered miR-455-5p in spinal cord ischemia reperfusion (SCIR) injury. Herein, we isolated exosomes from bone marrow mesenchymal stem cells (BMSCs) transfected with lentivirus vectors containing miR-455-5p. SCIR rat model was established after the intrathecal injection of exosomes containing miR-455-5p. The expression level of miR-455-5p was downregulated after SCIR, administration of exosomal miR-455-5p enhanced the level of miR-455-5p in the injured spinal cord. Hind-limb motor function scores indicated that exosomal miR-455-5p improved the recovery of hind-limb function of SCIR rats. HE staining and Nissl staining showed that miR-455-5p enriched exosomes reduced histopathological abnormalities after SCIR. Double immunofluorescence staining revealed that exosomes containing miR-455-5p reduced apoptosis of neurons, and activated autophagy in neurons after SCIR. We observed that the expression of Nogo-A, a direct target of miR-455-5p, was decreased in the spinal cord of exosomal miR-455-5p administrated SCIR rats. Targeting relationship between miR-455-5p and Nogo-A was verified by dual-luciferase reporter assay. In summary, exosomes containing miR-455-5p had the neuroprotective effects on SCIR injury by promoting autophagy and inhibiting apoptosis of neurons.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Wenjun Zheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Li Dai
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shengjie Fu
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Enyi Shi
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
18
|
Ma Y, Zhang Q, Yang K, Ma J, Pan R, Lu G. Ultra-structural morphology analysis of human cranial bone marrow mesenchymal stromal cells during neural differentiation. Neurosci Lett 2021; 763:136179. [PMID: 34416344 DOI: 10.1016/j.neulet.2021.136179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Neural differentiation of mesenchymal stromal cells has been widely studied. However, a comparative characterization of ultrastructural changes during neural differentiation has not been performed. In this study, we conducted scanning electron microscopy and transmission electron microscopy analysis to show the morphological changes in mesenchymal stromal cells upon induction of neural differentiation. In addition, transmission electron microscopy results demonstrated ultrastructural differences between human cranial bone marrow mesenchymal stromal cells and iliac crest bone marrow mesenchymal stromal cells. We propose that enriched microvesicles in cranial bone marrow mesenchymal stromal cells may be responsible for the increased efficiency of neural differentiation.
Collapse
Affiliation(s)
- Yuyuan Ma
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, PR China
| | - Qulin Zhang
- Department of Neurosurgery, Nanxun People's Hospital, Huzhou 313009, PR China
| | - Kaichuang Yang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, PR China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P R China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311121, PR China; Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou 311121, PR China.
| | - Gang Lu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
19
|
Zhao X, Zhao X, Wang Z. Synergistic neuroprotective effects of hyperbaric oxygen and N-acetylcysteine against traumatic spinal cord injury in rat. J Chem Neuroanat 2021; 118:102037. [PMID: 34601074 DOI: 10.1016/j.jchemneu.2021.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The mitochondrial dysfunction and following oxidative stress, as well as the spread of inflammation plays major roles in the failure to regenerate following severe spinal cord injury (SCI). In this regard, we investigated the neuroprotective effects of hyperbaric oxygen (HBO), as an anti-apoptotic and anti-inflammatory agent, and N-acetylcysteine (NAC), as a mitochondrial enhancer, in SCI. MATERIAL AND METHODS Seventy-five female adult Wistar rats divided into five groups (n = 15): laminectomy alone (Sham) group, SCI group, HBO group (underwent SCI and received HBO), NAC group (underwent SCI and received NAC), and HBO+NAC group (underwent SCI and simultaneously received NAC and HBO). At the end of study, spinal cord tissue samples were taken for evaluation of biochemical profiles including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) levels, immunohistochemistry for caspase-3 as well as gene expressions of interleukin (IL)-10, tumor necrosis factor alpha (TNF-α), and IL-1β. Stereological assessments were performed to determine the total volumes, central cavity volumes and as well as numerical density of the neural and glial cells in traumatic area. Moreover, neurological functions were evaluated by the Basso-Beattie-Bresnehan (BBB) and electromyography (EMG). RESULTS Our results showed that the stereological parameters, biochemical profiles (except MDA) and neurological function were significantly higher in each HBO, NAC and HBO+NAC groups compared to the SCI group, and were highest in HBO+NAC ones. The transcript for IL-10 gene was significantly upregulated in all treatment regimens compared to SCI group, and was highest in HBO+NAC ones. While expression of TNF-α and IL-1β, latency, as well as density of apoptosis cells in caspase-3 evaluation significantly more decreased in HBO+NAC group compared to other groups. CONCLUSION Overall, using combined therapy with HBO and NAC has synergistic neuroprotective effects in SCI treatment.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaopeng Zhao
- Department of Neurosurgery, Xilinguole Meng Mongolian General Hospital, Xilinguole 026000, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
20
|
Nakazaki M, Morita T, Lankford KL, Askenase PW, Kocsis JD. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J Extracell Vesicles 2021; 10:e12137. [PMID: 34478241 PMCID: PMC8408371 DOI: 10.1002/jev2.12137] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intravenous (IV) infusion of bone marrow-derived mesenchymal stem/stromal cells (MSCs) stabilizes the blood-spinal cord barrier (BSCB) and improves functional recovery in experimental models of spinal cord injury (SCI). Although IV delivered MSCs do not traffic to the injury site, IV delivered small extracellular vesicles (sEVs) derived from MSCs (MSC-sEVs) do and are taken up by a subset of M2 macrophages. To test whether sEVs released by MSCs are responsible for the therapeutic effects of MSCs, we tracked sEVs produced by IV delivered DiR-labelled MSCs (DiR-MSCs) after transplantation into SCI rats. We found that sEVs were released by MSCs in vivo, trafficked to the injury site, associated specifically with M2 macrophages and co-localized with exosome markers. Furthermore, while a single MSC injection was sufficient to improve locomotor recovery, fractionated dosing of MSC-sEVs over 3 days (F-sEVs) was required to achieve similar therapeutic effects. Infusion of F-sEVs mimicked the effects of single dose MSC infusion on multiple parameters including: increased expression of M2 macrophage markers, upregulation of transforming growth factor-beta (TGF-β), TGF-β receptors and tight junction proteins, and reduction in BSCB permeability. These data suggest that release of sEVs by MSCs over time induces a cascade of cellular responses leading to improved functional recovery.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Tomonori Morita
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Karen L. Lankford
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Philip W Askenase
- Section of Rheumatology, Allergy and Clinical ImmunologyDepartment of Internal MedicineYale University School of MedicineConnecticutUSA
| | - Jeffery D. Kocsis
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
21
|
Baroncini A, Eschweiler J, Kobbe P, Quack V, Smajic S, Trobisch P, Hildebrand F, Migliorini F. Mesenchymal Stem Cell Applications in Spine Disorders: A Comprehensive Review. APPLIED SCIENCES 2021; 11:7966. [DOI: 10.3390/app11177966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Mesenchymal stem cells (MSCs) are increasingly being employed in a number of orthopedic settings, in particular in the treatment of hip and knee osteoarthritis. Recently, the use MSCs has been investigated for different spine settings. However, the use of these cells is not yet widespread in the clinical practice. The aim of this review was to investigate the current literature regarding the use of MSCs in different spine conditions and discuss possible future applications. In particular, degenerative disc disease is the most studied field for MSC application, and is the only one that has already reached the clinical practice, albeit not routinely. Spinal cord injuries are another extensively investigated use of MSCs: despite encouraging preliminary results, a consensus on the efficacy of stem cell therapy for spinal cord injuries has not yet been reached, and their use is still only experimental.
