1
|
Chan ER, Mehlotra RK, Pirani KA, Ratsimbasoa AC, Williams SM, Gaedigk A, Zimmerman PA. CYP2D6 gene resequencing in the Malagasy, a population at the crossroads between Asia and Africa: a pilot study. Pharmacogenomics 2022; 23:315-325. [PMID: 35230160 PMCID: PMC8965795 DOI: 10.2217/pgs-2021-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Plasmodium vivax malaria is endemic in Madagascar, where populations have genetic inheritance from Southeast Asia and East Africa. Primaquine, a drug of choice for vivax malaria, is metabolized principally via CYP2D6. CYP2D6 variation was characterized by locus-specific gene sequencing and was compared with TaqMan™ genotype data. Materials & methods: Long-range PCR amplicons were generated from 96 Malagasy samples and subjected to next-generation sequencing. Results: The authors observed high concordance between TaqMan™-based CYP2D6 genotype calls and the base calls from sequencing. In addition, there are new variants and haplotypes present in the Malagasy. Conclusion: Sequencing unique admixed populations provides more detailed and accurate insights regarding CYP2D6 variability, which may help optimize primaquine treatment across human genetic diversity.
Collapse
Affiliation(s)
- E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rajeev K Mehlotra
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Karim A Pirani
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar.,CNARP (Centre National d'Application de Recherche Pharmaceutique), Antananarivo, Madagascar
| | - Scott M Williams
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Mucaki EJ, Shirley BC, Rogan PK. Expression Changes Confirm Genomic Variants Predicted to Result in Allele-Specific, Alternative mRNA Splicing. Front Genet 2020; 11:109. [PMID: 32211018 PMCID: PMC7066660 DOI: 10.3389/fgene.2020.00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Splice isoform structure and abundance can be affected by either noncoding or masquerading coding variants that alter the structure or abundance of transcripts. When these variants are common in the population, these nonconstitutive transcripts are sufficiently frequent so as to resemble naturally occurring, alternative mRNA splicing. Prediction of the effects of such variants has been shown to be accurate using information theory-based methods. Single nucleotide polymorphisms (SNPs) predicted to significantly alter natural and/or cryptic splice site strength were shown to affect gene expression. Splicing changes for known SNP genotypes were confirmed in HapMap lymphoblastoid cell lines with gene expression microarrays and custom designed q-RT-PCR or TaqMan assays. The majority of these SNPs (15 of 22) as well as an independent set of 24 variants were then subjected to RNAseq analysis using the ValidSpliceMut web beacon (http://validsplicemut.cytognomix.com), which is based on data from the Cancer Genome Atlas and International Cancer Genome Consortium. SNPs from different genes analyzed with gene expression microarray and q-RT-PCR exhibited significant changes in affected splice site use. Thirteen SNPs directly affected exon inclusion and 10 altered cryptic site use. Homozygous SNP genotypes resulting in stronger splice sites exhibited higher levels of processed mRNA than alleles associated with weaker sites. Four SNPs exhibited variable expression among individuals with the same genotypes, masking statistically significant expression differences between alleles. Genome-wide information theory and expression analyses (RNAseq) in tumor exomes and genomes confirmed splicing effects for 7 of the HapMap SNP and 14 SNPs identified from tumor genomes. q-RT-PCR resolved rare splice isoforms with read abundance too low for statistical significance in ValidSpliceMut. Nevertheless, the web-beacon provides evidence of unanticipated splicing outcomes, for example, intron retention due to compromised recognition of constitutive splice sites. Thus, ValidSpliceMut and q-RT-PCR represent complementary resources for identification of allele-specific, alternative splicing.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | | | - Peter K Rogan
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,CytoGnomix, London, ON, Canada.,Department of Oncology University of Western Ontario, London, ON, Canada.,Department of Computer Science, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Shirley BC, Mucaki EJ, Rogan PK. Pan-cancer repository of validated natural and cryptic mRNA splicing mutations. F1000Res 2019; 7:1908. [PMID: 31275557 DOI: 10.12688/f1000research.17204.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.
Collapse
Affiliation(s)
| | - Eliseos J Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| | - Peter K Rogan
- CytoGnomix Inc., London, Ontario, N5X 3X5, Canada.,Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Computer Science, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Oncology, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| |
Collapse
|
4
|
Mount SM, Avsec Ž, Carmel L, Casadio R, Çelik MH, Chen K, Cheng J, Cohen NE, Fairbrother WG, Fenesh T, Gagneur J, Gotea V, Holzer T, Lin CF, Martelli PL, Naito T, Nguyen TYD, Savojardo C, Unger R, Wang R, Yang Y, Zhao H. Assessing predictions of the impact of variants on splicing in CAGI5. Hum Mutat 2019; 40:1215-1224. [PMID: 31301154 DOI: 10.1002/humu.23869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
Precision medicine and sequence-based clinical diagnostics seek to predict disease risk or to identify causative variants from sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. In the past, few CAGI challenges have addressed the impact of sequence variants on splicing. In CAGI5, two challenges (Vex-seq and MaPSY) involved prediction of the effect of variants, primarily single-nucleotide changes, on splicing. Although there are significant differences between these two challenges, both involved prediction of results from high-throughput exon inclusion assays. Here, we discuss the methods used to predict the impact of these variants on splicing, their performance, strengths, and weaknesses, and prospects for predicting the impact of sequence variation on splicing and disease phenotypes.
Collapse
Affiliation(s)
- Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Žiga Avsec
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, Biocomputing Group, University of Bologna, Bologna, Italy
| | | | - Ken Chen
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Jun Cheng
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Noa E Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The integrated program for Computer Science and Computational Biology, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Center For Computational Biology, Brown University, Providence, Rhode Island
| | - Tzila Fenesh
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Valer Gotea
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Tamar Holzer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Chiao-Feng Lin
- Translational Informatics, DNAnexus, Mountain View, California
| | - Pier Luigi Martelli
- Department of Pharmacy and Biotechnology, Biocomputing Group, University of Bologna, Bologna, Italy
| | - Tatsuhiko Naito
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, Biocomputing Group, University of Bologna, Bologna, Italy
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Robert Wang
- Department of Bioengineering, University of California, Berkeley, California.,Department of Plant and Molecular Biology, University of California, Berkeley, California
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Huiying Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Shirley BC, Mucaki EJ, Rogan PK. Pan-cancer repository of validated natural and cryptic mRNA splicing mutations. F1000Res 2018; 7:1908. [PMID: 31275557 PMCID: PMC6544075 DOI: 10.12688/f1000research.17204.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.
Collapse
Affiliation(s)
| | - Eliseos J Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| | - Peter K Rogan
- CytoGnomix Inc., London, Ontario, N5X 3X5, Canada.,Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Computer Science, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Oncology, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| |
Collapse
|
6
|
Mucaki EJ, Caminsky NG, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, Rogan PK. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9:19. [PMID: 27067391 PMCID: PMC4828881 DOI: 10.1186/s12920-016-0178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sequencing of both healthy and disease singletons yields many novel and low frequency variants of uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS) significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants, non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions. METHODS We captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk, anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was supplemented by in silico and laboratory analysis of UTR structure. RESULTS 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic 32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain variants and 3 reading-frame altering exonic insertions/deletions (indels). CONCLUSIONS We have presented a strategy for complete gene sequence analysis followed by a unified framework for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada
- Cytognomix Inc., London, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada.
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada.
- Cytognomix Inc., London, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada.
| |
Collapse
|
7
|
Borba MA, Melo-Neto RP, Leitão GM, Castelletti CH, Lima-Filho JL, Martins DB. Evaluating the impact of missenses mutations in CYP2D6*7 and CYP2D6*14A: does it compromise tamoxifen metabolism? Pharmacogenomics 2016; 17:573-82. [PMID: 27043475 DOI: 10.2217/pgs-2015-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED CYP2D6 is a high polymorphic enzyme from P450, responsible for metabolizing almost 25% of drugs. The distribution of different mutations among CYP2D6 alleles has been associated with poor, intermediate, extensive and ultra-metabolizers. AIM To evaluate how missenses mutations in CYP2D6*7 and CYP2D6*14A poor metabolizer alleles affect CYP2D6 stability and function. MATERIALS & METHODS CYPalleles database was used to collect polymorphisms data present in 105 alleles. We selected only poor metabolizers alleles that presented exclusively missenses mutations. They were analyzed through seven algorithms to predict the impact on CYP2D6 structure and function. RESULTS H324P, the unique mutation in CYP2D6*7, has high impact in enzyme function due to its occurrence between two alpha-helixes involved in active site dynamics. G169R, a mutation that occurs only in CYP2D6*14A, leads to the gain of solvent accessibility and severe protein destabilization. CONCLUSION Our in silico analysis showed that missenses mutations in CYP2D6*7 and CYP2D6*14A cause CYP2D6 dysfunction.
