1
|
Shireen T, Sachs F, Hua SZ. Physical memory of astrocytes. Brain Res 2022; 1796:148076. [PMID: 36084692 DOI: 10.1016/j.brainres.2022.148076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
Traumatic brain injury (TBI) is a major risk factor for development of neurodegenerative disorders later in life. Short, repetitive, mechanical impacts can lead to pathology that appears days or months later. The cells have a physical "memory" of mechanical events. The origin of this memory is not known. To examine the properties of this memory, we used a microfluidic chip to apply programmed fluid shear pulses to adherent adult rat astrocytes. These caused a transient rise in intracellular Ca2+. In response to repeated stimuli, 6 to 24 hrs apart, the Ca2+ response increased. This effect lasted longer than 24 hrs. The Ca2+ responses were more sensitive to the number of repetitions than to the rest time between stimuli. We found that inhibiting the Ca2+ influx during conditioning stimulus did not eliminate the stress potentiation, suggesting that mechanical deformation during the primary injury is accountable for the later response. The mechanical mechanism that triggers this long term "memory" may act by plastic deformation of the cytoskeleton.
Collapse
Affiliation(s)
- Tasnim Shireen
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA
| | - Susan Z Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
2
|
Maneshi MM, Sachs F, Hua SZ. A Threshold Shear Force for Calcium Influx in an Astrocyte Model of Traumatic Brain Injury. J Neurotrauma 2015; 32:1020-9. [PMID: 25442327 DOI: 10.1089/neu.2014.3677] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) refers to brain damage resulting from external mechanical force, such as a blast or crash. Our current understanding of TBI is derived mainly from in vivo studies that show measurable biological effects on neurons sampled after TBI. Little is known about the early responses of brain cells during stimuli and which features of the stimulus are most critical to cell injury. We generated defined shear stress in a microfluidic chamber using a fast pressure servo and examined the intracellular Ca(2+) levels in cultured adult astrocytes. Shear stress increased intracellular Ca(2+) depending on the magnitude, duration, and rise time of the stimulus. Square pulses with a fast rise time (∼2 ms) caused transient increases in intracellular Ca(2+), but when the rise time was extended to 20 ms, the response was much less. The threshold for a response is a matrix of multiple parameters. Cells can integrate the effect of shear force from repeated challenges: A pulse train of 10 narrow pulses (11.5 dyn/cm(2) and 10 ms wide) resulted in a 4-fold increase in Ca(2+) relative to a single pulse of the same amplitude 100 ms wide. The Ca(2+) increase was eliminated in Ca(2+)-free media, but was observed after depleting the intracellular Ca(2+) stores with thapsigargin suggesting the need for a Ca(2+) influx. The Ca(2+) influx was inhibited by extracellular Gd(3+), a nonspecific inhibitor of mechanosensitive ion channels, but it was not affected by the more specific inhibitor, GsMTx4. The voltage-gated channel blockers, nifedipine, diltiazem, and verapamil, were also ineffective. The data show that the mechanically induced Ca(2+) influx commonly associated with neuron models for TBI is also present in astrocytes, and there is a viscoelastic/plastic coupling of shear stress to the Ca(2+) influx. The site of Ca(2+) influx has yet to be determined.