Collapse
Affiliation(s)
- Alice Baroncini
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University, 52074 Aachen, Germany
- Department of Spine Surgery, Eifelklinik St. Brigida, 52152 Simmerath, Germany
| | - Jörg Eschweiler
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Valentin Quack
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Samir Smajic
- Department of Orthopaedic and Trauma Surgery, St-Josef-Krankenhaus, 52441 Linnich, Germany
| | - Per Trobisch
- Department of Spine Surgery, Eifelklinik St. Brigida, 52152 Simmerath, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
22
|
Richard SA, Sackey M. Elucidating the Pivotal Neuroimmunomodulation of Stem Cells in Spinal Cord Injury Repair. Stem Cells Int 2021; 2021:9230866. [PMID: 34341666 PMCID: PMC8325586 DOI: 10.1155/2021/9230866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a distressing incident with abrupt onset of the motor as well as sensory dysfunction, and most often, the injury occurs as result of high-energy or velocity accidents as well as contact sports and falls in the elderly. The key challenges associated with nerve repair are the lack of self-repair as well as neurotrophic factors and primary and secondary neuronal apoptosis, as well as factors that prevent the regeneration of axons locally. Neurons that survive the initial traumatic damage may be lost due to pathogenic activities like neuroinflammation and apoptosis. Implanted stem cells are capable of differentiating into neural cells that replace injured cells as well as offer local neurotrophic factors that aid neuroprotection, immunomodulation, axonal sprouting, axonal regeneration, and remyelination. At the microenvironment of SCI, stem cells are capable of producing growth factors like brain-derived neurotrophic factor and nerve growth factor which triggers neuronal survival as well as axonal regrowth. Although stem cells have proven to be of therapeutic value in SCI, the major disadvantage of some of the cell types is the risk for tumorigenicity due to the contamination of undifferentiated cells prior to transplantation. Local administration of stem cells via either direct cellular injection into the spinal cord parenchyma or intrathecal administration into the subarachnoid space is currently the best transplantation modality for stem cells during SCI.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| |
Collapse
|
23
|
Khalatbary AR. Stem cell-derived exosomes as a cell free therapy against spinal cord injury. Tissue Cell 2021; 71:101559. [PMID: 34052745 DOI: 10.1016/j.tice.2021.101559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Recent evidence suggests that stem cell therapy has beneficial effects on spinal cord injury. It was subsequently established that these beneficial effects may be mediated through release of paracrine factors, a kind of extracellular vesicle known as exosomes. Stem cell-secreted nano-sized exosomes have shown great potential to reduce apoptosis and inflammation, enhance angiogenesis, and improve functional behavioral recovery following spinal cord injury. This review summarizes current knowledge about the influence of exosomes derived from stem cells on spinal cord protection and regeneration with their molecular mechanisms after injury.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
24
|
Kajitani T, Endo T, Iwabuchi N, Inoue T, Takahashi Y, Abe T, Niizuma K, Tominaga T. Association of intravenous administration of human Muse cells with deficit amelioration in a rat model of spinal cord injury. J Neurosurg Spine 2021; 34:648-655. [PMID: 33385996 DOI: 10.3171/2020.7.spine20293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Multilineage-differentiating stress-enduring (Muse) cells are pluripotent stem cells, which can be harvested from the bone marrow. After transplantation, Muse cells can migrate to an injured site of the body and exert repair effects. However, it remains unknown whether Muse cell transplantation can be an effective treatment in spinal cord injury (SCI). METHODS The authors used a rat model of thoracic spinal cord contusion injury. For Muse cell transplantation, the clinical product CL2020 containing 300,000 Muse cells was administered intravenously 1 day after midthoracic SCI. Animals were divided into CL2020 (n = 11) and vehicle-treated (n = 15) groups. Behavioral and histological evaluations were conducted over a period of 8 weeks to see whether intravenous CL2020 administration provided therapeutic effects for SCI. The effects of human-selective diphtheria toxin on reversion of the therapeutic effects of CL2020 were also investigated. RESULTS Hindlimb motor function significantly improved after CL2020 transplantations. Importantly, the effects were reverted by the human-selective diphtheria toxin. In immunohistochemical analyses, the cystic cavity formed after the injury was smaller in the CL2020 group. Furthermore, higher numbers of descending 5-hydroxytryptamine (5-HT) fibers were preserved distal to the injury site after CL2020 administration. Eight weeks after the injury, Muse cells in CL2020 were confirmed to differentiate most predominantly into neuronal cells in the injured spinal cord. CONCLUSIONS Following SCI, Muse cells in CL2020 can reach the injured spinal cord after intravenous administration and differentiate into neuronal cells. Muse cells in CL2020 facilitated nerve fiber preservation and exerted therapeutic potential for severe SCI.
Collapse
Affiliation(s)
- Takumi Kajitani
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Toshiki Endo
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
- 2Department of Neurosurgery, Sendai Medical Center
| | - Naoya Iwabuchi
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Tomoo Inoue
- 2Department of Neurosurgery, Sendai Medical Center
| | | | - Takatsugu Abe
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Kuniyasu Niizuma
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
- 3Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Biomedical Engineering; and
- 4Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teiji Tominaga
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
25
|
Wood CR, Juárez EH, Ferrini F, Myint P, Innes J, Lossi L, Merighi A, Johnson WEB. Mesenchymal stem cell conditioned medium increases glial reactivity and decreases neuronal survival in spinal cord slice cultures. Biochem Biophys Rep 2021; 26:100976. [PMID: 33718633 PMCID: PMC7933697 DOI: 10.1016/j.bbrep.2021.100976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ex vivo spinal cord slice cultures (SCSC) allow study of spinal cord circuitry, maintaining stimuli responses comparable to live animals. Previously, we have shown that mesenchymal stem/stromal cell (MSC) transplantation in vivo reduced inflammation and increased nerve regeneration but MSC survival was short-lived, highlighting that beneficial action may derive from the secretome. Previous in vitro studies of MSC conditioned medium (CM) have also shown increased neuronal growth. In this study, murine SCSC were cultured in canine MSC CM (harvested from the adipose tissue of excised inguinal fat) and cell phenotypes analysed via immunohistochemistry and confocal microscopy. SCSC in MSC CM displayed enhanced viability after propidium iodide staining. GFAP immunoreactivity was significantly increased in SCSC in MSC CM compared to controls, but with no change in proteoglycan (NG2) immunoreactivity. In contrast, culture in MSC CM significantly decreased the prevalence of βIII-tubulin immunoreactive neurites, whilst Ca2+ transients per cell were significantly increased. These ex vivo results contradict previous in vitro and in vivo reports of how MSC and their secretome may affect the microenvironment of the spinal cord after injury and highlight the importance of a careful comparison of the different experimental conditions used to assess the potential of cell therapies for the treatment of spinal cord injury. Treatment of spinal slices with conditioned medium caused cell phenotypic changes. Resident astrocytes become hypertrophic, yet neuronal axonal outgrowth reduced. Signalling cells reduced in number but increased their signalling activity. Highlights importance of simulation systems and systemic factors in CNS models.