Collapse
Affiliation(s)
- Maria Acsm Borba
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Renato P Melo-Neto
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Glauber M Leitão
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil.,Clinical Hospital - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Carlos Hm Castelletti
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil.,Agronomic Institute of Pernambuco (IPA), Av. General San Martin 1371, 50761-000, Bongi, Recife, PE, Brazil
| | - José L Lima-Filho
- Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| | - Danyelly Bg Martins
- Molecular Prospection and Bioinformatics Group (ProspecMol) - Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil.,Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego 1235, 50670-901, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
8
|
Caminsky NG, Mucaki EJ, Perri AM, Lu R, Knoll JHM, Rogan PK. Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations. Hum Mutat 2016; 37:640-52. [PMID: 26898890 DOI: 10.1002/humu.22972] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
BRCA1 and BRCA2 testing for hereditary breast and ovarian cancer (HBOC) does not identify all pathogenic variants. Sequencing of 20 complete genes in HBOC patients with uninformative test results (N = 287), including noncoding and flanking sequences of ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51B, STK11, TP53, and XRCC2, identified 38,372 unique variants. We apply information theory (IT) to predict and prioritize noncoding variants of uncertain significance in regulatory, coding, and intronic regions based on changes in binding sites in these genes. Besides mRNA splicing, IT provides a common framework to evaluate potential affinity changes in transcription factor (TFBSs), splicing regulatory (SRBSs), and RNA-binding protein (RBBSs) binding sites following mutation. We prioritized variants affecting the strengths of 10 splice sites (four natural, six cryptic), 148 SRBS, 36 TFBS, and 31 RBBS. Three variants were also prioritized based on their predicted effects on mRNA secondary (2°) structure and 17 for pseudoexon activation. Additionally, four frameshift, two in-frame deletions, and five stop-gain mutations were identified. When combined with pedigree information, complete gene sequence analysis can focus attention on a limited set of variants in a wide spectrum of functional mutation types for downstream functional and co-segregation analysis.
Collapse
Affiliation(s)
- Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, Ontario, Canada
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Cytognomix Inc, London, Ontario, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Computer Science, Faculty of Science, Western University, London, Ontario, Canada.,Cytognomix Inc, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Effect of Genetic Polymorphism of CYP3A5 and CYP2C19 and Concomitant Use of Voriconazole on Blood Tacrolimus Concentration in Patients Receiving Hematopoietic Stem Cell Transplantation. Ther Drug Monit 2015; 37:581-8. [DOI: 10.1097/ftd.0000000000000182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Vyhlidal CA, Pearce RE, Gaedigk R, Calamia JC, Shuster DL, Thummel KE, Leeder JS. Variability in Expression of CYP3A5 in Human Fetal Liver. Drug Metab Dispos 2015; 43:1286-93. [PMID: 25979262 PMCID: PMC6067386 DOI: 10.1124/dmd.115.064998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/15/2015] [Indexed: 01/27/2023] Open
Abstract
Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1'-OH midazolam (MDZ) varied 79-fold, and the ratio of 1'-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1'-OH MDZ (r(2) = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.
Collapse
Affiliation(s)
- Carrie A Vyhlidal
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri (C.A.V., R.E.P., R.G., J.S.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.C.C., D.L.S., K.E.T.)
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri (C.A.V., R.E.P., R.G., J.S.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.C.C., D.L.S., K.E.T.)
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri (C.A.V., R.E.P., R.G., J.S.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.C.C., D.L.S., K.E.T.)
| | - Justina C Calamia
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri (C.A.V., R.E.P., R.G., J.S.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.C.C., D.L.S., K.E.T.)
| | - Diana L Shuster
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri (C.A.V., R.E.P., R.G., J.S.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.C.C., D.L.S., K.E.T.)
| | - Kenneth E Thummel
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri (C.A.V., R.E.P., R.G., J.S.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.C.C., D.L.S., K.E.T.)
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri (C.A.V., R.E.P., R.G., J.S.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.C.C., D.L.S., K.E.T.)
| |
Collapse
|
11
|
Prevalence of Germline BAP1, CDKN2A, and CDK4 Mutations in an Australian Population-Based Sample of Cutaneous Melanoma Cases. Twin Res Hum Genet 2015; 18:126-33. [PMID: 25787093 DOI: 10.1017/thg.2015.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mutations in Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) and Cyclin-Dependent Kinase 4 (CDK4) contribute to susceptibility in approximately 40% of high-density cutaneous melanoma (CMM) families and about 2% of unselected CMM cases. BRCA-1 associated protein-1 (BAP1) has been more recently shown to predispose to CMM and uveal melanoma (UMM) in some families; however, its contribution to CMM development in the general population is unreported. We sought to determine the contribution of these genes to CMM susceptibility in a population-based sample of cases from Australia. We genotyped 1,109 probands from Queensland families and found that approximately 1.31% harbored mutations in CDKN2A, including some with novel missense mutations (p.R22W, p.G35R and p.I49F). BAP1 missense variants occurred in 0.63% of cases but no CDK4 variants were observed in the sample. This is the first estimate of the contribution of BAP1 and CDK4 to a population-based sample of CMM and supports the previously reported estimate of CDKN2A germline mutation prevalence.
Collapse
|
12
|
Caminsky NG, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2015. [DOI: 10.12688/f1000research.5654.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
|
13
|
Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014; 3:282. [PMID: 25717368 PMCID: PMC4329672 DOI: 10.12688/f1000research.5654.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
Affiliation(s)
- Natasha Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Computer Science, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
14
|
Laššuthová P, Žaliová M, Inoue K, Haberlová J, Sixtová K, Sakmaryová I, Paděrová K, Mazanec R, Zámečník J, Šišková D, Garbern J, Seeman P. Three new PLP1 splicing mutations demonstrate pathogenic and phenotypic diversity of Pelizaeus-Merzbacher disease. J Child Neurol 2014; 29:924-31. [PMID: 23771846 DOI: 10.1177/0883073813492387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
Pelizaeus-Merzbacher disease is a severe X-linked disorder of central myelination caused by mutations affecting the proteolipid protein gene. We describe 3 new PLP1 splicing mutations, their effect on splicing and associated phenotypes. Mutation c.453_453+6del7insA affects the exon 3B donor splice site and disrupts the PLP1-transcript without affecting the DM20, was found in a patient with severe Pelizaeus-Merzbacher disease and in his female cousin with early-onset spastic paraparesis. Mutation c.191+1G>A causes exon 2 skipping with a frame shift, is expected to result in a functionally null allele, and was found in a patient with mild Pelizaeus-Merzbacher disease and in his aunt with late-onset spastic paraparesis. Mutation c.696+1G>A utilizes a cryptic splice site in exon 5, causes partial exon 5 skipping and in-frame deletion, and was found in an isolated patient with a severe classical Pelizaeus-Merzbacher. PLP1 splice-site mutations express a variety of disease phenotypes mediated by different molecular pathogenic mechanisms.
Collapse
Affiliation(s)
- Petra Laššuthová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Markéta Žaliová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jana Haberlová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Klára Sixtová
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Iva Sakmaryová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Kateřina Paděrová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Radim Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Dana Šišková
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Jim Garbern
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pavel Seeman
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| |
Collapse
|
15
|
Viner C, Dorman SN, Shirley BC, Rogan PK. Validation of predicted mRNA splicing mutations using high-throughput transcriptome data. F1000Res 2014; 3:8. [PMID: 24741438 PMCID: PMC3983938 DOI: 10.12688/f1000research.3-8.v2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 01/20/2023] Open
Abstract
Interpretation of variants present in complete genomes or exomes reveals numerous sequence changes, only a fraction of which are likely to be pathogenic. Mutations have been traditionally inferred from allele frequencies and inheritance patterns in such data. Variants predicted to alter mRNA splicing can be validated by manual inspection of transcriptome sequencing data, however this approach is intractable for large datasets. These abnormal mRNA splicing patterns are characterized by reads demonstrating either exon skipping, cryptic splice site use, and high levels of intron inclusion, or combinations of these properties. We present, Veridical, an
in silico method for the automatic validation of DNA sequencing variants that alter mRNA splicing. Veridical performs statistically valid comparisons of the normalized read counts of abnormal RNA species in mutant versus non-mutant tissues. This leverages large numbers of control samples to corroborate the consequences of predicted splicing variants in complete genomes and exomes.
Collapse
Affiliation(s)
- Coby Viner
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Stephanie N Dorman
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | - Peter K Rogan
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada ; Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada ; Cytognomix, Inc., London, Ontario, N6G 4X8, Canada
| |
Collapse
|
16
|
Abstract
Interpretation of variants present in complete genomes or exomes reveals numerous sequence changes, only a fraction of which are likely to be pathogenic. Mutations have been traditionally inferred from allele frequencies and inheritance patterns in such data. Variants predicted to alter mRNA splicing can be validated by manual inspection of transcriptome sequencing data, however this approach is intractable for large datasets. These abnormal mRNA splicing patterns are characterized by reads demonstrating either exon skipping, cryptic splice site use, and high levels of intron inclusion, or combinations of these properties. We present, Veridical, an in silico method for the automatic validation of DNA sequencing variants that alter mRNA splicing. Veridical performs statistically valid comparisons of the normalized read counts of abnormal RNA species in mutant versus non-mutant tissues. This leverages large numbers of control samples to corroborate the consequences of predicted splicing variants in complete genomes and exomes.