Collapse
Affiliation(s)
| | - Frederick Sachs
- 2 Department of Physiology and Biophysics, SUNY-Buffalo , Buffalo, New York
| | - Susan Z Hua
- 1 Department of Mechanical and Aerospace Engineering, SUNY-Buffalo , Buffalo, New York.,2 Department of Physiology and Biophysics, SUNY-Buffalo , Buffalo, New York
| |
Collapse
|
3
|
Ono K, Suzuki H, Higa M, Tabata K, Sawada M. Glutamate release from astrocyte cell-line GL261 via alterations in the intracellular ion environment. J Neural Transm (Vienna) 2013; 121:245-57. [PMID: 24100416 DOI: 10.1007/s00702-013-1096-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/25/2013] [Indexed: 12/11/2022]
Abstract
Astrocytes modify and maintain neural activity and functions via gliotransmitter release such as, glutamate. They also change their properties and functions in response to alterations of ion environment resulting from neurotransmission; however, the direct evidence for whether intracellular ion alteration in astrocytes triggers gliotransmitter release is not indicated. Recent studies have reported that channelrhodopsin-2 (ChR2) is useful for alteration of intracellular ion environment in several types of cells with blue light exposure. Here, we show that ChR2-expressing GL261 (GLChR2) cells, clonal astrocytes, change their properties by photo-activation. Increased intracellular sodium and calcium ion concentrations and an altered membrane potential were observed in GLChR2 cells with blue light exposure. Alterations in the intracellular ion environment caused intracellular acidification and the inhibition of proliferation. In addition, it triggered glutamate release from GLChR2 cells. Glutamate from GLChR2 cells acted on N18 cells, clonal neuronal cells, as both a transmitter and neurotoxin depending on photo-activation. Our results show that the properties of ChR2-expressing astrocytes can be controlled by blue light exposure, and cation influx through photo-activated ChR2 might trigger functional cation influx via endogenous channels and result in the increase of glutamate release. Further, our results suggest that ChR2-expressing glial cells could become a useful tool in understanding the roles of glial cell activation and neural communication in the regulation of brain functions.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | | | | | | | | |
Collapse
|
4
|
Cullen DK, Vernekar VN, LaPlaca MC. Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 2012; 28:2219-33. [PMID: 22023556 DOI: 10.1089/neu.2011.1841] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results from cell dysfunction or death following supra-threshold physical loading. Neural plasmalemma compromise has been observed following traumatic neural insults; however, the biomechanical thresholds and time-course of such disruptions remain poorly understood. In order to investigate trauma-induced membrane disruptions, we induced dynamic strain fields (0.50 shear or compressive strain at 1, 10, or 30?sec(?1) strain rate) in 3-D neuronal-astrocytic co-cultures (>500??m thick). Impermeant dyes were present during mechanical loading and entered cells in a strain rate-dependent manner for both shear and compression. Real-time imaging revealed increased membrane permeability in a sub-population of cells immediately upon deformation. Alterations in cell membrane permeability, however, were transient and biphasic over the ensuing hour post-insult, suggesting initial membrane damage and rapid repair, followed by a phase of secondary membrane degradation. At 48?h post-insult, cell death increased significantly in the high-strain-rate group, but not after quasi-static loading, suggesting that cell survival relates to the initial extent of transient structural compromise. Cells were more sensitive to bulk shear deformation than compression with respect to acute permeability changes and subsequent cell survival. These results provide insight into the temporally varying alterations in membrane stability following traumatic loading and provide a basis for elucidating physical cellular tolerances.
Collapse
Affiliation(s)
- D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
5
|
Abstract
We previously reported that clusterin enhances astrocyte proliferation and extracellular signal-regulated kinase (ERK) activity. It, however, remains largely unknown how clusterin promotes cell growth. Here, we investigate the signaling pathway and related molecules underlying astrocyte proliferation by clusterin. Exogenous clusterin stimulates Ras-dependent Raf-1/mitogen-activated protein kinase kinase (MEK)/ERK activation. Clusterin-induced astrocyte proliferation and ERK1/2 phosphorylation were abrogated by either AG1478 (an inhibitor of epidermal growth factor receptor, EGFR) or EGFR small interfering RNA. Furthermore, clusterin treatment provoked tyrosine phosphorylation of EGFR (pY(1173)), which was also blocked by AG1478. These results suggest that clusterin requires EGFR activation to deliver its mitogenic signal through the Ras/Raf-1/MEK/ERK signaling cascade in astrocytes.
Collapse
|
6
|
Brunner JM, Plattet P, Majcherczyk P, Zurbriggen A, Wittek R, Hirling H. Canine distemper virus infection of primary hippocampal cells induces increase in extracellular glutamate and neurodegeneration. J Neurochem 2007; 103:1184-95. [PMID: 17680994 DOI: 10.1111/j.1471-4159.2007.04819.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.