Collapse
Affiliation(s)
- Chelsea R Wood
- Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| | - Esri H Juárez
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy.,Université Laval, Department of Psychiatry and Neuroscience, G1K 7P4, Québec, Canada
| | - Peter Myint
- Veterinary Tissue Bank Ltd., No.1 The Long Barn, Brynkinalt Business Centre, Chirk, Wrexham, LL14 5NS, UK
| | - John Innes
- Veterinary Tissue Bank Ltd., No.1 The Long Barn, Brynkinalt Business Centre, Chirk, Wrexham, LL14 5NS, UK
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - William E B Johnson
- Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| |
Collapse
|
26
|
Muthu S, Jeyaraman M, Gulati A, Arora A. Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic review and meta-analysis. Cytotherapy 2021; 23:186-197. [PMID: 33183980 DOI: 10.1016/j.jcyt.2020.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AIMS The authors aim to analyze the evidence in the literature regarding the efficacy and safety of mesenchymal stem cell (MSC) therapy in human subjects with traumatic spinal cord injury (SCI) and identify its potential role in the management of SCI. METHODS The authors conducted independent and duplicate searches of electronic databases, including PubMed, Embase and the Cochrane Library, until May 2020 for studies analyzing the efficacy and safety of stem cell therapy for SCI. American Spine Injury Association (ASIA) impairment scale (AIS) grade improvement, ASIA sensorimotor score, activities of daily living score, residual urine volume, bladder function improvement, somatosensory evoked potential (SSEP) improvement and adverse reactions were the outcomes analyzed. Analysis was performed in R platform using OpenMeta[Analyst] software. RESULTS Nineteen studies involving 670 patients were included for analysis. On analysis, the intervention group showed statistically significant improvement in AIS grade (P < 0.001), ASIA sensory score (P < 0.017), light touch (P < 0.001), pinprick (P = 0.046), bladder function (P = 0.012), residual urine volume (P = 0.023) and SSEP (P = 0.002). However, no significant difference was noted in motor score (P = 0.193) or activities of daily living score (P = 0.161). Although the intervention group had a significant increase in complications (P < 0.001), no serious or permanent adverse events were reported. On subgroup analysis, low concentration of MSCs (<5 × 107 cells) and initial AIS grade A presentation showed significantly better outcomes than their counterparts. CONCLUSIONS The authors' analysis establishes the efficacy and safety of MSC transplantation in terms of improvement in AIS grade, ASIA sensory score, bladder function and electrophysiological parameters like SSEP compared with controls, without major adverse events. However, further research is needed to standardize dose, timing, route and source of MSCs used for transplantation.
Collapse
Affiliation(s)
- Sathish Muthu
- Government Hospital, Velayuthampalayam, Karur, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Indian Stem Cells Study Group, Lucknow, India.
| | - Madhan Jeyaraman
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Indian Stem Cells Study Group, Lucknow, India; Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, India
| | - Arun Gulati
- Department of Orthopaedics, Kalpana Chawla Government Medical College & Hospital, Karnal, India
| | - Arunabh Arora
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
27
|
Luo Y, Xu T, Liu W, Rong Y, Wang J, Fan J, Yin G, Cai W. Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model. Int J Neurosci 2021; 131:170-182. [PMID: 32223487 DOI: 10.1080/00207454.2020.1734598] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/27/2019] [Accepted: 01/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study aims to explore the effects of exosomes derived from G protein-coupled receptor kinase 2 interacting protein 1 (GIT1)-overexpressing bone marrow mesenchymal stem cell (GIT1-BMSC-Exos) on the treatment of traumatic spinal cord injury (SCI) in a rat model. METHODS All the rats underwent a T10 laminectomy. A weight-drop impact was performed using a 10-g rod from a height of 12.5 mm except the sham group. Rats with SCI were distributed into three groups randomly and then treated with tail vein injection of GIT1-BMSCs-Exos, BMSCs-Exos and PBS, respectively. The effects of GIT1-Exos on glutamate (GLU)-induced apoptosis in vitro were also evaluated by TUNEL staining. RESULTS The results showed that rats treated with GIT1-BMSCs-Exos had better functional behavioral recovery than those treated with PBS or BMSCs-Exos only. The overexpression of GIT1 in BMSCs-Exos not only restrained glial scar formation and neuroinflammation after SCI, but also attenuated apoptosis and promoted axonal regeneration in the injured lesion area. Neuronal cell death induced by GLU was controlled remarkably in vitro as well. CONCLUSION In conclusion, our study suggested that the application of GIT1-BMSCs-Exos may provide a novel avenue for traumatic SCI treatment.
Collapse
Affiliation(s)
- Yongjun Luo
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Jarrin S, Cabré S, Dowd E. The potential of biomaterials for central nervous system cellular repair. Neurochem Int 2021; 144:104971. [PMID: 33515647 DOI: 10.1016/j.neuint.2021.104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) can be injured or damaged through a variety of insults including traumatic injury, stroke, and neurodegenerative or demyelinating diseases, including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Existing pharmacological and other therapeutics strategies are limited in their ability to repair or regenerate damaged CNS tissue meaning there are significant unmet clinical needs facing patients suffering CNS damage and/or degeneration. Through a variety of mechanisms including neuronal replacement, secretion of therapeutic factors, and stimulation of host brain plasticity, cell-based repair offers a potential mechanism to repair and heal the damaged CNS. However, over the decades of its evolution as a therapeutic strategy, cell-based CNS repair has faced significant hurdles that have prevented its translation to widespread clinical practice. In recent years, advances in cell technologies combined with advances in biomaterial-based regenerative medicine and tissue engineering have meant there is very real potential for many of these hurdles to be overcome. This review will provide an overview of the main CNS conditions that lend themselves to cellular repair and will then outline the potential of biomaterial-based approaches for improving the outcome of cellular repair in these conditions.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Sílvia Cabré
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
29
|
Gene Profiles in the Early Stage of Neuronal Differentiation of Mouse Bone Marrow Stromal Cells Induced by Basic Fibroblast Growth Factor. Stem Cells Int 2021; 2020:8857057. [PMID: 33424980 PMCID: PMC7775150 DOI: 10.1155/2020/8857057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
A stably established population of mouse bone marrow stromal cells (BMSCs) with self-renewal and multilineage differentiation potential was expanded in vitro for more than 50 passages. These cells express high levels of mesenchymal stem cell markers and can be differentiated into adipogenic, chondrogenic, and osteogenic lineages in vitro. Subjected to basic fibroblast growth factor (bFGF) treatment, a typical neuronal phenotype was induced in these cells, as supported by neuronal morphology, induction of neuronal markers, and relevant electrophysiological excitability. To identify the genes regulating neuronal differentiation, cDNA microarray analysis was conducted using mRNAs isolated from cells differentiated for different time periods (0, 4, 24, and 72 h) after bFGF treatment. Various expression patterns of neuronal genes were stimulated by bFGF. These gene profiles were shown to be involved in developmental, functional, and structural integration of the nervous system. The expression of representative genes stimulated by bFGF in each group was verified by RT-PCR. Amongst proneural genes, the mammalian achate-schute homolog 1 (Mash-1), a basic helix-loop-helix transcriptional factor, was further demonstrated to be significantly upregulated. Overexpression of Mash-1 in mouse BMSCs was shown to induce the expression of neuronal specific enolase (NSE) and terminal neuronal morphology, suggesting that Mash-1 plays an important role in the induction of neuronal differentiation of mouse BMSCs.
