1
|
Baliova M, Jursky F. Comparison of SynCAM1/CADM1 PDZ interactions with MUPP1 using mammalian and bacterial pull-down systems. Brain Behav 2020; 10:e01587. [PMID: 32108449 PMCID: PMC7177587 DOI: 10.1002/brb3.1587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/20/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Synaptic cell adhesion molecule 1 (SynCAM1) also known as cell adhesion molecule 1 (CADM1) is a transmembrane cell adhesion protein that operates in a variety of physiological and pathological cellular contexts, and its interaction with the PDZ signalling protein MUPP1 have been previously implicated in autism spectrum disorder (ASD). METHODS We used in vitro pull-down systems based on the bacterial and mammalian extracts to study SynCAM1/CADM1 PDZ interactions with MUPP1 at various conditions. RESULTS So far, the investigated interaction of SynCAM1/CADM1 with MUPP1 has been mostly attributed to an unspecified region of MUPP1 PDZ domains 1-5 or exclusively to domain 2, using a yeast two-hybrid system. We also confirmed the single interaction of native synaptosomal CADM1 with PDZ domain 2. However, in this work, using recombinant proteins overexpressed in bacteria, we found an in vitro pull-down conditions in which all first five domains and, to a much lesser extent, MUPP1 domains 7 and 11 significantly interacted with the whole C-terminal domain of SynCAM1/CADM1. These PDZ interactions were confirmed by a pull-down assay using the last seven amino acids of the SynCAM1/CADM1 PDZ motif and using two fusion partners. Multiple interactions were additionally replicated using the continuous N-terminal MUPP1 protein fragment, which included first five PDZ domains, containing either intact or mutated domain 2. CONCLUSIONS We hypothesize that multiple interactions might exist in vivo, representing transient low-affinity interactions or alternative binding sites on MUPP1 when domain 2 is occupied or occluded by the interaction with other ligands. This newly identified interactions extend the potential genetic mutations, possibly affecting SynCAM1/CADM1/MUPP1 function. Possible reasons for the absence of some of the identified CADM1 PDZ interactions in mammalian extracts are discussed.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Gewaily MS, Kassab M, Farrag FA, Almadaly EA, Atta MS, Abd-Elmaksoud A, Wakayama T. Comparative expression of cell adhesion molecule1 (CADM1) in the testes of experimental mice and some farm animals. Acta Histochem 2020; 122:151456. [PMID: 31635798 DOI: 10.1016/j.acthis.2019.151456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Cell adhesion molecule1 (CADM1) is a member of the immunoglobulin superfamily (IGSF) that has been found in mammalian testis and plays a substantial role in cell-to-cell interaction via either hemophilic (between spermatogenic cells) or heterophilic (between spermatogenic and somatic Sertoli cells) binding. The present study investigated the immunohistochemical localization of CADM1 in the testes of adult mice (Mus musculus), as well as sexually mature bull (Bos taurus), camel (Camelus dromedarius), and donkey (Equus asinus), using immunohistochemical techniques. The results revealed that CADM1 expression was observed in the spermatogonia and early spermatocytes as well as elongated spermatids in the mice testes; however, in the bull testis, its expression was restricted to the elongated spermatids. This expression was found in some of the early spermatocytes and elongated spermatids of the rutting camel testis but only found in the elongated spermatids of the non-rutting camel testis. Interestingly, CADM1 expression was detected in the spermatogonia, early spermatocytes, and elongated spermatids of the donkey testis. On the other hand, there was no expression of CADM1 observed in the Sertoli or interstitial cells. In conclusion, the expression of CADM1 during spermatogenesis differed among species and between rutting and non-rutting camel. Accordingly, this study emphasized the crucial role of CADM1 in the process of spermatogenesis and how it is related to sexual activity in both experimental and farm animals.
Collapse
|
3
|
Yamaguchi M, Morizane S, Hamada T, Miyake T, Sugaya M, Iwata H, Fujii K, Haramoto‐Shiratsuki R, Nakagawa Y, Miura M, Ohshima K, Morishita K, Takahashi T, Imada M, Okada K, Uehara J, Sowa‐Osako J, Iwatsuki K. The expression of cell adhesion molecule 1 and its splicing variants in Sézary cells and cell lines from cutaneous T‐cell lymphoma. J Dermatol 2019; 46:967-977. [DOI: 10.1111/1346-8138.15078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mari Yamaguchi
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Shin Morizane
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Toshihisa Hamada
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Tomoko Miyake
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Makoto Sugaya
- Department of Dermatology Faculty of Medicine University of Tokyo Tokyo Japan
| | - Hiroaki Iwata
- Department of Dermatology Hokkaido University Graduate School of Medicine Sapporo Japan
| | - Kazuyasu Fujii
- Department of Dermatology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | | | - Yuki Nakagawa
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Mayumi Miura
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Koichi Ohshima
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry Department of Medical Sciences Faculty of Medicine University of Miyazaki Miyazaki Japan
| | | | - Masahide Imada
- Division of Medical Support Okayama University Hospital Okayama Japan
- Central Clinical Laboratory Kawasaki Medical School Hospital Okayama Japan
| | - Ken Okada
- Division of Medical Support Okayama University Hospital Okayama Japan
| | - Jiro Uehara
- Department of Dermatology Asahikawa Medical University Asahikawa Japan
| | - Junko Sowa‐Osako
- Department of Dermatology Osaka City University Graduate School of Medicine Osaka Japan
| | - Keiji Iwatsuki
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
4
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
5
|
Nakamura S, Koyama T, Izawa N, Nomura S, Fujita T, Omata Y, Minami T, Matsumoto M, Nakamura M, Fujita-Jimbo E, Momoi T, Miyamoto T, Aburatani H, Tanaka S. Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1. PLoS One 2017; 12:e0175632. [PMID: 28414795 PMCID: PMC5393607 DOI: 10.1371/journal.pone.0175632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/29/2017] [Indexed: 11/29/2022] Open
Abstract
Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3) at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs) and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1) is a direct target of nuclear factor of activated T cells 1 (NFATc1) and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL), and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.
Collapse
Affiliation(s)
- Shinya Nakamura
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuma Koyama
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naohiro Izawa
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seitaro Nomura
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Takanori Fujita
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yasunori Omata
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Minami
- Division of Phenotype Disease Analysis, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| | - Eriko Fujita-Jimbo
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Takashi Momoi
- Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Tanabe Y, Shiota A, Kouroku-Murakami Y, Fujita-Jimbo E, Urase K, Takahashi K, Mezaki Y, Senoo H, Momoi T. Spatial and temporal expression of RA70/Scap2 in the developing neural tube. Neurosci Lett 2014; 576:1-5. [PMID: 24846415 DOI: 10.1016/j.neulet.2014.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/18/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Src kinase-associated phosphoprotein 2 (Ra70/scap2), which was originally isolated as a retinoic acid (RA)-induced gene, associates with molecules that modulate integrin-survival signals. Although RA is essential for vertebrate organogenesis in the posterior region, little is known about the biological role of RA70/Scap2 during development. In the present study, we demonstrate that Ra70/scap2 mRNA is temporally expressed during the RA-induced neuronal differentiation of P19 embryonic carcinoma cells. Homozygous knockout mice in which the Ra70/scap2 gene was replaced with LacZ exhibited embryonic lethality, while heterozygous mice displayed preferential expression of LacZ in posterior neural tissues, including the neural tube and hindbrain during development (E7.5-11.5), but not the forebrain. Ra70/scap2 was expressed in the ependymal layer and ventricular zone in the neural tube, where neuroepithelial cells and neuroblasts with proliferation capacity are localized, respectively. Thus, RA70/Scap2 may be necessary for RA-induced neuronal differentiation from the posterior neuroectoderm.
