1
|
Przykaza Ł, Domin H, Śmiałowska M, Stanaszek L, Boguszewski PM, Kozniewska E. Neuro- and vasoprotective potential of neuropeptide Y Y2 receptor agonist, NPY13-36, against transient focal cerebral ischemia in spontaneously hypertensive rats. Neuroscience 2024; 562:10-23. [PMID: 39433082 DOI: 10.1016/j.neuroscience.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Numerous in vitro and in vivo experimental studies indicate that neuropeptide Y Y2 receptors (Y2R) are potential targets for neuroprotective therapy, including neuroprotection against ischemic stroke in healthy rats. Since stroke in humans is typically associated with comorbidities and long-term hypertension is the most common comorbidity leading to stroke, this study aimed to assess the neuroprotective potential of the Y2R agonist NPY13-36 in the rats with essential hypertension (SHR) subjected to 90 min middle cerebral artery suture occlusion with subsequent reperfusion (MCAOR). The cerebrocortical microflow in the ischemic focus and penumbra was continuously monitored with a Laser-Doppler flowmeter. NPY13-36 (10 μg/6 μl physiological saline solution) was administered intracerebroventricularly (i.c.v.) during ischemia or early reperfusion. The infarct area (triphenyltetrazolium chloride staining), behavioral tests (gait, mobility, and sensorimotor functions), and the response of the cerebrocortical microcirculation in the penumbra to hypercapnia and to the inhibition of the synthesis of nitric oxide were studied. Our results demonstrate that administration of NPY13-36 reduces the size of the infarct, improves motor functions, and restores microcirculatory response to the blockade of nitric oxide synthase when administered during reperfusion. The novelty of this study is a finding of the vasoprotective effect of NPY13-36 in brain ischemia/reperfusion. Moreover, this study provides evidence of the beneficial effects of NPY13-36 in animals with essential hypertension and indicates that Y2R ligands may be promising candidates for treating the ischemic brain in the case of this disease.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawiński Str. 5, 02‑106 Warsaw, Poland.
| | - Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawiński Str. 5, 02‑106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, L. Pasteur Str. 5, 02-093 Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawiński Str. 5, 02‑106 Warsaw, Poland.
| |
Collapse
|
2
|
Luchkanych AMS, Morse CJ, Boyes NG, Khan MR, Marshall RA, Morton JS, Tomczak CR, Olver TD. Cerebral sympatholysis: experiments on in vivo cerebrovascular regulation and ex vivo cerebral vasomotor control. Am J Physiol Heart Circ Physiol 2024; 326:H1105-H1116. [PMID: 38391313 DOI: 10.1152/ajpheart.00714.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Whether cerebral sympathetic-mediated vasomotor control can be modulated by local brain activity remains unknown. This study tested the hypothesis that the application or removal of a cognitive task during a cold pressor test (CPT) would attenuate and restore decreases in cerebrovascular conductance (CVC), respectively. Middle cerebral artery blood velocity (transcranial Doppler) and mean arterial pressure (finger photoplethysmography) were examined in healthy adults (n = 16; 8 females and 8 males) who completed a control CPT, followed by a CPT coupled with a cognitive task administered either 1) 30 s after the onset of the CPT and for the duration of the CPT or 2) at the onset of the CPT and terminated 30 s before the end of the CPT (condition order was counterbalanced). The major finding was that the CPT decreased the index of CVC, and such decreases were abolished when a cognitive task was completed concurrently and restored when the cognitive task was removed. As a secondary experiment, vasomotor interactions between sympathetic transduction pathways (α1-adrenergic and Y1-peptidergic) and compounds implicated in cerebral blood flow control [adenosine, and adenosine triphosphate (ATP)] were explored in isolated porcine cerebral arteries (wire myography). The data reveal α1-receptor agonism potentiated vasorelaxation modestly in response to adenosine, and preexposure to ATP attenuated contractile responses to α1-agonism. Overall, the data suggest a cognitive task attenuates decreases in CVC during sympathoexcitation, possibly related to an interaction between purinergic and α1-adrenergic signaling pathways.NEW & NOTEWORTHY The present study demonstrates that the cerebrovascular conductance index decreases during sympathoexcitation and this response can be positively and negatively modulated by the application or withdrawal of a nonexercise cognitive task. Furthermore, isolated vessel experiments reveal that cerebral α1-adrenergic agonism potentiates adenosine-mediated vasorelaxation and ATP attenuates α1-adrenergic-mediated vasocontraction.
Collapse
Affiliation(s)
- Adam M S Luchkanych
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cameron J Morse
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M Rafique Khan
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rory A Marshall
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jude S Morton
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Lin J, Scullion L, Garland CJ, Dora K. Gβγ subunit signalling underlies neuropeptide Y-stimulated vasoconstriction in rat mesenteric and coronary arteries. Br J Pharmacol 2023; 180:3045-3058. [PMID: 37460913 PMCID: PMC10953346 DOI: 10.1111/bph.16192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Raised serum concentrations of the sympathetic co-transmitter neuropeptide Y (NPY) are linked to cardiovascular diseases. However, the signalling mechanism for vascular smooth muscle (VSM) constriction to NPY is poorly understood. Therefore, the present study investigated the mechanisms of NPY-induced vasoconstriction in rat small mesenteric (RMA) and coronary (RCA) arteries. EXPERIMENTAL APPROACH Third-order mesenteric or intra-septal arteries from male Wistar rats were assessed in wire myographs for isometric tension, VSM membrane potential and VSM intracellular Ca2+ events. KEY RESULTS NPY stimulated concentration-dependent vasoconstriction in both RMA and RCA, which was augmented by blocking NO synthase or endothelial denudation in RMA. NPY-mediated vasoconstriction was blocked by the selective Y1 receptor antagonist BIBO 3304 and Y1 receptor protein expression was detected in both the VSM and endothelial cells in RMA and RCA. The selective Gβγ subunit inhibitor gallein and the PLC inhibitor U-73122 attenuated NPY-induced vasoconstriction. Signalling via the Gβγ-PLC pathway stimulated VSM Ca2+ waves and whole-field synchronised Ca2+ flashes in RMA and increased the frequency of Ca2+ flashes in myogenically active RCA. Furthermore, in RMA, the Gβγ pathway linked NPY to VSM depolarization and generation of action potential-like spikes associated with intense vasoconstriction. This depolarization activated L-type voltage-gated Ca2+ channels, as nifedipine abolished NPY-mediated vasoconstriction. CONCLUSIONS AND IMPLICATIONS These data suggest that the Gβγ subunit, which dissociates upon Y1 receptor activation, initiates VSM membrane depolarization and Ca2+ mobilisation to cause vasoconstriction. This model may help explain the development of microvascular vasospasm during raised sympathetic nerve activity.
Collapse
Affiliation(s)
- JinHeng Lin
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - Kim Dora
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Zheng F. Canonical Transient Receptor Potential Channel 3 Contributes to Cerebral Blood Flow Changes Associated with Cortical Spreading Depression in Mice. Int J Mol Sci 2023; 24:12611. [PMID: 37628789 PMCID: PMC10454766 DOI: 10.3390/ijms241612611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cortical spreading depression is a pathophysiological event shared in migraines, strokes, traumatic brain injuries, and epilepsy. It is associated with complex hemodynamic responses, which, in turn, contribute to neurological problems. In this study, we investigated the role of canonical transient receptor potential channel 3 (TRPC3) in the hemodynamic responses elicited by cortical spreading depression. Cerebral blood flow was monitored using laser speckle contrast imaging, and cortical spreading depression was triggered using three well-established experimental approaches in mice. A comparison of TRPC3 knockout mice to controls revealed that the genetic ablation of TRPC3 expression significantly altered the hemodynamic responses elicited using cortical spreading depression and promoted hyperemia consistently. Our results indicate that TRPC3 contributes to hemodynamic responses associated with cortical spreading depression and could be a novel therapeutic target for a host of neurological disorders.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Morton JS, Patton B, Morse CJ, El Karsh Z, Rodrigues LA, Mousseau DD, Ferguson DP, Columbus DA, Weber LP, Olver TD. Altered cerebrovascular regulation in low birthweight swine. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111163. [PMID: 35151870 DOI: 10.1016/j.cbpa.2022.111163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Full-term low birthweight (LBW) offspring exhibit peripheral vascular dysfunction in the postnatal period; however, whether such impairments extend to the cerebrovasculature remains to be elucidated. We used a swine model to test the hypothesis that LBW offspring would exhibit cerebrovascular dysfunction at later stages of life. Offspring from 14 sows were identified as normal birthweight (NBW) or LBW and were assessed at 28 (similar to end of infancy) and 56 (similar to childhood) days of age. LBW swine had lower absolute brain mass, but demonstrated evidence of brain sparing (increased brain mass scaled to body mass) at 56 days of age. The cerebral pulsatility index, based on transcranial Doppler, was increased in LBW swine. Moreover, arterial myography of isolated cerebral arteries revealed impaired vasoreactivity to bradykinin and reduced contribution of nitric oxide (NO) to vasorelaxation in the LBW swine. Immunoblotting demonstrated a lower ratio of phosphorylated-to-total endothelial NO synthase in LBW offspring. This impairment in NO signaling was greater at 28 vs. 56 days of age. Vasomotor responses to sodium nitroprusside (NO-donor) were unaltered, while Leu31, Pro34 neuropeptide Y-induced vasoconstriction was enhanced in LBW swine. Increases in total Y1 receptor protein content in the LBW group were not significant. In summary, LBW offspring displayed signs of cerebrovascular dysfunction at 28 and 56 days of age, evidenced by altered cerebral hemodynamics (reflective of increased impedance) coupled with endothelial dysfunction and altered vasomotor control. Overall, the data reveal that normal variance in birthweight of full-term offspring can influence cerebrovascular function later in life.