Collapse
|
30
|
Chu X, Liu D, Li T, Ke H, Xin D, Wang S, Cao Y, Xue H, Wang Z. Hydrogen sulfide-modified extracellular vesicles from mesenchymal stem cells for treatment of hypoxic-ischemic brain injury. J Control Release 2020; 328:13-27. [DOI: 10.1016/j.jconrel.2020.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
|
31
|
Majeed S, Aziz A, Simjee SU. Neuronal transcription program induced in hippocampal cells cocultured with bone marrow derived mesenchymal cells. Heliyon 2020; 6:e05083. [PMID: 33083598 PMCID: PMC7550926 DOI: 10.1016/j.heliyon.2020.e05083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022] Open
Abstract
Several approaches have been applied to harvest bone marrow stromal cells (BMSCs) and to differentiate into neurons or neuronal-like cells through chemical stimulation or exposing to growth factors. To date, the data regarding induction or regulation of neuronal transcription program in neuronal-like cells derived from BMSCs is yet unknown. The objective of this study is to co-culture BMSCs with neonatal hippocampal cells and generate neuronal-like cells by direct cell-to-cell contact system without using neuronal growth factors or neurobasal medium. Here, we proposed a role for NeuroD1 and Neurogenin -2 bHLH family of transcription factors implicated in onset of neurogenesis and differentiation of cells into neurons in promoting the interaction of hippocampal cells with BMSCs and their differentiation in to neurons. The proliferation of the cells was assessed with MTT assay and the role of neuronal induction and differentiation transcription regulators NeuroD1 and Neurogenin-2 in cocultured cells was determined through immunocytochemical analysis. We observed activation and expression of the neurogenic transcription factors NeuroD1 and NGN-2 associated with neuronal activation program to initiate the onset of neurogenesis in cocultured cells. Further, our results have shown a significant expression of neuronal progenitor and immature neuronal marker i.e., nestin and tubulin respectively in cocultured cells endorsing the initiation of neuronal activation.
Collapse
Affiliation(s)
- Saba Majeed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Aisha Aziz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| |
Collapse
|
32
|
Sodium Tanshinone IIA Silate Exerts Microcirculation Protective Effects against Spinal Cord Injury In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3949575. [PMID: 33101588 PMCID: PMC7568160 DOI: 10.1155/2020/3949575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs) in vitro and to explore effects on BSCB and neurovascular protection in vivo. SCMECs were treated with various concentrations of STS (1 μM, 3 μM, and 10 μM) for 24 h with or without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor (vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1), inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model. Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.
Collapse
|
33
|
Barros I, Marcelo A, Silva TP, Barata J, Rufino-Ramos D, Pereira de Almeida L, Miranda CO. Mesenchymal Stromal Cells' Therapy for Polyglutamine Disorders: Where Do We Stand and Where Should We Go? Front Cell Neurosci 2020; 14:584277. [PMID: 33132851 PMCID: PMC7573388 DOI: 10.3389/fncel.2020.584277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by the expansion of the cytosine-adenine-guanine (CAG) repeat. This mutation encodes extended glutamine (Q) tract in the disease protein, resulting in the alteration of its conformation/physiological role and in the formation of toxic fragments/aggregates of the protein. This group of heterogeneous disorders shares common molecular mechanisms, which opens the possibility to develop a pan therapeutic approach. Vast efforts have been made to develop strategies to alleviate disease symptoms. Nonetheless, there is still no therapy that can cure or effectively delay disease progression of any of these disorders. Mesenchymal stromal cells (MSC) are promising tools for the treatment of polyQ disorders, promoting protection, tissue regeneration, and/or modulation of the immune system in animal models. Accordingly, data collected from clinical trials have so far demonstrated that transplantation of MSC is safe and delays the progression of some polyQ disorders for some time. However, to achieve sustained phenotypic amelioration in clinics, several treatments may be necessary. Therefore, efforts to develop new strategies to improve MSC's therapeutic outcomes have been emerging. In this review article, we discuss the current treatments and strategies used to reduce polyQ symptoms and major pre-clinical and clinical achievements obtained with MSC transplantation as well as remaining flaws that need to be overcome. The requirement to cross the blood-brain-barrier (BBB), together with a short rate of cell engraftment in the lesioned area and low survival of MSC in a pathophysiological context upon transplantation may contribute to the transient therapeutic effects. We also review methods like pre-conditioning or genetic engineering of MSC that can be used to increase MSC survival in vivo, cellular-free approaches-i.e., MSC-conditioned medium (CM) or MSC-derived extracellular vesicles (EVs) as a way of possibly replacing the use of MSC and methods required to standardize the potential of MSC/MSC-derived products. These are fundamental questions that need to be addressed to obtain maximum MSC performance in polyQ diseases and therefore increase clinical benefits.
