1
|
Das D, Podder S. Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. Brief Funct Genomics 2024; 23:624-638. [PMID: 38706311 DOI: 10.1093/bfgp/elae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.
Collapse
Affiliation(s)
- Deepyaman Das
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| |
Collapse
|
2
|
Bin Ibrahim MZ, Wang Z, Sajikumar S. Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230237. [PMID: 38853570 PMCID: PMC11343274 DOI: 10.1098/rstb.2023.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024] Open
Abstract
The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Zijun Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
| |
Collapse
|
3
|
Nibuya M, Kezuka D, Kanno Y, Wakamatsu S, Suzuki E. Behavioral stress and antidepressant treatments altered hippocampal expression of Nogo signal-related proteins in rats. J Psychiatr Res 2024; 170:207-216. [PMID: 38157668 DOI: 10.1016/j.jpsychires.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Some immune molecules including neurite outgrowth inhibitor (Nogo) ligands and their receptor(Nogo receptor-1: NgR1)are expressed at the neuronal synaptic sites. Paired immunoglobulin-like receptor B (PirB) is another Nogo receptor that also binds to major histocompatibility complex I and β-amyloid and suppresses dendritic immune cell functions and neuronal plasticity in the central nervous system. Augmenting structural and functional neural plasticity by manipulating the Nogo signaling pathway is a novel promising strategy for treating brain ischemia and degenerative processes such as Alzheimer's disease. In recent decades psychiatric research using experimental animals has focused on the attenuation of neural plasticity by stress loadings and on the enhanced resilience by psychopharmacological treatments. In the present study, we examined possible expressional alterations in Nogo signal-related proteins in the rat hippocampus after behavioral stress loadings and antidepressant treatments. To validate the effectiveness of the procedures, previously reported increase in brain-derived neurotrophic factor (BDNF) by ECS or ketamine administration and decrease of BDNF by stress loadings are also shown in the present study. Significant increases in hippocampal NgR1 and PirB expression were observed following chronic variable stress, and a significant increase in NgR1 expression was observed under a single prolonged stress paradigm. These results indicate a possible contribution of enhanced Nogo signaling to the attenuation of neural plasticity in response to stressful experiences. Additionally, the suppression of hippocampal NgR1 expression using electroconvulsive seizure treatment and administration of subanesthetic dose of ketamine supported the increased neural plasticity induced by the antidepressant treatments.
Collapse
Affiliation(s)
- Masashi Nibuya
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan.
| | - Dai Kezuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Yoshihiko Kanno
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Shunosuke Wakamatsu
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Eiji Suzuki
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| |
Collapse
|
4
|
Herzog H, Glöckler S, Flamm J, Ladel S, Maigler F, Pitzer C, Schindowski K. Intranasal Nose-to-Brain Drug Delivery via the Olfactory Region in Mice: Two In-Depth Protocols for Region-Specific Intranasal Application of Antibodies and for Expression Analysis of Fc Receptors via In Situ Hybridization in the Nasal Mucosa. Methods Mol Biol 2024; 2754:387-410. [PMID: 38512678 DOI: 10.1007/978-1-0716-3629-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A region-specific catheter-based intranasal administration method was successfully developed, established, and validated as reported previously. By using this method, drugs can be applicated specifically to the olfactory region. Thereby, intranasally administered drugs could be delivered via neuronal connections to the central nervous system. Here, we present a detailed protocol with a step-by-step procedure for nose-to-brain delivery via the olfactory mucosa.Fc receptors such as the neonatal Fc receptor (FcRn) and potentially Fcγ receptor IIb (FcγRIIb) are involved in the uptake and transport of antibodies via the olfactory nasal mucosa. To better characterize their expression levels and their role in CNS drug delivery via the nose, an in situ hybridization (ISH) protocol was adapted for nasal mucosa samples and described in abundant details.
Collapse
Affiliation(s)
- Helena Herzog
- Institute of Applied Biotechnology, University of Applied Science Biberach, Biberach, Germany
- Faculty of Natural Science, University of Ulm, Ulm, Germany
| | - Sara Glöckler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Biberach, Germany
- Faculty of Natural Science, University of Ulm, Ulm, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Biberach, Germany
- Faculty of Natural Science, University of Ulm, Ulm, Germany
| | - Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Biberach, Germany
- Faculty of Natural Science, University of Ulm, Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Biberach, Germany
- Faculty of Natural Science, University of Ulm, Ulm, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Biberach, Germany.
| |
Collapse
|
5
|
Glotfelty EJ, Hsueh SC, Claybourne Q, Bedolla A, Kopp KO, Wallace T, Zheng B, Luo Y, Karlsson TE, McDevitt RA, Olson L, Greig NH. Microglial Nogo delays recovery following traumatic brain injury in mice. Glia 2023; 71:2473-2494. [PMID: 37401784 PMCID: PMC10528455 DOI: 10.1002/glia.24436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Nogo-A, B, and C are well described members of the reticulon family of proteins, most well known for their negative regulatory effects on central nervous system (CNS) neurite outgrowth and repair following injury. Recent research indicates a relationship between Nogo-proteins and inflammation. Microglia, the brain's immune cells and inflammation-competent compartment, express Nogo protein, although specific roles of the Nogo in these cells is understudied. To examine inflammation-related effects of Nogo, we generated a microglial-specific inducible Nogo KO (MinoKO) mouse and challenged the mouse with a controlled cortical impact (CCI) traumatic brain injury (TBI). Histological analysis shows no difference in brain lesion sizes between MinoKO-CCI and Control-CCI mice, although MinoKO-CCI mice do not exhibit the levels of ipsilateral lateral ventricle enlargement as injury matched controls. Microglial Nogo-KO results in decreased lateral ventricle enlargement, microglial and astrocyte immunoreactivity, and increased microglial morphological complexity compared to injury matched controls, suggesting decreased tissue inflammation. Behaviorally, healthy MinoKO mice do not differ from control mice, but automated tracking of movement around the home cage and stereotypic behavior, such as grooming and eating (termed cage "activation"), following CCI is significantly elevated. Asymmetrical motor function, a deficit typical of unilaterally brain lesioned rodents, was not detected in CCI injured MinoKO mice, while the phenomenon was present in CCI injured controls 1-week post-injury. Overall, our studies show microglial Nogo as a negative regulator of recovery following brain injury. To date, this is the first evaluation of the roles microglial specific Nogo in a rodent injury model.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Quia Claybourne
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Alicia Bedolla
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Katherine O. Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Tonya Wallace
- Flow Cytometry Unit, National Institute on Aging, Baltimore, MD, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yu Luo
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Ross A. McDevitt
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Gumus H, Baltaci SB, Unal O, Gulbahce-Mutlu E, Mogulkoc R, Baltaci AK. Zinc Ameliorates Nogo-A Receptor and Osteocalcin Gene Expression in Memory-Sensitive Rat Hippocampus Impaired by Intracerebroventricular Injection of Streptozotocin. Biol Trace Elem Res 2023; 201:3381-3386. [PMID: 36057764 DOI: 10.1007/s12011-022-03410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Metabolic dysfunction is a critical step in the etiopathogenesis of Alzheimer's disease. In this progressive neurological disorder, impaired zinc homeostasis has a key role that needs to be clarified. The aim of this study was to investigate the effect of zinc deficiency and administration on hippocampal Nogo-A receptor and osteocalcin gene expression in rats injected with intracerebroventricular streptozotocin (icv-STZ). Forty male Wistar rats were divided into 5 groups in equal numbers: Sham 1 group received icv artificial cerebrospinal fluid (aCSF); Sham 2 group received icv a CSF and i.p. saline; STZ group received 3 mg/kg icv STZ; STZ-Zn-deficient group received 3 mg/kg icv STZ and fed a zinc-deprived diet; STZ-Zn-supplemented group received 3 mg/kg icv STZ and i.p. zinc sulfate (5 mg/kg/day). Hippocampus tissue samples were taken following the cervical dislocation of the animals under general anesthesia. Nogo-A receptor and osteocalcin gene expression levels were determined by real-time-PCR method. Zinc supplementation attenuated the increase in hippocampal Nogo-A receptor gene expression, which was significantly increased in zinc deficiency. Again, zinc supplementation upregulated the intrinsic protective mechanisms of the brain by activating osteocalcin-expressing cells in the brain. The results of the study show that zinc has critical effects on Nogo-A receptor gene expression and hippocampal osteocalcin gene expression levels in the memory-sensitive rat hippocampus that is impaired by icv-STZ injection. These results are the first to examine the effect of zinc deficiency and supplementation on hippocampal Nogo-A receptor and osteocalcin gene expression in icv-STZ injection in rats.