Collapse
Affiliation(s)
- Jude S Morton
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Breanna Patton
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cameron J Morse
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zeyad El Karsh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lucas A Rodrigues
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada; Prairie Swine Center, Inc., Saskatoon, SK, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Daniel A Columbus
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada; Prairie Swine Center, Inc., Saskatoon, SK, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
6
|
Zoccali C, Ortiz A, Blumbyte IA, Rudolf S, Beck-Sickinger AG, Malyszko J, Spasovski G, Carriazo S, Viggiano D, Kurganaite J, Sarkeviciene V, Rastenyte D, Figurek A, Rroji M, Mayer C, Arici M, Martino G, Tedeschi G, Bruchfeld A, Spoto B, Rychlik I, Wiecek A, Okusa M, Remuzzi G, Mallamaci F. Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in CKD: translational opportunities and challenges. Nephrol Dial Transplant 2021; 37:ii14-ii23. [PMID: 34724060 PMCID: PMC8713155 DOI: 10.1093/ndt/gfab284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y (NPY) is a 36-amino-acid peptide member of a family also including peptide YY and pancreatic polypeptide, which are all ligands to Gi/Go coupled receptors. NPY regulates several fundamental biologic functions including appetite/satiety, sex and reproduction, learning and memory, cardiovascular and renal function and immune functions. The mesenteric circulation is a major source of NPY in the blood in man and this peptide is considered a key regulator of gut–brain cross talk. A progressive increase in circulating NPY accompanies the progression of chronic kidney disease (CKD) toward kidney failure and NPY robustly predicts cardiovascular events in this population. Furthermore, NPY is suspected as a possible player in accelerated cognitive function decline and dementia in patients with CKD and in dialysis patients. In theory, interfering with the NPY system has relevant potential for the treatment of diverse diseases from cardiovascular and renal diseases to diseases of the central nervous system. Pharmaceutical formulations for effective drug delivery and cost, as well as the complexity of diseases potentially addressable by NPY/NPY antagonists, have been a problem until now. This in part explains the slow progress of knowledge about the NPY system in the clinical arena. There is now renewed research interest in the NPY system in psychopharmacology and in pharmacology in general and new studies and a new breed of clinical trials may eventually bring the expected benefits in human health with drugs interfering with this system.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York,USA and Associazione Ipertensione Nefrologia Trapianto Renale (IPNET) Reggio Cal., Italy c/o CNR-IFC, Ospedali Riuniti, Reggio Calabria, Italy
| | - Alberto Ortiz
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Inga Arune Blumbyte
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Sarina Rudolf
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | | | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Goce Spasovski
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Sol Carriazo
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. and Biogem Scarl, Ariano Irpino, Italy
| | - Justina Kurganaite
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Vaiva Sarkeviciene
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Daiva Rastenyte
- Lithuanian University of Health Sciences, Neurology Department, Kaunas, Lithuania
| | - Andreja Figurek
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Merita Rroji
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Christopher Mayer
- Health and Bioresources, Biomedical Systems, Austrian Institute of Technology, Vienna, Austria
| | - Mustapha Arici
- Department of Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gianvito Martino
- Neurology Department, San Raffaele Scientific Institute and Vita-Salute University San Raffaele, Milan, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, and 3T-MRI Research Center, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden and Department of Renal Medicine, CLINTEC Karolinska Institutet, Stockholm, Sweden
| | | | - Ivan Rychlik
- Department of Medicine, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady,Prague, Czech Republic
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Mark Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Francesca Mallamaci
- Nephrology and Transplantation Unit, Grande Ospedale Metropolitano and CNR-IFC, Reggio Cal, Italy
| | | |
Collapse
|
7
|
Grey-box modeling and hypothesis testing of functional near-infrared spectroscopy-based cerebrovascular reactivity to anodal high-definition tDCS in healthy humans. PLoS Comput Biol 2021; 17:e1009386. [PMID: 34613970 PMCID: PMC8494321 DOI: 10.1371/journal.pcbi.1009386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to evoke hemodynamics response; however, the mechanisms have not been investigated systematically using systems biology approaches. Our study presents a grey-box linear model that was developed from a physiologically detailed multi-compartmental neurovascular unit model consisting of the vascular smooth muscle, perivascular space, synaptic space, and astrocyte glial cell. Then, model linearization was performed on the physiologically detailed nonlinear model to find appropriate complexity (Akaike information criterion) to fit functional near-infrared spectroscopy (fNIRS) based measure of blood volume changes, called cerebrovascular reactivity (CVR), to high-definition (HD) tDCS. The grey-box linear model was applied on the fNIRS-based CVR during the first 150 seconds of anodal HD-tDCS in eleven healthy humans. The grey-box linear models for each of the four nested pathways starting from tDCS scalp current density that perturbed synaptic potassium released from active neurons for Pathway 1, astrocytic transmembrane current for Pathway 2, perivascular potassium concentration for Pathway 3, and voltage-gated ion channel current on the smooth muscle cell for Pathway 4 were fitted to the total hemoglobin concentration (tHb) changes from optodes in the vicinity of 4x1 HD-tDCS electrodes as well as on the contralateral sensorimotor cortex. We found that the tDCS perturbation Pathway 3 presented the least mean square error (MSE, median <2.5%) and the lowest Akaike information criterion (AIC, median -1.726) from the individual grey-box linear model fitting at the targeted-region. Then, minimal realization transfer function with reduced-order approximations of the grey-box model pathways was fitted to the ensemble average tHb time series. Again, Pathway 3 with nine poles and two zeros (all free parameters), provided the best Goodness of Fit of 0.0078 for Chi-Square difference test of nested pathways. Therefore, our study provided a systems biology approach to investigate the initial transient hemodynamic response to tDCS based on fNIRS tHb data. Future studies need to investigate the steady-state responses, including steady-state oscillations found to be driven by calcium dynamics, where transcranial alternating current stimulation may provide frequency-dependent physiological entrainment for system identification. We postulate that such a mechanistic understanding from system identification of the hemodynamics response to transcranial electrical stimulation can facilitate adequate delivery of the current density to the neurovascular tissue under simultaneous portable imaging in various cerebrovascular diseases.