Collapse
Affiliation(s)
- Coby Viner
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Stephanie N Dorman
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | - Peter K Rogan
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada ; Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada ; Cytognomix, Inc., London, Ontario, N6G 4X8, Canada
| |
Collapse
|
17
|
Shirley BC, Mucaki EJ, Whitehead T, Costea PI, Akan P, Rogan PK. Interpretation, stratification and evidence for sequence variants affecting mRNA splicing in complete human genome sequences. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:77-85. [PMID: 23499923 PMCID: PMC4357664 DOI: 10.1016/j.gpb.2013.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
Abstract
Information theory-based methods have been shown to be sensitive and specific for predicting and quantifying the effects of non-coding mutations in Mendelian diseases. We present the Shannon pipeline software for genome-scale mutation analysis and provide evidence that the software predicts variants affecting mRNA splicing. Individual information contents (in bits) of reference and variant splice sites are compared and significant differences are annotated and prioritized. The software has been implemented for CLC-Bio Genomics platform. Annotation indicates the context of novel mutations as well as common and rare SNPs with splicing effects. Potential natural and cryptic mRNA splicing variants are identified, and null mutations are distinguished from leaky mutations. Mutations and rare SNPs were predicted in genomes of three cancer cell lines (U2OS, U251 and A431), which were supported by expression analyses. After filtering, tractable numbers of potentially deleterious variants are predicted by the software, suitable for further laboratory investigation. In these cell lines, novel functional variants comprised 6–17 inactivating mutations, 1–5 leaky mutations and 6–13 cryptic splicing mutations. Predicted effects were validated by RNA-seq analysis of the three aforementioned cancer cell lines, and expression microarray analysis of SNPs in HapMap cell lines.
Collapse
Affiliation(s)
- Ben C Shirley
- Department of Computer Science, Middlesex College, The University of Western Ontario, London, ON N6A 5B7, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Mucaki EJ, Shirley BC, Rogan PK. Prediction of mutant mRNA splice isoforms by information theory-based exon definition. Hum Mutat 2013; 34:557-65. [PMID: 23348723 DOI: 10.1002/humu.22277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/04/2013] [Indexed: 11/09/2022]
Abstract
Mutations that affect mRNA splicing often produce multiple mRNA isoforms, resulting in complex molecular phenotypes. Definition of an exon and its inclusion in mature mRNA relies on joint recognition of both acceptor and donor splice sites. This study predicts cryptic and exon-skipping isoforms in mRNA produced by splicing mutations from the combined information contents (R(i), which measures binding-site strength, in bits) and distribution of the splice sites defining these exons. The total information content of an exon (R(i),total) is the sum of the R(i) values of its acceptor and donor splice sites, adjusted for the self-information of the distance separating these sites, that is, the gap surprisal. Differences between total information contents of an exon (ΔR(i,total)) are predictive of the relative abundance of these exons in distinct processed mRNAs. Constraints on splice site and exon selection are used to eliminate nonconforming and poorly expressed isoforms. Molecular phenotypes are computed by the Automated Splice Site and Exon Definition Analysis (http://splice.uwo.ca) server. Predictions of splicing mutations were highly concordant (85.2%; n = 61) with published expression data. In silico exon definition analysis will contribute to streamlining assessment of abnormal and normal splice isoforms resulting from mutations.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, Canada
| | | | | |
Collapse
|
19
|
Genetically Polymorphic Cytochrome P450s and Transporters and Personalized Antimicrobial Chemotherapy. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Mucaki EJ, Ainsworth P, Rogan PK. Comprehensive prediction of mRNA splicing effects of BRCA1 and BRCA2 variants. Hum Mutat 2011; 32:735-42. [DOI: 10.1002/humu.21513] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/08/2011] [Indexed: 12/17/2022]
|
21
|
Sangar MC, Anandatheerthavarada HK, Martin MV, Guengerich FP, Avadhani NG. Identification of genetic variants of human cytochrome P450 2D6 with impaired mitochondrial targeting. Mol Genet Metab 2010; 99:90-7. [PMID: 19781968 PMCID: PMC2794965 DOI: 10.1016/j.ymgme.2009.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 11/22/2022]
Abstract
Human cytochrome P450 2D6 (CYP2D6) is responsible for the metabolism of approximately 20% of drugs in common clinical use. The CYP2D6 gene locus is highly polymorphic. Many of the polymorphisms have been shown to be clinically relevant and can account for inter-individual differences in the metabolism of specific drugs. In addition to the established sources of variability in CYP2D6-dependent drug metabolism, a recent study in our laboratory identified CYP2D6 in the mitochondria of human liver samples and found that it is metabolically active in this novel location. In the present study we show that mutations are present in the targeting signal region of CYP2D6 that may help to account for the inter-individual variability that was observed previously in the level of the mitochondrial enzyme in human liver samples. These mutations were identified within the ER targeting domain, the proline-rich domain as well as the putative protein kinase A (PKA) and protein kinase C (PKC)-specific phosphorylation sites. In vitro studies demonstrate that the mutations identified in the targeting signals affect the efficiency of mitochondrial targeting of CYP2D6. Since the mitochondrial enzyme has been shown to be active in drug metabolism, this pharmacogenetic variation could play a role in modulating the response of an individual to drug therapy.
Collapse
Affiliation(s)
- Michelle Cook Sangar
- Dept. of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Hindupur K. Anandatheerthavarada
- Dept. of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Martha V. Martin
- Dept. of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Ave., Nashville, TN 37232-0146, U.S.A
| | - F. Peter Guengerich
- Dept. of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Ave., Nashville, TN 37232-0146, U.S.A
| | - Narayan G. Avadhani
- Dept. of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Corresponding Author at: University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Room 189E, Philadelphia, PA 19104. Tel: 1-215-898-8819, Fax: +1-215-573-6651,
| |
Collapse
|
22
|
Toscano C, Klein K, Blievernicht J, Schaeffeler E, Saussele T, Raimundo S, Eichelbaum M, Schwab M, Zanger UM. Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events. Pharmacogenet Genomics 2009; 16:755-66. [PMID: 17001295 DOI: 10.1097/01.fpc.0000230112.96086.e0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the molecular basis for low expression and activity of CYP2D6 associated with the CYP2D6*41 allele in about 10-15% of Caucasians with intermediate metabolizer phenotype. With respect to two previously described polymorphisms in the promoter (-1584C>G) and in intron 6 (2988G>A; c.985+39G>A), the three most frequent functional alleles have the distinct haplotypes 2D6*1[CG], 2D6*2[GG] and 2D6*41[CA], respectively. Reporter gene analyses in transiently transfected HepG2 and Huh7 hepatoma cells did not indicate changes in transcription rate by these polymorphisms. By reverse-transcription polymerase chain reaction analysis of liver RNA of genotyped patients, however, we discovered that the 2988G>A change was associated with increased levels of a nonfunctional splice variant lacking exon 6. Quantification by denaturing high-performance liquid chromatography revealed up to 7.3-fold increased levels of the splice variant and up to 2.9-fold less functional transcript in carriers of 2D6*41, in good concordance with concomitant changes in immunoquantified CYP2D6 protein. Recombinant expression of the entire genomic sequence coding for 2D6*41, 2D6*2 and 2D6*1 alleles but lacking the upstream region in COS-1 and Huh7 cell lines resulted in two-fold to five-fold reduced levels of CYP2D6 mRNA containing exon 6, apoprotein and enzyme activity of 2D6*41. These experiments establish the causal relationship between the intron 6 single-nucleotide polymorphism 2988G>A and the low expression phenotype associated with allele 2D6*41. These data improve the CYP2D6 genotype-phenotype relationship and they demonstrate that major phenotype changes occurring in large population subgroups can be caused by intronic polymorphisms outside of splice site consensus sequences.