Collapse
Affiliation(s)
- Haluk Gumus
- Department of Neurology, Medical Faculty, Selçuk University, Konya, 42031, Turkey.
| | | | - Omer Unal
- Departments of Physiology, Medical Faculty, Kirikkale University, Konya, Turkey
| | - Elif Gulbahce-Mutlu
- Department of Medical Biology, Medical Faculty, KTO Karatay University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selçuk University, Konya, Turkey
| | | |
Collapse
|
7
|
Glotfelty EJ, Tovar-y-Romo LB, Hsueh SC, Tweedie D, Li Y, Harvey BK, Hoffer BJ, Karlsson TE, Olson L, Greig NH. The RhoA-ROCK1/ROCK2 Pathway Exacerbates Inflammatory Signaling in Immortalized and Primary Microglia. Cells 2023; 12:1367. [PMID: 37408199 PMCID: PMC10216802 DOI: 10.3390/cells12101367] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer's disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Luis B. Tovar-y-Romo
- Division of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brandon K. Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tobias E. Karlsson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Pavon MV, Navakkode S, Wong LW, Sajikumar S. Inhibition of Nogo-A rescues synaptic plasticity and associativity in APP/PS1 animal model of Alzheimer's disease. Semin Cell Dev Biol 2023; 139:111-120. [PMID: 35431138 DOI: 10.1016/j.semcdb.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive decline. Synaptic impairment is one of the first events to occur in the progression of this disease. Synaptic plasticity and cellular association of various plastic events have been shown to be affected in AD models. Nogo-A, a well-known axonal growth inhibitor with a recently discovered role as a plasticity suppressor, and its main receptor Nogo-66 receptor 1 (NGR1) have been found to be overexpressed in the hippocampus of Alzheimer's patients. However, the role of Nogo-A and its receptor in the pathology of AD is still widely unknown. In this work we set out to investigate whether Nogo-A is working as a plasticity suppressor in AD. Our results show that inhibition of the Nogo-A pathway via the Nogo-R antibody in an Alzheimer's mouse model, APP/PS1, leads to the restoration of both synaptic plasticity and associativity in a protein synthesis and NMDR-dependent manner. We also show that inhibition of the p75NTR pathway, which is strongly associated with NGR1, restores synaptic plasticity as well. Mechanistically, we propose that the restoration of synaptic plasticity in APP/PS1 via inhibition of the Nogo-A pathway is due to the modulation of the RhoA-ROCK2 pathway and increase in plasticity related proteins. Our study identifies Nogo-A as a plasticity suppressor in AD models hence targeting Nogo-A could be a promising strategy to understanding AD pathology.
Collapse
Affiliation(s)
- Maria Vazquez Pavon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Sheeja Navakkode
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
9
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
10
|
Jiang R, Chi XD, Jing Y, Wang B, Li S. Reduction of NgR in perforant path protects neuronal morphology and function in APP/PS1 transgenic mice. Aging (Albany NY) 2023; 15:2158-2169. [PMID: 36961417 PMCID: PMC10085588 DOI: 10.18632/aging.204605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 03/25/2023]
Abstract
Neuronal loss is the central abnormality occurring in brains suffering from Alzheimer's disease (AD). The notion that AD causes the death of neurons point towards protection of neuronal morphology and function as important therapeutic strategies. The perforant path projections from the entorhinal cortex to the dentate gyrus is the most vulnerable circuit with respect to AD. It's known that the perforant path is a very important structure for synaptic plasticity and cognitive functions. NgR (Nogo receptor) is not only involved in limiting injury-induced axonal growth but also in pathological features of AD. So, the mechanism of how NgR affects the perforant path needs further investigation. In this study, the effect of NgR in the perforant path on the neuronal morphology and function in APP/PS1 transgenic mice was studied. The results showed that downregulation of NgR in perforant path ameliorate the damaged morphology and decreased number of neurons in APP/PS1 mice. Concurrently, NgR knockdown enhanced dendritic complexity and increased postsynaptic protein density in APP/PS1 mice. Furthermore, the RT-PCR results indicated that there is downregulation of M1 phenotypes of microglial gene expression in the hippocampus of TG-shNgR mice. Our study suggests that NgR plays a critical role in microglial phenotype polarization, which might account for the NgR knockdown in the perforant path initiated a decrease in neuronal death and improved synaptic function. Our study provided a better understanding of the perforant path and the role of NgR in AD pathogenesis, thus offering the potential application of hippocampal neurons in treatment of AD.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, Yantai, China
| | - Xiao-Dong Chi
- Department of Neurology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China
| | - Yulong Jing
- Department of Traumatic Orthopedics, Yantaishan Hospital, Yantai, China
| | - Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
12
|
Kragness S, Clark Z, Mullin A, Guidry J, Earls LR. An Rtn4/Nogo-A-interacting micropeptide modulates synaptic plasticity with age. PLoS One 2022; 17:e0269404. [PMID: 35771867 PMCID: PMC9246188 DOI: 10.1371/journal.pone.0269404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Micropeptides, encoded from small open reading frames of 300 nucleotides or less, are hidden throughout mammalian genomes, though few functional studies of micropeptides in the brain are published. Here, we describe a micropeptide known as the Plasticity–Associated Neural Transcript Short (Pants), located in the 22q11.2 region of the human genome, the microdeletion of which conveys a high risk for schizophrenia. Our data show that Pants is upregulated in early adulthood in the mossy fiber circuit of the hippocampus, where it exerts a powerful negative effect on long-term potentiation (LTP). Further, we find that Pants is secreted from neurons, where it associates with synapses but is rapidly degraded with stimulation. Pants dynamically interacts with Rtn4/Nogo-A, a well-studied regulator of adult plasticity. Pants interaction with Nogo-A augments its influence over postsynaptic AMPA receptor clustering, thus gating plasticity at adult synapses. This work shows that neural micropeptides can act as architectural modules that increase the functional diversity of the known proteome.
Collapse
Affiliation(s)
- S. Kragness
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Z. Clark
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - A. Mullin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- Tulane University Transgenic Core Facility, New Orleans, LA, United States of America
| | - J. Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine and Health Sciences Center, New Orleans, LA, United States of America
- The Proteomics Core Facility, LSUHSC, New Orleans, LA, United States of America
| | - L. R. Earls
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Song S, Liu B, Zeng X, Wu Y, Chen H, Wu H, Gu J, Gao X, Ruan Y, Wang H. Reticulon 2 promotes gastric cancer metastasis via activating endoplasmic reticulum Ca2+ efflux-mediated ERK signalling. Cell Death Dis 2022; 13:349. [PMID: 35428758 PMCID: PMC9012842 DOI: 10.1038/s41419-022-04757-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Gastric cancer ranks fourth for mortality globally among various malignant tumours, and invasion and metastasis are the major reason leading to its poor prognosis. Recently, accumulating studies revealed the role of reticulon proteins in cell growth and transmigration. However, the expression and biological function of reticulon proteins in human gastric cancer remain largely unclear. Herein, we explored the potential role of reticulon 2 (RTN2) in the progression of gastric cancer. Tissue microarray was used to determine the expression levels of RTN2 in 267 gastric cancer patients by immunohistochemistry. Gastric cancer cell lines were utilised to examine the influences of RTN2 on cellular migration and invasion abilities, epithelial-to-mesenchymal transition (EMT) and signalling pathway. In vivo studies were also performed to detect the effect of RTN2 on tumour metastasis. We found that RTN2 expression was notably upregulated in tumour tissues compared to pericarcinomatous tissues. High RTN2 expression was positively correlated with patients’ age, vessel invasion, tumour invasion depth, lymph node metastasis and TNM stage. Besides, high RTN2 staining intensity was associated with adverse survival which was further identified as an independent prognostic factor for gastric cancer patients by multivariate analysis. And the predictive accuracy was also improved when incorporated RTN2 into the TNM-staging system. RTN2 could promote the proliferation, migration and invasion of gastric cancer cells in vitro and lung metastasis in vivo. Mechanistically, RTN2 interacted with IP3R, and activated ERK signalling pathway via facilitating Ca2+ release from the endoplasmic reticulum, and subsequently drove EMT in gastric cancer cells. These results proposed RTN2 as a novel promotor and potential molecular target for gastric cancer therapies.