Collapse
|
8
|
Przykaza Ł, Kozniewska E. Ligands of the Neuropeptide Y Y2 Receptors as a Potential Multitarget Therapeutic Approach for the Protection of the Neurovascular Unit Against Acute Ischemia/Reperfusion: View from the Perspective of the Laboratory Bench. Transl Stroke Res 2021; 13:12-24. [PMID: 34292517 PMCID: PMC8766383 DOI: 10.1007/s12975-021-00930-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Ischemic stroke is the third leading cause of death and disability worldwide, with no available satisfactory prevention or treatment approach. The current treatment is limited to the use of “reperfusion methods,” i.e., an intravenous or intra-arterial infusion of a fibrinolytic agent, mechanical removal of the clot by thrombectomy, or a combination of both methods. It should be stressed, however, that only approximately 5% of all acute strokes are eligible for fibrinolytic treatment and fewer than 10% for thrombectomy. Despite the tremendous progress in understanding of the pathomechanisms of cerebral ischemia, the promising results of basic research on neuroprotection are not currently transferable to human stroke. A possible explanation for this failure is that experiments on in vivo animal models involve healthy young animals, and the experimental protocols seldom consider the importance of protecting the whole neurovascular unit (NVU), which ensures intracranial homeostasis and is seriously damaged by ischemia/reperfusion. One of the endogenous protective systems activated during ischemia and in neurodegenerative diseases is represented by neuropeptide Y (NPY). It has been demonstrated that activation of NPY Y2 receptors (Y2R) by a specific ligand decreases the volume of the postischemic infarction and improves performance in functional tests of rats with arterial hypertension subjected to middle cerebral artery occlusion/reperfusion. This functional improvement suggests the protection of the NVU. In this review, we focus on NPY and discuss the potential, multidirectional protective effects of Y2R agonists against acute focal ischemia/reperfusion injury, with special reference to the NVU.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
9
|
Baranowski BJ, Allen MD, Nyarko JN, Rector RS, Padilla J, Mousseau DD, Rau CD, Wang Y, Laughlin MH, Emter CA, MacPherson RE, Olver TD. Cerebrovascular insufficiency and amyloidogenic signaling in Ossabaw swine with cardiometabolic heart failure. JCI Insight 2021; 6:143141. [PMID: 34027891 PMCID: PMC8262360 DOI: 10.1172/jci.insight.143141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer’s disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aβ40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.
Collapse
Affiliation(s)
- Bradley J Baranowski
- Department of Health Sciences and.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jennifer Nk Nyarko
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Darrell D Mousseau
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christoph D Rau
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Rebecca Ek MacPherson
- Department of Health Sciences and.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Christiansen AT, Sørensen NB, Haanes KA, Blixt FW, la Cour M, Warfvinge K, Klemp K, Woldbye DPD, Kiilgaard JF. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model. Acta Ophthalmol 2018; 96:812-820. [PMID: 30218483 DOI: 10.1111/aos.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of intravitreal neuropeptide Y (NPY) treatment following acute retinal ischaemia in an in vivo porcine model. In addition, we evaluated the vasoconstrictive potential of NPY on porcine retinal arteries ex vivo. METHODS Twelve pigs underwent induced retinal ischaemia by elevated intraocular pressure clamping the ocular perfusion pressure at 5 mmHg for 2 hr followed by intravitreal injection of NPY or vehicle. After 4 weeks, retinas were evaluated functionally by standard and global-flash multifocal electroretinogram (mfERG) and histologically by thickness of retinal layers and number of ganglion cells. Additionally, the vasoconstrictive effects of NPY and its involved receptors were tested using wire myographs and NPY receptor antagonists on porcine retinal arteries. RESULTS Intravitreal injection of NPY after induced ischaemia caused a significant reduction in the mean induced component (IC) amplitude ratio (treated/normal eye) compared to vehicle-treated eyes. This reduction was accompanied by histological damage, where NPY treatment reduced the mean thickness of inner retinal layers and number of ganglion cells. In retinal arteries, NPY-induced vasoconstriction to a plateau of approximately 65% of potassium-induced constriction. This effect appeared to be mediated via Y1 and Y2, but not Y5. CONCLUSION In seeming contrast to previous in vitro studies, intravitreal NPY treatment caused functional and histological damage compared to vehicle after a retinal ischaemic insult. Furthermore, we showed for the first time that NPY induces Y1- and Y2- but not Y5-mediated vasoconstriction in retinal arteries. This constriction could explain the worsening in vivo effect induced by NPY treatment following an ischaemic insult and suggests that future studies on exploring the neuroprotective effects of NPY might focus on other receptors than Y1 and Y2.
Collapse
Affiliation(s)
- Anders T. Christiansen
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Nina B. Sørensen
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Frank W. Blixt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - Morten la Cour
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
11
|
Olver TD, Hiemstra JA, Edwards JC, Schachtman TR, Heesch CM, Fadel PJ, Laughlin MH, Emter CA. Loss of Female Sex Hormones Exacerbates Cerebrovascular and Cognitive Dysfunction in Aortic Banded Miniswine Through a Neuropeptide Y-Ca 2+-Activated Potassium Channel-Nitric Oxide Mediated Mechanism. J Am Heart Assoc 2017; 6:JAHA.117.007409. [PMID: 29089345 PMCID: PMC5721796 DOI: 10.1161/jaha.117.007409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. Methods and Results Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB‐OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole‐board task) were lower in the OVX groups (P<0.05), with significant impairments in the AB‐OVX group (P<0.05). Resting carotid artery β stiffness and vascular resistance during central hypovolemia were increased in the AB‐OVX group (P<0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups (P<0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB‐OVX group (P<0.05), and vasodilation to the Ca2+‐activated potassium channel α‐subunit agonist NS‐1619 was impaired in both AB groups (P<0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca2+‐activated potassium channel α‐subunit protein was increased in AB groups (P<0.05). Conclusions Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y–induced vasoconstriction along with reduced vasodilation associated with decreased Ca2+‐activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, MO
| | | | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Todd R Schachtman
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Paul J Fadel
- College of Nursing and Health Innovation, University of Texas at Arlington, TX
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, MO.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
12
|
Geloso MC, Corvino V, Di Maria V, Marchese E, Michetti F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci 2015; 9:85. [PMID: 25852477 PMCID: PMC4360818 DOI: 10.3389/fncel.2015.00085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are emerging as key regulators of stem cell niche activities in health and disease, both inside and outside the central nervous system (CNS). Among them, neuropeptide Y (NPY), one of the most abundant neuropeptides both in the nervous system and in non-neural districts, has become the focus of much attention for its involvement in a wide range of physiological and pathological conditions, including the modulation of different stem cell activities. In particular, a pro-neurogenic role of NPY has been evidenced in the neurogenic niche, where a direct effect on neural progenitors has been demonstrated, while different cellular types, including astrocytes, microglia and endothelial cells, also appear to be responsive to the peptide. The marked modulation of the NPY system during several pathological conditions that affect neurogenesis, including stress, seizures and neurodegeneration, further highlights the relevance of this peptide in the regulation of adult neurogenesis. In view of the considerable interest in understanding the mechanisms controlling neural cell fate, this review aims to summarize and discuss current data on NPY signaling in the different cellular components of the neurogenic niche in order to elucidate the complexity of the mechanisms underlying the modulatory properties of this peptide.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
13
|
Twynstra J, Medeiros PJ, Lacefield JC, Jackson DN, Shoemaker JK. Y1R control of sciatic nerve blood flow in the Wistar Kyoto rat. Microvasc Res 2012; 84:133-9. [DOI: 10.1016/j.mvr.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/22/2012] [Accepted: 06/08/2012] [Indexed: 12/12/2022]
|
14
|
Diphenylarsinic acid increased the synthesis and release of neuroactive and vasoactive peptides in rat cerebellar astrocytes. J Neuropathol Exp Neurol 2012; 71:468-79. [PMID: 22588385 DOI: 10.1097/nen.0b013e3182561327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An incident of poisoning occurred in Japan in 2003 when high-level contamination with arsenic, mainly diphenylarsinic acid (DPAA), was found in well water. People using this water particularly experienced cerebellar symptoms. In the present study, we investigated the adverse effects of DPAA on the cerebellum in vitro and in vivo to understand the biological mechanisms that cause cerebellar symptoms. Comprehensive gene expression analyses in primary cultured ratcerebellar cells exposed to 10 μM DPAA for 24 hours indicated significant alterations in the mRNA expression of genes encoding antioxidative stress proteins (heme oxigenase 1 and heat shock protein72) and neuroactive and vasoactive peptides (neuropeptide Y, adrenomedullin, monocyte chemoattractant protein 1, and fibroblast growth factor 2). Further analyses of proteins revealed that cultured cerebellar astrocytes expressed these antioxidative stress proteins and peptides in response to exposure to DPAA. In addition, these adverseeffects were also observed in the cerebellum exposed in vivo to DPAA (100 mg/L) for 21 days. These results suggested that cerebellarastrocytes irregularly secrete neuroactive and vasoactive peptidesagainst DPAA-induced oxidative stress, which leads to abnormal neural functions and disrupted cerebellar autoregulation dynamics and results in the onset of cerebellar symptoms.
