1
|
PSD-93 up-regulates the synaptic activity of corticotropin-releasing hormone neurons in the paraventricular nucleus in depression. Acta Neuropathol 2021; 142:1045-1064. [PMID: 34536123 DOI: 10.1007/s00401-021-02371-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Since the discovery of ketamine anti-depressant effects in last decade, it has effectively revitalized interest in investigating excitatory synapses hypothesis in the pathogenesis of depression. In the present study, we aimed to reveal the excitatory synaptic regulation of corticotropin-releasing hormone (CRH) neuron in the hypothalamus, which is the driving force in hypothalamic-pituitary-adrenal (HPA) axis regulation. This study constitutes the first observation of an increased density of PSD-93-CRH co-localized neurons in the hypothalamic paraventricular nucleus (PVN) of patients with major depression. PSD-93 overexpression in CRH neurons in the PVN induced depression-like behaviors in mice, accompanied by increased serum corticosterone level. PSD-93 knockdown relieved the depression-like phenotypes in a lipopolysaccharide (LPS)-induced depression model. Electrophysiological data showed that PSD-93 overexpression increased CRH neurons synaptic activity, while PSD-93 knockdown decreased CRH neurons synaptic activity. Furthermore, we found that LPS induced increased the release of glutamate from microglia to CRH neurons resulted in depression-like behaviors using fiber photometry recordings. Together, these results show that PSD-93 is involved in the pathogenesis of depression via increasing the synaptic activity of CRH neurons in the PVN, leading to the hyperactivity of the HPA axis that underlies depression-like behaviors.
Collapse
|
2
|
The positive effects of running exercise on hippocampal astrocytes in a rat model of depression. Transl Psychiatry 2021; 11:83. [PMID: 33526783 PMCID: PMC7851162 DOI: 10.1038/s41398-021-01216-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Running exercise has been shown to alleviate depressive symptoms, but the mechanism of its antidepressant effect is still unclear. Astrocytes are the predominant cell type in the brain and perform key functions vital to central nervous system (CNS) physiology. Mounting evidence suggests that changes in astrocyte number in the hippocampus are closely associated with depression. However, the effects of running exercise on astrocytes in the hippocampus of depression have not been investigated. Here, adult male rats were subjected to chronic unpredictable stress (CUS) for 5 weeks followed by treadmill running for 6 weeks. The sucrose preference test (SPT) was used to assess anhedonia of rats. Then, immunohistochemistry and modern stereological methods were used to precisely quantify the total number of glial fibrillary acidic protein (GFAP)+ astrocytes in each hippocampal subregion, and immunofluorescence was used to quantify the density of bromodeoxyuridine (BrdU)+ and GFAP+ cells in each hippocampal subregion. We found that running exercise alleviated CUS-induced deficit in sucrose preference and hippocampal volume decline, and that CUS intervention significantly reduced the number of GFAP+ cells and the density of BrdU+/GFAP+ cells in the hippocampal CA1 region and dentate gyrus (DG), while 6 weeks of running exercise reversed these decreases. These results further confirmed that running exercise alleviates depressive symptoms and protects hippocampal astrocytes in depressed rats. These findings suggested that the positive effects of running exercise on astrocytes and the generation of new astrocytes in the hippocampus might be important structural bases for the antidepressant effects of running exercise.
Collapse
|
3
|
Schindler S, Schmidt L, Stroske M, Storch M, Anwander A, Trampel R, Strauß M, Hegerl U, Geyer S, Schönknecht P. Hypothalamus enlargement in mood disorders. Acta Psychiatr Scand 2019; 139:56-67. [PMID: 30229855 DOI: 10.1111/acps.12958] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The purpose of this study was to determine, in vivo, whether the hypothalamus volume is reduced in patients with mood disorders. METHODS The cross-sectional study included 20 unmedicated (MDDu) and 20 medicated patients with major depressive disorder, 21 patients with bipolar disorder, and 23 controls. Twenty of the controls were matched to the MDDu. Seven Tesla, T1-weighted magnetic resonance images were acquired and processed using methods specifically developed for high-precision volumetry of the hypothalamus. RESULTS An overall group difference was observed for the left hypothalamus volume corrected for intracranial volume. Planned contrasts identified that the left hypothalamus was approximately 5% larger in each patient group compared with the control group. A paired t-test with the 20 matched pairs of MDDu and controls and without correction for covariates confirmed the larger left hypothalamus volume in MDDu. CONCLUSIONS Contrary to our expectations, the hypothalamus volume was increased in patients with uni- and bipolar affective disorders. The effect was left-sided and independent of medication status or statistical correction for covariates. Supported by emerging evidence that the stress response may be related to structural and functional asymmetry in the brain, our finding suggests a crucial role of the hypothalamus in mood disorders.
Collapse
Affiliation(s)
- S Schindler
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - L Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - M Stroske
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - M Storch
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - A Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - R Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Strauß
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - U Hegerl
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - S Geyer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - P Schönknecht
- Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, Leipzig, Germany.,Academic State Hospital Arnsdorf, Arnsdorf, Germany
| |
Collapse
|
4
|
Römer S, Bender H, Knabe W, Zimmermann E, Rübsamen R, Seeger J, Fietz SA. Neural Progenitors in the Developing Neocortex of the Northern Tree Shrew ( Tupaia belangeri) Show a Closer Relationship to Gyrencephalic Primates Than to Lissencephalic Rodents. Front Neuroanat 2018; 12:29. [PMID: 29725291 PMCID: PMC5917011 DOI: 10.3389/fnana.2018.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
The neocortex is the most complex part of the mammalian brain and as such it has undergone tremendous expansion during evolution, especially in primates. The majority of neocortical neurons originate from distinct neural stem and progenitor cells (NPCs) located in the ventricular and subventricular zone (SVZ). Previous studies revealed that the SVZ thickness as well as the abundance and distribution of NPCs, especially that of basal radial glia (bRG), differ markedly between the lissencephalic rodent and gyrencephalic primate neocortex. The northern tree shrew (Tupaia belangeri) is a rat-sized mammal with a high brain to body mass ratio, which stands phylogenetically mid-way between rodents and primates. Our study provides – for the first time – detailed data on the presence, abundance and distribution of bRG and other distinct NPCs in the developing neocortex of the northern tree shrew (Tupaia belangeri). We show that the developing tree shrew neocortex is characterized by an expanded SVZ, a high abundance of Pax6+ NPCs in the SVZ, and a relatively high percentage of bRG at peak of upper-layer neurogenesis. We further demonstrate that key features of tree shrew neocortex development, e.g., the presence, abundance and distribution of distinct NPCs, are closer related to those of gyrencephalic primates than to those of ferret and lissencephalic rodents. Together, our study provides novel insight into the evolution of bRG and other distinct NPCs in the neocortex development of Euarchontoglires and introduces the tree shrew as a potential novel model organism in the area of human brain development and developmental disorders.
Collapse
Affiliation(s)
- Sebastian Römer
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Hannah Bender
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Medizinische Fakultät, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Hu YD, Zhao Q, Zhang XR, Xiong LL, Zhang ZB, Zhang P, Zhang RP, Wang TH. Comparison of the properties of neural stem cells of the hippocampus in the tree shrew and rat in vitro. Mol Med Rep 2018; 17:5676-5683. [PMID: 29436662 PMCID: PMC5866009 DOI: 10.3892/mmr.2018.8589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
Neural stem cells (NSCs) are characterized by the ability of self-renewal and capacity to proliferate and produce new nervous tissue. NSCs are capable of differentiating to three lineages of neural cells, including neurons, oligodendrocytes and astrocytes. Furthermore, hippocampal NSCs transplantation can improve the neurological deficits associated with expression of cytokines. Therefore, to compare the properties of NSCs of tree shrews and rats in vitro, NSCs from tree shrews (tsNSCs) and rats f(rNSCs) were isolated. Nestin was used as a marker to identify the cultured NSCs. Neuronal nuclei protein and glial fibrillary acidic protein (GFAP) were utilized to demonstrate the differentiation of NSCs towards neurons and astrocytes, respectively, in vitro. Furthermore, the expression of neurotrophin 3 (NT3), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF) and transforming growth factor (TGF)β1 was also investigated in tsNSCs and rNSCs. The expression of all of the aforementioned proteins was detected using immunofluorescence methods. The results demonstrated that, after 5 days of culture, the average number of neurospheres in the cultured tsNSCs was significantly lower compared with rNSCs (P=0.0031). Additionally, compared with the rNSCs, tsNSCs exhibited an enhanced differentiation ability towards neurons. Furthermore, the expression of NT3 in the tsNSCs was higher compared with rNSCs (P<0.01), while the expression of BDNF was lower (P=0.045). However, no significant differences were observed in the expression level of GDNF and TGFβ1 between rNSCs and tsNSCs. Therefore, these results indicate that tsNSCs exhibit specific characteristics that are different from rNSCs, which provides novel information for the understanding of NSCs obtained from tree shrews. Overall, the results of the current study provide evidence to support the increased application of tree shrews as models for diseases of the central nervous system.