Collapse
Affiliation(s)
- Claudia Toscano
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, Brugada P, Fressart V, Guerchicoff A, Harris-Kerr C, Kamakura S, Kyndt F, Koopmann TT, Miyamoto Y, Pfeiffer R, Pollevick GD, Probst V, Zumhagen S, Vatta M, Towbin JA, Shimizu W, Schulze-Bahr E, Antzelevitch C, Salisbury BA, Guicheney P, Wilde AAM, Brugada R, Schott JJ, Ackerman MJ. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 2009; 7:33-46. [PMID: 20129283 DOI: 10.1016/j.hrthm.2009.09.069] [Citation(s) in RCA: 556] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/25/2009] [Indexed: 01/08/2023]
Abstract
BACKGROUND Brugada syndrome (BrS) is a common heritable channelopathy. Mutations in the SCN5A-encoded sodium channel (BrS1) culminate in the most common genotype. OBJECTIVE This study sought to perform a retrospective analysis of BrS databases from 9 centers that have each genotyped >100 unrelated cases of suspected BrS. METHODS Mutational analysis of all 27 translated exons in SCN5A was performed. Mutation frequency, type, and localization were compared among cases and 1,300 ostensibly healthy volunteers including 649 white subjects and 651 nonwhite subjects (blacks, Asians, Hispanics, and others) that were genotyped previously. RESULTS A total of 2,111 unrelated patients (78% male, mean age 39 +/- 15 years) were referred for BrS genetic testing. Rare mutations/variants were more common among BrS cases than control subjects (438/2,111, 21% vs. 11/649, 1.7% white subjects and 31/651, 4.8% nonwhite subjects, respectively, P <10(-53)). The yield of BrS1 genetic testing ranged from 11% to 28% (P = .0017). Overall, 293 distinct mutations were identified in SCN5A: 193 missense, 32 nonsense, 38 frameshift, 21 splice-site, and 9 in-frame deletions/insertions. The 4 most frequent BrS1-associated mutations were E1784K (14x), F861WfsX90 (11x), D356N (8x), and G1408R (7x). Most mutations localized to the transmembrane-spanning regions. CONCLUSION This international consortium of BrS genetic testing centers has added 200 new BrS1-associated mutations to the public domain. Overall, 21% of BrS probands have mutations in SCN5A compared to the 2% to 5% background rate of rare variants reported in healthy control subjects. Additional studies drawing on the data presented here may help further distinguish pathogenic mutations from similarly rare but otherwise innocuous ones found in cases.
Collapse
Affiliation(s)
- Jamie D Kapplinger
- Department of Medicine, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guédard-Méreuze SL, Vaché C, Molinari N, Vaudaine J, Claustres M, Roux AF, Tuffery-Giraud S. Sequence contexts that determine the pathogenicity of base substitutions at position +3 of donor splice-sites. Hum Mutat 2009; 30:1329-39. [DOI: 10.1002/humu.21070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD, Wilde AAM, Ackerman MJ. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm 2009; 6:1297-303. [PMID: 19716085 DOI: 10.1016/j.hrthm.2009.05.021] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/23/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Long QT syndrome (LQTS) is a potentially lethal, highly treatable cardiac channelopathy for which genetic testing has matured from discovery to translation and now clinical implementation. OBJECTIVES Here we examine the spectrum and prevalence of mutations found in the first 2,500 unrelated cases referred for the FAMILION LQTS clinical genetic test. METHODS Retrospective analysis of the first 2,500 cases (1,515 female patients, average age at testing 23 +/- 17 years, range 0 to 90 years) scanned for mutations in 5 of the LQTS-susceptibility genes: KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6). RESULTS Overall, 903 referral cases (36%) hosted a possible LQTS-causing mutation that was absent in >2,600 reference alleles; 821 (91%) of the mutation-positive cases had single genotypes, whereas the remaining 82 patients (9%) had >1 mutation in > or =1 gene, including 52 cases that were compound heterozygous with mutations in >1 gene. Of the 562 distinct mutations, 394 (70%) were missense, 428 (76%) were seen once, and 336 (60%) are novel, including 92 of 199 in KCNQ1, 159 of 226 in KCNH2, and 70 of 110 in SCN5A. CONCLUSION This cohort increases the publicly available compendium of putative LQTS-associated mutations by >50%, and approximately one-third of the most recently detected mutations continue to be novel. Although control population data suggest that the great majority of these mutations are pathogenic, expert interpretation of genetic test results will remain critical for effective clinical use of LQTS genetic test results.
Collapse
Affiliation(s)
- Jamie D Kapplinger
- Department of Medicine, Divisions of Cardiovascular Diseases and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects. Hum Genomics 2009; 3:169-90. [PMID: 19164093 PMCID: PMC3525272 DOI: 10.1186/1479-7364-3-2-169] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pharmacogenetics enables personalised therapy based on genetic profiling and is increasingly applied in drug discovery. Medicines are developed and used together with pharmacodiagnostic tools to achieve desired drug efficacy and safety margins. Genetic polymorphism of drug-metabolising enzymes such as cytochrome P450s (CYPs) and N-acetyltransferases (NATs) has been widely studied in Caucasian and Asian populations, yet studies on African variants have been less extensive. The aim of the present study was to search for novel variants of CYP2C9, CYP2C19, CYP2D6 and NAT2 genes in Africans, with a particular focus on their prevalence in different populations, their relevance to enzyme functionality and their potential for personalised therapy. Blood samples from various ethnic groups were obtained from the AiBST Biobank of African Populations. The nine exons and exon-intron junctions of the CYP genes and exon 2 of NAT2 were analysed by direct DNA sequencing. Computational tools were used for the identification, haplotype analysis and prediction of functional effects of novel single nucleotide polymorphisms (SNPs). Novel SNPs were discovered in all four genes, grouped to existing haplotypes or assigned new allele names, if possible. The functional effects of non-synonymous SNPs were predicted and known African-specific variants were confirmed, but no significant differences were found in the frequencies of SNPs between African ethnicities. The low prevalence of our novel variants and most known functional alleles is consistent with the generally high level of diversity in gene loci of African populations. This indicates that profiles of rare variants reflecting interindividual variability might become the most relevant pharmacodiagnostic tools explaining Africans' diversity in drug response.
Collapse
|
27
|
Tournier I, Vezain M, Martins A, Charbonnier F, Baert-Desurmont S, Olschwang S, Wang Q, Buisine MP, Soret J, Tazi J, Frébourg T, Tosi M. A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat 2009; 29:1412-24. [PMID: 18561205 DOI: 10.1002/humu.20796] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Numerous unclassified variants (UVs) have been found in the mismatch repair genes MLH1 and MSH2 involved in hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome). Some of these variants may have an effect on pre-mRNA splicing, either by altering degenerate positions of splice site sequences or by affecting intronic or exonic splicing regulatory sequences such as exonic splicing enhancers (ESEs). In order to determine the consequences of UVs on splicing, we used a functional assay of exon inclusion. For each variant, mutant and wild-type exons to be tested were PCR-amplified from patient genomic DNA together with approximately 150 bp of flanking sequences and were inserted into a splicing reporter minigene. After transfection into HeLa cells, the effects on splicing were evaluated by RT-PCR analysis and systematic sequencing. A total of 22 UVs out of 85 different variant alleles examined in 82 families affected splicing, including four exonic variants that affected putative splicing regulatory elements. We analyzed short stretches spanning the latter variants by cloning them into the ESE-dependent central exon of a three-exon splicing minigene and we showed in cell transfection experiments that the wild-type sequences indeed contain functional ESEs. We then used this construct to query for ESE elements in the MLH1 or MSH2 regions affected by 14 previously reported exonic splicing mutations and showed that they also contain functional ESEs. These splicing assays represent a valuable tool for the interpretation of UVs and should contribute to the optimization of the molecular diagnosis of the Lynch syndrome and of other genetic diseases.
Collapse
Affiliation(s)
- Isabelle Tournier
- Inserm U614, Federate Institute for Multidisciplinary Research on Peptides, Faculty of Medicine, University of Rouen, Department of Genetics and Institute for Biomedical Research, Rouen University Hospital, Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hines RN, Koukouritaki SB, Poch MT, Stephens MC. Regulatory Polymorphisms and their Contribution to Interindividual Differences in the Expression of Enzymes Influencing Drug and Toxicant Disposition. Drug Metab Rev 2008; 40:263-301. [DOI: 10.1080/03602530801952682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Qin S, Shen L, Zhang A, Xie J, Shen W, Chen L, Tang J, Xiong Y, Yang L, Shi Y, Feng G, He L, Xing Q. Systematic polymorphism analysis of the CYP2D6 gene in four different geographical Han populations in mainland China. Genomics 2008; 92:152-8. [PMID: 18632250 DOI: 10.1016/j.ygeno.2008.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/28/2008] [Accepted: 05/09/2008] [Indexed: 11/26/2022]
Abstract
In this study, we systematically screened the polymorphisms of the whole CYP2D6 gene in the populations of four different geographical locations in China, namely, Shanghai, Shantou, Shenyang, and Xi'an, using a sample of 100 subjects from each population. Forty-eight different polymorphisms were detected as well as 12 novel ones. One novel nonsynonymous SNP was detected, and one novel intronic SNP was revealed that might inactivate a cryptic donor site 392 nucleotides downstream of the exon 6 natural donor site. In addition, the frequencies of some polymorphisms and alleles demonstrated significant differences among the four populations. Linkage disequilibrium analysis and tag SNP selection were performed separately for each population. Haplotypes were analyzed within the selected tag SNPs. Tag SNP selection and haplotype distributions showed differences across the four populations. This is the first large-scale study to analyze polymorphisms systematically across the whole CYP2D6 gene in the Chinese Han population.