Collapse
|
15
|
Johnson JM, Kellogg DL. Local thermal control of the human cutaneous circulation. J Appl Physiol (1985) 2010; 109:1229-38. [PMID: 20522732 DOI: 10.1152/japplphysiol.00407.2010] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The level of skin blood flow is subject to both reflex thermoregulatory control and influences from the direct effects of warming and cooling the skin. The effects of local changes in temperature are capable of maximally vasoconstricting or vasodilating the skin. They are brought about by a combination of mechanisms involving endothelial, adrenergic, and sensory systems. Local warming initiates a transient vasodilation through an axon reflex, succeeded by a plateau phase due largely to nitric oxide. Both phases are supported by sympathetic transmitters. The plateau phase is followed by the die-away phenomenon, a slow reversal of the vasodilation that is dependent on intact sympathetic vasoconstrictor nerves. The vasoconstriction with local skin cooling is brought about, in part, by a postsynaptic upregulation of α(2c)-adrenoceptors and, in part, by inhibition of the nitric oxide system at at least two points. There is also an early vasodilator response to local cooling, dependent on the rate of cooling. The mechanism for that transient vasodilation is not known, but it is inhibited by intact sympathetic vasoconstrictor nerve function and by intact sensory nerve function.
Collapse
Affiliation(s)
- John M Johnson
- Dept. of Physiology, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio TX 78231, USA.
| | | |
Collapse
|
16
|
Kaipio K, Vahlberg T, Suominen M, Pesonen U. The role of non-synonymous NPY gene polymorphism in the nitric oxide production in HUVECs. Biochem Biophys Res Commun 2009; 381:587-91. [PMID: 19245788 DOI: 10.1016/j.bbrc.2009.02.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
A Leu7Pro change in the signal peptide of preproNPY is a functional substitution, which changes the processing of NPY in cells and associates with several cardiovascular and metabolic conditions in humans. The current study investigates the effect of the P7 allele in endothelial cells, where decreased nitric oxide (NO) production is a promoting factor to endothelial dysfunction. The function of NO system was assessed in the human umbilical vein endothelial cells (HUVECs) with [p.L7]+[p.L7] or [p.L7]+[p.P7] genotype. NPY seems to have a significant influence on NO system in HUVECs, and the responses are time and genotype dependent. HUVECs with [p.L7]+[p.P7] genotype seem to have higher basal production of NO, but after a long term treatment with NPY these cells express less eNOS mRNA and overall eNOS protein levels are lower. These significant differences in the NO bioavailability may explain the association of the L7P polymorphism with several cardiovascular complications.
Collapse
Affiliation(s)
- Katja Kaipio
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Finland
| | | | | | | |
Collapse
|
17
|
Blunted pancreatic polypeptide-induced vasodilatation in mesenteric resistance vessels from spontaneously hypertensive rats. Eur J Pharmacol 2008; 601:118-23. [DOI: 10.1016/j.ejphar.2008.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/02/2008] [Accepted: 09/09/2008] [Indexed: 11/30/2022]
|
18
|
Ilveskoski E, Viiri LE, Mikkelsson J, Pörsti I, Lehtimäki T, Karhunen PJ. Neuropeptide Y signal peptide Pro7 substitution protects against coronary artery atherosclerosis: The Helsinki Sudden Death Study. Atherosclerosis 2008; 199:445-50. [DOI: 10.1016/j.atherosclerosis.2007.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/22/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022]
|
19
|
Taylor BK, Abhyankar SS, Vo NTT, Kriedt CL, Churi SB, Urban JH. Neuropeptide Y acts at Y1 receptors in the rostral ventral medulla to inhibit neuropathic pain. Pain 2007; 131:83-95. [PMID: 17276005 PMCID: PMC2077302 DOI: 10.1016/j.pain.2006.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/05/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Brain microinjection studies in the rat using local anesthetics suggest that the rostral ventral medulla (RVM) contributes to the facilitation of neuropathic pain. However, these studies were restricted to a single model of neuropathic pain (the spinal nerve ligation model) and to just two stimulus modalities (non-noxious tactile stimulus and heat). Also, few neurotransmitter systems have been shown to modulate descending facilitation. After either partial sciatic nerve ligation (PSNL) or spared nerve injury (SNI), we found that unilateral or bilateral microinjection of lidocaine into the RVM reduced not only mechanical allodynia (decreased threshold to von Frey hairs and/or an automated device) and mechanical hyperalgesia (increased paw lifting in response to a noxious pin), but also cold hypersensitivity (increased lifting in response to the hindpaw application of a drop of acetone). Application of a drop of water did not elicit paw withdrawal, indicating that the acetone test is indeed a measure of cold hypersensitivity. We found significant neuropeptide Y Y1-like immunoreactivity within, and lateral to, the midline RVM. Intra-RVM injection of neuropeptide Y (NPY) dose-dependently inhibited the mechanical and cold hypersensitivity associated with PSNL or SNI, an effect that could be blocked by the Y1 receptor antagonist BIBO 3304. We conclude that medullary facilitation spans multiple behavioral signs of allodynia and hyperalgesia in multiple models of neuropathic pain. Furthermore, NPY inhibits behavioral signs of neuropathic pain, possibly by acting at Y1 receptors in the RVM.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Gradin KA, Buus CL, Li JY, Frøbert O, Simonsen U. Neuropeptide Y2 receptors are involved in enhanced neurogenic vasoconstriction in spontaneously hypertensive rats. Br J Pharmacol 2006; 148:703-13. [PMID: 16715120 PMCID: PMC1751866 DOI: 10.1038/sj.bjp.0706774] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/24/2006] [Accepted: 04/03/2006] [Indexed: 11/09/2022] Open
Abstract
1. The present study addressed the role of neuropeptide (NPY) Y2 receptors in neurogenic contraction of mesenteric resistance arteries from female spontaneously hypertensive rats (SHR). Arteries were suspended in microvascular myographs, electrical field stimulation (EFS) was performed, and protein evaluated by Western blotting and immunohistochemistry. 2. In vasopressin-activated endothelium-intact arteries, NPY and fragments with selectivity for Y1 receptors, [Leu31,Pro34]NPY, Y2 receptors, NPY(13-36), and rat pancreatic polypeptide evoked more pronounced contractions in segments from SHR than in Wistar Kyoto (WKY) arteries, even in the presence of the Y1 receptor antagonist, BIBP3226 (0.3 microM, (R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide). 3. In the presence of prazosin and during vasopressin activation, EFS-evoked contractions were larger in arteries from SHR compared to WKY. EFS contractions were enhanced by the Y2 receptor selective antagonist BIIE0246TF (0.5 microM, (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide), reduced by BIBP3226, and abolished by the combination of BIBP3226 and BIIE0246TF. 4. Immunoblotting showed NPY Y1 and Y2 receptor expression to be similar in arteries from WKY and SHR, although a specific Y2 receptor band at 80 kDa was detected only in arteries from WKY. 5. Immunoreaction for NPY was enhanced in arteries from SHR. In contrast to arteries from WKY, BIIE0246TF increased NPY immunoreactivity in EFS-stimulated arteries from SHR. 6. The present results suggest that postjunctional neuropeptide Y1 and Y2 receptors contribute to neurogenic contraction of mesenteric small arteries. Moreover, both enhanced NPY content and altered neuropeptide Y1 and Y2 receptor activation apparently contribute to the enhanced neurogenic contraction of arteries from SHR.
Collapse
Affiliation(s)
- Kathryn A Gradin
- Institute for Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Carsten L Buus
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Jia-Yi Li
- Neuronal Survival Unit, Wallenberg Neuroscience Center, University of Lund, Lund, Sweden
| | - Ole Frøbert
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Ulf Simonsen
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Tsurumaki T, Nagai S, Bo X, Toyosato A, Higuchi H. Potentiation by neuropeptide Y of 5HT2A receptor-mediated contraction in porcine coronary artery. Eur J Pharmacol 2006; 544:111-7. [PMID: 16844110 DOI: 10.1016/j.ejphar.2006.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 06/13/2006] [Accepted: 06/15/2006] [Indexed: 11/30/2022]
Abstract
Potentiation by neuropeptide Y of serotonin (5-HT)-induced vasoconstriction was investigated in porcine coronary artery. 5-HT caused concentration-dependent contraction through 5-HT2A receptors. Neuropeptide Y (30 nM) significantly increased the 5HT-induced contraction by 16+/-5% in arteries with intact endothelium. Removal of the endothelium abolished the potentiation. A neuropeptide Y1 antagonist, BIBP3226, blocked this neuropeptide Y-induced potentiation. In vessels with intact endothelium, the potentiation by neuropeptide Y was inhibited by in the presence of a cyclo-oxygenase inhibitor, indomethacin (30 microM), but not by the presence of ETA or ETB endothelin receptor antagonists or an NO synthase inhibitor, NG-nitro-L-arginine (L-NNA) (1 mM) at all. A thromboxane A2 (TXA2) synthase inhibitor, ozagrel, and prostanoid TP receptor antagonists, seratrodast and ONO-3708, also inhibited the neuropeptide Y-induced potentiation. In the endothelium-denuded arteries, a prostanoid TP receptor agonist, U-46619 (0.01-0.1 nM), potentiated 5-HT-induced contraction. These results indicate that neuropeptide Y potentiates the 5-HT-induced contraction, due to release of TXA2 from the endothelium via neuropeptide Y1 receptors, in porcine coronary artery.