Collapse
Affiliation(s)
- Yuan-Dong Hu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiong Zhao
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xue-Rong Zhang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Rong-Ping Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Fan J, Li BJ, Wang XF, Zhong LL, Cui RJ. Ghrelin produces antidepressant-like effect in the estrogen deficient mice. Oncotarget 2017; 8:58964-58973. [PMID: 28938610 PMCID: PMC5601706 DOI: 10.18632/oncotarget.19768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/11/2017] [Indexed: 01/23/2023] Open
Abstract
Recent evidence shows that ghrelin plays an important role in depression. However, it was little known whether ghrelin produces antidepressant-like effect in the ovariectomized mice. The present study was aimed to investigate the antidepressant-like effects of the ghrelin in ovariectomized mice. In the forced swim test, ghrelin significantly decreased immobility time, reversing the “depressive-like” effect observed in ovariectomized mice, and this effect was reversed by the tamoxifen. In addition, immunohistochemical study indicated that ghrelin treatment reversed the reductions in c-Fos expression induced by ovariectomy. An estrogen antagonist tamoxifen also antagonized the effect of ghrelin on the c-Fos expression. Furthermore, the western blotting indicated that brain-derived neurotrophic factor (BDNF) in the hippocampus, but not phosphorylated cAMP response element-binding protein (pCREB)/CREB in the frontal cortex, were affected by ghrelin treatment. Ghrelin treatment significantly increased BrdU expression. Therefore, these findings suggest that ghrelin produces antidepressant-like effects in ovariectomized mice, and estrogen receptor may be involved in the antidepressant-like effects of the ghrelin.
Collapse
Affiliation(s)
- Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xue Feng Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Li Li Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
7
|
Vitale G, Filaferro M, Micioni Di Bonaventura MV, Ruggieri V, Cifani C, Guerrini R, Simonato M, Zucchini S. Effects of [Nphe 1, Arg 14, Lys 15] N/OFQ-NH 2 (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress. J Psychopharmacol 2017; 31:691-703. [PMID: 28417659 DOI: 10.1177/0269881117691456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study investigated the effect of [Nphe1] Arg14, Lys15-N/OFQ-NH2 (UFP-101), a selective NOP receptor antagonist, in chronic mild stress (CMS) in male Wistar rats. NOP receptor antagonists were reported to elicit antidepressant-like effects in rodents. Our aim was to investigate UFP-101 effects on CMS-induced anhedonia and impairment of hippocampal neurogenesis. UFP-101 (10 nmol/rat intracerebroventricularly) did not influence sucrose intake in non-stressed animals, but reinstated basal sucrose consumption in stressed animals from the second week of treatment. UFP-101 also reversed stress effects in forced swimming test and in open field. Fluoxetine (10 mg/kg intraperitoneally) produced similar effects. Moreover, we investigated whether UFP-101 could affect CMS-induced impairment in hippocampal cell proliferation and neurogenesis, and in fibroblast growth factor (FGF-2) expression. Our data confirm that CMS reduced neural stem cell proliferation and neurogenesis in adult rat hippocampus. Chronic UFP-101 treatment did not affect the reduced proliferation (bromodeoxyuridine-positive cells) observed in stressed animals. However, UFP-101 increased the number of doublecortin-positive cells, restoring neurogenesis. Finally, UFP-101 significantly increased FGF-2 expression, reduced by CMS. These findings support the view that blockade of NOP receptors produces antidepressant-like effects in CMS associated with positive effects on neurogenesis and FGF-2 expression. Therefore, NOP receptors may represent a target for innovative antidepressant drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- 1 Department Life Sciences, University of Modena and RE, Modena, Italy
| | - Monica Filaferro
- 2 Department Biomedical, Metabolical and Neuro-Sciences, University of Modena and RE, Modena, Italy
| | | | - Valentina Ruggieri
- 4 Department Medical and Surgical Sciences for Children & Adults - University Hospital of Modena, Modena, Italy
| | - Carlo Cifani
- 3 School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Remo Guerrini
- 5 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- 6 Department Medical Sciences and Laboratory for the Technologies for Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- 6 Department Medical Sciences and Laboratory for the Technologies for Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Holanda VAD, Medeiros IU, Asth L, Guerrini R, Calo' G, Gavioli EC. Antidepressant activity of nociceptin/orphanin FQ receptor antagonists in the mouse learned helplessness. Psychopharmacology (Berl) 2016; 233:2525-32. [PMID: 27129865 DOI: 10.1007/s00213-016-4310-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Pharmacological and genetic evidence support antidepressant-like effects elicited by the blockade of the NOP receptor. The learned helplessness (LH) model employs uncontrollable and unpredictable electric footshocks as a stressor stimulus to induce a depressive-like phenotype that can be reversed by classical antidepressants. OBJECTIVES The present study aimed to evaluate the action of NOP receptor antagonists in helpless mice. METHODS Male Swiss mice were subjected to the three steps of the LH paradigm (i.e., (1) induction, (2) screening, and (3) test). Only helpless animals were subjected to the test session. During the test session, animals were placed in the electrified chamber and the latency to escape after the footshock and the frequency of escape failures were recorded. The effect of the following treatments administered before the test session were evaluated: nortriptyline (30 mg/kg, ip, 60 min), fluoxetine (30 mg/kg, ip, four consecutive days of treatment), and NOP antagonists SB-612111 (1-10 mg/kg, ip, 30 min) and UFP-101 (1-10 nmol, icv, 5 min). To rule out possible biases, the effects of treatments on controllable stressful and non stressful situations were assessed. RESULTS In helpless mice, nortriptyline, fluoxetine, UFP-101 (3-10 nmol), and SB-612111 (3-10 mg/kg) significantly reduced escape latencies and escape failures. No effects of drug treatments were observed in mice subjected to the controllable electric footshocks and non stressful situations. CONCLUSIONS Acute treatment with NOP antagonists reversed helplessness similarly to the classical antidepressants. These findings support the proposal that NOP receptor antagonists are worthy of development as innovative antidepressant drugs.
Collapse
Affiliation(s)
- Victor A D Holanda
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Iris U Medeiros
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Laila Asth
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970.
| |
Collapse
|
9
|
Hai-Ying C, Nagano K, Ezzikouri S, Yamaguchi C, Kayesh MEH, Rebbani K, Kitab B, Nakano H, Kouji H, Kohara M, Tsukiyama-Kohara K. Establishment of an intermittent cold stress model using Tupaia belangeri and evaluation of compound C737 targeting neuron-restrictive silencer factor. Exp Anim 2016; 65:285-92. [PMID: 27041457 PMCID: PMC4976242 DOI: 10.1538/expanim.15-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Previous studies have shown that intermittent cold stress (ICS) induces depression-like behaviors in mammals. Tupaia belangeri (the tree shrew) is the only experimental animal other than the chimpanzee that has been shown to be susceptible to infection by hepatitis B and C viruses. Moreover, full genome sequence analysis has revealed strong homology between host proteins in Tupaia and in humans and other primates. Tupaia neuromodulator receptor proteins are also known to have a high degree of homology with their corresponding primate proteins. Based on these similarities, we hypothesized that induction of ICS in Tupaia would provide a useful animal model of stress responses. We exposed young adult Tupaia to ICS and observed decreases in body temperature and body weight in both female and male Tupaia, suggesting that Tupaia are an appropriate animal model for ICS studies. We further examined the efficacy of a new small-molecule compound, C737, against the effects of ICS. C737 mimics the helical structure of neuron-restrictive silencer factor (NRSF/REST), which regulates a wide range of target genes involved in neuronal function and pain modulation. Treatment with C737 significantly reduced stress-induced weight loss in female Tupaia; these effects were stronger than those elicited by the antidepressant agomelatine. These results suggest that Tupaia represents a useful non-rodent ICS model. Our data also provide new insights into the function of NRSF/REST in stress-induced depression and other disorders with epigenetic influences or those with high prevalence in women.