Collapse
|
14
|
Wang J, Qin X, Sun H, He M, Lv Q, Gao C, He X, Liao H. Nogo receptor impairs the clearance of fibril amyloid-β by microglia and accelerates Alzheimer's-like disease progression. Aging Cell 2021; 20:e13515. [PMID: 34821024 PMCID: PMC8672787 DOI: 10.1111/acel.13515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive accumulation of β‐amyloid (Aβ)‐containing amyloid plaques, and microglia play a critical role in mediating Aβ clearance. Mounting evidence has confirmed that the ability of microglia in clearing Aβ decreased with aging and AD progress, but the underlying mechanisms are unclear. Previously, we have demonstrated that Nogo receptor (NgR), a receptor for three axon growth inhibitors associated with myelin, can decrease adhesion and migration of microglia to fibrils Aβ with aging. However, whether NgR expressed on microglia affect microglia phagocytosis of fibrils Aβ with aging remains unclear. Here, we found that aged but not young microglia showed increased NgR expression and decreased Aβ phagocytosis in APP/PS1 transgenic mice. NgR knockdown APP/PS1 mice showed simultaneous reduced amyloid burden and improved spatial learning and memory, which were associated with increased Aβ clearance. Importantly, Nogo‐P4, an agonist of NgR, enhanced the protein level of p‐Smad2/3, leading to a significant transcriptional inhibition of CD36 gene expression, which in turn decreased the microglial phagocytosis of Aβ. Moreover, ROCK accounted for Nogo‐P4‐induced activation of Smad2/3 signaling. Finally, the decreasing effect of NgR on microglial Aβ uptake was confirmed in a mouse model of intra‐hippocampal fAβ injection. Our findings suggest that NgR may play an important role in the regulation of Aβ homeostasis, and has potential as a therapeutic target for AD.
Collapse
Affiliation(s)
- Jianing Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Xiaoying Qin
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Hao Sun
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Meijun He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Qunyu Lv
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Congcong Gao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Xinran He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Hong Liao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| |
Collapse
|
15
|
Co-Expression of Nogo-A in Dopaminergic Neurons of the Human Substantia Nigra Pars Compacta Is Reduced in Parkinson’s Disease. Cells 2021; 10:cells10123368. [PMID: 34943877 PMCID: PMC8699585 DOI: 10.3390/cells10123368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease is mainly characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Together with the small number, the high vulnerability of the dopaminergic neurons is a major pathogenic culprit of Parkinson’s disease. Our previous findings of a higher survival of dopaminergic neurons in the substantia nigra co-expressing Nogo-A in an animal model of Parkinson’s disease suggested that Nogo-A may be associated with dopaminergic neurons resilience against Parkinson’s disease neurodegeneration. In the present study, we have addressed the expression of Nogo-A in the dopaminergic neurons in the substantia nigra in postmortem specimens of diseased and non-diseased subjects of different ages. For this purpose, in a collaborative effort we developed a tissue micro array (TMA) that allows for simultaneous staining of many samples in a single run. Interestingly, and in contrast to the observations gathered during normal aging and in the animal model of Parkinson’s disease, increasing age was significantly associated with a lower co-expression of Nogo-A in nigral dopaminergic neurons of patients with Parkinson’s disease. In sum, while Nogo-A expression in dopaminergic neurons is higher with increasing age, the opposite is the case in Parkinson’s disease. These observations suggest that Nogo-A might play a substantial role in the vulnerability of dopaminergic neurons in Parkinson’s disease.
Collapse
|
16
|
Kulczyńska-Przybik A, Dulewicz M, Słowik A, Borawska R, Kułakowska A, Kochanowicz J, Mroczko B. The Clinical Significance of Cerebrospinal Fluid Reticulon 4 (RTN4) Levels in the Differential Diagnosis of Neurodegenerative Diseases. J Clin Med 2021; 10:jcm10225281. [PMID: 34830564 PMCID: PMC8622503 DOI: 10.3390/jcm10225281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases (NDs) belong to the top global causes of mortality. Diagnostic approaches to improve early diagnosis and differentiation of these diseases are constantly being sought. Therefore, we aimed to assess the cerebrospinal fluid (CSF) concentrations of Reticulon 4 (RTN4) in patients with neurodegenerative diseases and evaluate the potential clinical usefulness of this protein. RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. According to our best knowledge, this is the first investigation providing the data concerning the dynamic of CSF RTN4 protein levels in patients with different NDs. Methods: Overall, 77 newly diagnosed patients with neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS), as well as 21 controls, were enrolled in the study. The CSF concentrations of tested proteins were assessed using immunological assays. Results: We revealed significantly higher CSF RTN4A levels in patients with AD, PD, and MS in comparison to the controls. Moreover, the comparative analysis of RTN4 concentration between different neurodegenerative diseases revealed the highest concentration of RTN4A in AD patients and a statistically significant difference between AD vs. PD, and AD vs. MS groups. The increased CSF level of the protein correlated with Tau, and pTau181 proteins in AD as well as in PD patients. Conclusions: Our study presents a previously not identified clinical utility of RTN4 in the differential diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Correspondence:
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Kraków, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
17
|
Maigler F, Ladel S, Flamm J, Gänger S, Kurpiers B, Kiderlen S, Völk R, Hamp C, Hartung S, Spiegel S, Soleimanizadeh A, Eberle K, Hermann R, Krainer L, Pitzer C, Schindowski K. Selective CNS Targeting and Distribution with a Refined Region-Specific Intranasal Delivery Technique via the Olfactory Mucosa. Pharmaceutics 2021; 13:pharmaceutics13111904. [PMID: 34834319 PMCID: PMC8620656 DOI: 10.3390/pharmaceutics13111904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Intranasal drug delivery is a promising approach for the delivery of drugs to the CNS, but too heterogenous, unprecise delivery methods without standardization decrease the quality of many studies in rodents. Thus, the lack of a precise and region-specific application technique for mice is a major drawback. In this study, a previously developed catheter-based refined technique was validated against the conventional pipette-based method and used to specifically reach the olfactory or the respiratory nasal regions. This study successfully demonstrated region-specific administration at the olfactory mucosa resulting in over 20% of the administered fluorescein dose in the olfactory bulbs, and no peripheral bioactivity of insulin detemir and Fc-dependent uptake of two murine IgG1 (11C7 and P3X) along the olfactory pathway to cortex and hippocampus. An scFv of 11C7 showed hardly any uptake to the CNS. Elimination was dependent on the presence of the IgG’s antigen. In summary, it was successfully demonstrated that region-specific intranasal administration via the olfactory region resulted in improved brain targeting and reduced peripheral targeting in mice. The data are discussed with regard to their clinical potential.
Collapse
Affiliation(s)
- Frank Maigler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stella Gänger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Medical Faculty, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; (B.K.); (C.P.)
| | - Stefanie Kiderlen
- Prospective Instruments LK OG, Stadtstraße 33, 6850 Dornbirn, Austria; (S.K.); (L.K.)
| | - Ronja Völk
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Carmen Hamp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Sunniva Hartung
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Sebastian Spiegel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Arghavan Soleimanizadeh
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Katharina Eberle
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Rebecca Hermann
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Lukas Krainer
- Prospective Instruments LK OG, Stadtstraße 33, 6850 Dornbirn, Austria; (S.K.); (L.K.)
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; (B.K.); (C.P.)