Collapse
Affiliation(s)
- Tatsuru Tsurumaki
- Division of Pharmacology, Department of Molecular Genetics and Signal Transduction Research, Course for Molecular and Cellular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan
| | | | | | | | | |
Collapse
|
22
|
Gradin KA, Zhu H, Jeansson M, Simonsen U. Enhanced neuropeptide Y immunoreactivity and vasoconstriction in mesenteric small arteries from the early non-obese diabetic mouse. Eur J Pharmacol 2006; 539:184-91. [PMID: 16707122 DOI: 10.1016/j.ejphar.2006.03.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/27/2006] [Accepted: 03/31/2006] [Indexed: 11/29/2022]
Abstract
The present study investigated whether sympathetic neurotransmission is altered at an early stage of diabetes in mesenteric small arteries isolated from female non-obese diabetic (NOD) and control animals without diabetes from the same mouse strain. The NOD diabetic mice had increased plasma glucose and hypertension. Confocal microscopy showed distribution of nerve terminals was similar, but immunoreaction intensity for neuropeptide Y (NPY) and tyrosine hydroxylase was higher in small arteries from NOD diabetic compared with NOD control mice. In the presence of prazosin and activated with vasopressin, electrical field stimulation evoked contractions which were more pronounced in mesenteric arteries from NOD diabetic versus NOD control mice and inhibited by the NPY Y(1) receptor antagonist, BIBP 3226. NPY concentration-response curves were leftward shifted in arteries from NOD diabetic versus NOD control both in arteries with and without endothelium, but not in the presence of the BIBP 3226. The present findings suggest that enhanced NPY content and vasoconstriction to NPY by activation of NPY Y(1) receptors in arteries from diabetic mice may contribute to the enhanced sympathetic nerve activity and vascular resistance in female non-obese early diabetic animals.
Collapse
Affiliation(s)
- Kathryn A Gradin
- Institute for Neuroscience and Physiology, Department of Pharmacology, University of Göteborg, Medicinaregatan 11, 413 90 Göteborg, Sweden.
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Ullamari Pesonen
- Dept. of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4B, FIN-20520, Turku, Finland.
| |
Collapse
|
24
|
Affiliation(s)
- Lars Edvinsson
- Division of Experimental Vascular Research, Department of Internal Medicine, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
25
|
Pablo Huidobro-Toro J, Verónica Donoso M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol 2005; 500:27-35. [PMID: 15464018 DOI: 10.1016/j.ejphar.2004.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/25/2022]
Abstract
The historical role of noradrenaline as the predominant sympathetic neurotransmitter in vascular neuroeffector junctions has matured to include ATP and the modulator action of neuropeptide Y (NPY). Numerous studies with isolated blood vessels rings demonstrate the presence of key enzymes responsible for the synthesis of ATP, noradrenaline and NPY, their co-storage, and their electrically evoked release from sympathetic perivascular nerve terminals. Functional assays coincide to demonstrate the integral role of these neurochemicals in sympathetic reflexes. In addition, the detection of the diverse receptor populations for ATP, noradrenaline and NPY in blood vessels, either in the smooth muscle, endothelial cells or nerve endings, further contribute to the notion that sympathetic vascular reflexes encompass the orchestrated action of the noradrenaline and ATP, and their modulation by NPY. The future clinical opportunities of sympathetic co-transmission in the control of human cardiovascular diseases will be highlighted.
Collapse
Affiliation(s)
- J Pablo Huidobro-Toro
- Departamento de Fisiología, Unidad de Regulación Neurohumoral, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | |
Collapse
|
26
|
Chen SH, Cheung RTF. Neuropeptide Y and its receptor analogs differentially modulate the immunoreactivity for neuronal or endothelial nitric oxide synthase in the rat brain following focal ischemia with reperfusion. J Biomed Sci 2005; 12:267-78. [PMID: 15942706 DOI: 10.1007/s11373-005-1359-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2004] [Indexed: 10/25/2022] Open
Abstract
An intracerebroventricular (i.c.v.) injection of neuropeptide Y (NPY) or [Leu31, Pro34]-NPY (non-Y2 receptor agonist) given during middle cerebral artery occlusion (MCAO) increases the infarct volume and nitric oxide (NO) overproduction in the rat brain. An i.c.v. injection of NPY3-36 (non-Y1 receptor agonist) has no effects, while BIBP3226 (selective Y1 receptor antagonist) reduces the infarct volume and NO overproduction. This study examined the effects of NPY or its receptor analog on the immunoreactivity (ir) for three isoforms of NO synthase (NOS) following 1 h of MCAO and 3 h of reperfusion. Focal ischemia/reperfusion led to increased ir for neuronal NOS (nNOS) within the ipsilateral caudate putamen and insular cortex. NPY or [Leu31, Pro34]-NPY enhanced but BIBP3226 suppressed such increase in the nNOS-ir. Focal ischemia/reperfusion also led to an ipsilateral increase in extent and/or intensity of the ir for endothelial NOS (eNOS) in the caudate putamen and/or parietal cortex. NPY or [Leu31, Pro34]-NPY suppressed but BIBP3226 enhanced such change in the eNOS-ir. NPY3-36 did not consistently influence the nNOS-ir or eNOS-ir following MCAO. Specific ir for inducible NOS was undetectable. These opposing effects of NPY-Y1 receptor activation or inhibition on nNOS and eNOS may lead to harmful or beneficial consequences following ischemia/reperfusion.
Collapse
Affiliation(s)
- Shao Hua Chen
- Division of Neurology, University Department of Medicine, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
27
|
Prieto D, Arcos LRDL, Martínez P, Benedito S, García-Sacristán A, Hernández M. Heterogeneity of the neuropeptide Y (NPY) contractile and relaxing receptors in horse penile small arteries. Br J Pharmacol 2004; 143:976-86. [PMID: 15557288 PMCID: PMC1575958 DOI: 10.1038/sj.bjp.0706005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The distribution of neuropeptide Y (NPY)-immunorective nerves and the receptors involved in the effects of NPY upon electrical field stimulation (EFS)- and noradrenaline (NA)-elicited contractions were investigated in horse penile small arteries. NPY-immunoreactive nerves were widely distributed in the erectile tissues with a particularly high density around penile intracavernous small arteries. In small arteries isolated from the proximal part of the corpora cavernosa, NPY (30 nM) produced a variable modest enhancement of the contractions elicited by both EFS and NA. At the same concentration, the NPY Y(1) receptor agonist, [Leu(31), Pro(34)]NPY, markedly potentiated responses to EFS and NA, whereas the NPY Y(2) receptor agonist, NPY(13-36), enhanced exogenous NA-induced contractions. In arteries precontracted with NA, NPY, peptide YY (PYY), [Leu(31), Pro(34)]NPY and the NPY Y(2) receptor agonists, N-acetyl[Leu(28,31)]NPY (24-36) and NPY(13-36), elicited concentration-dependent contractile responses. Human pancreatic polypeptide (hPP) evoked a biphasic response consisting of a relaxation followed by contraction. NPY(3-36), the compound 1229U91 (Ile-Glu-Pro-Dapa-Tyr-Arg-Leu-Arg-Tyr-NH2, cyclic(2,4')diamide) and eventually NPY(13-36) relaxed penile small arteries. The selective NPY Y(1) receptor antagonist BIBP3226 ((R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide) (0.3 microM) shifted to the right the concentration-response curves to both NPY and [Leu(31), Pro(34)]NPY and inhibited the contractions induced by the highest concentrations of hPP but not the relaxations observed at lower doses. In the presence of the selective NPY Y(2) receptor antagonist BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2, 4-triazol-4-yl]ethyl]-argininamide) (0.3 microM), the Y(2) receptor agonists NPY(13-36) and N-acetyl[Leu(28,31)]NPY (24-36) evoked potent slow relaxations in NA-precontracted arteries, under conditions of nitric oxide (NO) synthase blockade. Mechanical removal of the endothelium markedly enhanced contractions of NPY on NA-precontracted arteries, whereas blockade of the neuronal voltage-dependent Ca(2+) channels did not alter NPY responses. These results demonstrate that NPY can elicit dual contractile/relaxing responses in penile small arteries through a heterogeneous population of postjunctional NPY receptors. Potentiation of the contractions evoked by NA involve both NPY Y(1) and NPY Y(2) receptors. An NO-independent relaxation probably mediated by an atypical endothelial NPY receptor is also shown and unmasked in the presence of selective antagonists of the NPY contractile receptors.