Collapse
Affiliation(s)
- Chi Hai-Ying
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima-city, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Herpes Simplex Virus 1 Infection of Tree Shrews Differs from That of Mice in the Severity of Acute Infection and Viral Transcription in the Peripheral Nervous System. J Virol 2015; 90:790-804. [PMID: 26512084 DOI: 10.1128/jvi.02258-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Studies of herpes simplex virus (HSV) infections of humans are limited by the use of rodent models such as mice, rabbits, and guinea pigs. Tree shrews (Tupaia belangeri chinensis) are small mammals indigenous to southwest Asia. At behavioral, anatomical, genomic, and evolutionary levels, tree shrews are much closer to primates than rodents are, and tree shrews are susceptible to HSV infection. Thus, we have studied herpes simplex virus 1 (HSV-1) infection in the tree shrew trigeminal ganglion (TG) following ocular inoculation. In situ hybridization, PCR, and quantitative reverse transcription-PCR (qRT-PCR) analyses confirm that HSV-1 latently infects neurons of the TG. When explant cocultivation of trigeminal ganglia was performed, the virus was recovered after 5 days of cocultivation with high efficiency. Swabbing the corneas of latently infected tree shrews revealed that tree shrews shed virus spontaneously at low frequencies. However, tree shrews differ significantly from mice in the expression of key HSV-1 genes, including ICP0, ICP4, and latency-associated transcript (LAT). In acutely infected tree shrew TGs, no level of ICP4 was observed, suggesting the absence of infection or a very weak, acute infection compared to that of the mouse. Immunofluorescence staining with ICP4 monoclonal antibody, and immunohistochemistry detection by HSV-1 polyclonal antibodies, showed a lack of viral proteins in tree shrew TGs during both acute and latent phases of infection. Cultivation of supernatant from homogenized, acutely infected TGs with RS1 cells also exhibited an absence of infectious HSV-1 from tree shrew TGs. We conclude that the tree shrew has an undetectable, or a much weaker, acute infection in the TGs. Interestingly, compared to mice, tree shrew TGs express high levels of ICP0 transcript in addition to LAT during latency. However, the ICP0 transcript remained nuclear, and no ICP0 protein could be seen during the course of mouse and tree shrew TG infections. Taken together, these observations suggest that the tree shrew TG infection differs significantly from the existing rodent models. IMPORTANCE Herpes simplex viruses (HSVs) establish lifelong infection in more than 80% of the human population, and their reactivation leads to oral and genital herpes. Currently, rodent models are the preferred models for latency studies. Rodents are distant from primates and may not fully represent human latency. The tree shrew is a small mammal, a prosimian primate, indigenous to southwest Asia. In an attempt to further develop the tree shrew as a useful model to study herpesvirus infection, we studied the establishment of latency and reactivation of HSV-1 in tree shrews following ocular inoculation. We found that the latent virus, which resides in the sensory neurons of the trigeminal ganglion, could be stress reactivated to produce infectious virus, following explant cocultivation and that spontaneous reactivation could be detected by cell culture of tears. Interestingly, the tree shrew model is quite different from the mouse model of HSV infection, in that the virus exhibited only a mild acute infection following inoculation with no detectable infectious virus from the sensory neurons. The mild infection may be more similar to human infection in that the sensory neurons continue to function after herpes reactivation and the affected skin tissue does not lose sensation. Our findings suggest that the tree shrew is a viable model to study HSV latency.
Collapse
|
11
|
The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neurosci Biobehav Rev 2015; 56:26-34. [DOI: 10.1016/j.neubiorev.2015.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/22/2023]
|
12
|
Miyake A, Kitamura Y, Miyazaki I, Asanuma M, Sendo T. Effects of (+)-8-OH-DPAT on the duration of immobility during the forced swim test and hippocampal cell proliferation in ACTH-treated rats. Pharmacol Biochem Behav 2014; 122:240-5. [PMID: 24732636 DOI: 10.1016/j.pbb.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/10/2014] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
Abstract
In the present study, we examined the effect of ACTH on the immobilization of rats in the forced swim test and hippocampal cell proliferation after administration of the 5-HT1A receptor agonist, R-(+)-8-hydroxy-2-di-n-propylamino tetralin ((+)-8-OH-DPAT). Chronic treatment with (+)-8-OH-DPAT (0.01-0.1 mg/kg, s.c.) significantly decreased the duration of immobility in saline- and ACTH-treated rats. Chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation. However, (+)-8-OH-DPAT significantly normalized cell proliferation in ACTH-treated rats. We then investigated the effects of (+)-8-OH-DPAT on the expression of brain-derived neurotrophic factor (BDNF) and cyclin D1 (elements of cyclic adenosine monophosphate response element-binding protein (CREB)-BDNF and Wnt signaling pathways, respectively) in the hippocampus of saline- and ACTH-treated rats. ACTH treatment significantly decreased the expression of cyclin D1, while treatment with (+)-8-OH-DPAT normalized the expression of cyclin D1 in ACTH-treated rats. However, the expression of BDNF did not change in either saline- or ACTH-treated rats. These findings suggest that the antidepressant effects of (+)-8-OH-DPAT in treatment-resistant animals may be attributed to an enhancement of hippocampal cell proliferation, at least in part due to an enhancement of cyclin D1 expression.
Collapse
Affiliation(s)
- Ayaka Miyake
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Ikuko Miyazaki
- Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
13
|
Schmelting B, Corbach-Söhle S, Kohlhause S, Schlumbohm C, Flügge G, Fuchs E. Agomelatine in the tree shrew model of depression: effects on stress-induced nocturnal hyperthermia and hormonal status. Eur Neuropsychopharmacol 2014; 24:437-47. [PMID: 23978391 DOI: 10.1016/j.euroneuro.2013.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/08/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
The antidepressive drug agomelatine combines the properties of an agonist of melatonergic receptors 1 and 2 with an antagonist of the 5-HT2C receptor. We analyzed the effects of agomelatine in psychosocially stressed male tree shrews, an established preclinical model of depression. Tree shrews experienced daily social stress for a period of 5 weeks and were concomitantly treated with different drugs daily for 4 weeks. The effects of agomelatine (40 mg/kg/day) were compared with those of the agonist melatonin (40 mg/kg/day), the inverse 5-HT2C antagonist S32006 (10mg/kg/day), and the SSRI fluoxetine (15 mg/kg/day). Nocturnal core body temperature (CBT) was recorded by telemetry, and urinary norepinephrine and cortisol concentrations were measured. Chronic social stress induced nocturnal hyperthermia. Agomelatine normalized the CBT in the fourth week of the treatment (T4), whereas the other drugs did not significantly counteract the stress-induced hyperthermia. Agomelatine also reversed the stress-induced reduction in locomotor activity. Norepinephrine concentration was elevated by the stress indicating sympathetic hyperactivity, and was normalized in the stressed animals treated with agomelatine or fluoxetine but not in those treated with melatonin or S32006. Cortisol concentration was elevated by stress but returned to basal levels by T4 in all animals, irrespective of the treatment. These observations show that agomelatine has positive effects to counteract stress-induced physiological processes and to restore the normal rhythm of nocturnal CBT. The data underpin the antidepressant properties of agomelatine and are consistent with a distinctive profile compared to its constituent pharmacological components and other conventional agents.
Collapse
Affiliation(s)
- Barthel Schmelting
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Silke Corbach-Söhle
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Susan Kohlhause
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christina Schlumbohm
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriele Flügge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany; DFG Research Center Molecular Physiology of the Brain (CMPB), University of Göttingen, Göttingen, Germany
| | - Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany; DFG Research Center Molecular Physiology of the Brain (CMPB), University of Göttingen, Göttingen, Germany; Department of Neurology, Medical School, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Kitamura Y, Hayashi H, Onoue Y, Kuwatsuka K, Miyake A, Miyazaki I, Asanuma M, Sendo T. Effects of Imipramine and Lithium on the Expression of Hippocampal Wnt 3a and Cyclin D1 in ACTH-Treated Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbbs.2014.411048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Kuwatsuka K, Hayashi H, Onoue Y, Miyazaki I, Koyama T, Asanuma M, Kitamura Y, Sendo T. The Mechanisms of Electroconvulsive Stimuli in BrdU-Positive Cells of the Dentate Gyrus in ACTH-Treated Rats. J Pharmacol Sci 2013; 122:34-41. [DOI: 10.1254/jphs.13015fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
16
|
Schindler S, Geyer S, Strauß M, Anwander A, Hegerl U, Turner R, Schönknecht P. Structural studies of the hypothalamus and its nuclei in mood disorders. Psychiatry Res 2012; 201:1-9. [PMID: 22285717 DOI: 10.1016/j.pscychresns.2011.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 06/01/2011] [Accepted: 06/11/2011] [Indexed: 12/28/2022]
Abstract
A large body of evidence indicates that the hypothalamus is involved in pathogenetic mechanisms of mood disorders. It has been suggested that functional abnormalities of the hypothalamus are associated with structural hypothalamic changes. Structural neuroimaging allows in vivo investigation of the hypothalamus that may shed light on the underlying pathogenetic mechanisms of unipolar and bipolar disorder. Clearly, the detection of subtle structural cerebral changes depends on the limitations of the neuroimaging technique used. Making a comprehensive database search, we reviewed the literature on hypothalamic macrostructure in affective disorders, addressing the specific question of what structural magnetic resonance imaging might be expected to show. Studies with convincing methodology, although rare, suggest a global volume decrease in the hypothalamus in affective disorders, a decrease which is not shown by the two specific nuclei investigated, the paraventricular and supraoptic nuclei. We discuss the implications of these findings and provide directions for future research.