Collapse
Affiliation(s)
- Shengying Qin
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen L, Qin S, Xie J, Tang J, Yang L, Shen W, Zhao X, Du J, He G, Feng G, He L, Xing Q. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 2008; 9:691-702. [DOI: 10.2217/14622416.9.6.691] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aims: Although many studies have been performed on CYP2C19, most of them have mainly examined the effects of the defective alleles CYP2C19*2 and CYP2C19*3. A comprehensive search for genetic polymorphisms of the CYP2C19 gene in the Chinese Han population has rarely been conducted. The present study was designed to determine the genetic basis of CYP2C19 polymorphisms. Materials & Methods: We investigated the 5´-regulatory region, all the exons and their surrounding introns of the CYP2C19 gene in 400 unrelated healthy Chinese Han volunteers from four different geographical locations, namely Shanghai, Shantou, Shenyang and Xi’an, with a sample of 100 subjects in each population, using direct sequencing. Results: A total of 14 different CYP2C19 polymorphisms, including one novel variant (-2306G>A) in the enhancer region and a novel nonsynonymous one (905C>G, T302R) were identified. In addition, CYP2C19*1, *2, *3, *15 and *17 alleles showed frequencies of 69.7%, 24.7%, 3.3%, 1.2% and 1.2%, respectively, and CYP2C19*15 was the first detected in an Asian population. The frequencies of the prevalent defective alleles CYP2C19*2 and CYP2C19*3 in Chinese Han populations are similar to those in other Asians, and much higher than those reported in American European and other Caucasian populations. Haplotype analysis demonstrated CATCGG was the dominating haplotype with a frequency of 38.6% in the Chinese Han population. Furthermore, homology modeling analysis for CYP2C19 indicates that Thr302Arg could cause the displacement of heme. Conclusion: This is the first study that systematically screened the polymorphisms of the whole CYP2C19 gene in a large Chinese Han population. The results suggest that a few low frequent variants show significant differences among the four populations, while the prevalent polymorphisms show no differences. Therefore, our database provides important information on CYP2C19 polymorphisms in the Chinese population, and could be helpful for future personalized medicine studies in Asian populations generally.
Collapse
Affiliation(s)
- Lingling Chen
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Shengying Qin
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Wu Zhong Group, Jiangsu province 215128, China
| | - Jing Xie
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Jimin Tang
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Lun Yang
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Wen Shen
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Xinzhi Zhao
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Jing Du
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
- Shanghai Institute of Planned Parenthood Research, Shanghai, 200030, PR, China
| | - Guang He
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Guoyin Feng
- Shanghai Institute of Mental Health, 600 South Wanping Road, Shanghai 200030, China
| | - Lin He
- Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | - Qinghe Xing
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China
| |
Collapse
|
31
|
Abstract
The human genome project and related research initiatives have enabled the identification of a significant number of genetic variants that are predictive of drug response and outcome (pharmacogenomic biomarkers). As yet, incorporation of routine pharmacogenomic testing into clinical practice has been relatively modest. Potential barriers to adoption include a relative lack of prospective controlled trials establishing the benefits of such testing, economic constraints, and ethical concerns, among others. Clinicians considering the use of pharmacogenomic testing in their practice also may be unfamiliar with the concepts and principles underlying this rapidly evolving discipline. Consequently, the purpose of this review is to provide the clinical pharmacologist with a primer on the principles and molecular mechanisms underlying pharmacogenomics. In addition, the methods currently being used to discover novel pharmacogenomic biomarkers and then apply these to clinical practice will be described.
Collapse
Affiliation(s)
- Michael H Court
- Comparative and Molecular Pharmacogenomics Laboratory, Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
32
|
Cai WM, Chen B, Zhang WX. Frequency of CYP2D6*10 and *14 alleles and their influence on the metabolic activity of CYP2D6 in a healthy Chinese population. Clin Pharmacol Ther 2007; 81:95-8. [PMID: 17186005 DOI: 10.1038/sj.clpt.6100015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To study the frequency of CYP2D6(*)10 and (*)14 alleles in a healthy Chinese population, and the influence of these two alleles on the metabolic activity of CYP2D6. CYP2D6(*)10 and (*)14 genotypes of 295 healthy Chinese subjects were determined using a tetra-primer method and allele-specific amplification. CYP2D6 phenotypes of 131 subjects were determined using dextramethorphan as probe drug. There were 10 subjects with a (*)14 allele, including one homozygous for (*)14. The gene frequency of (*)10 and (*)14 alleles were 55.8 and 1.8%, respectively. The metabolic ratio (MR) of dextramethorphan in 131 subjects was 0.032+/-0.106. The MR of (*)1/(*)1, (*)1/(*)10, (*)10/(*)10, (*)1/(*)14, (*)10/(*)14, and (*)14/(*)14 groups were 0.007+/-0.012, 0.009+/-0.010, 0.042+/-0.029, 0.093, 0.11, and 1.186, respectively. The MR of subjects with (*)14 allele was higher than those of (*)1/(*)1, (*)1/(*)10, or (*)10/(*)10 groups (P<0.001). The CYP2D6(*)10 and (*)14 alleles have substantial impact on the metabolic activity of CYP2D6, and the CYP2D6(*)14 allele may be the cause of the poor metabolizer phenotype in Chinese subjects.
Collapse
Affiliation(s)
- W M Cai
- Department of Pharmacy, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.
| | | | | |
Collapse
|
33
|
Abstract
Information theory was used to build a promoter model that accounts for the -10, the -35 and the uncertainty of the gap between them on a common scale. Helical face assignment indicated that base -7, rather than -11, of the -10 may be flipping to initiate transcription. We found that the sequence conservation of sigma70 binding sites is 6.5 +/- 0.1 bits. Some promoters lack a -35 region, but have a 6.7 +/- 0.2 bit extended -10, almost the same information as the bipartite promoter. These results and similarities between the contacts in the extended -10 binding and the -35 suggest that the flexible bipartite sigma factor evolved from a simpler polymerase. Binding predicted by the bipartite model is enriched around 35 bases upstream of the translational start. This distance is the smallest 5' mRNA leader necessary for ribosome binding, suggesting that selective pressure minimizes transcript length. The promoter model was combined with models of the transcription factors Fur and Lrp to locate new promoters, to quantify promoter strengths, and to predict activation and repression. Finally, the DNA-bending proteins Fis, H-NS and IHF frequently have sites within one DNA persistence length from the -35, so bending allows distal activators to reach the polymerase.
Collapse
Affiliation(s)
| | | | | | - Thomas D. Schneider
- To whom correspondence should be addressed. Tel: +1 301 846 5581; Fax: +1 301 846 5598;
| |
Collapse
|
34
|
Gaedigk A, Baker DW, Totah RA, Gaedigk R, Pearce RE, Vyhlidal CA, Zeldin DC, Leeder JS. Variability of CYP2J2 expression in human fetal tissues. J Pharmacol Exp Ther 2006; 319:523-32. [PMID: 16868033 PMCID: PMC1876721 DOI: 10.1124/jpet.106.109215] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2J2 metabolizes arachidonic acid to 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids (EETs), which play a critical role in the regulation of renal, pulmonary, cardiac, and vascular function. However, the contribution of CYP2J2 to EET formation in the liver remains poorly characterized. Likewise, information is sparse regarding the extent and variability of CYP2J2 expression during human development. This investigation was undertaken to characterize the variability of CYP2J2 expression in fetal liver, heart, kidney, lung, intestine, and brain and in postnatal liver samples. CYP2J2 mRNA expression was measured using quantitative polymerase chain reaction, and immunoreactive CYP2J2 was examined using two anti-CYP2J2 antibodies. CYP2J2 mRNA was ubiquitously expressed in pre- and postnatal samples. Fetal hepatic mRNA expression varied 127-fold (1351 +/- 717 transcripts/ng total RNA), but this variation was reduced to 8-fold after exclusion of four samples with extremely low levels of mRNA. Amounts of immunoreactive protein also varied substantially among samples without an apparent relationship with transcript number or genotype. Western blot analysis revealed a different protein pattern between prenatal and postnatal liver samples. DNA resequencing of selected subjects identified a single novel single-nucleotide polymorphism (CYP2J2*10), which was found in only one subject and therefore did not explain the large variability in CYP2J2 protein content. In vitro expression suggests that the protein product of CYP2J2*10 confers reduced enzymatic activity. Aberrant splicing produces three minor transcripts, which were present in all samples tested. Due to premature termination codons, none encodes functional protein. The mechanisms leading to variable amounts of immunoreactive protein and distinct pre- and postnatal CYP2J2 protein patterns warrant further investigation.