Collapse
Affiliation(s)
- Yuko Tanabe
- Center for Medical Science, International University of Health and Welfare, Kitakanemaru, Ohtawara, Tochigi, Japan
| | - Akira Shiota
- PhoenixBio, Ltd., Iwazo, Utsunomiya, Tochigi, Japan
| | - Yoriko Kouroku-Murakami
- Center for Medical Science, International University of Health and Welfare, Kitakanemaru, Ohtawara, Tochigi, Japan
| | - Eriko Fujita-Jimbo
- Center for Medical Science, International University of Health and Welfare, Kitakanemaru, Ohtawara, Tochigi, Japan; Department of Pediatrics, Jichi Medical University, Yakushiji, Shimotsukeshi, Tochigi, Japan
| | - Koko Urase
- Department of Biology, School of Medicine Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kana Takahashi
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Hondo, Akita, Japan
| | - Yoshihiro Mezaki
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Hondo, Akita, Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Hondo, Akita, Japan
| | - Takashi Momoi
- Center for Medical Science, International University of Health and Welfare, Kitakanemaru, Ohtawara, Tochigi, Japan.
| |
Collapse
|
7
|
Frei JA, Stoeckli ET. SynCAMs extend their functions beyond the synapse. Eur J Neurosci 2014; 39:1752-60. [DOI: 10.1111/ejn.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Jeannine A. Frei
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
8
|
Yamada A, Inoue E, Deguchi-Tawarada M, Matsui C, Togawa A, Nakatani T, Ono Y, Takai Y. Necl-2/CADM1 interacts with ErbB4 and regulates its activity in GABAergic neurons. Mol Cell Neurosci 2013; 56:234-43. [DOI: 10.1016/j.mcn.2013.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 05/15/2013] [Accepted: 06/04/2013] [Indexed: 11/27/2022] Open
|
9
|
Zhang S, Lu G, Qi J, Li Y, Zhang Z, Zhang B, Fan Z, Yan J, Gao G. Competition of Cell Adhesion and Immune Recognition: Insights into the Interaction between CRTAM and Nectin-like 2. Structure 2013; 21:1430-9. [DOI: 10.1016/j.str.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/16/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
|
10
|
Transforming growth factor-β1 (TGF-β1) regulates cell junction restructuring via Smad-mediated repression and clathrin-mediated endocytosis of nectin-like molecule 2 (Necl-2). PLoS One 2013; 8:e64316. [PMID: 23741316 PMCID: PMC3669379 DOI: 10.1371/journal.pone.0064316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/14/2013] [Indexed: 11/19/2022] Open
Abstract
Nectin-like molecule-2 (Necl-2), a junction molecule, is exclusively expressed by spermatogenic cells. It mediates homophilic interaction between germ cells and heterophilic interaction between Sertoli and germ cells. Knockout studies have shown that loss of Necl-2 causes male infertility, suggesting Necl-2-based cell adhesion is crucial for spermatogenesis. Transforming growth factor-βs (TGF-βs) are crucial for regulating cell junction restructuring that are required for spermatogenesis. In the present study, we aim to investigate the mechanism on how TGF-β1 regulates Necl-2 expression to achieve timely junction restructuring in the seminiferous epithelium during spermatogenesis. We have demonstrated that TGF-β1 reduces Necl-2 mRNA and protein levels at both transcriptional and post-translational levels. Using inhibitor and clathrin shRNA, we have revealed that TGF-β1 induces Necl-2 protein degradation via clathrin-dependent endocytosis. Endocytosis assays further confirmed that TGF-β1 accelerates the internalization of Necl-2 protein to cytosol. Immunofluorescence staining also revealed that TGF-β1 effectively removes Necl-2 from cell-cell interface. In addition, TGF-β1 reduces Necl-2 mRNA via down-regulating Necl-2 promoter activity. Mutational studies coupled with knockdown experiments have shown that TGF-β1-induced Necl-2 repression requires activation of Smad proteins. EMSA and ChIP assays further confirmed that TGF-β1 promotes the binding of Smad proteins onto MyoD and CCAATa motifs in vitro and in vivo. Taken together, TGF-β1 is a potent cytokine that provides an effective mechanism in controlling Necl-2 expression in the testis via Smad-dependent gene repression and clathrin-mediated endocytosis.
Collapse
|
11
|
Tanabe Y, Fujita E, Hayashi YK, Zhu X, Lubbert H, Mezaki Y, Senoo H, Momoi T. Synaptic adhesion molecules in Cadm family at the neuromuscular junction. Cell Biol Int 2013; 37:731-6. [DOI: 10.1002/cbin.10092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/19/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yuko Tanabe
- Center for Medical Science; International University of Health and Welfare; Kitakanamaru, Otawara, Tochigi; Japan
| | | | - Yukiko K. Hayashi
- Department of Neuromuscular Research; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Ogawa-Higashi, Kodaira, Tokyo; Japan
| | - Xinran Zhu
- Department of Animal Physiology; Ruhr-University Bochum; Bochum; Germany
| | - Hermann Lubbert
- Department of Animal Physiology; Ruhr-University Bochum; Bochum; Germany
| | - Yoshihiro Mezaki
- Department of Cell Biology and Morphology; Akita University Graduate School of Medicine; Hondo, Akita; Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology; Akita University Graduate School of Medicine; Hondo, Akita; Japan
| | - Takashi Momoi
- Center for Medical Science; International University of Health and Welfare; Kitakanamaru, Otawara, Tochigi; Japan
| |
Collapse
|
12
|
Minami A, Shimono Y, Mizutani K, Nobutani K, Momose K, Azuma T, Takai Y. Reduction of the ST6 β-galactosamide α-2,6-sialyltransferase 1 (ST6GAL1)-catalyzed sialylation of nectin-like molecule 2/cell adhesion molecule 1 and enhancement of ErbB2/ErbB3 signaling by microRNA-199a. J Biol Chem 2013; 288:11845-53. [PMID: 23504322 DOI: 10.1074/jbc.m112.405993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nectin-like molecule 2 (Necl-2)/cell adhesion molecule 1 (CADM1) is shown to be down-regulated by the promoter hypermethylation and/or loss of heterozygosity at chromosome 11q23.2 in many types of cancers, including lung and breast cancers, and is proposed to serve as a tumor suppressor. However, the incidence of these epigenetic and genetic abnormalities of Necl-2 is 30-60% in these cancers, and other mechanisms for the suppression of Necl-2 are presumed to be present. We previously showed that Necl-2 interacts in cis with ErbB3 and suppresses the heregulin (HRG)-induced ErbB2/ErbB3 signaling for cell movement and death. We studied here the relationship between Necl-2 and microRNA-199a (miR-199a) that is up-regulated or down-regulated in a variety of cancers. miR-199a did not directly target the Necl-2 mRNA or affect its mRNA level in human lung cancer A549 cells and human embryonic kidney HEK293 cells. Necl-2 was at least sialylated by the sialyltransferase ST6 β-galactosamide α-2,6-sialyltransferase 1 (ST6GAL1). miR-199a targeted ST6GAL1 and reduced both the sialylation and the protein level of Necl-2. In addition, miR-199a enhanced the HRG-induced ErbB2/ErbB3 signaling. These results indicate that the suppressive role of Necl-2 in the HRG-induced ErbB2/ErbB3 signaling is regulated by miR-199a at least through the reduction of the ST6GAL1-catalyzed sialylation of Necl-2 and/or through the reduction of the protein level of Necl-2 presumably by the protein degradation.
Collapse
Affiliation(s)
- Akihiro Minami
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Momose K, Minami A, Shimono Y, Mizutani K, Nobutani K, Azuma T, Takai Y. miR-214 and hypoxia down-regulate Necl-2/CADM1 and enhance ErbB2/ErbB3 signaling. Genes Cells 2013; 18:195-202. [DOI: 10.1111/gtc.12027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/18/2012] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Yohei Shimono
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Kiyohito Mizutani
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | | | - Takeshi Azuma
- Division of Gastroenterology; Department of Internal Medicine; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; 7-5-1 Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| |
Collapse
|
14
|
Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T. A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J Neurochem 2012; 123:886-94. [PMID: 22994563 DOI: 10.1111/jnc.12022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/27/2012] [Accepted: 09/10/2012] [Indexed: 01/14/2023]
Abstract
Mutations in the synaptic adhesion protein CADM1 (RA175/SynCAM1) are associated with autism spectrum disorder (ASD), a neurodevelopmental disorder of uncertain molecular origin. Cadm1-knock out (KO) mice exhibit smaller cerebella with decreased number of synapse of Purkinje cells and some ASD-like symptoms, including impaired ultrasonic vocalization. In this study, we examined the alteration of the Cadm1 synaptic complex in the mouse cerebellum at post-natal stages. The C-terminal peptide of Cadm1 associated with Mupp1 at PSD-95/Dlg/ZO-1 (PDZ)(1-5), a scaffold protein containing 13 PDZ domains, which interacted with gamma-aminobutyric acid type B receptor (GABBR)2 at PDZ13, but not with PSD-95. The GABBR2 was detected in a set of proteins interacting with Cadm1 C-terminal. Cadm1 colocalized with Mupp1 and GABBR2 on the dendrites of Purkinje cells in the molecular layers of the developing cerebellum and on the dendrites of hippocampal neurons cultured in vitro. These observations suggest that the Cadm1 synaptic receptor complex, including Mupp1-GABBR2, is located on the dendrites of Purkinje cells. The amount of GABBR2 protein, but not mRNA, was increased in the cerebella of Cadm1 KO mice, suggesting that lack of Cadm1 does not affect transcription of GABBR2, but may stabilize the Mupp1-GABBR2 complex; the Mupp1-GABBR2 interaction may be stabilized by conformational change in Mupp1 or association with other adhesion molecules and by anchorage to the post-synaptic membrane. Up-regulation of GABBR2 in the cerebellum in the absence of CADM1 may be associated with ASD pathogenesis.