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Correspondence:
| |
Collapse
|
18
|
Ariyannur PS, Xing G, Barry ES, Benford B, Grunberg NE, Sharma P. Effects of Pyruvate Administration on Mitochondrial Enzymes, Neurological Behaviors, and Neurodegeneration after Traumatic Brain Injury. Aging Dis 2021; 12:983-999. [PMID: 34221543 PMCID: PMC8219499 DOI: 10.14336/ad.2020.1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is known to increase the susceptibility to various age-related neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although the role of damaged mitochondrial electron transport chain (ETC) in the progression of AD and PD has been identified, its relationship with altered expression of neurodegenerative proteins has not been examined before. This study aimed to investigate 1) how TBI could affect mitochondrial ETC and neurodegeneration in rat brain regions related to behavioral alteration, and 2) if administration of the key mitochondrial substrate pyruvate can improve the outcome of mild TBI (mTBI). In a rat lateral fluid percussion injury model of mTBI, sodium pyruvate in sterile distilled water (1 g/kg body weight) was administered orally daily for 7 days. The protein expression of mitochondrial ETC enzymes, and neurodegeneration proteins in the hippocampus and cerebral cortex and was assessed on Day 7. The hippocampal and cortical expressions of ETC complex I, III, IV, V were significantly and variably impaired following mTBI. Pyruvate treatment altered ETC complex expression, reduced the nitrosyl stress and the MBP expression in the injured brain area, but increased the expression of the glial fibrillary acidic protein (GFAP) and Tau proteins. Pyruvate after mTBI augmented the Rotarod performance but decreased the horizontal and vertical open field locomotion activities and worsened neurobehavioural severity score, indicating a debilitating therapeutic effect on the acute phase of mTBI. These results suggest bidirectional neuroprotective and neurodegenerative modulating effects of pyruvate on TBI-induced alteration in mitochondrial activity and motor behavior. Pyruvate could potentially stimulate the proliferation of astrogliosis, and lactate acidosis, and caution should be exercised when used as a therapy in the acute phase of mTBI. More effective interventions targeted at multiple mechanisms are needed for the prevention and treatment of TBI-induced long-term neurodegeneration.
Collapse
Affiliation(s)
- Prasanth S Ariyannur
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,3Department of Biochemistry & Molecular Biology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Guoqiang Xing
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,2Imaging Institute of Rehabilitation and Development of Brain Function, the Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical University, Nanchong Central Hospital, Nanchong 637000, China
| | - Erin S Barry
- 4Military & Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Brandi Benford
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Neil E Grunberg
- 4Military & Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Pushpa Sharma
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
Xie QQ, Feng X, Huang YΥ, Fang N, Yi H, Wang ZJ, Cao QΥ, Lou GF, Pan JP, Hu Y, Li FC, Zheng Q, Xiao F. Nogo‑66 promotes β‑amyloid protein secretion via NgR/ROCK‑dependent BACE1 activation. Mol Med Rep 2021; 23:188. [PMID: 33495810 PMCID: PMC7809900 DOI: 10.3892/mmr.2021.11827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
The generation of β-amyloid protein (Aβ) is considered a key step in the pathogenesis of Alzheimer's disease (AD) and the regulation of its production is an important therapeutic strategy. It was hypothesized in the present study that Nogo-A may be involved in AD and may regulate the generation of Aβ. Nogo-A is known to act as a major inhibitor of neuron regeneration in the adult central nervous system. A recent study indicated that Nogo-A is associated with AD; however, the underlying effect and molecular mechanisms remain largely elusive. In the present study, the potential effects of Nogo-A on AD were investigated. ELISA was used to detect the levels of Aβ, enzymatic activity detection kits were used to determine the activity of secretase enzymes in amyloid precursor protein (APP) metabolism, and western blot analysis was used to detect the expression levels of proteins associated with the APP processing and Nogo-A/Nogo-66 receptor (NgR) signaling pathways. The results revealed that Nogo-66, the major inhibitory region of Nogo-A, promoted neuronal Aβ secretion by increasing the activity of β-secretase 1 via the NgR/Rho-associated coiled-coil containing kinases pathway in a dose-dependent manner. The present data suggested that Nogo-A may facilitate the onset and development of AD by promoting Aβ secretion, providing information on a potential novel target for AD therapy.
Collapse
Affiliation(s)
- Qing-Qing Xie
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiao Feng
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yi-Υun Huang
- Department of Microbiology and Biochemical Pharmacy, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Nian Fang
- Department of Microbiology and Biochemical Pharmacy, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Hua Yi
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 511436, P.R. China
| | - Zi-Jian Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiao-Υu Cao
- Department of Microbiology and Biochemical Pharmacy, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Guo-Feng Lou
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway
| | - Jun-Ping Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yang Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fang-Cheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510632, P.R. China
| | - Qing Zheng
- Department of Microbiology and Biochemical Pharmacy, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
20
|
Tang H, Xu Y, Liu L, He L, Huang J, Pan J, He W, Wang Y, Yang X, Hou X, Xu K. Nogo-A/S1PR2 Signaling Pathway Inactivation Decreases Microvascular Damage and Enhances Microvascular Regeneration in PDMCI Mice. Neuroscience 2020; 449:21-34. [PMID: 33039527 DOI: 10.1016/j.neuroscience.2020.09.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
Abstract
The incidence of mild cognitive impairment in Parkinson's disease (PDMCI) is as high as 18-55%. However, the pathological mechanism of PDMCI is not yet clear. Our previous research showed that microvascular pathology and chronic cerebral hypoperfusion participated in the occurrence and development of PDMCI. Nogo-A has been suggested to be a negative regulator of microvascular regeneration in the central nervous system. Moreover, few insights have illuminated the mechanisms of Nogo-A and microvascular pathology in PDMCI. Therefore, we hypothesized that Nogo-A might be involved in the negative regulation of PDMCI angiogenesis. In this study, C57BL/6J mice were injected with Nogo-A-specific short hairpin RNA (shRNA-Nogo-A) in the lateral ventricle and intraperitoneally injected with a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid. Subjects were classified into the following five groups for the Morris water maze test: control (CON), CON + shRNA-GFP, CON + shRNA-Nogo-A, PDMCI, and PDMCI + shRNA-Nogo-A. Furthermore, blood-brain barrier (BBB) permeability, fluorescein isothiocyanate (FITC)-conjugated dextran, transmission electron microscopy (TEM), immunofluorescence and Western blot analyses were performed. The results showed that MPTP could cause spatial memory and behavioral impairment, significant microvascular impairment and increased Nogo-A expression. When Nogo-A expression was downregulated, the cognitive and microvascular impairments were alleviated, and the expression of sphingosine-1-phosphate receptor 2 (S1PR2) and the RhoA/ROCK signaling pathway were inhibited. These findings suggested that Nogo-A could bind to S1PR2, activate related signaling pathways, and lead to the inhibition of vascular remodeling in PDMCI mice. This study indicated that Nogo-A downregulation could mediate microvascular remodeling and provide further insights into the pathogenesis of PDMCI.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China; Department of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jingyu Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jing Pan
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China; Department of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Wenjie He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yuxin Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China; School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Hou
- Department of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China; School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
21
|
Bradley RA, Shireman J, McFalls C, Choi J, Canfield SG, Dong Y, Liu K, Lisota B, Jones JR, Petersen A, Bhattacharyya A, Palecek SP, Shusta EV, Kendziorski C, Zhang SC. Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties. Development 2019; 146:dev.170910. [PMID: 31189664 DOI: 10.1242/dev.170910] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Astrocytes display diverse morphologies in different regions of the central nervous system. Whether astrocyte diversity is attributable to developmental processes and bears functional consequences, especially in humans, is unknown. RNA-seq of human pluripotent stem cell-derived regional astrocytes revealed distinct transcript profiles, suggesting differential functional properties. This was confirmed by differential calcium signaling as well as effects on neurite growth and blood-brain barrier formation. Distinct transcriptional profiles and functional properties of human astrocytes generated from regionally specified neural progenitors under the same conditions strongly implicate the developmental impact on astrocyte diversity. These findings provide a rationale for renewed examination of regional astrocytes and their role in the pathogenesis of psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Robert A Bradley
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA.,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jack Shireman
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Caya McFalls
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeea Choi
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Cellular and Integrative Physiology, School of Medicine, Indiana University - Terre Haute, IN 47885, USA
| | - Yi Dong
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Katie Liu
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Brianne Lisota
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeffery R Jones
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Andrew Petersen
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53792, USA
| | - Su-Chun Zhang
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA .,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Neuroscience, Department of Neurology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI 53705, USA.,Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
22
|
Chen W, Ji H, Li L, Xu C, Zou T, Cui W, Xu S, Zhou X, Duan S, Wang Q. Significant association between GPR50 hypomethylation and AD in males. Mol Med Rep 2019; 20:1085-1092. [PMID: 31173244 PMCID: PMC6625449 DOI: 10.3892/mmr.2019.10366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/01/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease. G protein coupled receptor 50 (GPR50) is a candidate gene for AD. The present study was designed to determine the association between GPR50 methylation and AD. The methylation levels of the GPR50 promoter in 51 patients with AD and 61 healthy controls were determined by bisulfite pyrophosphate sequencing. All participants were Han Chinese, living in Ningbo. It was identified that the GPR50 promoter methylation level was significantly decreased in the male AD group compared with the male control group (9.15 vs. 16.67%, P=0.002). In addition, it was observed that the GPR50 methylation levels of the females was significantly increased compared with that of males in both the patients with AD and the healthy control group (AD patient group: 33.00 vs. 9.15%, P<0.0001; healthy control group: 29.41 vs. 16.67%, P<0.0001). This may be explained by the fact that GPR50 is located on the X chromosome. In addition, GPR50 methylation was positively correlated with plasma cholinesterase levels in female patients with AD (r=0.489, P=0.039). The present study demonstrated that hypomethylation of the GPR50 promoter in peripheral blood may be a potential biomarker for the diagnosis of AD in Chinese Han males.