Collapse
Affiliation(s)
- Inês Barros
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Adriana Marcelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Teresa P Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João Barata
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Viravector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Catarina O Miranda
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Yao P, Zhou L, Zhu L, Zhou B, Yu Q. Mesenchymal Stem Cells: A Potential Therapeutic Strategy for Neurodegenerative Diseases. Eur Neurol 2020; 83:235-241. [PMID: 32690856 DOI: 10.1159/000509268] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
Neurodegenerative disease is a kind of chronic, progressive nervous system disease characterized by neuron degeneration or apoptosis. Current treatments cannot prevent the development of the disease. Possible alternative treatments include cell therapy, especially with the use of mesenchymal stem cells (MSCs). MSCs are pluripotent stem cells with capacities for self-renewal and multidirectional differentiation. MSCs may serve as a reliable source of neural cells for potential cell replacement therapy or regenerative medicine treatment. Here, we summarized the therapeutic mechanisms of MSCs and how they can contribute to the development of treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Panpan Yao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lujie Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Binjie Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China,
| |
Collapse
|
35
|
Lindsay SL, McCanney GA, Willison AG, Barnett SC. Multi-target approaches to CNS repair: olfactory mucosa-derived cells and heparan sulfates. Nat Rev Neurol 2020; 16:229-240. [PMID: 32099190 DOI: 10.1038/s41582-020-0311-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) remains one of the biggest challenges in the development of neuroregenerative therapeutics. Cell transplantation is one of numerous experimental strategies that have been identified and tested for efficacy at both preclinical and clinical levels in recent years. In this Review, we briefly discuss the state of human olfactory cell transplantation as a therapy, considering both its current clinical status and its limitations. Furthermore, we introduce a mesenchymal stromal cell derived from human olfactory tissue, which has the potential to induce multifaceted reparative effects in the environment within and surrounding the lesion. We argue that no single therapy will be sufficient to treat SCI effectively and that a combination of cell-based, rehabilitation and pharmaceutical interventions is the most promising approach to aid repair. For this reason, we also introduce a novel pharmaceutical strategy based on modifying the activity of heparan sulfate, an important regulator of a wide range of biological cell functions. The multi-target approach that is exemplified by these types of strategies will probably be necessary to optimize SCI treatment.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - George A McCanney
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alice G Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
36
|
Liu W, Rong Y, Wang J, Zhou Z, Ge X, Ji C, Jiang D, Gong F, Li L, Chen J, Zhao S, Kong F, Gu C, Fan J, Cai W. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation 2020; 17:47. [PMID: 32019561 PMCID: PMC7001326 DOI: 10.1186/s12974-020-1726-7] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction with high disability and mortality. In recent years, mesenchymal stem cell (MSC)-secreted nano-sized exosomes have shown great potential for promoting functional behavioral recovery following SCI. However, MSCs are usually exposed to normoxia in vitro, which differs greatly from the hypoxic micro-environment in vivo. Thus, the main purpose of this study was to determine whether exosomes derived from MSCs under hypoxia (HExos) exhibit greater effects on functional behavioral recovery than those under normoxia (Exos) following SCI in mice and to seek the underlying mechanism. Methods Electron microscope, nanoparticle tracking analysis (NTA), and western blot were applied to characterize differences between Exos and HExos group. A SCI model in vivo and a series of in vitro experiments were performed to compare the therapeutic effects between the two groups. Next, a miRNA microarray analysis was performed and a series of rescue experiments were conducted to verify the role of hypoxic exosomal miRNA in SCI. Western blot, luciferase activity, and RNA-ChIP were used to investigate the underlying mechanisms. Results Our results indicate that HExos promote functional behavioral recovery by shifting microglial polarization from M1 to M2 phenotype in vivo and in vitro. A miRNA array showed miR-216a-5p to be the most enriched in HExos and potentially involved in HExos-mediated microglial polarization. TLR4 was identified as the target downstream gene of miR-216a-5p and the miR-216a-5p/TLR4 axis was confirmed by a series of gain- and loss-of-function experiments. Finally, we found that TLR4/NF-κB/PI3K/AKT signaling cascades may be involved in the modulation of microglial polarization by hypoxic exosomal miR-216a-5p. Conclusion Hypoxia preconditioning represents a promising and effective approach to optimize the therapeutic actions of MSC-derived exosomes and a combination of MSC-derived exosomes and miRNAs may present a minimally invasive method for treating SCI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangyi Gong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Linwei Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fanqi Kong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Changjiang Gu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
37
|
Gao S, Guo X, Zhao S, Jin Y, Zhou F, Yuan P, Cao L, Wang J, Qiu Y, Sun C, Kang Z, Gao F, Xu W, Hu X, Yang D, Qin Y, Ning K, Shaw PJ, Zhong G, Cheng L, Zhu H, Gao Z, Chen X, Xu J. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis 2019; 10:597. [PMID: 31395857 PMCID: PMC6687731 DOI: 10.1038/s41419-019-1772-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are increasingly presumed to be a prospective stem cell source for cell replacement therapy in various degenerative and/or traumatic diseases. The potential of trans-differentiating hADSCs into motor neuron cells indisputably provides an alternative way for spinal cord injury (SCI) treatment. In the present study, a stepwise and efficient hADSC trans-differentiation protocol with retinoic acid (RA), sonic hedgehog (SHH), and neurotrophic factors were developed. With this protocol hADSCs could be converted into electrophysiologically active motoneuron-like cells (hADSC-MNs), which expressed both a cohort of pan neuronal markers and motor neuron specific markers. Moreover, after being primed for neuronal differentiation with RA/SHH, hADSCs were transplanted into SCI mouse model and they survived, migrated, and integrated into injured site and led to partial functional recovery of SCI mice. When ablating the transplanted hADSC-MNs harboring HSV-TK-mCherry overexpression system with antivirial Ganciclovir (GCV), functional relapse was detected by motor-evoked potential (MEP) and BMS assays, implying that transplanted hADSC-MNs participated in rebuilding the neural circuits, which was further confirmed by retrograde neuronal tracing system (WGA). GFP-labeled hADSC-MNs were subjected to whole-cell patch-clamp recording in acute spinal cord slice preparation and both action potentials and synaptic activities were recorded, which further confirmed that those pre-conditioned hADSCs indeed became functionally active neurons in vivo. As well, transplanted hADSC-MNs largely prevented the formation of injury-induced cavities and exerted obvious immune-suppression effect as revealed by preventing astrocyte reactivation and favoring the secretion of a spectrum of anti-inflammatory cytokines and chemokines. Our work suggests that hADSCs can be readily transformed into MNs in vitro, and stay viable in spinal cord of the SCI mouse and exert multi-therapeutic effects by rebuilding the broken circuitry and optimizing the microenvironment through immunosuppression.
Collapse
Affiliation(s)
- Shane Gao
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuanxuan Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Simeng Zhao
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, JinShan, Shanghai, 201508, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Ping Yuan
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Limei Cao
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yue Qiu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chenxi Sun
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhanrong Kang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200137, China
| | - Fengjuan Gao
- Zhoupu hospital, Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wei Xu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Hu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ying Qin
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Guisheng Zhong
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China.
| | - Liming Cheng
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Hongwen Zhu
- Tianjin Hospital, Tianjin, 300211, China. .,BOE Technology Group Co., Ltd., Beijing, 100176, China.
| | - Zhengliang Gao
- Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xu Chen
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
38
|
Zhang J, Kong X, Jin X, Gao P, Wang M, Yang L. Bone marrow stromal cells transplantation promotes the resolution and recanalization of deep vein thrombosis in rabbits through regulating macrophage infiltration and angiogenesis. J Cell Biochem 2019; 120:11680-11689. [PMID: 30790336 DOI: 10.1002/jcb.28447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
This study aims to validate whether bone marrow stromal cells (BMSCs) transplantation could promote the resolution and recanalization of deep vein thrombosis (DVT) and to explore the underlying mechanism. The right hind femoral vein was embolized to establish the DVT rabbit model. BMSCs from New Zealand white rabbits were isolated and identified, and then injected into DVT rabbits. After that, the extent of angiogenesis was determined by the amount of capillaries that were positive for antibody against vWF. Macrophage infiltration was measured by immunohistochemistry with F4/80 antibody. M1 or M2 macrophages were identified as F4/80 + CD11c + or F4/80 + CD206 + cells by using flow cytometry analysis, respectively. BMSCs were successfully isolated and identified. BMSCs transplantation promotes macrophage infiltration and angiogenesis in DVT rabbits. BMSCs transplantation causes M1/M2 polarization, altered cytokine production and increased monocyte chemotactic protein 1 (MCP-1) protein expression in DVT rabbits. However, injection of MCP-1 protein not only reversed the effects of BMSCs transplantation on macrophage infiltration and angiogenesis, but also reversed the effects of BMSCs transplantation on M1/M2 polarization and cytokine production in DVT rabbits. BMSCs transplantation promotes the resolution and recanalization of DVT in rabbits through regulating macrophage infiltration and angiogenesis, the underlying mechanism is associated with MCP-1 expression.