Collapse
Affiliation(s)
- Andrea Gaedigk
- Children's Mercy Hospital, Division of Clinical Pharmacology, 2401 Gillham Rd., Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bindewald E, Schneider TD, Shapiro BA. CorreLogo: an online server for 3D sequence logos of RNA and DNA alignments. Nucleic Acids Res 2006; 34:W405-11. [PMID: 16845037 PMCID: PMC1538790 DOI: 10.1093/nar/gkl269] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We present an online server that generates a 3D representation of properties of user-submitted RNA or DNA alignments. The visualized properties are information of single alignment columns, mutual information of two alignment positions as well as the position-specific fraction of gaps. The nucleotide composition of both single columns and column pairs is visualized with the help of color-coded 3D bars labeled with letters. The server generates both VRML and JVX output that can be viewed with a VRML viewer or the JavaView applet, respectively. We show that combining these different features of an alignment into one 3D representation is helpful in identifying correlations between bases and potential RNA and DNA base pairs. Significant known correlations between the tRNA 3′ anticodon cardinal nucleotide and the extended anticodon were observed, as were correlations within the amino acid acceptor stem and between the cardinal nucleotide and the acceptor stem. The online server can be accessed using the URL .
Collapse
Affiliation(s)
| | - Thomas D. Schneider
- Center for Cancer Research Nanobiology Program, NCI-FrederickFrederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI-FrederickFrederick, MD 21702, USA
- To whom correspondence should be addressed. Tel: +1 301 846 5536; Fax: +1 301 846 5598;
| |
Collapse
|
36
|
Wang E, Huang Z, Hobson GM, Dimova N, Sperle K, McCullough A, Cambi F. PLP1 alternative splicing in differentiating oligodendrocytes: characterization of an exonic splicing enhancer. J Cell Biochem 2006; 97:999-1016. [PMID: 16288477 DOI: 10.1002/jcb.20692] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteolipid protein (PLP) and DM20 are generated by alternative splicing of exon 3B of PLP1 transcript in differentiating oligodendrocytes. We investigated the role of exonic splicing enhancers (ESE) in the selection of PLP 5' donor site, focusing on putative ASF/SF2, and SC35 binding motifs in exon 3B on the basis of mutations that cause disease in humans. Mutations in a putative ASF/SF2 binding motif (nucleotides 406-412) reduced PLP 5' donor site selection, whereas a mutation in a putative SC35 binding motif (nucleotides 382-389) had no effect. UV crosslinking and immunoprecipitation (IP) assays using an antibody to ASF/SF2 showed that the ASF/SF2 protein specifically binds to the ESE (nucleotides 406-412). The single nucleotide mutations that reduced PLP splice site selection greatly diminished ASF/SF2 protein binding to this motif. We next tested the effect of overexpressed ASF/SF2 on PLP 5'splice selection in differentiating oligodendrocytes. ASF/SF2 positively regulates PLP splice site selection in a concentration-dependent manner. Disruption of the putative ASF/SF2 binding site in exon 3B reduced the positive effect of ASF/SF2 on PLP splicing. We conclude that an ESE in exon3B regulates PLP 5' donor site selection and that ASF/SF2 protein participates in the regulation of PLP alternative splicing in oligodendrocytes.
Collapse
Affiliation(s)
- Erming Wang
- Department of Neurology, University of Kentucky, Lexington, Kentucky 40536-0284, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Information theory-based software tools have been useful in interpreting noncoding sequence variation within functional sequence elements such as splice sites. Individual information analysis detects activated cryptic splice sites and associated splicing regulatory sites and is capable of distinguishing null from partially functional alleles. We present a server (https://splice.cmh.edu) designed to analyze splicing mutations in binding sites in either human genes, genome-mapped mRNAs, user-defined sequences, or dbSNP entries. Standard HUGO-approved gene symbols and HGVS-approved systematic mutation nomenclature (or dbSNP format) are entered via a web portal. After verifying the accuracy of input variant(s), the surrounding interval is retrieved from the human genome or user-supplied reference sequence. The server then computes the information contents (Ri) of all potential constitutive and/or regulatory splice sites in both the reference and variant sequences. Changes in information content are color-coded, tabulated, and visualized as sequence walkers, which display the binding sites with the reference sequence. The software was validated by analyzing approximately 1,300 mutations from Human Mutation as well as eight mapped SNPs from dbSNP designated as splice site variants. All of the splicing mutations and variants affected splice site strength or activated cryptic splice sites. The server also detected several missense mutations that were unexpectedly predicted to have concomitant effects on splicing or appeared to activate cryptic splicing.
Collapse
Affiliation(s)
- Vijay K Nalla
- Laboratory of Human Molecular Genetics, Children's Mercy Hospital and Clinics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | | |
Collapse
|
38
|
Gaedigk R, Law DJ, Fitzgerald-Gustafson KM, McNulty SG, Nsumu NN, Modrcin AC, Rinaldi RJ, Pinson D, Fowler SC, Bilgen M, Burns J, Hauschka SD, White RA. Improvement in survival and muscle function in an mdx/utrn−/− double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord 2006; 16:192-203. [PMID: 16487708 DOI: 10.1016/j.nmd.2005.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Duchenne muscular dystrophy is a progressive muscle disease characterized by increasing muscle weakness and death by the third decade. mdx mice exhibit the underlying muscle disease but appear physically normal with ordinary lifespans, possibly due to compensatory expression of utrophin. In contrast, double mutant mice (mdx/utrn(-/-)), deficient for both dystrophin and utrophin die by approximately 3 months and suffer from severe muscle weakness, growth retardation, and severe spinal curvature. The capacity of human retinal dystrophin (Dp260) to compensate for the missing 427 kDa muscle dystrophin was tested in mdx/utrn(-/-) mice. Functional outcomes were assessed by histology, EMG, MRI, mobility, weight and longevity. MCK-driven transgenic expression of Dp260 in mdx/utrn(-/-) mice converts their disease course from a severe, lethal muscular dystrophy to a viable, mild myopathic phenotype. This finding is relevant to the design of exon-skipping therapeutic strategies since Dp260 lacks dystrophin exons 1-29.
Collapse
Affiliation(s)
- Roger Gaedigk
- Department of Medical Research, Children's Mercy Hospitals & Clinics, Pediatric Research Building 4th Floor, 2401 Gillham, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gaedigk A, Gaedigk R, Leeder JS. CYP2D7 splice variants in human liver and brain: does CYP2D7 encode functional protein? Biochem Biophys Res Commun 2005; 336:1241-50. [PMID: 16169517 DOI: 10.1016/j.bbrc.2005.08.255] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 08/30/2005] [Indexed: 11/16/2022]
Abstract
A CYP2D7 brain-specific protein metabolizing codeine and encoded by an alternate mRNA has recently been described in Indian subjects. To examine its potential presence in other ethnic backgrounds, CYP2D7 and CYP2D6 full-length splice products were analyzed in liver and brain. CYP2D7 splice variant-specific PCR on 13 subjects revealed the previously reported partial intron 6-containing transcript encoding CYP2D7 in both tissues as a minor variant. This transcript is not predicted to encode functional protein as a frame-shift-reverting deletion in CYP2D7 exon 1 (138delT) was not detected in any transcript or in 285 additional genotyped subjects. The g.14408G > C SNP required for functional transcript also was not observed; all transcripts and individuals genotyped as g.14408G/G that causes a premature stop codon in any splice variants that contain the 57bp intron 6 insertion. Therefore, no evidence for functional CYP2D7 transcripts was observed in Asian, Caucasian or African American individuals.
Collapse
Affiliation(s)
- Andrea Gaedigk
- Division of Clinical Pharmacology and Experimental Therapeutics, The Children's Mercy Hospital and Clinics, Kansas City, MO, USA.
| | | | | |
Collapse
|
40
|
Abstract
Despite the marked advances in drug therapy, some patients do not respond favorably or suffer severe adverse drug effects. Pharmacogenetic studies have shown that polymorphisms of drug metabolizing enzymes, transporters and receptors contribute to variable drug response. Owing to the complexity of drug actions, a broader genomics approach aims at finding new drug targets and optimizing therapy for the individual patient. However, pharmacogenomics has made only a few inroads into clinical practice to date. This review evaluates obstacles that need to be overcome. These include the complexity of mechanisms underlying drug response, given singly or in combination, uncertainty about the genetic underpinnings of complex diseases, such as cancer, diabetes, cardiovascular and mental disorders and a lack of quantitative understanding of the scope of genetic variations, even for well-studied genes. By resolving these hurdles, pharmacogenomics will yield significant, but incremental, therapeutic advances paving the way towards personalized health care.