Collapse
Affiliation(s)
- Eriko Fujita
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | | | | | | |
Collapse
|
15
|
Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T. Cadm1-expressing synapses on Purkinje cell dendrites are involved in mouse ultrasonic vocalization activity. PLoS One 2012; 7:e30151. [PMID: 22272290 PMCID: PMC3260241 DOI: 10.1371/journal.pone.0030151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/11/2011] [Indexed: 01/27/2023] Open
Abstract
Foxp2(R552H) knock-in (KI) mouse pups with a mutation related to human speech-language disorders exhibit poor development of cerebellar Purkinje cells and impaired ultrasonic vocalization (USV), a communication tool for mother-offspring interactions. Thus, human speech and mouse USV appear to have a Foxp2-mediated common molecular basis in the cerebellum. Mutations in the gene encoding the synaptic adhesion molecule CADM1 (RA175/Necl2/SynCAM1/Cadm1) have been identified in people with autism spectrum disorder (ASD) who have impaired speech and language. In the present study, we show that both Cadm1-deficient knockout (KO) pups and Foxp2(R552H) KI pups exhibit impaired USV and smaller cerebellums. Cadm1 was preferentially localized to the apical-distal portion of the dendritic arbor of Purkinje cells in the molecular layer of wild-type pups, and VGluT1 level decreased in the cerebellum of Cadm1 KO mice. In addition, we detected reduced immunoreactivity of Cadm1 and VGluT1 on the poorly developed dendritic arbor of Purkinje cells in the Foxp2(R552H) KI pups. However, Cadm1 mRNA expression was not altered in the Foxp2(R552H) KI pups. These results suggest that although the Foxp2 transcription factor does not target Cadm1, Cadm1 at the synapses of Purkinje cells and parallel fibers is necessary for USV function. The loss of Cadm1-expressing synapses on the dendrites of Purkinje cells may be associated with the USV impairment that Cadm1 KO and Foxp2(R552H) KI mice exhibit.
Collapse
Affiliation(s)
- Eriko Fujita
- Center for Medical Science, International University of Health and Welfare, Kitakanemaru, Ohtawara, Tochigi, Japan
- Department of Pediatrics, Jichi Medical University, Yakushiji, Shimotsukeshi, Tochigi, Japan
| | - Yuko Tanabe
- Center for Medical Science, International University of Health and Welfare, Kitakanemaru, Ohtawara, Tochigi, Japan
| | - Beat A. Imhof
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Mariko Y. Momoi
- Department of Pediatrics, Jichi Medical University, Yakushiji, Shimotsukeshi, Tochigi, Japan
- * E-mail: (TM); (MM)
| | - Takashi Momoi
- Center for Medical Science, International University of Health and Welfare, Kitakanemaru, Ohtawara, Tochigi, Japan
- * E-mail: (TM); (MM)
| |
Collapse
|
16
|
Mizutani K, Kawano S, Minami A, Waseda M, Ikeda W, Takai Y. Interaction of nectin-like molecule 2 with integrin alpha6beta4 and inhibition of disassembly of integrin alpha6beta4 from hemidesmosomes. J Biol Chem 2011; 286:36667-76. [PMID: 21880726 DOI: 10.1074/jbc.m110.200535] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In normal epithelial cells, integrin α(6)β(4) is abundantly expressed and forms hemidesmosomes, which is a cellular structure that mediates cell-extracellular matrix binding. In many types of cancer cells, integrin α(6)β(4) is up-regulated, laminin is cleaved, and hemidesmosomes are disrupted, eventually causing an enhancement of cancer cell movement and facilitation of their invasion. We previously showed that the immunoglobulin-like cell adhesion molecule Necl-2 (Nectin-like molecule 2), known as a tumor suppressor, inhibits cancer cell movement by suppressing the ErbB3/ErbB2 signaling. We show here that Necl-2 interacts in cis with integrin α(6)β(4). The binding of Necl-2 with integrin β(4) was mediated by its extracellular region. In human colorectal adenocarcinoma Caco-2 cells, integrin α(6)β(4) was localized at hemidesmosomes. Small interfering RNA-mediated suppression of Necl-2 expression enhanced the phorbol ester-induced disruption of the integrin α(6)β(4) complex at hemidesmosomes, whereas expression of Necl-2 suppressed the disruption of this structure. These results indicate that tumor-suppressive functions of Necl-2 are mediated by the stabilization of the hemidesmosome structure in addition to the inhibition of the ErbB3/ErbB2 signaling.
Collapse
Affiliation(s)
- Kiyohito Mizutani
- Division of Molecular and Cellular Biology, Department of Biochemistry, and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Ito T, Williams-Nate Y, Iwai M, Tsuboi Y, Hagiyama M, Ito A, Sakurai-Yageta M, Murakami Y. Transcriptional regulation of the CADM1 gene by retinoic acid during the neural differentiation of murine embryonal carcinoma P19 cells. Genes Cells 2011; 16:791-802. [DOI: 10.1111/j.1365-2443.2011.01525.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
De Maria A, Shi Y, Luo X, Van Der Weyden L, Bassnett S. Cadm1 expression and function in the mouse lens. Invest Ophthalmol Vis Sci 2011; 52:2293-9. [PMID: 21217103 DOI: 10.1167/iovs.10-6677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE The immunoglobulin superfamily member Cadm1 is a single-pass, type 1 membrane protein that mediates calcium-independent, cell-cell adhesion. Cadm1 has been implicated in tumor formation and synaptogenesis. A recent analysis of mouse lens cell membranes identified Cadm1 as a major constituent of the fiber cell membrane proteome. Here the authors examined the expression and function of Cadm1 in the mouse lens. METHODS Cadm1 expression was analyzed by Western blotting and immunofluorescence. The morphology of individual wild-type and Cadm1-null lens cells was visualized by confocal microscopy. RESULTS Cadm1 was present in epithelial and superficial fiber cells as a heavily glycosylated protein with an apparent molecular mass of ≈80 kDa. Analysis of proteins extracted from various strata of the lens indicated that Cadm1 was degraded during fiber cell differentiation, at approximately the same time as the lens organelles, an observation confirmed by confocal microscopy. In epithelial cells, Cadm1 was enriched in basolateral membranes, whereas, in fiber cells, expression was restricted to the lateral membranes. Lenses from Cadm1-null mice were of normal size and transparency. The three-dimensional morphology of the cells in the epithelial layer was unaltered in the absence of Cadm1. However, in contrast to wild-type lens fiber cells, Cadm1-null fiber cells had an irregular, highly undulating morphology. CONCLUSIONS Cadm1 is an abundant component of the lens fiber cell membrane. Although not essential for lens transparency, Cadm1 has an indispensable role in establishing and maintaining the characteristic three-dimensional architecture of the lens fiber cell mass.
Collapse
Affiliation(s)
- Alicia De Maria
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
19
|
Maekawa M, Ito C, Toyama Y, Suzuki-Toyota F, Fujita E, Momoi T, Toshimori K. Localisation of RA175 (Cadm1), a cell adhesion molecule of the immunoglobulin superfamily, in the mouse testis, and analysis of male infertility in the RA175-deficient mouse. Andrologia 2011; 43:180-8. [PMID: 21486398 DOI: 10.1111/j.1439-0272.2010.01049.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RA175, a member of the immunoglobulin superfamily, plays an important role in cell adhesion, and RA175 gene-deficient mice (RA175(-/-) ) show oligoastheno-teratozoospermia. To understand the function of RA175, location in the testis and the morphological features of its spermatogenic cells in RA175(-/-) mice were investigated. Immunohistochemical studies revealed that RA175 immunoreactivity was observed on the cell surface of the spermatogenic cells at specific stages. A strong reaction was detected from type A spermatogonia to pachytene spermatocytes at stage IV and from step 6 to step 16 spermatids during spermatogenesis. From pachytene spermatocytes at stage VI to step 4 spermatids, the reaction was not detected by the enzyme-labelled antibody method and was faintly detected by the indirect immunofluorescence method. Abnormal vacuoles in the seminiferous epithelium, showing exfoliation of germ cells, and ultrastructural abnormality of the elongate spermatids were revealed in the RA175(-/-) testes. Other members of the immunoglobulin superfamily such as basigin, nectin-2 and nectin-3, which have an important role in spermatogenesis, were immunohistochemically detected in the RA175(-/-) testis. These observations indicate a unique expression pattern of RA175 in the testis and provide clues regarding the mechanism of male infertility in the testis.
Collapse
Affiliation(s)
- M Maekawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kim E, Lee Y, Kim JS, Song BS, Kim SU, Huh JW, Lee SR, Kim SH, Hong Y, Chang KT. Extracellular domain of V-set and immunoglobulin domain containing 1 (VSIG1) interacts with sertoli cell membrane protein, while its PDZ-binding motif forms a complex with ZO-1. Mol Cells 2010; 30:443-8. [PMID: 20957455 DOI: 10.1007/s10059-010-0138-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 10/18/2022] Open
Abstract
V-set and immunoglobulin domain containing 1 (VSIG1) is a newly discovered member of the junctional adhesion molecule (JAM) family; it is encoded by a gene located on human chromosome X and preferentially expressed in a variety of cancers in humans. Little is known about its physiological function. To determine the role(s) of VSIG1 in mammalian spermatogenesis, we first generated a specific antibody against mouse VSIG1 and examined the presence and localization of the protein in tissues. RTRCR and Western blot analysis of the mouse tissues indicated that VSIG1 was specifically expressed in the testis. Furthermore, the results of our trypsinization and biotinylation assays strongly support the assumption that VSIG1 is localized on the testicular germ cell surface. In order to determine whether VSIG1 is capable of participation in homotypic interactions, we performed a GST-pull down assay by using recombinant GST-fusion and Histagging proteins. The pull-down assay revealed that each GST-fusion Ig-like domain shows homotypic binding. We further show that mVSIG1 can adhere to the Sertoli cells through its first Ig-like domain. To identify the protein that interacted with cytoplasmic domain, we next performed co-immunoprecipitation analysis. This analysis showed that ZO-1, which is the central structural protein of the tight junction, is the binding partner of the cytoplasmic domain of mouse VSIG1. Our findings suggest that mouse VSIG1 interacts with Sertoli cells by heterophilic adhesion via its first Ig-like domain. In addition, its cytoplasmic domain is critical for binding to ZO-1.