Collapse
Affiliation(s)
- Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Donoso MV, Miranda R, Irarrázaval MJ, Huidobro-Toro JP. Neuropeptide Y is released from human mammary and radial vascular biopsies and is a functional modulator of sympathetic cotransmission. J Vasc Res 2004; 41:387-99. [PMID: 15377822 DOI: 10.1159/000080900] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 07/15/2004] [Indexed: 11/19/2022] Open
Abstract
The role of neuropeptide Y (NPY) as a modulator of the vasomotor responses mediated by sympathetic cotransmitters was examined by electrically evoking its release from the perivascular nerve terminals of second- to third-order human blood vessel biopsies and by studying the peptide-induced potentiation of the vasomotor responses evoked by exogenous adenosine 5' triphosphate (ATP) and noradrenaline (NA). Electrical depolarization of nerve terminals in mammary vessels and radial artery biopsies elicited a rise in superfusate immunoreactive NPY (ir-NPY), which was chromatographically identical to a standard of human NPY (hNPY); a second peak was identified as oxidized hNPY. The amount released corresponds to 4-6% of the total NPY content in these vessels. Tissue extracts also revealed two peaks; hNPY accounted for 68-85% of the ir-NPY, while oxidized hNPY corresponded to 7-15%. The release process depended on extracellular calcium and on the frequency and duration of the electrical stimuli; guanethidine blocked the release, confirming the peptide's sympathetic origin. Assessment of the functional activity of the oxidized product demonstrated that while it did not change basal tension, the NA-evoked contractions were potentiated to the same extent as with native hNPY. Moreover, NPY potentiated both the vasomotor action of ATP or NA alone and the vasoconstriction elicited by the simultaneous application of both cotransmitters. RT-PCR detected the mRNA coding for the NPY Y(1) receptor. In summary, the release of hNPY or its oxidized species, elicited by nerve terminal depolarization, coupled to the potentiation of the sympathetic cotransmitter vasomotor responses, highlights the modulator role of NPY in both arteries and veins, strongly suggesting its involvement in human vascular sympathetic reflexes.
Collapse
Affiliation(s)
- M V Donoso
- Instituto Milenio para Biología Fundamental y Aplicada, Departamento de Fisiología, Facultad de Ciencias Biológicas, Santiago, Chile
| | | | | | | |
Collapse
|
29
|
Mahinda TB, Taylor BK. Intrathecal neuropeptide Y inhibits behavioral and cardiovascular responses to noxious inflammatory stimuli in awake rats. Physiol Behav 2004; 80:703-11. [PMID: 14984805 DOI: 10.1016/j.physbeh.2003.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/19/2003] [Accepted: 12/05/2003] [Indexed: 11/25/2022]
Abstract
To test the hypothesis that administration of neuropeptide Y (NPY) to the spinal cord reduces inflammatory pain, we evaluated the effects of intrathecal NPY on behavioral and cardiovascular markers of the nociception associated with intraplantar formalin injection in rats. Before the administration of formalin, NPY dose dependently increased blood pressure, an effect that could be prevented with the coadministration of the Y2 antagonist, BIIE0246. This effect lasted only 20 min, and thus was over before initiation of the formalin test. NPY dose dependently inhibited the flinching, licking, pressor, and tachycardia responses associated with formalin injection. The Y1 receptor antagonist BIBO 3304 partially reversed the antinociceptive effect of NPY at a dose that did not by itself have an effect (3 microg). We conclude that intrathecal NPY acts in part via Y1 receptors to inhibit ongoing inflammatory nociception.
Collapse
Affiliation(s)
- Tania B Mahinda
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | | |
Collapse
|
30
|
Malmström RE. 5. Neuropeptide Y receptor antagonists in cardiovascular pharmacology. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:207-44. [PMID: 15003722 DOI: 10.1016/s0079-6468(04)42005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Rickard E Malmström
- Department of Physiology and Pharmacology, Division of Pharmacology, Karolinska Institute, S-17177 Stockholm, Sweden
| |
Collapse
|
31
|
Donoso MV, Miranda R, Briones R, Irarrázaval MJ, Huidobro-Toro JP. Release and functional role of neuropeptide Y as a sympathetic modulator in human saphenous vein biopsies. Peptides 2004; 25:53-64. [PMID: 15003356 DOI: 10.1016/j.peptides.2003.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/31/2003] [Accepted: 11/04/2003] [Indexed: 11/19/2022]
Abstract
Transmural electrical stimulation of the sympathetic nerve endings of human saphenous vein biopsies released two forms of NPY identified chromatographically as native and oxidized peptide. The release process is dependent on extracellular calcium, the frequency, and the duration of the stimuli. While guanethidine reduced the overflow of ir-NPY, phenoxybenzamine did not augment NPY release, but increased that of noradrenaline. Oxidized NPY, like native NPY, potentiated the noradrenaline and adenosine 5'-triphospahate-induced vasoconstriction, an effect blocked by BIBP 3226 and consonant with the RT-PCR detection of the mRNA encoding the NPY Y1 receptor. These results highlight the functional role of NPY in human vascular sympathetic reflexes.
Collapse
Affiliation(s)
- M V Donoso
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Centro de Regulación Celular y Patología, J.V. Luco, FONDAP-Biomedicina, Instituto Milenio para Biología Fundamental y Aplicada, MIFAB, Casilla 114-D Santiago 1, Chile
| | | | | | | | | |
Collapse
|
32
|
Lee EW, Michalkiewicz M, Kitlinska J, Kalezic I, Switalska H, Yoo P, Sangkharat A, Ji H, Li L, Michalkiewicz T, Ljubisavljevic M, Johansson H, Grant DS, Zukowska Z. Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles. J Clin Invest 2003; 111:1853-62. [PMID: 12813021 PMCID: PMC161419 DOI: 10.1172/jci16929] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Previously we showed that neuropeptide Y (NPY), a sympathetic vasoconstrictor neurotransmitter, stimulates endothelial cell migration, proliferation, and differentiation in vitro. Here, we report on NPY's actions, receptors, and mediators in ischemic angiogenesis. In rats, hindlimb ischemia stimulates sympathetic NPY release (attenuated by lumbar sympathectomy) and upregulates NPY-Y2 (Y2) receptor and a peptidase forming Y2/Y5-selective agonist. Exogenous NPY at physiological concentrations also induces Y5 receptor, stimulates neovascularization, and restores ischemic muscle blood flow and performance. NPY-mediated ischemic angiogenesis is not prevented by a selective Y1 receptor antagonist but is reduced in Y2(-/-) mice. Nonischemic muscle vascularity is also lower in Y2(-/-) mice, whereas it is increased in NPY-overexpressing rats compared with their WT controls. Ex vivo, NPY-induced aortic sprouting is markedly reduced in Y2(-/-) aortas and spontaneous sprouting is severely impaired in NPY(-/-) mice. NPY-mediated aortic sprouting, but not cell migration/proliferation, is blocked by an antifetal liver kinase 1 antibody and abolished in mice null for eNOS. Thus, NPY mediates neurogenic ischemic angiogenesis at physiological concentrations by activating Y2/Y5 receptors and eNOS, in part due to release of VEGF. NPY's effectiveness in revascularization and restoring function of ischemic tissue suggests its therapeutic potential in ischemic conditions.