Collapse
Affiliation(s)
- Wolfgang Sadée
- Department of Pharmacology, Comprehensive Cancer Center, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210-1239, USA.
| | | |
Collapse
|
41
|
Dinakarpandian D, Raheja V, Mehta S, Schuetz EG, Rogan PK. Tandem machine learning for the identification of genes regulated by transcription factors. BMC Bioinformatics 2005; 6:204. [PMID: 16115317 PMCID: PMC1208855 DOI: 10.1186/1471-2105-6-204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 08/22/2005] [Indexed: 11/10/2022] Open
Abstract
Background The identification of promoter regions that are regulated by a given transcription factor has traditionally relied upon the identification and distributions of binding sites recognized by the factor. In this study, we have developed a tandem machine learning approach for the identification of regulatory target genes based on these parameters and on the corresponding binding site information contents that measure the affinities of the factor for these cognate elements. Results This method has been validated using models of DNA binding sites recognized by the xenobiotic-sensitive nuclear receptor, PXR/RXRα, for target genes within the human genome. An information theory-based weight matrix was first derived and refined from known PXR/RXRα binding sites. The promoter region of candidate genes was scanned with the weight matrix. A novel information density-based clustering algorithm was then used to identify clusters of information rich sites. Finally, transformed data representing metrics of location, strength and clustering of binding sites were used for classification of promoter regions using an ensemble approach involving neural networks, decision trees and Naïve Bayesian classification. The method was evaluated on a set of 24 known target genes and 288 genes known not to be regulated by PXR/RXRα. We report an average accuracy (proportion of correctly classified promoter regions) of 71%, sensitivity of 73%, and specificity of 70%, based on multiple cross-validation and the leave-one-out strategy. The performance on a test set of 13 genes showed that 10 were correctly classified. Conclusion We have developed a machine learning approach for the successful detection of gene targets for transcription factors with high accuracy. The method has been validated for the transcription factor PXR/RXRα and has the potential to be extended to other transcription factors.
Collapse
Affiliation(s)
- Deendayal Dinakarpandian
- School of Computing and Engineering, University Of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Venetia Raheja
- School of Computing and Engineering, University Of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Saumil Mehta
- School of Computing and Engineering, University Of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Erin G Schuetz
- Pharmaceutical Sciences, St. Jude's Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter K Rogan
- School of Computing and Engineering, University Of Missouri-Kansas City, Kansas City, Missouri, USA
- Laboratory of Human Molecular Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
42
|
Gaedigk A, Bhathena A, Ndjountché L, Pearce RE, Abdel-Rahman SM, Alander SW, Bradford LD, Rogan PK, Leeder JS. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. THE PHARMACOGENOMICS JOURNAL 2005; 5:173-82. [PMID: 15768052 PMCID: PMC1440720 DOI: 10.1038/sj.tpj.6500305] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome P4502D6 (CYP2D6) genotyping reliably predicts poor metabolizer phenotype in Caucasians, but is less accurate in African Americans. To evaluate discordance we have observed in phenotype to genotype correlation studies, select African American subjects were chosen for complete resequencing of the CYP2D6 gene including 4.2 kb of the CYP2D7-2D6 intergenic region. Comparisons were made to a CYP2D6(*)1 reference sequence revealing novel SNPs in the upstream, coding and intervening sequences. These sequence variations, defining four functional alleles (CYP2D6(*)41B, (*)45A and B and (*)46), were characterized for their ability to influence splice site strength, transcription level or catalytic protein activity. Furthermore, their frequency was determined in a population of 251 African Americans. A -692(TGTG) deletion (CYP2D6(*)45B) did not significantly decrease gene expression, nor could any other upstream SNP explain a genotype-discordant case. CYP2D6(*)45 and (*)46 have a combined frequency of 4% and can be identified by a common SNP. Carriers are predicted to exhibit an extensive or intermediate CYP2D6 phenotype.
Collapse
Affiliation(s)
- A Gaedigk
- Division of Clinical Pharmacology and Experimental Therapeutics, Children's Mercy Hospital & Clinics, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Leeder JS, Gaedigk R, Marcucci KA, Gaedigk A, Vyhlidal CA, Schindel BP, Pearce RE. Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther 2005; 314:626-35. [PMID: 15845858 DOI: 10.1124/jpet.105.086504] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fetal liver CYP3A7 plays an important role in placental estriol synthesis during pregnancy, yet little is known concerning the extent or consequences of variability in expression. The purpose of this investigation was to characterize the variability in CYP3A7 expression using several phenotypic measures in a panel of 54 fetal livers ranging in age from 76 days to 32 weeks gestation. CYP3A7 mRNA expression was measured using quantitative polymerase chain reaction, whereas immunoreactive CYP3A7 was determined using an affinity-purified antipeptide antibody. Variability in catalytic activity was evaluated using testosterone and dehydroepiandrosterone (DHEA) as substrates. Across the entire panel, CYP3A7 was the most abundant CYP3A mRNA species present and varied 634-fold from 151 to 95,700 transcripts/ng total RNA, corrected for 18S ribosomal RNA. CYP3A4 expression was minimal based on mRNA expression (1000-fold lower than CYP3A7) and the ratio of testosterone 2alpha- (T2alphaH) to 6beta- (T6betaH) hydroxylation. T2alphaH and T6betaH were highly correlated (r(2) = 0.859), and the correlation increased (r(2) = 0.974) in livers with CYP3A5*3/*3 genotypes implying that the same enzyme (CYP3A7) generated both products. Overall, T2alphaH and DHEA16alphaH activities varied 175- and 250-fold, respectively. A subset of five samples had extremely low mRNA, protein, and catalytic activity, possibly due to pathology affecting fetal viability (anencephaly, porencephaly). In the remaining samples, T2alphaH activity varied 6.7-fold (358 +/- 142, range 97 to 643 pmol/min/mg) and DHEA16alphaH activity varied 6.2-fold (8.07 +/- 2.87, range 2.41 to 14.9 nmol/min/mg). Observed variability in CYP3A7 activity was not related to CYP3A7*2, and alternative regulatory mechanisms require further investigation.
Collapse
Affiliation(s)
- J Steven Leeder
- Section of Developmental Pharmacology and Experimental Therapeutics, Children's Mercy Hospital and Clinics, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Wessagowit V, Nalla VK, Rogan PK, McGrath JA. Normal and abnormal mechanisms of gene splicing and relevance to inherited skin diseases. J Dermatol Sci 2005; 40:73-84. [PMID: 16054339 PMCID: PMC1351063 DOI: 10.1016/j.jdermsci.2005.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/28/2005] [Accepted: 05/31/2005] [Indexed: 11/20/2022]
Abstract
The process of excising introns from pre-mRNA complexes is directed by specific genomic DNA sequences at intron-exon borders known as splice sites. These regions contain well-conserved motifs which allow the splicing process to proceed in a regulated and structured manner. However, as well as conventional splicing, several genes have the inherent capacity to undergo alternative splicing, thus allowing synthesis of multiple gene transcripts, perhaps with different functional properties. Within the human genome, therefore, through alternative splicing, it is possible to generate over 100,000 physiological gene products from the 35,000 or so known genes. Abnormalities in normal or alternative splicing, however, account for about 15% of all inherited single gene disorders, including many with a skin phenotype. These splicing abnormalities may arise through inherited mutations in constitutive splice sites or other critical intronic or exonic regions. This review article examines the process of normal intron-exon splicing, as well as what is known about alternative splicing of human genes. The review then addresses pathological disruption of normal intron-exon splicing that leads to inherited skin diseases, either resulting from mutations in sequences that have a direct influence on splicing or that generate cryptic splice sites. Examples of aberrant splicing, especially for the COL7A1 gene in patients with dystrophic epidermolysis bullosa, are discussed and illustrated. The review also examines a number of recently introduced computational tools that can be used to predict whether genomic DNA sequences changes may affect splice site selection and how robust the influence of such mutations might be on splicing.
Collapse
Affiliation(s)
- Vesarat Wessagowit
- Genetic Skin Disease Group, St. John’s Institute of Dermatology, The Guy’s, King’s College and St. Thomas’ Hospitals’ Medical School, St. Thomas Hospital, Lambeth Palace Road, London SE1 7EH, England, UK
| | - Vijay K. Nalla
- Laboratory of Human Molecular Genetics, Children’s Mercy Hospitals and Clinics, University of Missouri-Kansas City, 2401 Gilham Road, Kansas City, MO 64108, USA
| | - Peter K. Rogan
- Laboratory of Human Molecular Genetics, Children’s Mercy Hospitals and Clinics, University of Missouri-Kansas City, 2401 Gilham Road, Kansas City, MO 64108, USA
| | - John A. McGrath
- Genetic Skin Disease Group, St. John’s Institute of Dermatology, The Guy’s, King’s College and St. Thomas’ Hospitals’ Medical School, St. Thomas Hospital, Lambeth Palace Road, London SE1 7EH, England, UK
- * Corresponding author. Tel.: +44 20 7188 6353; fax: +44 20 7188 6374., E-mail address: (J.A. McGrath)
| |
Collapse
|
45
|
Hobson GM, Huang Z, Sperle K, Sistermans E, Rogan PK, Garbern JY, Kolodny E, Naidu S, Cambi F. Splice-site contribution in alternative splicing ofPLP1 andDM20: molecular studies in oligodendrocytes. Hum Mutat 2005; 27:69-77. [PMID: 16287154 DOI: 10.1002/humu.20276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in the proteolipid protein 1 (PLP1) gene cause the X-linked dysmyelinating diseases Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia 2 (SPG2). We examined the severity of the following mutations that were suspected of affecting levels of PLP1 and DM20 RNA, the alternatively spliced products of PLP1: c.453G>A, c.453G>T, c.453G>C, c.453+2T>C, c.453+4A>G, c.347C>A, and c.453+28_+46del (the old nomenclature did not include the methionine codon: G450A, G450T, G450C, IVS3+2T>C, IVS3+4A>G, C344A, and IVS3+28-+46del). These mutations were evaluated by information theory-based analysis and compared with mRNA expression of the alternatively spliced products. The results are discussed relative to the clinical severity of disease. We conclude that the observed PLP1 and DM20 splicing patterns correlated well with predictions of information theory-based analysis, and that the relative strength of the PLP1 and DM20 donor splice sites plays an important role in PLP1 alternative splicing.