Collapse
Affiliation(s)
- Stephanie Schindler
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K. Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 2011; 21:422-33. [PMID: 20087886 DOI: 10.1002/hipo.20758] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In major depression, one line of research indicates that a dysfunctional GABAergic inhibitory system is linked to the appearance of depressive symptoms. However, as the mechanistic details of such GABAergic deficit are largely unknown, we undertook a functional investigation of the GABAergic system in the rat chronic mild stress model of depression. Adult rats were exposed to an eight-week long stress protocol leading to anhedonic-like behavior. In hippocampal brain slices, phasic, and tonic GABA(A) receptor-mediated currents in dentate gyrus granule cells were examined using patch-clamp recordings. In granule cells, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was reduced to 41% in anhedonic-like rats, which was associated with a reduced probability of evoked GABA release. Using immunohistochemical analysis, there was no change in the number of parvalbumin-positive interneurons in the dentate gyrus. Notably, we observed a 60% increase in THIP-activated tonic GABA(A) mediated current in anhedonic-like rats, suggesting an upregulation of extrasynaptic GABA(A) receptors. Finally, five weeks treatment with the antidepressant escitalopram partially reversed the sIPSCs frequency. In summary, we have revealed a hippocampal dysfunction in the GABAergic system in the chronic mild stress model of depression in rats, caused by a reduction in action potential-dependent GABA release. Since the function of the GABAergic system was improved by antidepressant treatment, in parallel with behavioral read outs, it suggests a role of the GABAergic system in the pathophysiology of depression.
Collapse
Affiliation(s)
- Mai Marie Holm
- Department of Physiology and Biophysics, Synaptic Physiology Laboratory, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
Miczek KA, Nikulina EM, Shimamoto A, Covington HE. Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J Neurosci 2011; 31:9848-57. [PMID: 21734276 PMCID: PMC3144494 DOI: 10.1523/jneurosci.0637-11.2011] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/03/2023] Open
Abstract
The neural link between ostensibly aversive stress experiences and intensely rewarding drug taking remains to be delineated. Epidemiological data associate stress and the abuse of various drugs, and experimental data identify the conditions that determine how episodic social stress intensifies the motivation for cocaine and the actual self-administration of cocaine. Two types of social stress have been the focus of experimental study in Long-Evans rats, since they engender divergent changes in drug- or sugar-rewarded behavior and in neuroadaptation. Episodic social defeat stress consists of four brief confrontations between the experimental rat and an aggressive resident rat of the Long-Evans strain over the course of 10 d. Subordination stress involves the continuous exposure to an aggressive resident for 5 weeks, while living in a protective cage within the resident's home cage with brief daily confrontations. These stress experiences result in (1) increased intravenous cocaine self-administration under a fixed ratio schedule with prolonged binge-like access in episodically defeated intruder rats but suppressed cocaine intake by continuously subordinate rats; (2) deteriorated sugar preference and intake and decreased exploratory behavior in subordinate, but not intermittently defeated, rats; and (3) a sensitized dopamine (DA) response in the nucleus accumbens via in vivo microdialysis and increased tegmental brain-derived neural growth factor (BDNF) in episodically defeated rats, whereas the continuously subordinate rats show suppression of the DA and BDNF responses. These divergent neuroadaptations to social stress may represent the substrates for the intensification of cocaine "bingeing" relative to the anhedonia-like deterioration of reward processes during subordination stress.
Collapse
Affiliation(s)
- Klaus A Miczek
- Department of Psychology, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | |
Collapse
|
19
|
Kitamura Y, Doi M, Kuwatsuka K, Onoue Y, Miyazaki I, Shinomiya K, Koyama T, Sendo T, Kawasaki H, Asanuma M, Gomita Y. Chronic treatment with imipramine and lithium increases cell proliferation in the hippocampus in adrenocorticotropic hormone-treated rats. Biol Pharm Bull 2011; 34:77-81. [PMID: 21212521 DOI: 10.1248/bpb.34.77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult hippocampal neurogenesis is reported to change in animal models of depression and antidepressants. We have used the mitotic marker 5-bromo-2'-deoxyyridine to address the effects of imipramine and lithium on cell proliferation and survival following chronic treatment with adrenocorticotropic hormone (ACTH) in the subgranular zone of the hippocampal dentate gyrus. ACTH treatment for 14 d decreased adult hippocampal cell proliferation and survival. Coadministration of imipramine and lithium for 14 d blocked the loss of cell proliferation but not cell survival resulting from the chronic treatment with ACTH. The coadministration of imipramine and lithium may have treatment-resistant antidepressive properties, which may be attributed, in part, to a normalization of hippocampal cell proliferation.
Collapse
Affiliation(s)
- Yoshihisa Kitamura
- Department of Pharmaceutical Care and Health Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The long-term impact of footshock stress on addiction-related behaviors in rats. Neuropharmacology 2011; 60:267-73. [DOI: 10.1016/j.neuropharm.2010.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 01/31/2023]
|
21
|
Bhuiyan MS, Tagashira H, Fukunaga K. Sigma-1 receptor stimulation with fluvoxamine activates Akt-eNOS signaling in the thoracic aorta of ovariectomized rats with abdominal aortic banding. Eur J Pharmacol 2011; 650:621-8. [PMID: 21044620 DOI: 10.1016/j.ejphar.2010.10.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/06/2010] [Accepted: 10/16/2010] [Indexed: 12/16/2022]
Abstract
In the present study, we investigated the vasculoprotective effect of sigma-1 receptor stimulation with fluvoxamine on pressure overload hypertrophy-induced vascular injury in the thoracic aorta and defined mechanisms underlying that activity. Wistar rats underwent bilateral ovariectomy, and two weeks later were further treated with abdominal aortic stenosis. To confirm the vasculoprotective role of sigma-1 receptor signaling, we treated rats with the agonist fluvoxamine (at 0.5 and 1.0 mg/kg) and with the antagonist NE-100 (at 1.0mg/kg) for 4 weeks orally once a day after the onset of aortic banding. Interestingly, sigma-1 receptor expression in the thoracic aorta decreased significantly 4 weeks after pressure overload-induced hypertrophy in vehicle treated ovariectomized rats. Fluvoxamine administration significantly attenuated pressure overload-induced vascular injury with concomitant increase in receptor expression and subsequent decrease in IP3 receptor expression. Fluvoxamine treatment also significantly restored pressure overload-induced impaired Akt phosphorylation and stimulated eNOS protein expression as well as Akt-mediated eNOS phosphorylation (Ser1177). Fluvoxamine's vasculoprotective effect was nullified by co-administration of a sigma-1 receptor antagonist. No changes in phosphorylation of ERK1/2 or PKCα in the aorta were observed following pressure overload and after fluvoxamine treatment. Our findings confirm, for the first time, a potential role for sigma-1 receptor expression and signaling in the thoracic aorta in attenuating hypertrophy-induced vascular injury in ovariectomized rats. Thus, we demonstrate, for the first time, a potential role in the thoracic aorta for sigma-1 receptor expression and signaling via Akt-eNOS in attenuating hypertrophy-induced vascular injury in ovariectomized rats.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
22
|
Tagashira H, Bhuiyan S, Shioda N, Hasegawa H, Kanai H, Fukunaga K. Sigma1-receptor stimulation with fluvoxamine ameliorates transverse aortic constriction-induced myocardial hypertrophy and dysfunction in mice. Am J Physiol Heart Circ Physiol 2010; 299:H1535-45. [PMID: 20802134 DOI: 10.1152/ajpheart.00198.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are known to reduce post-myocardial infarction-induced morbidity and mortality. However, the molecular mechanism underlying SSRI-induced cardioprotection remains unclear. Here, we investigated the role of σ(1)-receptor (σ(1)R) stimulation with fluvoxamine on myocardial hypertrophy and cardiac functional recovery. Male ICR mice were subjected to transverse aortic constriction (TAC) in the cardiac aortic arch. To confirm the cardioprotective role of fluvoxamine by σ(1)R stimulation, we treated mice with fluvoxamine (0.5 or 1 mg/kg) orally once per day for 4 wk after the onset of aortic banding. Interestingly, in untreated mice, σ(1)R expression in the left ventricle (LV) decreased significantly over the 4 wk as TAC-induced hypertrophy increased. In contrast, fluvoxamine administration significantly attenuated TAC-induced myocardial hypertrophy concomitant with recovery of σ(1)R expression in the LV. Fluvoxamine also attenuated hypertrophy-induced impaired LV fractional shortening. The fluvoxamine cardioprotective effect was nullified by treatment with a σ(1)R antagonist [NE-100 (1 mg/kg)]. Importantly, another SSRI with very low affinity for σ(1)Rs, paroxetine, did not elicit antihypertrophic effects in TAC mice and cultured cardiomyocytes. Fluvoxamine treatment significantly restored TAC-induced impaired Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in the LV. Our findings suggest that fluvoxamine protects against TAC-induced cardiac dysfunction via upregulated σ(1)R expression and stimulation of σ(1)R-mediated Akt-eNOS signaling in mice. This is the first report of a potential role for σ(1)R stimulation by fluvoxamine in attenuating cardiac hypertrophy and restoring contractility in TAC mice.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Cells, Cultured
- Fluvoxamine/pharmacology
- Fluvoxamine/therapeutic use
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Mice
- Mice, Inbred ICR
- Models, Animal
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nitric Oxide Synthase Type III/metabolism
- Paroxetine/pharmacology
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Wistar
- Receptors, sigma/drug effects
- Receptors, sigma/metabolism
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Selective Serotonin Reuptake Inhibitors/therapeutic use
- Time Factors
- Vasoconstriction/physiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Liu Y, Yang N, Zuo P. cDNA microarray analysis of gene expression in the cerebral cortex and hippocampus of BALB/c mice subjected to chronic mild stress. Cell Mol Neurobiol 2010; 30:1035-47. [PMID: 20532976 PMCID: PMC11498782 DOI: 10.1007/s10571-010-9534-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 05/25/2010] [Indexed: 11/24/2022]
Abstract
Depressive disorders are devastating metal illness that can lead to deterioration in the social and occupational functioning of affected individuals. The etiology and pathophysiology of depression remain unknown. Present study was performed to better understand the underlying causes of depression. An experimental animal depression was induced in male BALB/c mice subjected to a chronic mild stress (CMS) procedure involving different stressor for consecutive 4 weeks. A cDNA microarray was employed to study the effects of CMS on the gene expression in cerebral cortex and hippocampus. 4-week CMS caused a significant reduction of 2% sucrose consumption. Morris water maze procedure showed impairment in cognitive function in stressed mice. Results of microarray showed that there were 102 and 60 genes were markedly affected by CMS treatment in cerebral cortex and hippocampus regions, respectively, including DNA damage/repair-related enzymes, anti-oxidant enzyme, and cyclin and cyclin-dependent kinase (CDK). These findings suggest that multiple biochemical effects play an important role the etiology of depression.