Collapse
Affiliation(s)
- Weihua Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Chunshuang Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ting Zou
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830000, P.R. China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shujun Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaohui Zhou
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region 830000, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
23
|
Nam SM, Kwon HJ, Kim W, Kim JW, Hahn KR, Jung HY, Kim DW, Yoo DY, Seong JK, Hwang IK, Yoon YS. Changes of myelin basic protein in the hippocampus of an animal model of type 2 diabetes. Lab Anim Res 2018; 34:176-184. [PMID: 30671103 PMCID: PMC6333608 DOI: 10.5625/lar.2018.34.4.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
In this study, we observed chronological changes in the immunoreactivity and expression level of myelin basic protein (MBP), one of the most abundant proteins in the central nervous system, in the hippocampus of Zucker diabetic fatty (ZDF) rats and their control littermates (Zucker lean control; ZLC). In the ZLC group, body weight steadily increased with age; the body weight of the ZDF group, however, peaked at 30 weeks of age, and subsequently decreased. Based on the changes of body weight, animals were divided into the following six groups: early (12-week), middle (30-week), and chronic (52-week) diabetic groups and their controls. MBP immunoreactivity was found in the alveus, strata pyramidale, and lacunosum-moleculare of the CA1 region, strata pyramidale and radiatum of the CA3 region, and subgranular zone, polymorphic layer, and molecular layer of the dentate gyrus. MBP immunoreactivity was lowest in the hippocampus of 12-week-old rats in the ZLC group, and highest in 12-week-old rats in the ZDF group. Diabetes increased MBP levels in the 12-week-old group, while MBP immunoreactivity decreased in the 30-week-old group. In the 52-week-old ZLC and ZDF groups, MBP immunoreactivity was detected in the hippocampus, similar to the 30-week-old ZDF group. Western blot results corroborated with immunohistochemical results. These results suggested that changes in the immunoreactivity and expression of MBP in the hippocampus might be a compensatory response to aging, while the sustained levels of MBP in diabetic animals could be attributed to a loss of compensatory responses in oligodendrocytes.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Fang Y, Wang J, Yao L, Li C, Wang J, Liu Y, Tao X, Sun H, Liao H. The adhesion and migration of microglia to β-amyloid (Aβ) is decreased with aging and inhibited by Nogo/NgR pathway. J Neuroinflammation 2018; 15:210. [PMID: 30029608 PMCID: PMC6054753 DOI: 10.1186/s12974-018-1250-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease is characterized by progressive accumulation of β-amyloid (Aβ)-containing amyloid plaques, and microglia play a critical role in internalization and degradation of Aβ. Our previous research confirmed that Nogo-66 binding to Nogo receptors (NgR) expressed on microglia inhibits cell adhesion and migration in vitro. Methods The adhesion and migration of microglia isolated from WT and APP/PS1 mice from different ages were measured by adhesion assays and transwells. After NEP1-40 (a competitive antagonist of Nogo/NgR pathway) was intracerebroventricularly administered via mini-osmotic pumps for 2 months in APP/PS1 transgenic mice, microglial recruitment toward Aβ deposits and CD36 expression were determined. Results In this paper, we found that aging led to a reduction of microglia adhesion and migration to fAβ1–42 in WT and APP/PS1 mice. The adhesion and migration of microglia to fAβ1–42 were downregulated by the Nogo, which was mediated by NgR, and the increased inhibitory effects of the Nogo could be observed in aged mice. Moreover, Rho GTPases contributed to the effects of the Nogo on adhesion and migration of microglia to fAβ1–42 by regulating cytoskeleton arrangement. Furthermore, blocking the Nogo/NgR pathway enhanced recruitment of microglia toward Aβ deposits and expression of CD36 in APP/PS1 mice. Conclusion Taken together, Nogo/NgR pathway could take part in Aβ pathology in AD by modulating microglial adhesion and migration to Aβ and the Nogo/NgR pathway might be an important target for treating AD. Electronic supplementary material The online version of this article (10.1186/s12974-018-1250-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinquan Fang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.,Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianing Wang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Lemeng Yao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Chenhui Li
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Jing Wang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Yuan Liu
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Xia Tao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Hao Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Hong Liao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| |
Collapse
|
25
|
Karlsson TE, Wellfelt K, Olson L. Spatiotemporal and Long Lasting Modulation of 11 Key Nogo Signaling Genes in Response to Strong Neuroexcitation. Front Mol Neurosci 2017; 10:94. [PMID: 28442990 PMCID: PMC5386981 DOI: 10.3389/fnmol.2017.00094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Inhibition of nerve growth and plasticity in the CNS is to a large part mediated by Nogo-like signaling, now encompassing a plethora of ligands, receptors, co-receptors and modulators. Here we describe the distribution and levels of mRNA encoding 11 key genes involved in Nogo-like signaling (Nogo-A, Oligodendrocyte-Myelin glycoprotein (OMgp), Nogo receptor 1 (NgR1), NgR2, NgR3, Lingo-1, TNF receptor orphan Y (Troy), Olfactomedin, Lateral olfactory tract usher substance (Lotus) and membrane-type matrix metalloproteinase-3 (MT3-MPP)), as well as BDNF and GAPDH. Expression was analyzed in nine different brain areas before, and at eight time points during the first 3 days after a strong neuroexcitatory stimulation, caused by one kainic acid injection. A temporo-spatial pattern of orderly transcriptional regulations emerges that strengthens the role of Nogo-signaling mechanisms for synaptic plasticity in synchrony with transcriptional increases of BDNF mRNA. For most Nogo-type signaling genes, the largest alterations of mRNA levels occur in the dentate gyrus, with marked alterations also in the CA1 region. Changes occurred somewhat later in several areas of the cerebral cortex. The detailed spatio-temporal pattern of mRNA presence and kainic acid-induced transcriptional response is gene-specific. We reveal that several different gene alterations combine to decrease (and later increase) Nogo-like signaling, as expected to allow structural plasticity responses. Other genes are altered in the opposite direction, suggesting that the system prepares in advance in order to rapidly restore balance. However, the fact that Lingo-1 shows a seemingly opposite, plasticity inhibiting response to kainic acid (strong increase of mRNA in the dentate gyrus), may instead suggest a plasticity-enhancing intracellular function of this presumed NgR1 co-receptor.