Collapse
Affiliation(s)
- Ekyune Kim
- National Primate Research Center, Korea Research Institute of Biotechnology, Ochang, 363-883, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fournier G, Garrido-Urbani S, Reymond N, Lopez M. [Nectin and nectin-like molecules as markers, actors and targets in cancer]. Med Sci (Paris) 2010; 26:273-9. [PMID: 20346277 DOI: 10.1051/medsci/2010263273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nectin and nectin-like (necl) proteins form a family of 9 adhesion molecules that belong to the immunoglobulin superfamily. They play a key role in different biological processes such as cell polarity, proliferation, differentiation and migration in epithelial, endothelial, immune and nervous systems. Besides their role in physiology, they have been involved in different pathological processes in humans. They serve as virus receptors (poliovirus and herpes simplex virus), they are involved in orofacial malformation (CLPED1) and recently they have been described as markers, actors and potential therapeutics targets in cancer. Among them, necl-5, nectin-2 and nectin-4 are overexpressed in tumors, and are associated with a poor prognosis. On the opposite, necl-1, necl-2 and necl-4 act as tumor suppressors and are repressed in cancer. The involvement of nectins and necls molecules in cancer and their potential used in therapy is discussed in this review.
Collapse
|
22
|
Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci U S A 2010; 107:10250-5. [PMID: 20479255 DOI: 10.1073/pnas.0912103107] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the large set of cell surface glycan structures, the carbohydrate polymer polysialic acid (polySia) plays an important role in vertebrate brain development and synaptic plasticity. The main carrier of polySia in the nervous system is the neural cell adhesion molecule NCAM. As polySia with chain lengths of more than 40 sialic acid residues was still observed in brain of newborn Ncam(-/-) mice, we performed a glycoproteomics approach to identify the underlying protein scaffolds. Affinity purification of polysialylated molecules from Ncam(-/-) brain followed by peptide mass fingerprinting led to the identification of the synaptic cell adhesion molecule SynCAM 1 as a so far unknown polySia carrier. SynCAM 1 belongs to the Ig superfamily and is a powerful inducer of synapse formation. Importantly, the appearance of polysialylated SynCAM 1 was not restricted to the Ncam(-/-) background but was found to the same extent in perinatal brain of WT mice. PolySia was located on N-glycans of the first Ig domain, which is known to be involved in homo- and heterophilic SynCAM 1 interactions. Both polysialyltransferases, ST8SiaII and ST8SiaIV, were able to polysialylate SynCAM 1 in vitro, and polysialylation of SynCAM 1 completely abolished homophilic binding. Analysis of serial sections of perinatal Ncam(-/-) brain revealed that polySia-SynCAM 1 is expressed exclusively by NG2 cells, a multifunctional glia population that can receive glutamatergic input via unique neuron-NG2 cell synapses. Our findings sug-gest that polySia may act as a dynamic modulator of SynCAM 1 functions during integration of NG2 cells into neural networks.
Collapse
|
23
|
Takayanagi Y, Fujita E, Yu Z, Yamagata T, Momoi MY, Momoi T, Onaka T. Impairment of social and emotional behaviors in Cadm1-knockout mice. Biochem Biophys Res Commun 2010; 396:703-8. [PMID: 20450890 DOI: 10.1016/j.bbrc.2010.04.165] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 11/30/2022]
Abstract
Cell adhesion molecule 1 (CADM1), a member of the immunoglobulin superfamily, mediates synaptic cell adhesion. Missense mutations in the CADM1 gene have been identified in autism spectrum disorder (ASD) patients. In the present study, we examined emotional behaviors, social behaviors and motor performances in Cadm1-knockout (KO) mice. Cadm1-KO mice showed increased anxiety-related behavior in open-field and light-dark transition tests. Social behaviors of Cadm1-KO mice were impaired in social interaction, resident-intruder and social memory/recognition tests. Furthermore, motor coordination and gait of Cadm1-KO mice were impaired in rotarod and footprint tests. Our study demonstrates that CADM1 plays roles in regulating emotional behaviors, social behaviors and motor performances, and that CADM1 has important implications for psychiatric disorders with disruptions in social behavior, such as autism.
Collapse
Affiliation(s)
- Yuki Takayanagi
- Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Masuda M, Maruyama T, Ohta T, Ito A, Hayashi T, Tsukasaki K, Kamihira S, Yamaoka S, Hoshino H, Yoshida T, Watanabe T, Stanbridge EJ, Murakami Y. CADM1 interacts with Tiam1 and promotes invasive phenotype of human T-cell leukemia virus type I-transformed cells and adult T-cell leukemia cells. J Biol Chem 2010; 285:15511-15522. [PMID: 20215110 DOI: 10.1074/jbc.m109.076653] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CADM1 encodes a multifunctional immunoglobulin-like cell adhesion molecule whose cytoplasmic domain contains a type II PSD95/Dlg/ZO-1 (PDZ)-binding motif (BM) for associating with other intracellular proteins. Although CADM1 lacks expression in T lymphocytes of healthy individuals, it is overexpressed in adult T-cell leukemia-lymphoma (ATL) cells. It has been suggested that the expression of CADM1 protein promotes infiltration of leukemic cells into various organs and tissues, which is one of the frequent clinical manifestations of ATL. Amino acid sequence alignment revealed that Tiam1 (T-lymphoma invasion and metastasis 1), a Rac-specific guanine nucleotide exchange factor, has a type II PDZ domain similar to those of membrane-associated guanylate kinase homologs (MAGUKs) that are known to bind to the PDZ-BM of CADM1. In this study, we demonstrated that the cytoplasmic domain of CADM1 directly interacted with the PDZ domain of Tiam1 and induced formation of lamellipodia through Rac activation in HTLV-I-transformed cell lines as well as ATL cell lines. Our results indicate that Tiam1 integrates signals from CADM1 to regulate the actin cytoskeleton through Rac activation, which may lead to tissue infiltration of leukemic cells in ATL patients.
Collapse
Affiliation(s)
- Mari Masuda
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Tomoko Maruyama
- Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tsutomu Ohta
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akihiko Ito
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomayoshi Hayashi
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Kunihiko Tsukasaki
- Department of Molecular Medicine and Hematology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shimeru Kamihira
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroo Hoshino
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Teruhiko Yoshida
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Eric J Stanbridge
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697
| | - Yoshinori Murakami
- Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
25
|
Kawano S, Ikeda W, Kishimoto M, Ogita H, Takai Y. Silencing of ErbB3/ErbB2 signaling by immunoglobulin-like Necl-2. J Biol Chem 2009; 284:23793-805. [PMID: 19561085 DOI: 10.1074/jbc.m109.025155] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ErbB2 and ErbB3, members of the EGF receptor/ErbB family, form a heterodimer upon binding of a ligand, inducing the activation of Rac small G protein and Akt protein kinase for cell movement and survival, respectively. The enhanced ErbB3/ErbB2 signaling causes tumorigenesis, invasion, and metastasis. We found here that the ErbB3/ErbB2 signaling is regulated by immunoglobulin-like Necl-2, which is down-regulated in various cancer cells and serves as a tumor suppressor. The extracellular region of ErbB3, but not ErbB2, interacted in cis with that of Necl-2. This interaction reduced the ligand-induced, ErbB2-catalyzed tyrosine phosphorylation of ErbB3 and inhibited the consequent ErbB3-mediated activation of Rac and Akt, resulting in the inhibition of cancer cell movement and survival. These inhibitory effects of Necl-2 were mediated by the protein-tyrosine phosphatase PTPN13 which interacted with the cytoplasmic tail of Necl-2. We describe here this novel mechanism for silencing of the ErbB3/ErbB2 signaling by Necl-2.