Collapse
Affiliation(s)
- Jingyong Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiangqian Kong
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Peixian Gao
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Maohua Wang
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Administration of human umbilical cord blood mononuclear cells restores bladder dysfunction in streptozotocin-induced diabetic rats. Low Urin Tract Symptoms 2019; 11:232-240. [PMID: 31207098 DOI: 10.1111/luts.12268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study evaluated the effect of human umbilical cord blood mononuclear cells (HUCB-MNCs) on bladder dysfunction in streptozotocin (STZ; 35 mg/kg, i.v.)-induced diabetic rats. METHODS Adult male Sprague-Dawley rats (n = 30) were equally divided into three groups: control group, STZ-diabetic group, and HUCB-MNC-treated group (1 × 106 cells). HUCB-MNCs were isolated by density gradient centrifugation from eight healthy donors and injected into the corpus cavenosum in STZ-diabetic rats 4 weeks after the induction of diabetes. Studies were performed 4 weeks after HUCB-MNC or vehicle injection. In vitro organ bath studies were performed on bladder strips, whereas protein expression of hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and α-smooth muscle actin (SMA) in the bladder and the ratio of smooth muscle cells (SMCs) to collagen were determined using western blotting and Masson trichrome staining. RESULTS Neurogenic contractions of detrusor smooth muscle strips were 55% smaller in the diabetic group than control group (P < 0.05); these contractions were normalized by HUCB-MNC treatment. In addition, HUCB-MNC treatment restored the impaired maximal carbachol-induced contractile response in detrusor strips in the diabetic group (29%; P < 0.05). HUCB-MNC treatment improved the KCl-induced contractile response in the diabetic bladder (68%; P < 0.05), but had no effect on ATP-induced contractile responses. Increased expression of HIF-1α and VEGF protein and decreased expression of α-SMA protein and the SMC/collagen ratio in diabetic rats were reversed by HUCB-MNC. CONCLUSION Administration of HUCB-MNCs facilitates bladder function recovery, which is likely related to downregulation of HIF-1α expression and attenuation of fibrosis in STZ-diabetic rats.
Collapse
Affiliation(s)
- Ecem Kaya-Sezginer
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
40
|
Pang CY, Yang KL, Fu CH, Sun LY, Chen SY, Liao CH. G-CSF enhances the therapeutic potency of stem cells transplantation in spinal cord-injured rats. Regen Med 2019; 14:571-583. [DOI: 10.2217/rme-2018-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: The therapeutic effects of human wisdom teeth-derived neuronal stem cell (tNSC) cotreatment with granulocyte-colony-stimulating factor (G-CSF) were evaluated for contusion-induced spinal cord injury in rats. Materials & methods: 7 days after contusion, tNSCs were transplanted to the injury site and followed by G-CSF cotreatment for 5 days. Behavioral deficits were evaluated by the Basso, Beattie and Bresnahan test. The injury site was collected for immunohistochemistry analysis. Results: The Basso, Beattie and Bresnahan test significantly improved in the cotreated group compared with the tNSCs or G-CSF single treatment groups. However, inflammation indices did not differ among the three groups. In vitro experiment demonstrated that tNSCs express both G-CSF and its relevant receptor. G-CSF enhanced tNSC proliferation and neurotrophins secretion in vitro. Conclusion: This study demonstrated that G-CSF enhances neurotrophins secretion of tNSCs, and might help improving functional recovery from spinal cord injury in rats if they were given together.
Collapse
Affiliation(s)
- Cheng-Yoong Pang
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Cardiovascular & Metabolomics Research Center, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan 970
| | - Kuo-Liang Yang
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Tzu Chi Cord Blood Bank, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
| | - Chin-Hua Fu
- Department of Neurology, Taichung Tzu Chi Hospital, Taichung, Taiwan 427
| | - Li-Yi Sun
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Gene & Stem Cell Production Center, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
| | - Chia-Hsin Liao
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan 970
- Department of Nature Science, Holistic Education Center, Tzu Chi University of Science & Technology, Hualien, Taiwan 970
| |
Collapse
|
41
|
Yuan X, Wu Q, Wang P, Jing Y, Yao H, Tang Y, Li Z, Zhang H, Xiu R. Exosomes Derived From Pericytes Improve Microcirculation and Protect Blood-Spinal Cord Barrier After Spinal Cord Injury in Mice. Front Neurosci 2019; 13:319. [PMID: 31040762 PMCID: PMC6476953 DOI: 10.3389/fnins.2019.00319] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) often leads to severe and permanent paralysis and places a heavy burden on individuals, families, and society. Until now, the therapy of SCI is still a big challenge for the researchers. Transplantation of mesenchymal stem cells (MSCs) is a hot spot for the treatment of SCI, but many problems and risks have not been resolved. Some studies have reported that the therapeutic effect of MSCs on SCI is related to the paracrine secretion of cells. The exosomes secreted by MSCs have therapeutic potential for many diseases. There are abundant pericytes which possess the characteristics of stem cells in the neurovascular unit. Due to the close relationship between pericytes and endothelial cells, the exosomes of pericytes can be taken up by endothelial cells more easily. There are fewer studies about the therapeutic potential of the exosomes derived from pericytes on SCI now. In this study, exosomes of pericytes were transplanted into the mice with SCI to study the restoration of motor function and explore the underlying mechanism. We found that the exosomes derived from pericytes could reduce pathological changes, improve the motor function, the blood flow and oxygen deficiency after SCI. In addition, the exosomes could improve the endothelial ability to regulate blood flow, protect the blood-spinal cord barrier, reduce edema, decrease the expression of HIF-1α, Bax, Aquaporin-4, and MMP2, increase the expression of Claudin-5, bcl-2 and inhibit apoptosis. The experiments in vitro proved that exosomes derived from pericytes could protect the barrier of spinal cord microvascular endothelial cells under hypoxia condition, which was related to PTEN/AKT pathway. In summary, our study showed that exosomes of pericytes had therapeutic prospects for SCI.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingbin Wu
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peng Wang
- Orthopedics Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Haijiang Yao
- Treatment Center of TCM, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yinshan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zhang
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Upregulation of UBAP2L in Bone Marrow Mesenchymal Stem Cells Promotes Functional Recovery in Rats with Spinal Cord Injury. Curr Med Sci 2018; 38:1081-1089. [PMID: 30536073 DOI: 10.1007/s11596-018-1987-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Post-translational modifications of cellular proteins with ubiquitin or ubiquitin-like proteins regulate many cellular processes, such as cell proliferation, differentiation, apoptosis, signal transduction, intercellular immune recognition, inflammatory response, stress response, and DNA repair. Nice4/UBAP2L is an important member in the family of ubiquitin-like proteins, and its biological function remains unknown. This study aimed to investigate the effect of UBAP2L on spinal cord injury (SCI). At first, rat bone marrow mesenchymal stem cells (BMSCs) were infected with adeno-associated virus to induce over-expression of Nice4. Subsequently, the infected BMSCs were transplanted into rats suffering from semi-sectioned SCI. The results showed that the over-expression of Nice4 significantly promoted the proliferation and differentiation of BMSCs. In addition, the transplantation of infected BMSCs into the injured area of SCI rats improved the function repair of SCI. Importantly, the immunohistochemical and hematoxylin-eosin staining and RT-PCR results showed that the number of neuronal cells, oligodendrocytes, and astrocytes was significantly increased in the injured area, along with significantly upregulated expression of cyclin D1 and p38 mitogen-activated protein kinase (MAPK). Meanwhile, the expression of caspase 3 protein was significantly down-regulated. In conclusion, the over-expression of Nice4 gene can promote the functional recovery in SCI rats by promoting cell proliferation and inhibiting apoptosis. The results of this study indicate an alternative option for the clinical treatment of SCI.