Collapse
Affiliation(s)
| | - Katrin Wellfelt
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
26
|
Pernet V. Nogo-A in the visual system development and in ocular diseases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1300-1311. [PMID: 28408340 DOI: 10.1016/j.bbadis.2017.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 01/02/2023]
Abstract
Nogo-A is a potent myelin-associated inhibitor for neuronal growth and plasticity in the central nervous system (CNS). Its effects are mediated by the activation of specific receptors that intracellularly control cytoskeleton rearrangements, protein synthesis and gene expression. Moreover, Nogo-A has been involved in the development of the visual system and in a variety of neurodegenerative diseases and injury processes that can alter its function. For example, Nogo-A was shown to influence optic nerve myelinogenesis, the formation and maturation of retinal axon projections, and retinal angiogenesis. In adult animals, the inactivation of Nogo-A exerted remarkable effects on visual plasticity. Relieving Nogo-A-induced inhibition increased axonal sprouting after optic nerve lesion and axonal rewiring in the visual cortex of intact adult mice. This review aims at presenting our current knowledge on the role of Nogo-A in the visual system and to discuss how its therapeutic targeting may promote visual improvement in ophthalmic diseases.
Collapse
Affiliation(s)
- Vincent Pernet
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
27
|
Fang Y, Yao L, Li C, Wang J, Wang J, Chen S, Zhou XF, Liao H. The blockage of the Nogo/NgR signal pathway in microglia alleviates the formation of Aβ plaques and tau phosphorylation in APP/PS1 transgenic mice. J Neuroinflammation 2016; 13:56. [PMID: 26939570 PMCID: PMC4776389 DOI: 10.1186/s12974-016-0522-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by extracellular β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), and microglia-dominated neuroinflammation. The Nogo/NgR signal pathway is involved in AD pathological features, but the detailed mechanism needs further investigation. Our previous studies have confirmed that the activation of NgR on microglia by Nogo promotes the expression of proinflammatory cytokines and inhibits cell adhesion and migration behaviors. In the present study, we investigated the effects of Nogo/NgR signaling pathway on the pathological features of AD and possible mechanisms. Methods After NEP1-40 (a competitive antagonist of Nogo/NgR pathway) was intracerebroventricularly administered via mini-osmotic pumps for 2 months in amyloid precursor protein (APP)/PS1 transgenic mice, plaque load, tau phosphorylation, and inflammatory responses were determined. After primary mouse neurons were exposed to the conditioned medium from BV-2 microglia stimulated by Nogo, the production of Aβ and phosphorylation of tau was quantified by ELISA and western blot. Results Inhibition of the Nogo/NgR signaling pathway ameliorated pathological features including amyloid plaques and phosphorylated levels of tau in APP/PS1 mice. In addition, after treatment with the conditioned medium from BV-2 microglia stimulated by Nogo, Aβ production and tau phosphorylation in cultured neurons were increased. The conditioned medium also increased the expression of APP, its amyloidogenic processing, and the activity of GSK3β in neurons. The conditioned medium was also proinflammatory medium, and the blockage of the Nogo/NgR pathway improved the neuroinflammatory environment in APP/PS1 mice. Conclusions Taken together, the neuroinflammation mediated by Nogo/NgR pathway in microglia could directly take part in the pathological process of AD by influencing the amyloidogenesis and tau phosphorylation. These results contribute to a better understanding of AD pathogenesis and could offer a new therapeutic option for delaying the progression of AD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0522-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinquan Fang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Lemeng Yao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Chenhui Li
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Jing Wang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Jianing Wang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Shujian Chen
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Xin-Fu Zhou
- School of Pharmacology and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Hong Liao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| |
Collapse
|
28
|
Khan MZ, He L, Zhuang X. The emerging role of GPR50 receptor in brain. Biomed Pharmacother 2016; 78:121-128. [PMID: 26898433 DOI: 10.1016/j.biopha.2016.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023] Open
Abstract
GPR50 receptor one of the member of G protein-coupled receptors (GPCRs) is extensively expressed in the pituitary, hypothalamus,cortex, midbrain, pons, amygdala, and in several brainstem nuclei. The exact function of this receptor in brain is remains unclear. This review presents current knowledge regarding the function of GPR50 receptor in brain, with a focus on role of this receptor in the hypothalamus-pituitary-adrenal (HPA) axis and the glucocorticoid receptor (GR) signaling, leptin signaling, adaptive thermogenesis, torpor, neurite outgrowth, and self-renewal and neuronal differentiation of neural progenitor cells NPCs. Although the results are encouraging, further research is needed to clarify GPR50 role in neurobiology of mood disorders, adaptive thermogenesis, torpor, and in the pathophysiology of neurological disorders.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ling He
- China Pharmaceutical University, Department of Pharmacology, No. 24 Tong Jia Xiang, Nanjing,Jiang Su Province 210009, China
| | - Xuxu Zhuang
- China Pharmaceutical University, Department of Pharmacology, No. 24 Tong Jia Xiang, Nanjing,Jiang Su Province 210009, China
| |
Collapse
|
29
|
Fang Y, Yan J, Li C, Zhou X, Yao L, Pang T, Yan M, Zhang L, Mao L, Liao H. The Nogo/Nogo Receptor (NgR) Signal Is Involved in Neuroinflammation through the Regulation of Microglial Inflammatory Activation. J Biol Chem 2015; 290:28901-14. [PMID: 26472924 DOI: 10.1074/jbc.m115.678326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 01/19/2023] Open
Abstract
Microglia have been proposed to play a pivotal role in the inflammation response of the CNS by expressing a range of proinflammatory enzymes and cytokines under pathological stimulus. Our previous study has confirmed that Nogo receptor (NgR), an axon outgrowth inhibition receptor, is also expressed on microglia and regulates cell adhesion and migration behavior in vitro. In the present study, we further investigated the proinflammatory effects and possible mechanisms of Nogo on microglia in vitro. In this study, Nogo peptide, Nogo-P4, a 25-amino acid core inhibitory peptide sequence of Nogo-66, was used. We found that Nogo-P4 was able to induce the expression of inducible nitric-oxide synthase and cyclooxygenase-2 and the release of proinflammatory cytokines, including IL-1β, TNF-α, NO, and prostaglandin E2 in microglia, which could be reversed by NEP1-40 (Nogo-66(1-40) antagonist peptide), phosphatidylinositol-specificphospholipase C, or NgR siRNA treatment. After Nogo-P4 stimulated microglia, the phosphorylation levels of NF-κB and STAT3 were increased obviously, which further mediated microglia expressing proinflammatory factors induced by Nogo-P4. Taken together, we concluded that Nogo peptide could directly take part in CNS inflammatory process by influencing the expression of proinflammatory factors in microglia, which were related to the NF-κB and STAT3 signal pathways. Besides neurite outgrowth restriction, the Nogo/NgR signal might be involved in multiple processes in various inflammation-associated CNS diseases.
Collapse
Affiliation(s)
- Yinquan Fang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Jun Yan
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Chenhui Li
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Xiao Zhou
- the Department of Biophysics, Saarland University, Homburg 66421, Germany, and
| | - Lemeng Yao
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Tao Pang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Ming Yan
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Luyong Zhang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Lei Mao
- the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Hong Liao
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China,
| |
Collapse
|
30
|
Sui YP, Zhang XX, Lu JL, Sui F. New Insights into the Roles of Nogo-A in CNS Biology and Diseases. Neurochem Res 2015; 40:1767-85. [PMID: 26266872 DOI: 10.1007/s11064-015-1671-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022]
Abstract
Nogos have become a hot topic for its well-known number Nogo-A's big role in clinical matters. It has been recognized that the expression of Nogo-A and the receptor NgR1 inhibit the neuron's growth after CNS injuries or the onset of the MS. The piling evidence supports the notion that the Nogo-A is also involved in the synaptic plasticity, which was shown to negatively regulate the strength of synaptic transmission. The occurrence of significant schizophrenia-like behavioral phenotypes in Nogo-A KO rats also added strong proof to this conclusion. This review mainly focuses on the structure of Nogo-A and its corresponding receptor-NgR1, its intra- and extra-cellular signaling, together with its major physiological functions such as regulation of migration and distribution and its related diseases like stroke, AD, ALS and so on.