Collapse
Affiliation(s)
- Satoshi Kawano
- Division of Molecular and Cellular Biology, Department of Biochemistry, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | | | | | | | | |
Collapse
|
26
|
Role of the spermatogenic-Sertoli cell interaction through cell adhesion molecule-1 (CADM1) in spermatogenesis. Anat Sci Int 2009; 84:112-21. [PMID: 19337787 DOI: 10.1007/s12565-009-0034-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/26/2009] [Indexed: 10/20/2022]
Abstract
Endocrine and local secretory factors have long been known to be required for spermatogenesis. Evidence has been accumulating in recent years indicating that direct contact between spermatogenic and Sertoli cells is also required for spermatogenesis. Cell adhesion molecules of various types have been found in the mammalian testis that are expressed in spermatogenic and/or Sertoli cells and involved in homophilic and/or heterophilic binding. We have cloned a novel cell adhesion molecule, cell adhesion molecule-1 (CADM1), also known as immunoglobulin superfamily 4A or spermatogenic immunoglobulin superfamily, from the mouse testis. CADM1 belongs to the immunoglobulin superfamily and is composed of three immunoglobulin-like domains, a transmembrane domain, and a short intracellular domain. In the seminiferous epithelium, CADM1 is expressed in intermediate spermatogonia through to early pachytene spermatocytes as well as in elongating spermatids--but not in round spermatids, mature spermatozoa, or Sertoli cells. One of the heterophilic binding partners of CADM1 has proven to be a poliovirus receptor, another member of the immunoglobulin superfamily that is expressed in Sertoli cells. Knockout mice for CADM1 develop male infertility due to defective spermatogenesis. These findings suggest that cell adhesion molecules between spermatogenic and Sertoli cells play essential roles in spermatogenesis.
Collapse
|
27
|
Disruption of Nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J Neurosci 2009; 28:12815-9. [PMID: 19036974 DOI: 10.1523/jneurosci.2665-08.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nectin-like 1 (Necl-1) is a neural-specific cell adhesion molecule that is expressed in both the CNS and PNS. Previous in vitro studies suggested that Necl-1 expression is essential for the axon-glial interaction and myelin sheath formation in the PNS. To investigate the in vivo role of Necl-1 in axonal myelination of the developing nervous system, we generated the Necl-1 mutant mice by replacing axons 2-5 with the LacZ reporter gene. Expression studies revealed that Necl-1 is exclusively expressed by neurons in the CNS. Disruption of Necl-1 resulted in developmental delay of axonal myelination in the optic nerve and spinal cord, suggesting that Necl-1 plays an important role in the initial axon-oligodendrocyte recognition and adhesion in CNS myelination.
Collapse
|
28
|
Zhiling Y, Fujita E, Tanabe Y, Yamagata T, Momoi T, Momoi MY. Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem Biophys Res Commun 2008; 377:926-9. [PMID: 18957284 DOI: 10.1016/j.bbrc.2008.10.107] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 11/16/2022]
Abstract
The unified idea on the molecular pathogenesis of Autism Spectrum Disorder (ASD) is still unknown although mutations in genes encoding neuroligins and SHANK3 have been shown in a small part of the patients. RA175/SynCAM1/CADM1(CADM1), a member of immunoglobulin superfamily, is another synaptic cell adhesion molecule. To clarify the idea that impaired synaptogenesis underlies the pathogenesis of ASD, we examined the relationship between mutations in the CADM1 gene and ASD. We found two missense mutations, C739A(H246N) and A755C(Y251S), in the CADM1 gene of male Caucasian ASD patients and their family members. Both mutations were located in the third immunoglobulin domain, which is essential for trans-active interaction. The mutated CADM1 exhibited less amount of high molecular weight with the matured oligosaccharide, defective trafficking to the cell surface, and more susceptibility to the cleavage and or degradation. Our findings provide key support for the unified idea that impaired synaptogenesis underlies the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yu Zhiling
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Thomas LA, Akins MR, Biederer T. Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. J Comp Neurol 2008; 510:47-67. [PMID: 18615557 DOI: 10.1002/cne.21773] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-cell interactions through adhesion molecules play key roles in the development of the nervous system. Synaptic cell adhesion molecules (SynCAMs) comprise a group of four immunoglobulin (Ig) superfamily members that mediate adhesion and are prominently expressed in the brain. Although SynCAMs have been implicated in the differentiation of neurons, there has been no comprehensive analysis of their expression patterns. Here we examine the spatiotemporal expression patterns of SynCAMs by using reverse transcriptase-polymerase chain reaction, in situ hybridization, and immunohistological techniques. SynCAMs 1-4 are widely expressed throughout the developing and adult central nervous system. They are prominently expressed in neurons throughout the brain and are present in both excitatory and inhibitory neurons. Investigation of different brain regions in the developing and mature mouse brain indicates that each SynCAM exhibits a distinct spatiotemporal expression pattern. This is observed in all regions analyzed and is particularly notable in the cerebellum, where SynCAMs display highly distinct expression in cerebellar granule and Purkinje cells. These unique expression profiles are complemented by specific heterophilic adhesion patterns of SynCAM family members, as shown by cell overlay experiments. Three prominent interactions are observed, mediated by the extracellular domains of SynCAMs 1/2, 2/4, and 3/4. These expression and adhesion profiles of SynCAMs together with their previously reported functions in synapse organization indicate that SynCAM proteins contribute importantly to the synaptic circuitry of the central nervous system.
Collapse
Affiliation(s)
- Lisa A Thomas
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
30
|
Ito A, Hagiyama M, Oonuma J. Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J Smooth Muscle Res 2008; 44:83-93. [PMID: 18552455 DOI: 10.1540/jsmr.44.83] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mast cells are a native composer of connective tissue of the skin dermis and intestinal and respiratory mucosa. Independent lines of accumulated evidence indicate the existence of an intensive bidirectional crosstalk between mast cells and sensory nerves and suggest that mast cells and sensory nerves may be viewed as a functional unit, which could be of crucial importance in neuroimmunological pathways. Mast cells appear to have a property of influencing smooth muscle function via not only such nerve-mast cell effects, but also direct pathways. In bronchial asthma, mast cells infiltrate the airway smooth muscle layer, and interact directly with smooth muscle cells, suggesting pathogenic roles for mast cells in airway obstruction. Current studies on mast cell biology identified a novel adhesion molecule of mast cells, namely cell adhesion molecule-1, CADM1. This molecule is unique, because it serves as not only simple glue but also appears to promote functional communication between nerve and mast cells and between smooth muscle and mast cells.
Collapse
Affiliation(s)
- Akihiko Ito
- Division of Pathology, Graduate School of Medicine, Kobe University, Kusunoki-cho 7-5-1, Chuo-ku, Kobe 650-0017, Japan.
| | | | | |
Collapse
|
31
|
Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL. Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. ACTA ACUST UNITED AC 2007; 178:861-74. [PMID: 17724124 PMCID: PMC2064549 DOI: 10.1083/jcb.200705132] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axon-glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo-glial interactions along the internode.
Collapse
Affiliation(s)
- Patrice Maurel
- Department of Cell Biology and Neurology, Smilow Neuroscience Program, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.
Collapse
|
33
|
Fujita E, Tanabe Y, Hirose T, Aurrand-Lions M, Kasahara T, Imhof BA, Ohno S, Momoi T. Loss of partitioning-defective-3/isotype-specific interacting protein (par-3/ASIP) in the elongating spermatid of RA175 (IGSF4A/SynCAM)-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1800-10. [PMID: 18055550 DOI: 10.2353/ajpath.2007.070261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IGSF4a/RA175/SynCAM (RA175) and junctional adhesion molecules (Jams) are members of the immunoglobulin superfamily with a PDZ-binding domain at their C termini. Deficiency of Ra175 (Ra175(-/-)) as well as Jam-C deficiency (Jam-C(-/-)) causes the defect of the spermatid differentiation, oligo-astheno-teratozoospermia. Ra175(-/-) elongating spermatids fail to mature further, whereas Jam-C(-/-) round spermatids lose cell polarity, and most of Jam-C(-/-) elongated spermatids are completely lost. RA175 and Jam-C seem to have similar but distinct functional roles during spermatid differentiation. Here we show that the cell polarity protein Par-3 with PDZ domains, a binding partner of Jams, is one of the associated proteins of the cytoplasmic region of RA175 in testis. Par-3 and Jam-C are partly co-localized with RA175 in the elongating and elongated spermatids; their distributions overlapped with that of RA175 on the tips of the dorsal region of the head of the elongating spermatid (steps 9 to 12) in the wild type. In the Ra175(-/-) elongating spermatid, Par-3 was absent, and Jam-C was absent or abnormally localized. The RA175 formed a ternary complex with Jam-C via interaction with Par-3. The lack of the ternary complex in the Ra175(-/-) elongating spermatid may cause the defect of the specialized adhesion structures, resulting in the oligo-astheno-teratozoospermia.