Collapse
Affiliation(s)
- Jean-Marc Brunner
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2007; 6:219-33. [PMID: 17511618 PMCID: PMC2918806 DOI: 10.2174/187152707780619326] [Citation(s) in RCA: 447] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research has changed the perception of glia from being no more than silent supportive cells of neurons to being dynamic partners participating in brain metabolism and communication between neurons. This discovery of new glial functions coincides with growing evidence of the involvement of glia in the neuropathology of mood disorders. Unanticipated reductions in the density and number of glial cells are reported in fronto-limbic brain regions in major depression and bipolar illness. Moreover, age-dependent decreases in the density of glial fibrillary acidic protein (GFAP) - immunoreactive astrocytes and levels of GFAP protein are observed in the prefrontal cortex of younger depressed subjects. Since astrocytes participate in the uptake, metabolism and recycling of glutamate, we hypothesize that an astrocytic deficit may account for the alterations in glutamate/GABA neurotransmission in depression. Reductions in the density and ultrastructure of oligodendrocytes are also detected in the prefrontal cortex and amygdala in depression. Pathological changes in oligodendrocytes may be relevant to the disruption of white matter tracts in mood disorders reported by diffusion tensor imaging. Factors such as stress, excess of glucocorticoids, altered gene expression of neurotrophic factors and glial transporters, and changes in extracellular levels of neurotransmitters released by neurons may modify glial cell number and affect the neurophysiology of depression. Therefore, we will explore the role of these events in the possible alteration of glial number and activity, and the capacity of glia as a promising new target for therapeutic medications. Finally, we will consider the temporal relationship between glial and neuronal cell pathology in depression.
Collapse
Affiliation(s)
- G Rajkowska
- Department of Psychiatry, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
8
|
Abstract
Astrocytes express mainly metabotropic glutamate receptor 3 and metabotropic glutamate receptor 5 receptor subtypes, which show opposing effects on cellular proliferation upon activation. In this study, we investigated the mechanisms by which activation of these receptors modulates astrocyte proliferation. Activation of metabotropic glutamate receptor 5 with (S)-3,5-dihydroxyphenylglycine increased phospholipase D activity in astrocytes as well as astrocyte proliferation. The 3,5-dihydroxyphenylglycine-induced proliferation was inhibited in the presence of the metabotropic glutamate receptor 5 antagonist (2-methyl-6-(phenylethynyl)pyridine), the protein kinase C inhibitor GF109203X, brefeldin A and 1-butanol. Activation of metabotropic glutamate receptor 3 with (2'S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine-IV (DCG-IV) inhibited astrocyte proliferation without affecting metabotropic glutamate receptor 5-mediated phospholipase D activity. Metabotropic glutamate receptor 3 activation, however, only partially inhibited metabotropic glutamate receptor 5-mediated proliferation. In conclusion, metabotropic glutamate receptor 5 stimulates astrocyte proliferation via a protein kinase C-phospholipase D-phosphatidic acid-dependent pathway, whereas metabotropic glutamate receptor 3-mediated inhibition of astrocyte proliferation does not involve phospholipase D, and is independent of metabotropic glutamate receptor 5-mediated effects.
Collapse
Affiliation(s)
- Srinivasan Kanumilli
- Department of Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
9
|
Yang H, Liang Z, Li J, Cheng X, Luo N, Ju G. Optimized and efficient preparation of astrocyte cultures from rat spinal cord. Cytotechnology 2006; 52:87-97. [PMID: 19002867 PMCID: PMC3449418 DOI: 10.1007/s10616-006-9033-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022] Open
Abstract
Astrocytes constitute a major class of glial cells in the CNS, and play crucial roles in physiological functioning, performance and maintenance of the CNS, as well as promotion of neuronal migration and maturation. Astrocytes have also been directly and indirectly implicated in the pathophysiology of various trauma occurrences, development of neurodegenerative diseases and nerve regeneration. To further understand mechanisms by which astrocytes elicit these effects, the first critical step in the study of astrocytes is the preparation of purified astrocytes cultures. Here we describe a simple and convenient procedure for producing rat primary astrocyte cultures of high purity, viability and proliferation. For astrocyte culture, we have optimized the isolation procedures and cultivation conditions including coating substrates, enzyme digestion, seeding density and composition of the culture medium. Using immunofluorescent antibodies against GFAP and OX-42 in combination of Hoechst 33342 fluorescent staining, we found that the purity of the astrocyte cultures was >99%. Astrocytes had high viability as measured by 3-(4, 5-dimethyl-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. In addition, flow cytometric analysis was used to measure and observe variations in the cell cycle after 1-2 passages and proliferation of astrocytes was detected with a high percentage of cells stand in S+G(2)/M phase. Therefore, the method described here is ideal for experiments, which require highly pure astrocyte cultures.