Collapse
Affiliation(s)
- Yun-Peng Sui
- Institute of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | | | | | | |
Collapse
|
31
|
Xu YQ, Sun ZQ, Wang YT, Xiao F, Chen MW. Function of Nogo-A/Nogo-A receptor in Alzheimer's disease. CNS Neurosci Ther 2015; 21:479-85. [PMID: 25732725 DOI: 10.1111/cns.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Nogo-A is a protein inhibiting axonal regeneration, which is considered a major obstacle to nerve regeneration after injury in mammals. Rapid progress has been achieved in new physiopathological function of Nogo-A in Alzheimer's disease in the past decade. Recent research shows that through binding to Nogo-A receptor, Nogo-A plays an important role in Alzheimer's disease (AD) pathogenesis. Particularly, Nogo-A/Nogo-A receptors modulate the generation of amyloid β-protein (Aβ), which is thought to be a major cause of AD. This review describes the recent development of Nogo-A, Nogo-A receptor, and downstream signaling involved in AD and pharmacological basis of therapeutic drugs. We concluded the Nogo-A/Nogo-A receptor provide new insight into potential mechanisms and promising therapy strategies in AD.
Collapse
Affiliation(s)
- Ying-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhong-Qing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
32
|
Chen L, Wan L, Du J, Shen Y. Identification of MANF as a protein interacting with RTN1-C. Acta Biochim Biophys Sin (Shanghai) 2015; 47:91-7. [PMID: 25543119 DOI: 10.1093/abbs/gmu125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Recently, evidence has shown that they exert a cancer-specific proapoptotic function via interaction or modulation of specific proteins. Such evidence is particularly associated with the RTN1-C family members. In order to explore proteins that interact with RTN1-C, the yeast two-hybrid system and regular molecular biological techniques were used to screen the human fetal brain cDNA library. As a result, seven RTN1-C interacting proteins including Homo sapiens mesencephalic astrocyte-derived neurotrophic factor (MANF) were obtained. The interactions between RTN1-C and its interacting proteins were confirmed by β-galactosidase assay and growth test in selective media. Moreover, the MANF/RTN1-C interaction was verified in vitro by glutathione S-transferase pull-down assay and in vivo by immunoprecipitation assay. By immunofluorescence assay, it was found that MANF co-localized with RTN1-C in the ER. Knockdown of RTN1-C reduced the localization of MANF in the ER. These results provide clues to further explore the function of RTN1-C and MANF in neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Lijian Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China Department of Anaesthesiology of the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Lijuan Wan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jian Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
33
|
A specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats. Neurobiol Aging 2015; 36:344-51. [DOI: 10.1016/j.neurobiolaging.2014.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/23/2014] [Accepted: 07/18/2014] [Indexed: 02/02/2023]
|
34
|
Schawkat K, Di Santo S, Seiler S, Ducray AD, Widmer HR. Loss of Nogo-A-expressing neurons in a rat model of Parkinson's disease. Neuroscience 2014; 288:59-72. [PMID: 25554426 DOI: 10.1016/j.neuroscience.2014.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/15/2022]
Abstract
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.
Collapse
Affiliation(s)
- K Schawkat
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - S Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - S Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - A D Ducray
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - H R Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| |
Collapse
|
35
|
Narayana PA, Herrera JJ, Bockhorst KH, Esparza-Coss E, Xia Y, Steinberg JL, Moeller FG. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies. Psychiatry Res 2014; 221:220-230. [PMID: 24507117 PMCID: PMC3943678 DOI: 10.1016/j.pscychresns.2014.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/21/2013] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kurt H Bockhorst
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Emilio Esparza-Coss
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ying Xia
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joel L Steinberg
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - F Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
36
|
Craveiro LM, Weinmann O, Roschitzki B, Gonzenbach RR, Zörner B, Montani L, Yee BK, Feldon J, Willi R, Schwab ME. Infusion of anti-Nogo-A antibodies in adult rats increases growth and synapse related proteins in the absence of behavioral alterations. Exp Neurol 2013; 250:52-68. [DOI: 10.1016/j.expneurol.2013.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
|
37
|
Krištofiková Z, Vrajová M, Sírová J, Valeš K, Petrásek T, Schönig K, Tews B, Schwab M, Bartsch D, Stuchlík A, Rípová D. N-Methyl-d-Aspartate Receptor - Nitric Oxide Synthase Pathway in the Cortex of Nogo-A-Deficient Rats in Relation to Brain Laterality and Schizophrenia. Front Behav Neurosci 2013; 7:90. [PMID: 23964213 PMCID: PMC3740292 DOI: 10.3389/fnbeh.2013.00090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/07/2013] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that Nogo-A, a myelin-associated protein, could play a role in the pathogenesis of schizophrenia and that Nogo-A-deficient rodents could serve as an animal model for schizophrenic symptoms. Since changes in brain laterality are typical of schizophrenia, we investigated whether Nogo-A-deficient rats showed any signs of disturbed asymmetry in cortical N-methyl-d-aspartate (NMDA) receptor–nitric oxide synthase (NOS) pathway, which is reported as dysfunctional in schizophrenia. In particular, we measured separately in the right and left hemisphere of young and old Nogo-A-deficient male rats the expression of NMDA receptor subunits (NR1, NR2A, and NR2B in the frontal cortex) and activities of NOS isoforms [neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) in the parietal cortex]. In young controls, we observed right/left asymmetry of iNOS activity and three positive correlations (between NR1 in the left and NR2B laterality, between NR2B in the right and left sides, and between NR1 in the right side and nNOS laterality). In old controls, we found bilateral decreases in NR1, an increase in NR2B in the right side, and two changes in correlations in the NR1–nNOS pathway. In young Nogo-A-deficient rats, we observed an increase in iNOS activity in the left hemisphere and two changes in correlations in NR1–nNOS and NR2A–eNOS, compared to young controls. Finally, we revealed in old Nogo-A-deficient animals, bilateral decreases in NR1 and one change in correlation between eNOS–iNOS, compared to old controls. Although some findings from schizophrenic brains did not manifest in Nogo-A-deficient rats (e.g., no alterations in NR2B), others did (e.g., alterations demonstrating accelerated aging in young but not old animals, those occurring exclusively in the right hemisphere in young and old animals and those suggesting abnormal frontoparietal cortical interactions in young animals).
Collapse
|
38
|
Adaptive changes in the neuronal proteome: mitochondrial energy production, endoplasmic reticulum stress, and ribosomal dysfunction in the cellular response to metabolic stress. J Cereb Blood Flow Metab 2013; 33:673-83. [PMID: 23321784 PMCID: PMC3652695 DOI: 10.1038/jcbfm.2012.204] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neuroblastoma cell line after exposure to a metabolic challenge of oxygen glucose deprivation (OGD) in vitro. A total of 958 proteins across multiple subcellular compartments were detected and quantified by label-free liquid chromatography mass spectrometry. The levels of 130 proteins were significantly increased (P<0.01) after OGD and the levels of 63 proteins were significantly decreased (P<0.01) while expression of the majority of proteins (765) was not altered. Network analysis identified novel protein-protein interactomes involved with mitochondrial energy production, protein folding, and protein degradation, indicative of coherent and integrated proteomic responses to the metabolic challenge. Approximately one third (61) of the differentially expressed proteins was associated with the endoplasmic reticulum and mitochondria. Electron microscopic analysis of these subcellular structures showed morphologic changes consistent with the identified proteomic alterations. Our investigation of the global cellular response to a metabolic challenge clearly shows the considerable adaptive capacity of the proteome to a slowly evolving metabolic challenge.