Collapse
Affiliation(s)
- Eriko Fujita
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Oawahigashi-machi 4-1-1, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pellissier F, Gerber A, Bauer C, Ballivet M, Ossipow V. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci 2007; 8:90. [PMID: 17967169 PMCID: PMC2176061 DOI: 10.1186/1471-2202-8-90] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/29/2007] [Indexed: 01/15/2023] Open
Abstract
Background Cell adhesion molecules are plasma membrane proteins specialized in cell-cell recognition and adhesion. Two related adhesion molecules, Necl-1 and Necl-2/SynCAM, were recently described and shown to fulfill important functions in the central nervous system. The purpose of the work was to investigate the distribution, and the properties of Necl-3/SynCAM-2, a previously uncharacterized member of the Necl family with which it shares a conserved modular organization and extensive sequence homology. Results We show that Necl-3/SynCAM-2 is a plasma membrane protein that accumulates in several tissues, including those of the central and peripheral nervous system. There, Necl-3/SynCAM-2 is expressed in ependymal cells and in myelinated axons, and sits at the interface between the axon shaft and the myelin sheath. Several independent assays demonstrate that Necl-3/SynCAM-2 functionally and selectively interacts with oligodendrocytes. We finally prove that Necl-3/SynCAM-2 is a bona fide adhesion molecule that engages in homo- and heterophilic interactions with the other Necl family members, leading to cell aggregation. Conclusion Collectively, our manuscripts and the works on Necl-1 and SynCAM/Necl-2 reveal a complex set of interactions engaged in by the Necl proteins in the nervous system. Our work also support the notion that the family of Necl proteins fulfils key adhesion and recognition functions in the nervous system, in particular between different cell types.
Collapse
Affiliation(s)
- François Pellissier
- Department of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, Sciences II, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Tsukioka F, Wakayama T, Tsukatani T, Miwa T, Furukawa M, Iseki S. Expression and localization of the cell adhesion molecule SgIGSF during regeneration of the olfactory epithelium in mice. Acta Histochem Cytochem 2007; 40:43-52. [PMID: 17576432 PMCID: PMC1874509 DOI: 10.1267/ahc.06027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/20/2007] [Indexed: 11/23/2022] Open
Abstract
Spermatogenic immunoglobulin superfamily (SgIGSF) is a cell adhesion molecule originally discovered in mouse testis. SgIGSF is expressed not only in spermatogenic cells but also in lung and liver epithelial cells and in neurons and glia of the central and peripheral nervous systems. In the present study, we examined the expression and localization of SgIGSF in mouse olfactory epithelium before and after transection of the olfactory nerves, by RT-PCR, Western blotting and immunohistochemistry. In normal olfactory mucosa, SgIGSF showed 100 kDa in molecular weight, which was identical with that in the lung but different from that in the brain. SgIGSF was expressed on the membrane of all olfactory, sustentacular and basal cells, but more abundantly in the apical portions of the olfactory epithelium where the dendrites of olfactory cells are in contact with sustentacular cells. After olfactory nerve transection, mature olfactory cells disappeared in 4 days but were regenerated around 7–15 days by proliferation and differentiation of basal cells into mature olfactory cells through the step of immature olfactory cells. During this period, both the mRNA and protein for SgIGSF showed a transient increase, with peak levels at 7 days and 11 days, respectively, after the transection. Immunohistochemistry showed that the enriched immunoreactivity for SgIGSF at 7–11 days was localized primarily to the membrane of immature olfactory cells. These results suggested that, during regeneration of the olfactory epithelium, the adhesion molecule SgIGSF plays physiological roles in differentiation, migration, and maturation of immature olfactory cells.
Collapse
Affiliation(s)
- Fusae Tsukioka
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toshiaki Tsukatani
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Furukawa
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Correspondence to: Shoichi Iseki, M.D., Ph.D., Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, 13–1 Takara-machi, Kanazawa 920–8640, Japan. E-mail:
| |
Collapse
|
36
|
Wakayama T, Sai Y, Ito A, Kato Y, Kurobo M, Murakami Y, Nakashima E, Tsuji A, Kitamura Y, Iseki S. Heterophilic binding of the adhesion molecules poliovirus receptor and immunoglobulin superfamily 4A in the interaction between mouse spermatogenic and Sertoli cells. Biol Reprod 2007; 76:1081-90. [PMID: 17314315 DOI: 10.1095/biolreprod.106.058974] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The cell adhesion protein immunoglobulin superfamily 4A (IGSF4A) is expressed on the surfaces of spermatogenic cells in the mouse testis. During spermatogenesis, IGSF4A is considered to bind to the surface of Sertoli cells in a heterophilic manner. To identify this unknown partner of IGSF4A, we generated rat monoclonal antibodies against the membrane proteins of mouse Sertoli cells grown in primary culture. Using these monoclonal antibodies, we isolated a clone that immunostained Sertoli cells and reacted with the product of immunoprecipitation of the homogenate of mouse testis with anti-IGSF4A antibody. Subsequently, to identify the Sertoli cell membrane protein that is recognized by this monoclonal antibody, we performed expression cloning of a cDNA library from the mouse testis. As a result, we identified poliovirus receptor (PVR), which is another IGSF-type cell adhesion molecule, as the binding partner of IGSF4A. The antibodies raised against PVR and IGSF4A immunoprecipitated both antigens in the homogenate of mouse testis. Immunoreactivity for PVR was present in Sertoli cells but not in spermatogenic cells at all stages of spermatogenesis. Overexpression of PVR in TM4, a mouse Sertoli cell line, increased more than three-fold its capacity to adhere to Tera-2, which is a human cell line that expresses IGSF4A. These findings suggest that the heterophilic binding of PVR to IGSF4A is responsible, at least in part, for the interaction between Sertoli and spermatogenic cells during mouse spermatogenesis.
Collapse
Affiliation(s)
- Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Toshimori K, Maekawa M, Ito C, Toyama Y, Suzuki-Toyota F, Saxena DK. The involvement of immunoglobulin superfamily proteins in spermatogenesis and sperm-egg interaction. Reprod Med Biol 2006; 5:87-93. [PMID: 29699240 DOI: 10.1007/bf03016144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The immunoglobulin superfamily (IgSF) proteins are expressed on the plasma membrane between Sertoli cells and germ cells in the testis. IgSF proteins are specifically present at the apical Sertoli-germ cell junction, that is, ectoplasmic specialization and are involved in germ cell differentiation. Some IgSF proteins are present on the surface of germ cells and undergo further biochemical modifications during sperm maturation. These IgSF proteins undergo final modifications during capacitation and/or the acrosome reaction. The function and expression of IgSF proteins in the testis and spermatozoa, as they relate to spermatogenesis and sperm-egg interaction, are discussed. (Reprod Med Biol 2006; 5: 87-93).
Collapse
Affiliation(s)
- Kiyotata Toshimori
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Mamiko Maekawa
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Chizuru Ito
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Yoshiro Toyama
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Fumie Suzuki-Toyota
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Dinesh K Saxena
- Reproductive Immunology Laboratory of National Institute for Research on Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
38
|
Toshimori K, Maekawa M, Ito C, Toyama Y, Suzuki-Toyota F, Saxena DK. The involvement of immunoglobulin superfamily proteins in spermatogenesis and sperm-egg interaction. Reprod Med Biol 2006. [PMID: 29699240 DOI: 10.1111/j.1447-0578.2006.00129.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The immunoglobulin superfamily (IgSF) proteins are expressed on the plasma membrane between Sertoli cells and germ cells in the testis. IgSF proteins are specifically present at the apical Sertoli-germ cell junction, that is, ectoplasmic specialization and are involved in germ cell differentiation. Some IgSF proteins are present on the surface of germ cells and undergo further biochemical modifications during sperm maturation. These IgSF proteins undergo final modifications during capacitation and/or the acrosome reaction. The function and expression of IgSF proteins in the testis and spermatozoa, as they relate to spermatogenesis and sperm-egg interaction, are discussed. (Reprod Med Biol 2006; 5: 87-93).
Collapse
Affiliation(s)
- Kiyotata Toshimori
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Mamiko Maekawa
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Chizuru Ito
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Yoshiro Toyama
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Fumie Suzuki-Toyota
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Dinesh K Saxena
- Reproductive Immunology Laboratory of National Institute for Research on Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
39
|
Dong X, Xu F, Gong Y, Gao J, Lin P, Chen T, Peng Y, Qiang B, Yuan J, Peng X, Rao Z. Crystal structure of the V domain of human Nectin-like molecule-1/Syncam3/Tsll1/Igsf4b, a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule. J Biol Chem 2006; 281:10610-7. [PMID: 16467305 DOI: 10.1074/jbc.m513459200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily proteins that participate in the organization of epithelial and endothelial junctions. Nectins have three Ig-like domains in the extracellular region, and the first one is essential in cell-cell adhesion and plays a central role in the interaction with the envelope glycoprotein D of several viruses. Five Nectin-like molecules (Necl-1 through -5) with similar domain structures to those of Nectins have been identified. Necl-1 is specifically expressed in neural tissue, has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity, and plays an important role in the formation of synapses, axon bundles, and myelinated axons. Here we report the first crystal structure of its N-terminal Ig-like V domain at 2.4 A, providing insight into trans-cellular recognition mediated by Necl-1. The protein crystallized as a dimer, and the dimeric form was confirmed by size-exclusion chromatography and chemical cross-linking experiments, indicating this V domain is sufficient for homophilic interaction. Mutagenesis work demonstrated that Phe(82) is a key residue for the adhesion activity of Necl-1. A model for homophilic adhesion of Necl-1 at synapses is proposed based on its structure and previous studies.