Collapse
MESH Headings
- Animals
- Dipeptidyl Peptidase 4/physiology
- Endothelial Growth Factors/physiology
- Intercellular Signaling Peptides and Proteins/physiology
- Ischemia/drug therapy
- Ischemia/pathology
- Ischemia/physiopathology
- Lymphokines/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/blood supply
- Neovascularization, Pathologic/chemically induced
- Neuropeptide Y/pharmacology
- Neuropeptide Y/physiology
- Nitric Oxide/physiology
- Nitric Oxide Synthase/deficiency
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Nitric Oxide Synthase Type III
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Neuropeptide Y/agonists
- Receptors, Neuropeptide Y/deficiency
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/physiology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Edward W Lee
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ekstrand AJ, Cao R, Bjorndahl M, Nystrom S, Jonsson-Rylander AC, Hassani H, Hallberg B, Nordlander M, Cao Y. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc Natl Acad Sci U S A 2003; 100:6033-8. [PMID: 12730369 PMCID: PMC156321 DOI: 10.1073/pnas.1135965100] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropeptide Y (NPY), a 36-aa peptide, is widely distributed in the brain and peripheral tissues. Whereas physiological roles of NPY as a hormoneneurotransmitter have been well studied, little is known about its other peripheral functions. Here, we report that NPY acts as a potent angiogenic factor in vivo using the mouse corneal micropocket and the chick chorioallantoic membrane (CAM) assays. Unlike vascular endothelial growth factor (VEGF), microvessels induced by NPY had distinct vascular tree-like structures showing vasodilation. This angiogenic pattern was similar to that induced by fibroblast growth factor-2, and the angiogenic response was dose-dependent. In the developing chick embryo, NPY stimulated vascular sprouting from preexisting blood vessels. When [Leu(31)Pro(34)]NPY, a NPY-based analogue lacking high affinity for the NPY Y(2) receptor but capable of stimulating both Y(1) and Y(5) receptors, was used in the corneal model, no angiogenic response could be detected. In addition, NPY failed to induce angiogenesis in Y(2) receptor-null mice, suggesting that this NPY receptor subtype was mediating the angiogenic signal. In support of this finding, the Y(2) receptor, but not Y(1), Y(4), or Y(5) receptors, was found to be widely expressed in newly formed blood vessels. Further, a delay of skin wound healing with reduced neovascularization was found in Y(2) receptor-null mice. These data demonstrate that NPY may play an important role in the regulation of angiogenesis and angiogenesis-dependent tissue repair.
Collapse
Affiliation(s)
- A Jonas Ekstrand
- AstraZeneca Research and Development, Discovery, S-431 83 Mölndal, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gradin KA, Li JY, Andersson O, Simonsen U. Enhanced neuropeptide Y immunoreactivity and vasoconstriction in mesenteric small arteries from spontaneously hypertensive rats. J Vasc Res 2003; 40:252-65. [PMID: 12902638 DOI: 10.1159/000071889] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 03/17/2003] [Indexed: 11/19/2022] Open
Abstract
Enhanced sympathetic nerve activity is thought to play a role in the pathogenesis of hypertension. The purpose of the present study was to investigate the mechanisms underlying the enhanced vasocontractile response to perivascular stimulation of mesenteric arteries isolated from female spontaneously hypertensive rats (SHR). Innervation of mesenteric small arteries was evaluated by immunohistochemistry and confocal microscopy while functional studies were conducted in a microvascular myograph. The distribution of nerve terminals immunoreactive for tyrosine hydroxylase (TH) and neuropeptide Y (NPY) was similar in mesenteric small arteries from Wistar-Kyoto (WKY) and SHR rats. However, immunointensity of TH or NPY immunoreactivities were much higher in small arteries from SHR compared to WKY. Expressed as percentage of contractions elicited by 124 mM K(+), concentration-response curves for noradrenaline (NA) and NPY were shifted leftward in SHR compared with WKY rats. The combination of noradrenaline (1 microM) and NPY (10 nM) contracted mesenteric arteries from WKY and SHR to higher levels than compared to either contractile agent added alone. The NPY Y(1) receptor antagonist, BIBP 3226, inhibited these contractions with 87 +/- 0.7 and 80 +/- 1.3% (p < 0.05, n = 6) in arteries from WKY and SHR rats, respectively. In arteries incubated with the alpha(1)-adrenoceptor antagonist, prazosin, and preactivated with vasopressin, electrical field stimulation evoked contractions which were more pronounced in mesenteric arteries from SHR compared to WKY rats. BIBP 3226 partially inhibited these contractions. In vasopressin-activated arteries BIBP 3226 caused rightward shifts of the concentration-response curves for NPY in mesenteric arteries from SHR rats, but in addition it also abolished the maximal NPY contraction in arteries from WKY rats. In the presence of BIBP 3226, low concentrations (1 pM to 10 nM) of NPY caused relaxations in arteries from WKY, but not in segments from SHR rats. Mechanical removal of the endothelium abolished NPY relaxation in arteries from WKY. In arteries activated with vasopressin and exposed to either forskolin or sodium nitroprusside, the addition of NPY evoked contractions which were more pronounced in arteries from SHR compared to WKY arteries. The present study suggests that enhanced NPY content and vasoconstriction to NPY in arteries from hypertensive rats can contribute to the enhanced sympathetic nerve activity and vascular resistance in female hypertensive rats. Endothelial cell dysfunction as well as alterations in smooth muscle response to NPY seem to contribute to the enhanced vasoconstriction in arteries from hypertensive animals.
Collapse
Affiliation(s)
- Kathryn A Gradin
- Department of Physiology, Institute of Physiology and Pharmacology, University of Göteborg, Göteborg, Sweden.
| | | | | | | |
Collapse
|
35
|
Järvisalo MJ, Jartti L, Karvonen MK, Pesonen U, Koulu M, Marniemi J, Hammar N, Kaprio J, Paakkunainen U, Simell O, Raitakari OT, Rönnemaa T. Enhanced endothelium-dependent vasodilation in subjects with Proline7 substitution in the signal peptide of neuropeptide Y. Atherosclerosis 2003; 167:319-26. [PMID: 12818415 DOI: 10.1016/s0021-9150(03)00017-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y (NPY) is a molecule that may have both vasoconstrictive and vasodilatory actions. A common polymorphism in the human NPY gene that results in the Leucine7 to Proline7 substitution (Leu7Pro) in the signal peptide part of the NPY was recently identified. This substitution has been associated with elevated serum cholesterol levels and with slightly accelerated progression rate of carotid intima-media thickness, thus suggesting increased risk of atherosclerosis in carriers of Pro7 substitution. Recent data also indicate that subjects with Pro7 substitution may have increased endothelial release of NPY. This study was undertaken to elucidate the effects of Leu7Pro polymorphism on arterial endothelial function. We measured flow-mediated endothelial-dependent dilatation (FMD) of the brachial artery in two separate populations: in 152 middle-aged men and in 95 prepubertal children. In both study populations, subjects with Pro7 substitution had 48-52% higher FMD compared with subjects having the wildtype (Leu7/Leu7) signal peptide sequence. We conclude that Pro7 substitution in signal peptide of the NPY is associated with enhanced endothelial-dependent vasodilation. Prospective studies are needed to determine whether Pro7 substitution is associated with increased or decreased risk of cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mikko J Järvisalo
- Department of Clinical Physiology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Which of Y1-Y5 receptors (Rs) mediate NPY's angiogenic activity was studied using Y2R-null mice and R-specific antagonists. In Y2R-null mice, NPY-induced aortic sprouting and in vivo Matrigel capillary formation were decreased by 50%; Y1R-antagonist blocked the remaining response. NPY-induced sprouting was equally inhibited by Y2R- (and Y5R- but less by Y1R-) antagonists in wild type mice. Spontaneous and NPY-induced revascularization of ischemic gastrocnemius muscles were similarly reduced in Y2R-null mice. Thus, NPY-induced angiogenesis, spontaneous and ischemic, is primarily mediated by Y2Rs. However, Y5Rs and, to a lesser degree Y1Rs, also may play a role in NPY-mediated angiogenesis.
Collapse
Affiliation(s)
- Edward W Lee
- Department of Physiology & Biophysics, Georgetown University Medical Center, 3900 Reservoir Road, NW, BSB 234, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
37
|
Yoon HZ, Yan Y, Geng Y, Higgins RD. Neuropeptide Y expression in a mouse model of oxygen-induced retinopathy. Clin Exp Ophthalmol 2002; 30:424-9. [PMID: 12427234 DOI: 10.1046/j.1442-9071.2002.00573.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) is a potent vaso-constrictor and angiogenic agent that is found in the retina. The goal of this study was to determine the expression of NPY and its receptors, NPY Y1 and NPY Y2, in a mouse model of oxygen-induced retinopathy. METHODS Retinal NPY, NPY Y1, and NPY Y2 mRNA expression were evaluated using reverse transcriptase-polymerase chain reaction. Neuropeptide Y cellular localization was determined using immunohistochemistry. RESULTS Retinal NPY mRNA expression was increased by 2.3-fold from P7 to P12, and 2.8-fold from P7 to P17 in oxygen-reared animals. Retinal NPY Y1 was increased 1.9-fold from P7 to P12 in room-air-reared animals. There was no change in NPY Y1 expression following exposure to oxygen. Retinal NPY Y2 expression in oxygen-reared animals increased by 2.8-fold from P7 to P12 and by 2.7-fold from P12 to P17. There was no change in NPY Y2 expression in room-air-reared animals. Retinal NPY and NPY Y2 expression increased concomitant with vasoconstriction and neovascularization seen in this model by evaluation of retinal whole mounts. Neuropeptide Y protein was detectable by immunohistochemistry mainly between the inner and outer nuclear layers and increased with hyperoxic exposure at P12 and also increased during the period of relative retinal hypoxia at P17. CONCLUSIONS Retinal NPY and NPY Y2 receptor expression are altered in the development of oxygen-induced retinopathy of the mouse, during both the hyperoxic vasoconstrictive phase and the period of retinal neovascularization. Alteration in the production of NPY and the NPY Y2 receptor may be avenues for potential modification in the development of retinopathy.