Collapse
Affiliation(s)
- Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), No. 5 Dong Dan San Tiao, Beijing, 100005 China
| |
Collapse
|
24
|
McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 2010; 1186:190-222. [PMID: 20201874 DOI: 10.1111/j.1749-6632.2009.05331.x] [Citation(s) in RCA: 1020] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The brain is the key organ of stress reactivity, coping, and recovery processes. Within the brain, a distributed neural circuitry determines what is threatening and thus stressful to the individual. Instrumental brain systems of this circuitry include the hippocampus, amygdala, and areas of the prefrontal cortex. Together, these systems regulate physiological and behavioral stress processes, which can be adaptive in the short-term and maladaptive in the long-term. Importantly, such stress processes arise from bidirectional patterns of communication between the brain and the autonomic, cardiovascular, and immune systems via neural and endocrine mechanisms underpinning cognition, experience, and behavior. In one respect, these bidirectional stress mechanisms are protective in that they promote short-term adaptation (allostasis). In another respect, however, these stress mechanisms can lead to a long-term dysregulation of allostasis in that they promote maladaptive wear-and-tear on the body and brain under chronically stressful conditions (allostatic load), compromising stress resiliency and health. This review focuses specifically on the links between stress-related processes embedded within the social environment and embodied within the brain, which is viewed as the central mediator and target of allostasis and allostatic load.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
25
|
Jayatissa MN, Henningsen K, Nikolajsen G, West MJ, Wiborg O. A reduced number of hippocampal granule cells does not associate with an anhedonia-like phenotype in a rat chronic mild stress model of depression. Stress 2010; 13:95-105. [PMID: 19929309 DOI: 10.3109/10253890902951786] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several clinical and preclinical studies have indicated that hippocampal shrinkage and decreased neurogenesis are implicated in the pathology of depression. Recent animal studies have shown, however, that the development of depression-related symptoms may take place through neurogenesis-independent pathways. To evaluate whether the stress-induced morphological changes in the hippocampal formation are causally related to the development of anhedonia-like symptoms, we combined the chronic mild stress (CMS) rat model of depression with stereological estimations of the number of proliferating progenitors, the total number of granule cells, and the volume of the ventral hippocampal formation (VHF). First, we found that stress-susceptible and stress-resilient animals, as categorized according to the behavioral read-out, both have a decrease in hippocampal cell proliferation. Our results also indicated that the anhedonia-like state in CMS rats develops prior to maximal suppression of cell proliferation, but correlates with a reduction in the total number of granule cells in the VHF. Furthermore, recovery from depression-related symptoms correlated with re-establishment of proliferation rates, but not with the total number of granule cells. Notably, decreases in the number of granule cells occurred independently of the induction of an anhedonia-like phenotype. There were no stress-induced changes in the volume of the VHF. We conclude that cell proliferation and a reduction in the total number of granule cells in the VHF are triggered by chronic stress, but do not associate with development of an anhedonia-like state in rats.
Collapse
|
26
|
Goshen I, Yirmiya R. Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 2009; 30:30-45. [PMID: 19017533 DOI: 10.1016/j.yfrne.2008.10.001] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 02/06/2023]
Abstract
Ample evidence demonstrates that the pro-inflammatory cytokine interleukin-1 (IL-1), produced following exposure to immunological and psychological challenges, plays an important role in the neuroendocrine and behavioral stress responses. Specifically, production of brain IL-1 is an important link in stress-induced activation of the hypothalamus-pituitary-adrenal axis and secretion of glucocorticoids, which mediate the effects of stress on memory functioning and neural plasticity, exerting beneficial effects at low levels and detrimental effects at high levels. Furthermore, IL-1 signaling and the resultant glucocorticoid secretion mediate the development of depressive symptoms associated with exposure to acute and chronic stressors, at least partly via suppression of hippocampal neurogenesis. These findings indicate that whereas under some physiological conditions low levels of IL-1 promote the adaptive stress responses necessary for efficient coping, under severe and chronic stress conditions blockade of IL-1 signaling can be used as a preventive and therapeutic procedure for alleviating stress-associated neuropathology and psychopathology.
Collapse
Affiliation(s)
- Inbal Goshen
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | | |
Collapse
|
27
|
Miczek KA, Yap JJ, Covington HE. Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 2008; 120:102-28. [PMID: 18789966 PMCID: PMC2713609 DOI: 10.1016/j.pharmthera.2008.07.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 12/16/2022]
Abstract
The impact of ostensibly aversive social stresses on triggering, amplifying and prolonging intensely rewarding drug taking is an apparent contradiction in need of resolution. Social stress encompasses various types of significant life events ranging from maternal separation stress, brief episodes of social confrontations in adolescence and adulthood, to continuous subordination stress, each with its own behavioral and physiological profile. The neural circuit comprising the VTA-accumbens-PFC-amygdala is activated by brief episodes of social stress, which is critical for the DA-mediated behavioral sensitization and increased stimulant consumption. A second neural circuit comprising the raphe-PFC-hippocampus is activated by continuous subordination stress and other types of uncontrollable stress. In terms of the development of therapeutics, brief maternal separation stress has proven useful in characterizing compounds acting on subtypes of GABA, glutamate, serotonin and opioid receptors with anxiolytic potential. While large increases in alcohol and cocaine intake during adulthood have been seen after prolonged maternal separation experiences during the first two weeks of rodent life, these effects may be modulated by additional yet to be identified factors. Brief episodes of defeat stress can engender behavioral sensitization that is relevant to escalated and prolonged self-administration of stimulants and possibly opioids, whereas continuous subordination stress leads to anhedonia-like effects. Understanding the intracellular cascade of events for the transition from episodic to continuous social stress in infancy and adulthood may provide insight into the modulation of basic reward processes that are critical for addictive and affective disorders.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Psychology, Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford and Boston, MA 02155, United States.
| | | | | |
Collapse
|
28
|
Kozicz T, Bordewin LAP, Czéh B, Fuchs E, Roubos EW. Chronic psychosocial stress affects corticotropin-releasing factor in the paraventricular nucleus and central extended amygdala as well as urocortin 1 in the non-preganglionic Edinger-Westphal nucleus of the tree shrew. Psychoneuroendocrinology 2008; 33:741-54. [PMID: 18394812 DOI: 10.1016/j.psyneuen.2008.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 11/19/2022]
Abstract
Stressful stimuli evoke neuronal and neuroendocrine responses helping an organism to adapt to changed environmental conditions. Chronic stressors may induce maladaptive responses leading to psychiatric diseases, such as anxiety and major depression. A suitable animal model to unravel mechanisms involved in the control of adaptation to chronic stress is the psychological subordination stress in the male tree shrew. Subordinate male tree shrews exhibit chronic hypothalamo-pituitary-adrenal (HPA) activation as reflected in continuously elevated cortisol secretion, and structural changes in the hippocampal formation. Corticotropin-releasing factor (CRF) is the major peptide released upon activation of the HPA axis in response to stress. Recent evidence suggests that besides CRF, urocortin 1 (Ucn1) also plays a role in stress adaptation. We have tested the significance of CRF and Ucn1 in adaptation to chronic psychosocial stress in male tree shrews exposed for 35 days to daily psychosocial conflict, by performing semi-quantitative immunocytochemistry for CRF in the parvocellular hypothalamic paraventricular nucleus (pPVN), extended amygdala, viz. central extended amygdala (CeA) and dorsolateral nucleus of the bed nucleus of the stria terminalis (BNSTdl) as well as that for Ucn1 in the non-preganglionic Edinger-Westphal nucleus (npEW). Compared to unstressed animals, psychosocial stress resulted in an immediate and sustained activation of the HPA axis and sympathetic tone as well as reduced testosterone concentration and decreased body and testis weights vs. non-stressed tree shrews. In the pPVN, the number of CRF-immunoreactive neurons and the specific signal density of CRF-immunoreactive fiber terminals in the CeA were strongly reduced (-300 and -40%, respectively; P<0.05), whereas no significant difference in CRF fiber density was found in BNSTdl. The npEW revealed 4 times less Ucn1-immunoreactive neurons (P<0.05). These clear effects on both Ucn1- and CRF-neuropeptide contents may reflect a crucial mechanism enabling the animal to adapt successfully to the stressors, and point to the significance of the pPVN, CeA and npEW in stress-induced brain diseases.