Collapse
Affiliation(s)
- Xiuhua Dong
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Biederer T. Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 2006; 87:139-50. [PMID: 16311015 DOI: 10.1016/j.ygeno.2005.08.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/31/2005] [Accepted: 08/15/2005] [Indexed: 12/20/2022]
Abstract
SynCAM 1 (synaptic cell adhesion molecule 1, alternatively named Tslc1 and nectin-like protein 3) belongs to the immunoglobulin superfamily and is an adhesion molecule that operates in a variety of important contexts. Exemplary are its roles in adhesion at synapses in the central nervous system and as tumor suppressor. Here, I describe a family of genes homologous to SynCAM 1 comprising four genes found solely in vertebrates. All SynCAM genes encode proteins with three immunoglobulin-like domains of the V-set, C1-set, and I-set subclasses. Comparison of genomic with cDNA sequences provides their exon-intron structure. Alternative splicing generates isoforms of SynCAM proteins, and diverse SynCAM 1 and 2 isoforms are created in an extracellular region rich in predicted O-glycosylation sites. Protein interaction motifs in the cytosolic sequence are highly conserved among all four SynCAM proteins, indicating their critical functional role. These findings aim to facilitate the understanding of SynCAM genes and provide the framework to examine the physiological functions of this family of vertebrate-specific adhesion molecules.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Fujita E, Kouroku Y, Ozeki S, Tanabe Y, Toyama Y, Maekawa M, Kojima N, Senoo H, Toshimori K, Momoi T. Oligo-astheno-teratozoospermia in mice lacking RA175/TSLC1/SynCAM/IGSF4A, a cell adhesion molecule in the immunoglobulin superfamily. Mol Cell Biol 2006; 26:718-26. [PMID: 16382161 PMCID: PMC1346906 DOI: 10.1128/mcb.26.2.718-726.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/26/2005] [Accepted: 10/24/2005] [Indexed: 01/19/2023] Open
Abstract
RA175/TSLC1/SynCAM/IGSF4A (RA175), a member of the immunoglobulin superfamily with Ca2+-independent homophilic trans-cell adhesion activity, participates in synaptic and epithelial cell junctions. To clarify the biological function of RA175, we disrupted the mouse Igsf4a (Ra175/Tslc1/SynCam/Igsf4a Ra175) gene. Male mice lacking both alleles of Ra175 (Ra175-/-) were infertile and showed oligo-astheno-teratozoospermia; almost no mature motile spermatozoa were found in the epididymis. Heterozygous males and females and homozygous null females were fertile and had no overt developmental defects. RA175 was mainly expressed on the cell junction of spermatocytes, elongating and elongated spermatids (steps 9 to 15) in wild-type testes; the RA175 expression was restricted to the distal site (tail side) but not to the proximal site (head side) in elongated spermatids. In Ra175-/- testes, elongated and mature spermatids (steps 13 to 16) were almost undetectable; round spermatids were morphologically normal, but elongating spermatids (steps 9 to 12) failed to mature further and to translocate to the adluminal surface. The remaining elongating spermatids at improper positions were finally phagocytosed by Sertoli cells. Furthermore, undifferentiated and abnormal spermatids exfoliated into the tubular lumen from adluminal surfaces. Thus, RA175-based cell junction is necessary for retaining elongating spermatids in the invagination of Sertoli cells for their maturation and translocation to the adluminal surface for timely release.
Collapse
Affiliation(s)
- Eriko Fujita
- Division of Differentiation and Development, Department of Inherited Metabolic Disorder, National Institute of Neuroscience, NCNP, Ogawahigashi-machi 4-1-1, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sussan TE, Pletcher MT, Murakami Y, Reeves RH. Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression. Mol Cancer 2005; 4:28. [PMID: 16083501 PMCID: PMC1208945 DOI: 10.1186/1476-4598-4-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/05/2005] [Indexed: 11/23/2022] Open
Abstract
Background Introduction of cDNA or genomic clones of the tumor suppressor in lung cancer 1 (TSLC1) gene into the non-small cell lung cancer line, A549, reverses tumorigenic growth properties of these cells. These results and the observation that TSLC1 is down-regulated in a number of tumors suggest that TSLC1 functions as a critical switch mediating repression of tumorigenesis. Results To investigate this mechanism, we compared growth properties of A549 with the TSLC1-containing derivative. We found a G1/S phase transition delay in 12.2. Subtractive hybridization, quantitative PCR, and TranSignal Protein/DNA arrays were used to identify genes whose expression changed when TSLC1 was up-regulated. Members of common G1/S phase regulatory pathways such as TP53, MYC, RB1 and HRAS were not differentially expressed, indicating that TSLC1 may function through an alternative pathway(s). A number of genes involved in cell proliferation and tumorigenesis were differentially expressed, notably genes in the Ras-induced senescence pathway. We examined expression of several of these key genes in human tumors and normal lung tissue, and found similar changes in expression, validating the physiological relevance of the A549 and 12.2 cell lines. Conclusion Gene expression and cell cycle differences provide insights into potential downstream pathways of TSLC1 that mediate the suppression of tumor properties in A549 cells.
Collapse
Affiliation(s)
- Thomas E Sussan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Mathew T Pletcher
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Yoshinori Murakami
- Tumor Suppression & Functional Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| |
Collapse
|
43
|
Ohta Y, Itoh K, Yaoi T, Tando S, Fukui K, Fushiki S. Spatiotemporal patterns of expression of IGSF4 in developing mouse nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:23-31. [PMID: 15862624 DOI: 10.1016/j.devbrainres.2005.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/17/2005] [Accepted: 01/20/2005] [Indexed: 11/27/2022]
Abstract
IGSF4 is a novel immunoglobulin (Ig)-like intercellular adhesion molecule. Since IGSF4 has been characterized by several independent research groups, this molecule is called by three names, TSLC1, SgIGSF and SynCAM. In the experiments to study global changes of gene expression in fetal murine brains after prenatal exposure to low-doses of X-rays, we have found IGSF4 as one of down-regulated genes after X-irradiation. In order to elucidate the expression of spatiotemporal expression of IGSF4 in the developing brain, we have produced polyclonal antibody against IGSF4 and studied the expression of IGSF4 with immunohistochemistry and Western blot analysis. At embryonic day (E) 12.5, IGSF4-immunoreactivity (IR) was observed diffusely in the telencephalic wall, whereas it became rather confined to the subplate, the cortical plate and the subventricular zone as the development proceeded. Noteworthy was a distinct radial pattern found in the cortical plate of E16.5. IGSF4-IR gradually decreased after birth and disappeared in adulthood. In the cerebellum, IGSF4 was expressed in the molecular layer at postnatal day (P) 0 through P14. By Western blot analysis, IGSF4 remained at low levels throughout embryonic stage, whereas it increased after birth. These spatiotemporal patterns of the expression suggest that IGSF4 plays crucial roles in the development of both telencephalon and cerebellum.
Collapse
Affiliation(s)
- Yoshimi Ohta
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Kakunaga S, Ikeda W, Itoh S, Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A, Takai Y. Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci 2005; 118:1267-77. [PMID: 15741237 DOI: 10.1242/jcs.01656] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules and comprise a family of four members. At the mossy fiber terminals of hippocampus, nectin-1 and nectin-3 localize at the presynaptic and postsynaptic sides of synaptic junctions, respectively, and their trans-interactions play a role in formation of synapses in cooperation with N-cadherin. Nectins are associated with the actin cytoskeleton through afadin, a nectin- and actin-filament-binding protein. Five nectin-like molecules (Necls) which have domain structures similar to those of nectins have been identified and here we characterize Necl-1/TSLL1/SynCAM3, from now on referred to as Necl-1. Tissue distribution analysis showed that Necl-1 was specifically expressed in the neural tissue. Immunofluorescence and immunoelectron microscopy revealed that Necl-1 localized at the contact sites among axons, their terminals, and glia cell processes that cooperatively formed synapses, axon bundles and myelinated axons. Necl-1 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 from now on referred to as Necl-2, nectin-1 and nectin-3, but not with Necl-5 or nectin-2. The C-terminal cytoplasmic region of Necl-1 did not bind afadin but bound membrane-associated guanylate kinase subfamily members that contain the L27 domain, including Dlg3, Pals2 and CASK. These results indicate that Necl-1 is a neural-tissue-specific Ca2+-independent immunoglobulin-like cell-cell adhesion molecule which potentially has membrane-associated guanylate kinase subfamily member-binding activity and localizes at the non-junctional cell-cell contact sites.