Collapse
Affiliation(s)
- Hao Yang
- The Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shaanxi 710032 P.R. China
| | - Zhe Liang
- The Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shaanxi 710032 P.R. China
| | - Jingwen Li
- The Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shaanxi 710032 P.R. China
| | - Xiping Cheng
- The Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shaanxi 710032 P.R. China
| | - Na Luo
- The Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shaanxi 710032 P.R. China
| | - Gong Ju
- The Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shaanxi 710032 P.R. China
| |
Collapse
|
10
|
Chen CJ, Ou YC, Lin SY, Liao SL, Huang YS, Chiang AN. L-glutamate activates RhoA GTPase leading to suppression of astrocyte stellation. Eur J Neurosci 2006; 23:1977-1987. [PMID: 16630046 DOI: 10.1111/j.1460-9568.2006.04728.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The actin cytoskeleton is known to support cellular morphological changes. Rho family small GTPases function as switching molecules to promote the convergence of both extracellular and intracellular signals in regulating cytoskeletal organization. Evidence indicates that L-glutamate suppresses morphological changes of astrocytes over a broad spectrum. To test the possibility that L-glutamate affects cytoskeletal reorganization, we investigated its effect on morphological changes induced by manganese exposure. L-glutamate concentration-dependently prevented and reversed manganese-induced astrocyte stellation and cytoskeletal disruption. The suppressive effect of L-glutamate on manganese-induced stellation was mediated by the activation of the glutamate transporter rather than ionotropic or metabotropic glutamate receptors. Pharmacological and biochemical approaches revealed the involvement of Ras homolog gene family, member A (RhoA) activation in L-glutamate-mediated suppression of manganese-induced stellation. The activation of RhoA by L-glutamate was partly through the up-regulation of guanine nucleotide exchange factor phosphorylation and was abrogated by competitive nonsubstrate inhibitors. Furthermore, the hyperphosphorylation of myosin light chain and cofilin through the activation of RhoA following L-glutamate treatment synergistically stabilized actin stress fibres. These results suggest that manganese-induced stellation is suppressed by a mechanism involving glutamate transporters. Our in vitro findings also strongly indicate that astrocyte morphological plasticity is under the control of RhoA and that manganese and L-glutamate regulate astrocyte morphology by modulating this switching molecule under culture conditions.
Collapse
Affiliation(s)
- Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, No. 160, Sec. 3, Taichung-Gang Road, Taichung 407, Taiwan.
| | | | | | | | | | | |
Collapse
|
11
|
Brazel CY, Nuñez JL, Yang Z, Levison SW. Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 2005; 131:55-65. [PMID: 15680691 DOI: 10.1016/j.neuroscience.2004.10.038] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2004] [Indexed: 10/25/2022]
Abstract
Extracellular glutamate levels increase as a consequence of perinatal hypoxia/ischemia, causing the death of neurons and oligodendrocytes. Precursors in the subventricular zone (SVZ) also die following perinatal hypoxia/ischemia; therefore we hypothesized that glutamate would stimulate the death of neural precursors. Here we demonstrate using calcium imaging that SVZ derived neural stem/progenitor cells respond to both ionotropic and metabotropic excitatory amino acids. Therefore, we tested the effects of high levels of glutamate receptor agonists on the proliferation, survival, and differentiation of SVZ derived neural stem/progenitor cells in vitro. We show that high levels of glutamate, up to 1 mM, are not toxic to neural precursor cultures. In fact, stimulation of either the kainate receptor or group 2 metabotropic glutamate receptors (group 2 mGluR) reduces basal levels of apoptosis and increases neural precursor proliferation. Furthermore, group 2 mGluR activation expands the number of multipotent progenitor cells present in these cultures while maintaining equivalent mature cell production. We conclude that the glutamate released following perinatal hypoxia/ischemia may act to acutely promote the proliferation of multipotent precursors in the subventricular zone.