Collapse
|
43
|
Zahedi M, Parham A, Dehghani H, Kazemi Mehrjerdi H. Equine bone marrow-derived mesenchymal stem cells: optimization of cell density in primary culture. Stem Cell Investig 2018; 5:31. [PMID: 30498742 DOI: 10.21037/sci.2018.09.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/27/2018] [Indexed: 11/06/2022]
Abstract
Background The primary cell seeding density of bone marrow-derived mononuclear cells (BM-MNCs) affects several cellular behaviors, including attachment to the culture dish, proliferation, and differentiation. Methods The aim of this study was to determine the best density of equine BM-MNCs in primary culture (P0) for obtaining the maximum bone marrow-derived mesenchymal stem cell (BM-MSC) yields at the end of P0. Bone marrow samples of two healthy mares were aspirated. The MNCs were isolated and cultured at different densities (1×105, 2×105, 4×105, 8×105, and 1×106 cells/cm2). Within the 7th and 14th days after seeding, the colonies containing more than 15 cells were counted and the percentage of confluency and the number of cells were calculated on day 21. Results The lowest density of MNCs was associated with the least number of colonies, number of adherent cells, and confluency percentage, whereas the highest density was associated with the maximum number of colonies and confluency percentage (P<0.05). However, the maximum number of cells at the end of P0 was associated with the intermediate (4×105 cells/cm2) and the highest concentration (P<0.05). Conclusions The maximum number of MSCs at the end of P0 was obtained at the densities of 1×106 and, especially, at 4×105 cells/cm2.
Collapse
Affiliation(s)
- Morteza Zahedi
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biotechnology and Alterative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biotechnology and Alterative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
44
|
Leavitt RJ, Limoli CL, Baulch JE. miRNA-based therapeutic potential of stem cell-derived extracellular vesicles: a safe cell-free treatment to ameliorate radiation-induced brain injury. Int J Radiat Biol 2018; 95:427-435. [PMID: 30252569 DOI: 10.1080/09553002.2018.1522012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE This review compiles what is known about extracellular vesicles (EVs), their bioactive cargo, and how they might be used to treat radiation-induced brain injury. Radiotherapy (RT) is effective in cancer treatment, but can cause substantial damage to normal central nervous system tissue. Stem cell therapy has been shown to be effective in treating cognitive dysfunction arising from RT, but there remain safety concerns when grafting foreign stem cells into the brain (i.e. immunogenicity, teratoma). These limitations prompted the search for cell-free alternatives, and pointed to EVs that have been shown to have similar ameliorating effects in other tissues and injury models. CONCLUSIONS EVs are nano-scale and lipid-bound vesicles that readily pass the blood-brain barrier. Arguably the most important bioactive cargo within EVs are RNAs, in particular microRNAs (miRNA). A single miRNA can modulate entire gene networks and signalling within the recipient cell. Determining functionally relevant miRNA could lead to therapeutic treatments where synthetically-derived EVs are used as delivery vectors for miRNA. Stem cell-derived EVs can be effective in treating brain injury including radiation-induced cognitive deficits. Of particular interest are systemic modes of administration which obviate the need for invasive procedures.
Collapse
Affiliation(s)
- Ron J Leavitt
- a Department of Radiation Oncology , University of California Irvine , Irvine , CA , USA
| | - Charles L Limoli
- a Department of Radiation Oncology , University of California Irvine , Irvine , CA , USA
| | - Janet E Baulch
- a Department of Radiation Oncology , University of California Irvine , Irvine , CA , USA
| |
Collapse
|
45
|
Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W. Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes. J Neurotrauma 2018; 36:469-484. [PMID: 29848167 DOI: 10.1089/neu.2018.5835] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is now considered as an effective treatment strategy for traumatic spinal cord injury (SCI). However, several key issues remain unresolved, including low survival rates, cell dedifferentiation, and tumor formation. Recent studies have demonstrated that the therapeutic effect of transplanted stem cells is primarily paracrine mediated. Exosomes are an important paracrine factor that can be used as a direct therapeutic agent. However, there are few reports on the application of exosomes derived from bone MSCs (BMSCs-Exos) in treating SCI. In this study, we demonstrated that BMSCs-Exos possessed robust proangiogenic properties, attenuated neuronal cells apoptosis, suppressed glial scar formation, attenuated lesion size, suppressed inflammation, promoted axonal regeneration, and eventually improved functional behavioral recovery effects after traumatic SCI. Briefly, lesion size was decreased by nearly 60%, neuronal apoptosis was attenuated by nearly 70%, glial scar formation was reduced by nearly 75%, average blood vessel density was increased by nearly 60%, and axonal regeneration was increased by almost 80% at day 28 after SCI in the BMSC-Exos group compared to the control group. Using a series of in vitro functional assays, we also confirmed that treatment with BSMCs-Exos significantly enhanced human umbilical vein endothelial cell proliferation, migration, and angiogenic tubule formation, attenuated neuronal cells apoptosis, and suppressed nitric oxide release in microglia. Moreover, our study demonstrated that administration of BMSCs-Exos suppressed inflammation efficiently after traumatic SCI and suppressed activation of A1 neurotoxic reactive astrocytes. In conclusion, our study suggested that the application of BMSCs-Exos may be a promising strategy for traumatic SCI.