Collapse
Affiliation(s)
- Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children's Clinic, Wilmington, Delaware, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rebbeck TR, Spitz M, Wu X. Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet 2004; 5:589-97. [PMID: 15266341 DOI: 10.1038/nrg1403] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy R Rebbeck
- Department of Biostatistics and Epidemiology, and Abramson Cancer Center, University of Pennsylvania School of Medicine, 904 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
47
|
Vyhlidal CA, Rogan PK, Leeder JS. Development and refinement of pregnane X receptor (PXR) DNA binding site model using information theory: insights into PXR-mediated gene regulation. J Biol Chem 2004; 279:46779-86. [PMID: 15316010 DOI: 10.1074/jbc.m408395200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The pregnane X receptor (PXR) acts as a receptor to induce gene expression in response to structurally diverse xenobiotics through binding as a heterodimer with the 9-cis retinoic acid receptor (RXR) to enhancers in target gene promoters. We identified and estimated the affinities of novel PXR/RXR binding sites in regulated genes and additional genomic targets of PXR with an information theory-based model of the PXR/RXR binding site. Our initial PXR/RXR model, the result of the alignment of 15 previously characterized binding sites, was used to scan the promoters of known PXR target genes. Sites from these genes, with information contents of >8 bits bound by PXR/RXR in vitro, were used to revise the information weight matrix; this procedure was repeated by screening for progressively weaker binding sites. After three iterations of refinement, the model was based on 48 validated PXR/RXR binding sites and has an average information content (Rsequence) of 14.43 +/- 3.21 bits. A scan of the human genome predicted novel PXR/RXR binding sites in the promoters of UGT1A3 (19.78 bits at -8040 and 16.37 bits at -6930) and UGT1A6 (12.74 bits at -9216), both of which were identified previously as targets for PXR. These sites were subsequently demonstrated to specifically bind PXR/RXR in competition electrophoretic mobility shift assays. A strong PXR site was also predicted upstream of the CASP10 gene (18.69 bits at -7872) and was validated by binding studies and reporter assays as a PXR responsive element. This suggests that the PXR-mediated response extends beyond genes involved in drug biotransformation and transport.
Collapse
Affiliation(s)
- Carrie A Vyhlidal
- Section of Developmental Pharmacology and Experimental Therapeutics, Division of Pediatric Clinical Pharmacology and Medical Toxicology and Laboratory of Human Molecular Genetics, Children's Mercy Hospital and Clinics, Kansas City, Missouri 64108, USA
| | | | | |
Collapse
|
48
|
Xie HG, Wood AJJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5:243-72. [PMID: 15102541 DOI: 10.1517/phgs.5.3.243.29833] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytochrome P450 3A (CYP3A) subfamily members are the most abundant and important drug-metabolizing enzymes in humans, and wide interindividual variability in CYP3A expression and function is present. CYP3A4 alone cannot fully explain the observed constitutive variability because its genetic variants are relatively uncommon and have limited functional significance, whereas CYP3A5 expression in humans is highly variable and may be contributory. However, it is difficult to delineate the relative contribution of CYP3A4 and CYP3A5, and to differentiate their effects on drug metabolism as their protein structure, function and substrates are so similar. By contrast, molecular biology methods provide the ability to identify CYP3A4 and CYP3A5 genotypes with certainty. This review collates currently available data on CYP3A5 polymorphisms, provides information on the population frequency of each genetic variant in major ethnic groups, and describes in vitro and in vivo studies that have attempted to identify genotype-phenotype associations.
Collapse
Affiliation(s)
- Hong-Guang Xie
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
49
|
Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, Fackenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG. Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 2003; 307:906-22. [PMID: 14551287 DOI: 10.1124/jpet.103.054866] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CYP2B6 metabolizes many drugs, and its expression varies greatly. CYP2B6 genotype-phenotype associations were determined using human livers that were biochemically phenotyped for CYP2B6 (mRNA, protein, and CYP2B6 activity), and genotyped for CYP2B6 coding and 5'-flanking regions. CYP2B6 expression differed significantly between sexes. Females had higher amounts of CYP2B6 mRNA (3.9-fold, P < 0.001), protein (1.7-fold, P < 0.009), and activity (1.6-fold, P < 0.05) than did male subjects. Furthermore, 7.1% of females and 20% of males were poor CYP2B6 metabolizers. Striking differences among different ethnic groups were observed: CYP2B6 activity was 3.6- and 5.0-fold higher in Hispanic females than in Caucasian (P < 0.022) or African-American females (P < 0.038). Ten single nucleotide polymorphisms (SNPs) in the CYP2B6 promoter and seven in the coding region were found, including a newly identified 13072A>G substitution that resulted in an Lys139Glu change. Many CYP2B6 splice variants (SV) were observed, and the most common variant lacked exons 4 to 6. A nonsynonymous SNP in exon 4 (15631G>T), which disrupted an exonic splicing enhancer, and a SNP 15582C>T in an intron-3 branch site were correlated with this SV. The extent to which CYP2B6 variation was a predictor of CYP2B6 activity varied according to sex and ethnicity. The 1459C>T SNP, which resulted in the Arg487Cys substitution, was associated with the lowest level of CYP2B6 activity in livers of females. The intron-3 15582C>T SNP (in significant linkage disequilibrium with a SNP in a putative hepatic nuclear factor 4 (HNF4) binding site) was correlated with lower CYP2B6 expression in females. In conclusion, we found several common SNPs that are associated with polymorphic CYP2B6 expression.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing
- Amino Acid Sequence
- Aryl Hydrocarbon Hydroxylases/biosynthesis
- Aryl Hydrocarbon Hydroxylases/genetics
- Biotransformation
- Black People
- Blotting, Western
- Child
- Child, Preschool
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Cytochrome P-450 CYP2B6
- Ethnicity
- Female
- Genetic Linkage/genetics
- Haplotypes
- Hispanic or Latino
- Humans
- Infant
- Introns/genetics
- Liver/enzymology
- Male
- Mephenytoin/analogs & derivatives
- Mephenytoin/metabolism
- Mephenytoin/pharmacokinetics
- Microsomes, Liver/enzymology
- Middle Aged
- Molecular Sequence Data
- Oxidoreductases, N-Demethylating/biosynthesis
- Oxidoreductases, N-Demethylating/genetics
- Polymorphism, Genetic/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sex Characteristics
- White People
- Black or African American
Collapse
Affiliation(s)
- Vishal Lamba
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gadiraju S, Vyhlidal CA, Leeder JS, Rogan PK. Genome-wide prediction, display and refinement of binding sites with information theory-based models. BMC Bioinformatics 2003; 4:38. [PMID: 12962546 PMCID: PMC200970 DOI: 10.1186/1471-2105-4-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 09/08/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined) weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. RESULTS Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4-6 hours for transcription factor binding sites and 10-19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths. CONCLUSIONS Delila-Genome was used to scan the human genome sequence with information weight matrices of transcription factor binding sites, including PXR/RXRalpha, AHR and NF-kappaB p50/p65, and matrices for RNA binding sites including splice donor, acceptor, and SC35 recognition sites. Comparisons of genome scans with the original and refined PXR/RXRalpha information weight matrices indicate that the refined model more accurately predicts the strengths of known binding sites and is more sensitive for detection of novel binding sites.
Collapse
Affiliation(s)
- Sashidhar Gadiraju
- Laboratory of Human Molecular Genetics, Children's Mercy Hospital and Clinics, School of Medicine
- School of Interdisciplinary Computer Science and Engineering, University of Missouri-Kansas City, Kansas City MO 64108 USA
| | - Carrie A Vyhlidal
- Section of Developmental and Experimental Pharmacology and Therapeutics, Children's Mercy Hospital and Clinics. School of Medicine
| | - J Steven Leeder
- Section of Developmental and Experimental Pharmacology and Therapeutics, Children's Mercy Hospital and Clinics. School of Medicine
| | - Peter K Rogan
- Laboratory of Human Molecular Genetics, Children's Mercy Hospital and Clinics, School of Medicine
- School of Interdisciplinary Computer Science and Engineering, University of Missouri-Kansas City, Kansas City MO 64108 USA
| |
Collapse
|