Collapse
Affiliation(s)
- T Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, IWWR, EURON European Graduate School of Neuroscience, Radboud University Nijmegen, 6525 ED Nijmegen, Toernooiveld 1, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 2008; 13:717-28. [PMID: 17700577 DOI: 10.1038/sj.mp.4002055] [Citation(s) in RCA: 571] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several lines of evidence implicate the pro-inflammatory cytokine interleukin-1 (IL-1) in the etiology and pathophysiology of major depression. To explore the role of IL-1 in chronic stress-induced depression and some of its underlying biological mechanisms, we used the chronic mild stress (CMS) model of depression. Mice subjected to CMS for 5 weeks exhibited depressive-like symptoms, including decreased sucrose preference, reduced social exploration and adrenocortical activation, concomitantly with increased IL-1 beta levels in the hippocampus. In contrast, mice with deletion of the IL-1 receptor type I (IL-1rKO) or mice with transgenic, brain-restricted overexpression of IL-1 receptor antagonist did not display CMS-induced behavioral or neuroendocrine changes. Similarly, whereas in wild-type (WT) mice CMS significantly reduced hippocampal neurogenesis, measured by incorporation of bromodeoxyuridine (BrdU) and by doublecortin immunohistochemistry, no such decrease was observed IL-1rKO mice. The blunting of the adrenocortical activation in IL-1rKO mice may play a causal role in their resistance to depression, because removal of endogenous glucocorticoids by adrenalectomy also abolished the depressive-like effects of CMS, whereas chronic administration of corticosterone for 4 weeks produced depressive symptoms and reduced neurogenesis in both WT and IL-1rKO mice. The effects of CMS on both behavioral depression and neurogenesis could be mimicked by exogenous subcutaneous administration of IL-1 beta via osmotic minipumps for 4 weeks. These findings indicate that elevation in brain IL-1 levels, which characterizes many medical conditions, is both necessary and sufficient for producing the high incidence of depression found in these conditions. Thus, procedures aimed at reducing brain IL-1 levels may have potent antidepressive actions.
Collapse
Affiliation(s)
- I Goshen
- Department of Psychology, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
Thompson A, Boekhoorn K, Van Dam AM, Lucassen PJ. Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence? GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:28-42. [PMID: 18184368 DOI: 10.1111/j.1601-183x.2007.00379.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review addresses the role of adult hippocampal neurogenesis and stem cells in some of the most common neurodegenerative disorders and their related animal models. We discuss recent literature in relation to Alzheimer's disease and dementia, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, alcoholism, ischemia, epilepsy and major depression.
Collapse
Affiliation(s)
- A Thompson
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment. Neuropharmacology 2008; 54:530-41. [DOI: 10.1016/j.neuropharm.2007.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 02/03/2023]
|
32
|
Marcussen AB, Flagstad P, Kristjansen PEG, Johansen FF, Englund U. Increase in neurogenesis and behavioural benefit after chronic fluoxetine treatment in Wistar rats. Acta Neurol Scand 2008; 117:94-100. [PMID: 18184344 DOI: 10.1111/j.1600-0404.2007.00910.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Disturbances in hippocampal neurogenesis may be involved in the pathophysiology of depression and it has been argued that an increase in the generation of new nerve cells in the hippocampus is involved in the mechanism of action of antidepressants. MATERIALS AND METHODS Adult Wistar rats were treated with fluoxetine (10 mg/kg) 1 h, daily for 5 (subchronic) or 28 days (chronic) before the Novelty Suppressed Feeding test was performed. Cell proliferation and neurogenesis were analysed using the markers 5-bromo-deoxy-2'-uridine, Ki-67, and doublecortin. RESULTS A significant behavioural effect was found after 28 days of fluoxetine administration. However, no behavioural improvement was demonstrated after acute and subchronic treatment with fluoxetine. We further demonstrate that chronic antidepressant treatment increases cell proliferation as well as neurogenesis in the dentate gyrus, here using Wistar rats. CONCLUSIONS In further development of antidepressants, neurogenesis may serve as an important parameter to examine the efficacy and mechanism of action of novel drugs.
Collapse
Affiliation(s)
- A B Marcussen
- Department of Pharmacology Target Research, H. Lundbeck A/S, Valby, Denmark
| | | | | | | | | |
Collapse
|
33
|
Stone EA, Lin Y, Quartermain D. A final common pathway for depression? Progress toward a general conceptual framework. Neurosci Biobehav Rev 2007; 32:508-24. [PMID: 18023876 PMCID: PMC2265074 DOI: 10.1016/j.neubiorev.2007.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 11/29/2022]
Abstract
Functional neuroimaging studies of depressed patients have converged with functional brain mapping studies of depressed animals in showing that depression is accompanied by a hypoactivity of brain regions involved in positively motivated behavior together with a hyperactivity in regions involved in stress responses. Both sets of changes are reversed by diverse antidepressant treatments. It has been proposed that this neural pattern underlies the symptoms common to most forms of the depression, which are the loss of positively motivated behavior and increased stress. The paper discusses how this framework can organize diverse findings ranging from effects of monoamine neurotransmitters, cytokines, corticosteroids and neurotrophins on depression. The hypothesis leads to new insights concerning the relationship between the prolonged inactivity of the positive motivational network during a depressive episode and the loss of neurotrophic support, the potential antidepressant action of corticosteroid treatment, and to the key question of whether antidepressants act by inhibiting the activity of the stress network or by enhancing the activity of the positive motivational system.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
34
|
Hedges DW, Thatcher GW, Bennett PJ, Sood S, Paulson D, Creem-Regehr S, Brown BL, Allen S, Johnson J, Froelich B, Bigler ED. Brain integrity and cerebral atrophy in Vietnam combat veterans with and without posttraumatic stress disorder. Neurocase 2007; 13:402-10. [PMID: 18781439 DOI: 10.1080/13554790701851551] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Posttraumatic stress disorder (PTSD) is associated with decreased hippocampal volume, but the relationship between trauma and brain morphology in the absence of PTSD is less clear. In this study, measures of brain integrity were determined by estimating gray and white matter regional brain volumes using structural magnetic resonance imaging in six patients with PTSD and in five controls with comparable trauma exposure but without clinical evidence of PTSD. The only statistically significant volume difference between groups was observed multivariately in the white matter of the right temporal lobe (superior temporal gyrus, fusiform gyrus, parahippocampal gyrus, white-matter stem, middle temporal gyrus, and inferior temporal gyrus), although small sample sizes limit the power to detect between-group differences. Both groups showed heterogeneity in cerebral atrophy.
Collapse
Affiliation(s)
- Dawson W Hedges
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vollmayr B, Mahlstedt MM, Henn FA. Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci 2007; 257:300-3. [PMID: 17401725 DOI: 10.1007/s00406-007-0734-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is growing evidence that stress causes a decrease of neurogenesis in the dentate gyrus and antidepressant treatment in turn stimulates the cell proliferation in the dentate gyrus. This has led to the hypothesis that a decreased neurogenesis might be linked to the pathophysiology of major depression. The article reviews the relationship of depressive-like behavior and neurogenesis in three animal models of depression with high validity: learned helplessness, chronic mild stress and chronic psychosocial stress of the tree shrew. All animal models provide evidence that stress which can lead to depressive-like behavior, in parallel causes a decrease of neurogenesis; vice versa, antidepressant treatment is able to revert not only behavioral changes but also to normalize neurogenesis. But the animal models argue against the notion that decreases of neurogenesis are the cause or the consequence of depressive-like behavior since depressive-like behavior can occur without impairments in neurogenesis and decreasing neurogenesis does not neccessarily lead to depressive-like behavior. This suggests that neurogenesis does not directly control affect but is tightly connected to the modulation of affect by stress and antidepressant measures.