Collapse
Affiliation(s)
- Wei Liu
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Wang
- 2 Department of Orthopaedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Fangyi Gong
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuluo Rong
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongjun Luo
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengyu Tang
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhimin Zhou
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- 3 Department of Orthopaedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Siting Yang
- 4 Department of Anesthesia, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Yin
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Chen
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Cai
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Abstract
Central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), are important causes of death and long-term disability worldwide. MicroRNA (miRNA), small non-coding RNA molecules that negatively regulate gene expression, can serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. MiRNA-based therapeutics include miRNA mimics and inhibitors (antagomiRs) to respectively decrease and increase the expression of target genes. In this review, we summarize current miRNA-based therapeutic applications in stroke, TBI and SCI. Administration methods, time windows and dosage for effective delivery of miRNA-based drugs into CNS are discussed. The underlying mechanisms of miRNA-based therapeutics are reviewed including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis and neurogenesis. Pharmacological agents that protect against CNS injuries by targeting specific miRNAs are presented along with the challenges and therapeutic potential of miRNA-based therapies.
Collapse
Affiliation(s)
- Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank R Sharp
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Ke-Jie Yin
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ke-Jie Yin, Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST S514, Pittsburgh, PA 15213, USA. Da Zhi Liu, Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
47
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
48
|
Muniswami DM, Kanthakumar P, Kanakasabapathy I, Tharion G. Motor Recovery after Transplantation of Bone Marrow Mesenchymal Stem Cells in Rat Models of Spinal Cord Injury. Ann Neurosci 2018; 25:126-140. [PMID: 30814821 DOI: 10.1159/000487069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neuronal tissue has a limited potential to self-renew or get repaired after damage. Cell therapies using stem cells are promising approaches for the treatment of central nervous system (CNS) injuries. However, the clinical use of embryonic stem cells is limited by ethical concerns and other scientific consequences. Bone marrow mesenchymal stromal cells (BM-MSC) could represent an alternative source of stem cells for replacement therapy. Indeed, many studies have demonstrated that MSCs can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Purpose Motor recovery by transplantation of bone marrow MSCs in rat models of spinal cord injury (SCI). Methods Bone marrow was collected from the femur of albino Wistar rats. MSCs were separated using the Ficoll-Paque density gradient method and cultured in Dulbecco's Modified Eagle Medium supplemented with 20% fetal bovine serum. Cultured MSC was characterized by immunohistochemistry and flow cytometry and neuronal-induced cells were further characterized for neural markers. Cultured MSCs were transplanted into the experimentally injured spinal cord of Wistar rats. Control (injured, but without cell transplantation) and transplanted rats were followed up to 8 weeks, analyzed using the Basso, Beattie, Bresnahan (BBB) scale and electromyography (EMG) for behavioral and physiological status of the injured spinal cord. Finally, the tissue was evaluated histologically. Results Rat MSCs expressed positivity for a panel of MSC markers CD29, CD54, CD90, CD73, and CD105, and negativity for hematopoietic markers CD34, CD14, and CD45. In vitro neuronal transdifferentiated MSCs express positivity for β III tubulin, MAP2, NF, NeuN, Nav1.1, oligodendrocyte (O4), and negativity for glial fibrillary acid protein. All the treated groups show promising hind-limb motor recovery BBB score, except the control group. There was increased EMG amplitude in treated groups as compared to the control group. Green fluorescent protein (GFP)-labeled MSC survived and differentiated into neurons in the injured spinal cord, which is responsible for functional recovery. Conclusion Our results demonstrate that BM-MSC has the potential to repair the injured cord in rat models of SCI. Thus, BM-MSC appears to be a promising candidate for cell-based therapy in CNS injury.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | | | | | - George Tharion
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| |
Collapse
|
49
|
Wood CR, Al Delfi IRT, Innes JF, Myint P, Johnson WEB. Exposing mesenchymal stem cells to chondroitin sulphated proteoglycans reduces their angiogenic and neuro-adhesive paracrine activity. Biochimie 2018; 155:26-36. [PMID: 29680669 DOI: 10.1016/j.biochi.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
The multifactorial complexity of spinal cord injuries includes the formation of a glial scar, of which chondroitin sulphated proteoglycans (CSPG) are an integral component. Previous studies have shown CSPG to have inhibitory effects on endothelial and neuronal cell growth, highlighting the difficulty of spinal cord regeneration. Mesenchymal stem/stromal cells (MSC) are widely used as a cell therapy, and there is mounting evidence for their angiogenic and neurotrophic paracrine properties. However, in vivo studies have observed poor engraftment and survival of MSC when injected into SCI. Currently, it is not known whether increasing CSPG concentrations seen after SCI may affect MSC; therefore we have investigated the effects of CSPG exposure to MSC in vitro. CSPG-mediated inhibition of MSC adhesion was observed when MSC were cultured on substrates of increasing CSPG concentration, however MSC viability was not affected even up to five days of culture. Culture conditioned medium harvested from these cultures (primed MSC CM) was used as both culture substrata and soluble medium for EA.hy926 endothelial cells and SH-SY5Y neuronal cells. MSC CM was angiogenic, promoting endothelial cell adhesion, proliferation and tubule formation. However, exposing MSC to CSPG reduced the effects of CSPG-primed MSC CM on endothelial cell adhesion and proliferation, but did not reduce MSC-induced endothelial tubule formation. Primed MSC CM also promoted neuronal cell adhesion, which was reduced following exposure to CSPG. There were no marked differences in neurite outgrowth in MSC CM from CSPG primed MSC cultures versus control conditions, although non-primed MSC CM from the same donors was found to significantly enhance neurite outgrowth. Taken together, these studies demonstrate that MSC are resilient to CSPG exposure, but that there is a marked effect of CSPG on their paracrine regenerative activity. The findings increase our understanding of how the wound microenvironment after SCI can mitigate the beneficial effects of MSC transplantation.
Collapse
Affiliation(s)
- Chelsea R Wood
- Biological Sciences, Faculty of Medicine, Dentistry and Life Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, United Kingdom.
| | - Ibtesam R T Al Delfi
- Centre for Experimental Medicine, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| | - John F Innes
- Veterinary Tissue Bank Ltd, Brynkinalt Business Centre, Wrexham, LL14 5NS, United Kingdom.
| | - Peter Myint
- Veterinary Tissue Bank Ltd, Brynkinalt Business Centre, Wrexham, LL14 5NS, United Kingdom.
| | - William E B Johnson
- Biological Sciences, Faculty of Medicine, Dentistry and Life Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, United Kingdom.
| |
Collapse
|
50
|
Köse S, Kankilic B, Gizer M, Ciftci Dede E, Bayramli E, Korkusuz P, Korkusuz F. Stem Cell and Advanced Nano Bioceramic Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:317-342. [PMID: 30357696 DOI: 10.1007/978-981-13-0947-2_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manufacturing nano scale bioceramics. These nano scale bioceramics are used for regeneration of bone and cartilage both alone or with other types of biomaterials. They can also act as carrier for the delivery of drugs in musculoskeletal infections without causing any systemic toxicity.
Collapse
Affiliation(s)
- Sevil Köse
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Atilim University, Ankara, Turkey.
| | - Berna Kankilic
- Head of Certification, Directorate of Directives, Turkish Standards Institution, Ankara, Turkey
| | - Merve Gizer
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Eda Ciftci Dede
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Erdal Bayramli
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|