Collapse
Affiliation(s)
- C Y Brazel
- Stem Cell Biology Unit, Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
12
|
Smith TL, Navratilova E. The effect of ethanol exposure on mitogen-activated protein kinase activity and expression in cultured rat astrocytes. Neurosci Lett 2003; 341:91-4. [PMID: 12686373 DOI: 10.1016/s0304-3940(03)00179-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of ethanol exposures on mitogen-activated protein kinase (MAPK) activity were determined in confluent astrocyte monolayers prepared from neonatal rat cerebral cortex. Acute 30 min exposure to 50 mM ethanol had no significant effect on MAPK activity. However, chronic exposure to ethanol for 4 days elicited a concentration-dependent increase in the basal level of this enzyme activity with no parallel increase in its protein expression. In addition, the magnitude of MAPK activation by epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor was significantly increased above corresponding control values in cells chronically exposed to ethanol. Immunolabeling experiments indicated that the protein expression of receptors for these growth factors was unaffected by ethanol treatment. Our results suggest that even after chronic ethanol treatment, MAPK phosphorylation and, hence, activation remains elevated.
Collapse
Affiliation(s)
- Thomas L Smith
- Research Health Care Group (0-151), Southern AZ VA Health Care System, Tucson, AZ, USA.
| | | |
Collapse
|
13
|
Buniatian GH, Hartmann HJ, Traub P, Wiesinger H, Albinus M, Nagel W, Shoeman R, Mecke D, Weser U. Glial fibrillary acidic protein-positive cells of the kidney are capable of raising a protective biochemical barrier similar to astrocytes: expression of metallothionein in podocytes. THE ANATOMICAL RECORD 2002; 267:296-306. [PMID: 12124908 DOI: 10.1002/ar.10115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Blood-tissue exchange and homeostasis within the organs depend on various interactions between endothelial and perivascular cells (Buniatian, 2001). Podocytes possess anatomical and cellular features intermediate between those of astrocytes and hepatic stellate cells (HSCs). Podocytes, like HSCs, are associated with fenestrated capillaries and, similar to astrocytes, interact with the capillaries via the basement membrane and participate in permeability-limiting ultrafiltration. The fact that podocytes come in direct contact with xenobiotics prompted us to investigate whether they express metallothionein (MT), an anticytotoxic system characteristic of astrocytes. In comparative studies, cryosections of 1- and 3-month-old rat kidney and adult rat brain, as well as podocytes and astrocytes from early and prolonged primary cultures of glomerular explants and newborn rat brain, respectively, were investigated. The cells were double-labeled with antiserum against glial fibrillary acidic protein (GFAP) and monoclonal antibody (MAb) against the lysine-containing epitope of Cd/Zn-MT-I (MAb MT) or MAb against alpha-actin. In kidney sections, MT immunoreactivity was detected in GFAP-positive glomerular cells and in interstitial fibroblasts. The pattern of staining for MT and GFAP in glomerular cells was similar to that of astrocytes in vivo. In glomerular cell cultures, MT was expressed in cobblestone-like podocytes which contained Wilms' tumor protein and lacked desmin. MT was upregulated at later culture periods, during which podocytes acquired features typical of undifferentiated astrocytes. This study hints at the existence of common regulatory mechanisms of blood-tissue interactions by neural and non-neural perivascular cells. These mechanisms appear to be used in an organ-specific manner.
Collapse
Affiliation(s)
- Gayane Hrachia Buniatian
- Physiologisch-Chemisches Institut der Universität, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|