Collapse
Affiliation(s)
- Barbara Vollmayr
- Central Institute of Mental Health, J5, University of Heidelberg, 68159 Mannheim, Germany.
| | | | | |
Collapse
|
36
|
Abstract
Depression in humans and animal models has been found to be accompanied by a hypoactivity of brain regions involved in positively motivated behavior together with a hyperactivity in regions involved in stress responses. Both sets of changes are reversed by diverse antidepressant treatments. It has been proposed that this neural pattern underlies the symptoms common to most forms of depression, which are the loss of positively motivated behavior and the increase in stress. The present paper discusses how this framework can organize diverse findings on the multiple factors associated with this disorder. The hypothesis suggests new therapeutic strategies involving treatment with low-dose corticosteroids to suppress the stress network or with antagonists of alpha(1A)- and agonists of alpha(1B)-adrenoceptors to disinhibit or activate the positive motivational network, respectively.
Collapse
Affiliation(s)
- Eric A Stone
- Psychiatry, MHL HN510, NYU Medical Centre, New York, NY 10016, USA.
| |
Collapse
|
37
|
Jayatissa MN, Bisgaard C, Tingström A, Papp M, Wiborg O. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 2006; 31:2395-404. [PMID: 16482085 DOI: 10.1038/sj.npp.1301041] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
From clinical studies it is known that recurrent depressive episodes associate with a reduced hippocampal volume. Conversely, preclinical studies have shown that chronic antidepressant treatment increases hippocampal neurogenesis. Consequently, it has been suggested that a deficit in hippocampal neurogenesis is implicated in the pathophysiology of depression. To study a potential correlation between recovery and hippocampal cytogenesis, we established the chronic mild stress (CMS) rat model of depression. When rats are subjected to CMS, several depressive symptoms develop, including the major symptom anhedonia. Rats were exposed to stress for 2 weeks and subsequently to stress in combination with antidepressant treatment for 4 consecutive weeks. The behavioral deficit measured in anhedonic animals is a reduced intake of a sucrose solution. Prior to perfusion animals were injected with bromodeoxyuridine (BrdU), a marker of proliferating cells. Brains were sectioned horizontally and newborn cells positive for BrdU were counted in the dentate gyrus and tracked in a dorsoventral direction.CMS significantly decreased sucrose consumption and cytogenesis in the ventral part of the hippocampal formation. During exposure to the antidepressant escitalopram, given as intraperitoneally dosages of either 5 or 10 mg/kg/day, animals distributed in a bimodal fashion into a group, which recovered (increase in sucrose consumption), and a subgroup, which refracted treatment (no increase in sucrose consumption). Chronic treatment with escitalopram reversed the CMS-induced decrease in cytogenesis in the dentate gyrus of the ventral hippocampal formation, but in recovered animals only. Our data show a correlation between recovery from anhedonia, as measured by cessation of behavioral deficits in the CMS model, and an increase in cytogenesis in the dentate gyrus of the ventral hippocampal formation.
Collapse
Affiliation(s)
- Magdalena N Jayatissa
- Centre for Basic Psychiatric Research, Aarhus Psychiatric University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
38
|
Hoshaw BA, Evans JC, Mueller B, Valentino RJ, Lucki I. Social competition in rats: cell proliferation and behavior. Behav Brain Res 2006; 175:343-51. [PMID: 17045347 PMCID: PMC2292112 DOI: 10.1016/j.bbr.2006.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 08/29/2006] [Accepted: 09/06/2006] [Indexed: 11/18/2022]
Abstract
Behavioral and physiological changes were studied following prolonged exposure to social competition in pairs of non-food-deprived rats competing daily for a limited supply of graham cracker crumbs. Stable dominant-subordinate relationships developed in most pairs, as measured by feeding time, which were maintained over a 5-6-week study period. In other behavioral tests, subordinates demonstrated a decreased latency to immobility in the forced swim test compared with dominants, but no difference in locomotor activity. Subordinates had increased bladder size, decreased adrenal gland size, and a 35% reduction of hippocampus cell proliferation compared with the dominant member. Therefore, prolonged social competition, based on restricted access to palatable substances, produced hierarchies among individuals that were associated with differences in behavior, physiology and hippocampal cell proliferation.
Collapse
Affiliation(s)
| | | | - Bridget Mueller
- Institute of Neurological Sciences, University of Pennsylvania
| | - Rita J. Valentino
- Institute of Neurological Sciences, University of Pennsylvania
- Department of Pediatrics, Children’s Hospital of Philadelphia Philadelphia, PA 19104, USA
| | - Irwin Lucki
- Department of Psychiatry, University of Pennsylvania
- Department of Pharmacology, University of Pennsylvania
- Institute of Neurological Sciences, University of Pennsylvania
| |
Collapse
|
39
|
Czéh B, Fuchs E, Simon M. NK1 receptor antagonists under investigation for the treatment of affective disorders. Expert Opin Investig Drugs 2006; 15:479-86. [PMID: 16634686 DOI: 10.1517/13543784.15.5.479] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Substance P-neurokinin-1 (NK1) receptor pathways have been repeatedly implicated in the pathophysiology of affective disorders. Anatomical studies in humans have shown a high expression of NK1 receptors in brain regions that are important for the regulation of affective behaviours and stress responses. A large body of evidence that has been generated from animal experiments indicates that treatment with a selective NK1 receptor antagonist might be effective in the treatment of certain forms of anxiety and depressive disorders. Accordingly, numerous NK1 receptor antagonists have either been synthesised and are under clinical development, or have already been tested in clinical trials. However, the initial encouraging clinical results were followed by repeated demonstrations of a lack of effectiveness, thus disappointment and doubt currently surrounds the idea that these compounds may become effective antidepressants. Research continues and novel molecules may show better pharmacokinetic and pharmacodynamic properties and, therefore, may achieve therapeutic success. Furthermore, NK1 receptor antagonists that are ineffective in the treatment of mood disorders may still prove to be effective in the treatment of anxiety problems.
Collapse
Affiliation(s)
- Boldizsár Czéh
- German Primate Center, Clinical Neurobiology Laboratory, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
40
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
41
|
Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC. Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry 2006; 59:244-51. [PMID: 16140276 DOI: 10.1016/j.biopsych.2005.06.036] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 06/10/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Chronic stress has significant effects on hippocampal structure and function. We have previously identified nerve growth factor (NGF), membrane glycoprotein 6a (M6a), the guanine nucleotide binding protein (G protein) alpha q polypeptide (GNAQ), and CDC-like kinase 1 (CLK-1) as genes regulated by psychosocial stress and clomipramine treatment in the hippocampus of tree shrews. These genes encode proteins involved in neurite outgrowth. METHODS To analyze whether regulation of the above-mentioned genes is conserved between different species, stressors, and antidepressant drugs, we subjected mice to repeated restraint stress and tianeptine treatment and measured hippocampal messenger RNA (mRNA) levels by real time reverse transcription polymerase chain reaction (RT-PCR). RESULTS Chronically stressed mice displayed a reduction in transcript levels for NGF, M6a, GNAQ, and CLK-1. In addition, other genes implicated in neuronal plasticity, such as brain-derived neurotrophic factor (BDNF), cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), protein kinase C (PKC), neural cell adhesion molecule (NCAM), and synapsin I were downregulated in stressed mice. Tianeptine treatment reversed the stress effects for the genes analyzed. Alterations in gene expression were dependent on the duration of the stress treatment and, in some cases, were only observed in male mice. CONCLUSIONS These results suggest that genes involved in neurite remodeling are one of the main targets for regulation by chronic stress. The finding that this regulation is conserved in different stress models and antidepressant treatments highlights the biological relevance of the genes analyzed and suggests that they might be involved in stress-related disorders.
Collapse
Affiliation(s)
- Julieta Alfonso
- IIB-INTECH-Universidad Nacional de Gral, San Martin, Argentina.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
In this review of the last 5 years' developments in research into depression we focus on recent advances and current controversies. We cover epidemiology and basic science as well as the treatment of depression in adults in all its forms. Depression in , as well as in has been covered in recent Seminars in The Lancet. Depression in adulthood remains a very common and under-treated condition, resulting in a high degree of disability. Increasingly detailed knowledge about impairment of information processing in depression is being supplemented by quantitative studies of the brain processes underlying these impairments. Most patients improve with present treatments. The mechanisms of action of antidepressants are not fully understood; the hypothesis that reversing hippocampal cell loss in depression may be their active principle is a fascinating new development. Moral panic about the claim that antidepressant serotonin reuptake inhibitors cause patients to commit suicide and become addicted to their medication may have disconcerted the public and members of the medical profession. We will try to describe the considerable effort that has gone into collecting evidence to enlighten this debate.