Collapse
Affiliation(s)
- Helen Z Yoon
- Department of Pediatrics, Division of Neonatology, Georgetown University Children's Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Alterations in the flow of blood to and from the penis are thought to be the most frequent causes of male erectile dysfunction and, therefore, the present review focuses on the penile vasculature. In the flaccid state, tonic noradrenaline release from the sympathetic nerves contracts penile arterial and corporal smooth muscle through activation of postjunctional alpha(1)-adrenoceptors, both by increasing intracellular calcium and by enhancing the sensitivity of the contractile apparatus for calcium. In addition, noradrenaline inhibits vasodilatatory neurotransmitter release by prejunctional alpha(2)-adrenoceptors. The exact role of the sympathetic neurotransmitters, neuropeptide Y and adenosine 5'-triphosphate, in erection is largely unknown. Penile vasodilatation during erection is mediated by nitric oxide (NO) through activation of guanylyl cyclase in the smooth muscle layer, followed by increases in cyclic guanosine monophosphate lowering of intracellular calcium and desensitisation of the contractile apparatus for calcium. Acetylcholine, vasoactive intestinal peptide as well as peptides in sensory nerves probably also play a role in penile vasodilation. Increased flow through the penile arteries stimulates the endothelium leading to release of NO, prostanoids and a non-NO non-prostanoid factor, and as such enhances the vasodilatation, while the role of endothelium-derived contractile factors in penile vasoconstriction is not clear. Erectile dysfunction shares arterial risk factors with ischaemic heart disease, and diabetes, age, and hypercholesterolaemia are associated with impairment of both neurogenic and endothelium-dependent vasodilator mechanisms in corpus cavernosum. Only few studies have investigated the impact of these risk factors on the penile vasculature, although recent evidence suggests that arterial insufficiency precedes changes in corpus cavernosum leading to erectile dysfunction.
Collapse
Affiliation(s)
- Ulf Simonsen
- Department of Pharmacology, University of Aarhus, Denmark.
| | | | | |
Collapse
|
39
|
Malmström RE. Pharmacology of neuropeptide Y receptor antagonists. Focus on cardiovascular functions. Eur J Pharmacol 2002; 447:11-30. [PMID: 12106798 DOI: 10.1016/s0014-2999(02)01889-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y is one of the most abundant mammalian neuropeptides identified to date. The possible actions of neuropeptide Y, that is co-localized and released with noradrenaline, as a sympathetic co-transmitter has attracted much attention during the last decade. In recent years, several non-peptide antagonists with high subtype selectivity for neuropeptide Y receptors have been introduced. With them, the status of neuropeptide Y as a sympathetic transmitter has been established, and so have profound cardiovascular effects mediated by neuropeptide Y Y(1) and Y(2) receptors. Significant release of neuropeptide Y occurs especially upon stronger sympathetic activation, and recent data suggest that the importance of neuropeptide Y seems enhanced in stress-related cardiovascular disorders. The true significance of neuropeptide Y has thus started to unfold, owing to the presence of the first generation of selective neuropeptide Y receptor antagonists. This review concerns the pharmacology of these agents, what we have learnt from them, and might find out in the future.
Collapse
Affiliation(s)
- Rickard E Malmström
- Division of Pharmacology, Department of Physiology and Pharmacology, Karolinska Institute, S-17177, Stockholm, Sweden.
| |
Collapse
|
40
|
Uddman R, Möller S, Nilsson T, Nyström S, Ekstrand J, Edvinsson L. Neuropeptide Y Y1 and neuropeptide Y Y2 receptors in human cardiovascular tissues. Peptides 2002; 23:927-34. [PMID: 12084524 DOI: 10.1016/s0196-9781(02)00003-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mRNA encoding the human NPY Y1 and NPY Y2 receptors were detected in cerebral, meningeal, and coronary arteries using reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, the trigeminal and superior cervical ganglia were positive for both receptors. In some arteries and in SK-N-MC cells only mRNA encoding the NPY Y1 was detected. Besides the expected NPY Y1 PCR products, an additional 97 bp longer amplicon originating from an alternative splicing event was found in most tissues studied. Antibodies directed against the NPY Y1 receptor revealed immunostaining mainly in the smooth muscle layer of blood vessels whereas antibodies against the NPY Y2 receptor showed immunostaining in nerve cell bodies.
Collapse
Affiliation(s)
- Rolf Uddman
- Department of Otorhinolaryngology, University Hospital, Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Taiwo OB, Taylor BK. Antihyperalgesic effects of intrathecal neuropeptide Y during inflammation are mediated by Y1 receptors. Pain 2002; 96:353-363. [PMID: 11973010 DOI: 10.1016/s0304-3959(01)00481-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inflammation induces an up-regulation of neuropeptide tyrosine (NPY) and its receptors in the dorsal horn, suggesting an important role in nociceptive transmission. Our initial studies revealed that NPY dose-dependently increased hotplate response latency, and to a lesser degree, thermal paw withdrawal latency (PWL); these effects occurred at doses that affect neither motor coordination (as assessed by the rotarod test) nor paw skin temperature. We next evaluated the behavioral effects of intrathecal administration of NPY and NPY antagonists with the aim of assessing the contribution of NPY to correlates of persistent nociception associated with the unilateral plantar injection of carrageenan or complete Freund's adjuvant (CFA). NPY robustly and dose-dependently increased PWL on the side ipsilateral to carrageenan injection, with only a small effect on the contralateral side. Similarly, NPY (30 microg) produced a large and long-lasting increase in PWL on the side ipsilateral to CFA injection (140% change), with only a small effect on the contralateral side (25% change). The ipsilateral effect of NPY was completely inhibited with the potent Y1 antagonist, BIBO 3304 (3 microg), but not the Y2 antagonist, BIIE 0246. When administered alone, BIBO 3304 (but not BIIE 0246) slightly decreased thermal PWL on the side ipsilateral (25% change), but not contralateral, to CFA injection; this suggests that inflammation strengthens inhibitory NPY tone. We conclude that spinal Y1 receptors contribute to the inhibitory effects of NPY on thermal hypersensitivity in the awake rat. Further studies are necessary to determine whether enhanced release of NPY and Y1-mediated inhibition of spinal nociceptive transmission ultimately results in a compensatory, adaptive inhibition of thermal hypersensitivity in the setting of inflammation.
Collapse
Affiliation(s)
- Oludare B Taiwo
- Division of Pharmacology, School of Pharmacy, University of Missouri - Kansas City, 2411 Holmes Street, M3-C15, Kansas City, MO 64108-2792, USA
| | | |
Collapse
|
42
|
Chapter 1. Promise and progress of central G-protein coupled receptor modulators for obesity treatments. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2002. [DOI: 10.1016/s0065-7743(02)37002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
43
|
Knauf C, Chuoï MM, Jirou-Najou JL, Mortreux G, Beauvillain JC, Croix D. Involvement of NPY Y2 receptor subtype in the control of the spontaneous NO/GnRH release at the rat median eminence. Neuroreport 2001; 12:3365-9. [PMID: 11711887 DOI: 10.1097/00001756-200110290-00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of nitric oxide (NO) from vascular endothelium in the control of GnRH release at the median eminence (ME) level is well established. Interactions between NPY receptor/endothelium/nitric oxide are clearly demonstrated. While several studies implicate NPY Y1 receptor in the control of GnRH/LH at the time of the preovulatory LH surge, our results also demonstrate the importance of NPY Y2 receptor in the control of GnRH release via endothelial NO. We conclude that NPY may be one of the elements implicated in the generation of the spontaneous NO/GnRH via Y2 receptor located on endothelium.
Collapse
Affiliation(s)
- C Knauf
- INSERM U422, IFR22, Unité de Neuroendocrinologie et Physiopathologie Neuronale, 1 Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|