Collapse
Affiliation(s)
- Shigeki Kakunaga
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhou Y, Du G, Hu X, Yu S, Liu Y, Xu Y, Huang X, Liu J, Yin B, Fan M, Peng X, Qiang B, Yuan J. Nectin-like molecule 1 is a protein 4.1N associated protein and recruits protein 4.1N from cytoplasm to the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:142-54. [PMID: 15893517 DOI: 10.1016/j.bbamem.2005.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 01/24/2005] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
Nectins are immunoglobulin superfamily adhesion molecules that participate in the organization of epithelial and endothelial junctions. Sharing high homology with the poliovirus receptor (PVR/CD155), nectins were also named poliovirus receptor-related proteins (PRRs). Four nectins and five nectin-like molecules have been identified. Here we describe the cloning and characterization of human and mouse nectin-like molecular 1 (NECL1). Human and mouse NECL1 share 87.3% identity at the amino acid level. NECL1 contains an ectodomain made of three immunoglobulin-like domains, and a cytoplasmic region homologous to those of glycophorin C and contactin-associated protein. RNA blot and in situ hybridization analysis showed that NECL1 predominantly expressed in the central nervous system, mainly in neuronal cell bodies in a variety of brain regions including the cerebellum, cerebral cortex and hippocampus. In vitro binding assay proved the association of NECL1 with protein 4.1N. NECL1 localizes to the cell-cell junctions and recruits protein 4.1N to the plasma membranes through its C-terminus, thus may regulate the function of the cell-cell junction. We propose that the NECL1 and protein 4.1N complex is involved in the morphological development, stability, and dynamic plasticity of the nervous system.
Collapse
Affiliation(s)
- Yan Zhou
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, National Human Genome Center, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fujita E, Urase K, Soyama A, Kouroku Y, Momoi T. Distribution of RA175/TSLC1/SynCAM, a member of the immunoglobulin superfamily, in the developing nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:199-209. [PMID: 15707673 DOI: 10.1016/j.devbrainres.2004.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 10/19/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
RA175 is a new member of the immunoglobulin superfamily with trans interaction activity, and it plays a role as a tumor suppressor in lung carcinoma (TSLC1) and as a cell adhesion molecule promoting the formation of functional synapses (SynCAM). Little is known about the biological function of RA175/TSLC1/SynCAM neural network formation during neurogenesis. We examined the distribution and colocalization of the RA175/TSLC1/SynCAM protein with other members of the immunoglobulin superfamily such as NCAM, L1, and TAG-1 in the mouse developing nervous system. Consistent with the expression of RA175/TSLC1/SynCAM mRNA, the protein was localized in the brain neuroepithelium at embryonic day (E) 9.5, neural crest at E10.5, motor neurons at E10.5, and olfactory epithelium at E16.5. In contrast with its mRNA, the protein was intensely detected on the fasciculated axons in the floor plates, ventral root, and dorsal funiculus in the E10.5-11.5 spinal cord and colocalized with NCAM and L1 on the ventral root and dorsal funiculus and partly colocalized with TAG-1 on the commissural axons and dorsal funiculus. In the E13.5-15.5 brain, RA175/TSLC1/SynCAM colocalized with NCAM and L1 on the developing thalamocortical fibers from the internal capsule (IC) and partly colocalized with TAG-1 on the cortical efferent axons in the intermediate zone (IZ). RA175/TSLC1/SynCAM was localized on the axons of some of the cortical neurons cultured in vitro. Thus, in addition to cell adhesion activity in the neuroepithelium and the synapses, RA175/TSLC1/SynCAM may be involved in neuronal migration, axon growth, pathfinding, and fasciculation on the axons of differentiating neurons.
Collapse
Affiliation(s)
- Eriko Fujita
- Division of Development and Differentiation, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
47
|
Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, Takeuchi M, Imai T, Takai Y. Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J Biol Chem 2004; 279:18015-25. [PMID: 14871893 DOI: 10.1074/jbc.m312969200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell migration plays roles in invasion of transformed cells and scattering of embryonic mesenchymal cells into surrounding tissues. We have found that Ig-like Necl-5/Tage4 is up-regulated in NIH3T3 cells transformed by an oncogenic Ras (V12Ras-NIH3T3 cells) and heterophilically trans-interacts with a Ca(2+)-independent Ig-like cell adhesion molecule nectin-3, eventually enhancing their intercellular motility. We show here that Necl-5 furthermore enhances cell migration in a nectin-3-independent manner. Studies using L fibroblasts expressing various mutants of Necl-5, NIH3T3 cells, and V12Ras-NIH3T3 cells have revealed that Necl-5 enhances serum- and platelet-derived growth factor-induced cell migration. The extracellular region of Necl-5 is necessary for directional cell migration, but not for random cell motility. The cytoplasmic region of Necl-5 is necessary for both directional and random cell movement. Necl-5 colocalizes with integrin alpha(V)beta(3) at leading edges of migrating cells. Analyses using an inhibitor or an activator of integrin alpha(V)beta(3) or a dominant negative mutant of Necl-5 have shown the functional association of Necl-5 with integrin alpha(V)beta(3) in cell motility. Cdc42 and Rac small G proteins are activated by the action of Necl-5 and required for the serum-induced, Necl-5-enhanced cell motility. These results indicate that Necl-5 regulates serum- and platelet-derived growth factor-induced cell migration in an integrin-dependent, nectin-3-independent manner, when cells do not contact other cells. We furthermore show here that enhanced motility and metastasis of V12Ras-NIH3T3 cells are at least partly the result of up-regulated Necl-5.
Collapse
Affiliation(s)
- Wataru Ikeda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shingai T, Ikeda W, Kakunaga S, Morimoto K, Takekuni K, Itoh S, Satoh K, Takeuchi M, Imai T, Monden M, Takai Y. Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem 2003; 278:35421-7. [PMID: 12826663 DOI: 10.1074/jbc.m305387200] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that play roles in organization of a variety of cell-cell junctions in cooperation with or independently of cadherins. Four nectins have been identified. Five nectin-like molecules, which have domain structures similar to those of nectins, have been identified, and we characterized here nectin-like molecule-2 (Necl-2)/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1. Necl-2 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-1/TSLL1/SynCAM3 and nectin-3. Necl-2 was widely expressed in rat tissues examined. Necl-2 localized at the basolateral plasma membrane in epithelial cells of the mouse gall bladder, but not at specialized cell-cell junctions, such as tight junctions, adherens junctions, and desmosomes. Nectins bind afadin, whereas Necl-2 did not bind afadin but bound Pals2, a membrane-associated guanylate kinase family member known to bind Lin-7, implicated in the proper localization of the Let-23 protein in Caenorhabditis elegans, the homologue of mammalian epidermal growth factor receptor. These results indicate the unique localization of Necl-2 and its possible involvement in localization of a transmembrane protein(s) through Pals2.
Collapse
Affiliation(s)
- Tatsushi Shingai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 2003; 94:655-67. [PMID: 12901789 PMCID: PMC11160195 DOI: 10.1111/j.1349-7006.2003.tb01499.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 06/26/2003] [Accepted: 06/30/2003] [Indexed: 12/16/2022] Open
Abstract
Nectins are a family of Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules consisting of four members, which homophilically and heterophilically trans-interact and cause cell-cell adhesion. Nectin-based cell-cell adhesion is involved in the formation of cadherin-based adherens junctions in epithelial cells and fibroblasts. The nectin-based cell-cell adhesion induces activation of Cdc42 and Rac small G proteins, which eventually regulate the formation of adherens junctions through reorganization of the actin cytoskeleton, gene expression through activation of a mitogen-activated protein kinase cascade, and cell polarization through cell polarity proteins. Five nectin-like molecules (necls), which have domain structures similar to those of nectins, have recently been identified and appear to play different roles from those of nectins. One of them, named necl-5, which does not homophilically trans-interact, but heterophilically trans-interacts with nectin-3, regulates cell migration and adhesion. In this article, the roles and modes of action of nectins and necls in cell adhesion, migration, and polarization are reviewed.
Collapse
Affiliation(s)
- Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan.
| | | | | | | | | |
Collapse
|
50
|
Ikeda W, Kakunaga S, Itoh S, Shingai T, Takekuni K, Satoh K, Inoue Y, Hamaguchi A, Morimoto K, Takeuchi M, Imai T, Takai Y. Tage4/Nectin-like molecule-5 heterophilically trans-interacts with cell adhesion molecule Nectin-3 and enhances cell migration. J Biol Chem 2003; 278:28167-72. [PMID: 12740392 DOI: 10.1074/jbc.m303586200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malignant transformation of cells causes disruption of cell-cell adhesion, enhancement of cell motility, and invasion into surrounding tissues. Nectins have both homophilic and heterophilic cell-cell adhesion activities and organize adherens junctions in cooperation with cadherins. We examined here whether Tage4, which was originally identified to be a gene overexpressed in colon carcinoma and has a domain structure similar to those of nectins, is involved in cell adhesion and/or migration. Tage4 heterophilically trans-interacted with nectin-3, but not homophilically with Tage4. Expression of Tage4 was markedly elevated in NIH3T3 cells transformed by an oncogenic Ki-Ras (V12Ras-NIH3T3 cells) as compared with that of wild-type NIH3T3 cells. trans-Interaction of Tage4 with nectin-3 enhanced motility of V12Ras-NIH3T3 cells. Tage4 did not bind afadin, a nectin- and actin filament-binding protein that connects nectins to the actin cytoskeleton and cadherins through catenins. Thus, Tage4 heterophilically trans-interacts with nectin-3 and regulates cell migration. Tage4 is tentatively re-named here nectin-like molecule-5 (necl-5) on the basis of its function and domain structure similar to those of nectins.
Collapse
Affiliation(s)
- Wataru Ikeda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|