Collapse
Affiliation(s)
- Klaus P Ebmeier
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Morningside Park, Edinburgh, UK.
| | | | | |
Collapse
|
43
|
Abrahám H, Czéh B, Fuchs E, Seress L. Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri). Neuroscience 2005; 136:231-40. [PMID: 16181735 DOI: 10.1016/j.neuroscience.2005.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 07/02/2005] [Accepted: 07/16/2005] [Indexed: 11/26/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide mRNA was discovered in the rat striatum following cocaine and amphetamine administration. Since both psychostimulants elicit memory-related effects, localization of cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation may have functional importance. Previous studies demonstrated different cellular localizations of cocaine- and amphetamine-regulated transcript peptide in humans and in rodents. Mossy cells were cocaine- and amphetamine-regulated transcript-positive in the human dentate gyrus, whereas granule cells contained this peptide in the rat. In the present study, the localization of cocaine- and amphetamine-regulated transcript peptide was examined using immunohistochemistry in the hippocampal formation of the rhesus monkey (Macaca mulatta), the common marmoset monkey (Callithrix jacchus) and in the tree shrew (Tupaia belangeri). In these species principal neurons of the hippocampal formation were cocaine- and amphetamine-regulated transcript-immunoreactive. In both monkeys and tree shrews, mossy cells of the hilus were cocaine- and amphetamine-regulated transcript-positive whereas granule cells of the dentate gyrus were cocaine- and amphetamine-regulated transcript-negative. The dense cocaine- and amphetamine-regulated transcript-immunoreactive axonal plexus of the associational pathway outlined the inner one-third of the dentate molecular layer. In the hippocampus of the tree shrew and marmoset monkey, a subset of CA3 pyramidal cells were cocaine- and amphetamine-regulated transcript-immunoreactive. In the marmoset monkey, cocaine- and amphetamine-regulated transcript labeling was found only in layer V pyramidal cells of the entorhinal cortex, while in the rhesus monkey, pyramidal cells of layers II and III were cocaine- and amphetamine-regulated transcript-immunopositive. Our results show that cocaine- and amphetamine-regulated transcript positive neurons in the dentate gyrus of non-human primates are similar to that of the human. Furthermore, in the hippocampal formation of the tree shrew similar cocaine- and amphetamine-regulated transcript-immunoreactive cell-types were observed as in monkeys, supporting their evolutionary relationship with primates. Mossy cells and granule cells are members of a mutual excitatory intrahippocampal circuitry, therefore cocaine- and amphetamine-regulated transcript-immunoreactivity of these neurons in primates and rodents suggests that psychostimulants cocaine and amphetamine may induce memory-related effects at different points of the same excitatory circuitry in the hippocampal formation.
Collapse
Affiliation(s)
- H Abrahám
- Central Electron Microscopic Laboratory, University of Pécs, Faculty of Medicine, Szigeti u. 12, P.O. Box. 99, 7643 Pécs, Hungary
| | | | | | | |
Collapse
|
44
|
Czéh B, Pudovkina O, van der Hart MGC, Simon M, Heilbronner U, Michaelis T, Watanabe T, Frahm J, Fuchs E. Examining SLV-323, a novel NK1 receptor antagonist, in a chronic psychosocial stress model for depression. Psychopharmacology (Berl) 2005; 180:548-57. [PMID: 15726334 DOI: 10.1007/s00213-005-2184-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Substance P antagonists have been proposed as candidates for a new class of antidepressant compounds. OBJECTIVES We examined the effects of SLV-323, a novel neurokinin 1 receptor (NK1R) antagonist, in the chronic psychosocial stress paradigm of adult male tree shrews. METHODS Animals were subjected to a 7 day period of psychosocial stress before being treated daily with SLV-323 (20 mg kg(-1) day(-1)). The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy. Norepinephrine excretion was monitored from daily urine samples, and serum testosterone concentrations were measured at the end of the experiment. All animals were videotaped daily to analyze scent-marking behavior and locomotor activity. Cell proliferation in the dentate gyrus and hippocampal volume were measured postmortem. RESULTS Stress significantly decreased cerebral concentrations of N-acetyl-aspartate, total creatine, and choline-containing compounds in vivo and resulted in an increase of urinary norepinephrine and decrease of serum testosterone concentrations. Moreover, stressed animals displayed decreased scent-marking behavior and locomotor activity. The proliferation rate of the granule precursor cells in the dentate gyrus was reduced, and hippocampal volume was mildly decreased. The stress-induced alterations in the central nervous system were partially prevented by concomitant administration of SLV-323, while drug treatment had only a minor effect on the stress-induced behavioral changes. CONCLUSIONS The novel NK1R antagonist SLV-323 has certain antidepressant-like effects in a valid animal model of depression.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Alfonso J, Frasch AC, Flugge G. Chronic stress, depression and antidepressants: effects on gene transcription in the hippocampus. Rev Neurosci 2005; 16:43-56. [PMID: 15810653 DOI: 10.1515/revneuro.2005.16.1.43] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Depressive disorders are among the most frequent forms of mental illness. Both genetic and environmental factors, such as stress, are involved in the etiology of depression. Therefore, chronic stress paradigms in laboratory animals constitute an important tool for research in this field. The molecular bases of chronic stress/depression are largely unknown, although a large amount of information has been accumulated during recent years. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis as well as structural and physiological alterations in the hippocampus and neocortex are known to occur. Modifications in the expression level of some genes, such as brain-derived neurotrophic factor, cAMP-response-element binding protein, serotonin receptors and HPA axis components were consistently associated in a number of experimental models. However, recent results suggest that several synaptic proteins, transcription factors and proteins involved in neuronal growth/differentiation, are also modified in their expression in experimental models of chronic stress. In general, these alterations can be reversed by treatment with antidepressants. Thus, a complex pattern of gene expression leading to stress/depression is starting to emerge. We summarize here recent findings on the alterations of gene expression in the hippocampus of chronically stressed and antidepressant treated animals.
Collapse
Affiliation(s)
- Julieta Alfonso
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, CONICET, Universidad Nacional de General San Martín, San Martín, Argentina.
| | | | | |
Collapse
|
46
|
Abstract
Depressive disorders are among the most common psychiatric diseases, with prevalence estimates ranging from 5% to a maximum of 20%. Despite their high prevalence and socioeconomic impact, little is known about their etiology. Heritability estimates demonstrate up to a 50% genetic component based on family aggregation and contrasting monozygotic and dizygotic twin studies. The low relative risk to siblings ( lambda sib <1.5) makes the search for their genetic determinants very tedious. Gene-environment interaction has been recognized for a long time in the pathophysiology of depression, and its best biological substratum at present is represented by the serotonin transporter (5-HTT) gene, where several copies of its short allele culminate in depression and suicide in response to lifelong stress events. Many total genome scans have been performed with variable results, the most authoritative being the one of Utah pedigrees with a strong family history of major depression. It identified a locus on chromosome 12 encompassing a gene cluster and sex-specific predisposition. Nevertheless, recent genome scan meta-analysis yielded somewhat disappointing conclusions with a relatively low significance for quantitative trait loci on chromosomes 9, 10, 14, and 18. Studies on animal models have contributed to the chromosomal mapping of many behavioral traits, including anxiety, the stress response, and depression. Although F2 crosses constitute a classical approach, novel models of recombinant inbred strain and recombinant congenic strain animals allow for a rapid initial localization of any traits. This type of analysis has led us to uncover significant loci for the stress response and anxiety in rats and mice.
Collapse
Affiliation(s)
- Pavel Hamet
- Département de médecine, Faculté de médecine, Université de Montréal, and Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM), Québec, Canada.
| | | |
Collapse
|
47
|
Abstract
Both structure and function of the hippocampus are altered by stress: by increasing levels of corticosteroids, stress causes atrophy of CA3 pyramidal cell dendrites, inhibits adult neurogenesis in the dentate gyrus, and impairs hippocampus-dependent learning. A recent study shows that adverse experience limited to early life, specifically removal of rat pups from their mother for three hours each day, decreases production of new granule neurons in adulthood through a corticosteroid-dependent mechanism. This finding suggests that stress in early life could permanently impair hippocampus-dependent learning and memory and increase susceptibility to depression by inhibiting adult neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Yashmin J G Karten
- Unit on Neuroplasticity 35/3C915, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
|
49
|
Miczek KA. More questions than answers. Commentary on Fuchs et al., Examining novel concepts of the pathophysiology of depression in the chronic psychosocial stress paradigm in tree shrews. Behav Pharmacol 2004; 15:363-4. [PMID: 15343059 DOI: 10.1097/00008877-200409000-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Rupniak NMJ. Neural plasticity and the promise of novel pharmacotherapies for depression. Commentary on Fuchs et al., Examining novel concepts of the pathophysiology of depression in the chronic psychosocial stress paradigm in tree shrews. Behav Pharmacol 2004; 15:369-71. [PMID: 15343061 DOI: 10.1097/00008877-200409000-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|