Collapse
|
39
|
Bernardoni P, Fazi B, Costanzi A, Nardacci R, Montagna C, Filomeni G, Ciriolo MR, Piacentini M, Di Sano F. Reticulon1-C modulates protein disulphide isomerase function. Cell Death Dis 2013; 4:e581. [PMID: 23559015 PMCID: PMC3641336 DOI: 10.1038/cddis.2013.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) is the primary site for the synthesis and folding of secreted and membrane-bound proteins. Accumulation of unfolded and misfolded proteins in ER underlies a wide range of human neurodegenerative disorders. Hence, molecules regulating the ER stress response represent potential candidates as drug targets for tackling these diseases. Protein disulphide isomerase (PDI) is a chaperone involved in ER stress pathway, its activity being an important cellular defense against protein misfolding. Here, we demonstrate that human neuroblastoma SH-SY5Y cells overexpressing the reticulon protein 1-C (RTN1-C) reticulon family member show a PDI punctuate subcellular distribution identified as ER vesicles. This represents an event associated with a significant increase of PDI enzymatic activity. We provide evidence that the modulation of PDI localization and activity does not only rely upon ER stress induction or upregulation of its synthesis, but tightly correlates to an alteration in its nitrosylation status. By using different RTN1-C mutants, we demonstrate that the observed effects depend on RTN1-C N-terminal region and on the integrity of the microtubule network. Overall, our results indicate that RTN1-C induces PDI redistribution in ER vesicles, and concomitantly modulates its activity by decreasing the levels of its S-nitrosylated form. Thus RTN1-C represents a promising candidate to modulate PDI function.
Collapse
Affiliation(s)
- P Bernardoni
- Department of Biology, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nissou MF, Brocard J, El Atifi M, Guttin A, Andrieux A, Berger F, Issartel JP, Wion D. The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis 2013; 35:553-64. [PMID: 23455988 PMCID: PMC3962683 DOI: 10.3233/jad-122005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Seasonal or chronic vitamin D deficiency and/or insufficiency is highly prevalent in the human population. Receptors for 1,25-dihydroxyvitamin D3, the hormonal metabolite of vitamin D, are found throughout the brain. To provide further information on the role of this hormone on brain function, we analyzed the transcriptomic profiles of mixed neuron-glial cell cultures in response to 1,25-dihydroxyvitamin D3. 1,25-dihydroxyvitamin D3 treatment increases the mRNA levels of 27 genes by at least 1.9 fold. Among them, 17 genes were related to neurodegenerative and psychiatric diseases, or brain morphogenesis. Notably, 10 of these genes encode proteins potentially limiting the progression of Alzheimer's disease. These data provide support for a role of 1,25-dihydroxyvitamin D3 in brain disease prevention. The possible consequences of circannual or chronic vitamin D insufficiencies on a tissue with a low regenerative potential such as the brain should be considered.
Collapse
Affiliation(s)
- Marie-France Nissou
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Jacques Brocard
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Michèle El Atifi
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Audrey Guttin
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Annie Andrieux
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
- GPC-GIN, Groupe Physiopathologie du Cytosquelette
INSERM : U836CEA : DSV/IRTSV/GPCUniversité Joseph Fourier - Grenoble IUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - François Berger
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Jean-Paul Issartel
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| | - Didier Wion
- GIN, Grenoble Institut des Neurosciences
INSERM : U836Université Joseph Fourier - Grenoble ICHU GrenobleCEA : DSV/IRTSVUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9, FR
| |
Collapse
|
41
|
Di Sano F, Piacentini M. Reticulon Protein-1C: A New Hope in the Treatment of Different Neuronal Diseases. Int J Cell Biol 2012; 2012:651805. [PMID: 22693512 PMCID: PMC3368183 DOI: 10.1155/2012/651805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/18/2012] [Indexed: 12/15/2022] Open
Abstract
Reticulons (RTNs) are a group of membrane proteins localized on the ER and known to regulate ER structure and functions. Several studies have suggested that RTNs are involved in different important cellular functions such as changes in calcium homeostasis, ER-stress-mediated cell death, and autophagy. RTNs have been demonstrated to exert a cancer specific proapoptotic function via the interaction or the modulation of specific proteins. Reticulons have also been implicated in different signaling pathways which are at the basis of the pathogenesis of several neurodegenerative diseases. In this paper we discuss the accumulating evidence identifying RTN-1C protein as a promising target in the treatment of different pathologies such as cancer or neurodegenerative disorders.
Collapse
Affiliation(s)
- Federica Di Sano
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
- National Institute for Infectious Diseases IRCCS “L. Spallanzani”, Via Portuense, 00149 Rome, Italy
| |
Collapse
|
42
|
VanGuilder HD, Bixler GV, Sonntag WE, Freeman WM. Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory. J Neurochem 2012; 121:77-98. [PMID: 22269040 PMCID: PMC3341628 DOI: 10.1111/j.1471-4159.2012.07671.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands myelin-associated glycoprotein, neurite outgrowth inhibitor A, and oligodendrocyte myelin glycoprotein, and their common receptor, Nogo-66 receptor, was examined in hippocampal synaptosomes and Cornu ammonis area (CA)1, CA3 and dentate gyrus subregions derived from adult (12-13 months) and aged (26-28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n = 7-8) or aged cognitively impaired (n = 7-10) relative to adults (n = 5-7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that up-regulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline.
Collapse
Affiliation(s)
- Heather D. VanGuilder
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Georgina V. Bixler
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - William E. Sonntag
- Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1303, Oklahoma City OK 73104 USA
| | - Willard M. Freeman
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| |
Collapse
|
43
|
Peng X, Kim J, Zhou Z, Fink DJ, Mata M. Neuronal Nogo-A regulates glutamate receptor subunit expression in hippocampal neurons. J Neurochem 2011; 119:1183-93. [PMID: 21985178 DOI: 10.1111/j.1471-4159.2011.07520.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nogo-A and its cognate receptor NogoR1 (NgR1) are both expressed in neurons. To explore the function of these proteins in neurons of the CNS, we carried out a series of studies using postnatal hippocampal neurons in culture. Interfering with the binding of Nogo-A to NgR1 either by adding truncated soluble fragment of NgR1 (NgSR) or by reducing NgR1 protein with a specific siRNA, resulted in a marked reduction in Nogo-A expression. Inhibition of Rho-ROCK or MEK-MAPK signaling resulted in a similar reduction in neuronal Nogo-A mRNA and protein. Reducing Nogo-A protein levels by siRNA resulted in an increase in the post-synaptic scaffolding protein PSD95, as well as increases in GluA1/GluA2 AMPA receptor and GluN1/GluN2A/GluN2B NMDA glutamate receptor subunits. siRNA treatment to reduce Nogo-A resulted in phosphorylation of mTOR; addition of rapamycin to block mTOR signaling prevented the up-regulation in glutamate receptor subunits. siRNA reduction of NgR1 resulted in increased expression of the same glutamate receptor subunits. Taken together the results suggest that transcription and translation of Nogo-A in hippocampal neurons is regulated by a signaling through NgR1, and that interactions between neuronal Nogo-A and NgR1 regulate glutamatergic transmission by altering NMDA and AMPA receptor levels through an rapamycin-sensitive mTOR-dependent translation mechanism.
Collapse
Affiliation(s)
- Xiangmin Peng
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
44
|
Zeng F, Lu JJ, Zhou XF, Wang YJ. Roles of p75NTR in the pathogenesis of Alzheimer's disease: A novel therapeutic target. Biochem Pharmacol 2011; 82:1500-9. [DOI: 10.1016/j.bcp.2011.06.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 12/17/2022]
|
45
|
The Expression Patterns of Nogo-A, Myelin Associated Glycoprotein and Oligodendrocyte Myelin Glycoprotein in the Retina After Ocular Hypertension. Neurochem Res 2011; 36:1955-61. [DOI: 10.1007/s11064-011-0518-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|
46
|
Llorens F, Gil V, del Río JA. Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration. FASEB J 2010; 25:463-75. [PMID: 21059749 DOI: 10.1096/fj.10-162792] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth, and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG, and OMgp, share two common neuronal receptors: NgR1, together with its coreceptors [p75(NTR), TROY, and Lingo-1]; and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes, such as development, neuronal homeostasis, plasticity, and neurodegeneration.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
47
|
Schwab ME. Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 2010; 11:799-811. [PMID: 21045861 DOI: 10.1038/nrn2936] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The membrane protein Nogo-A was initially characterized as a CNS-specific inhibitor of axonal regeneration. Recent studies have uncovered regulatory roles of Nogo proteins and their receptors--in precursor migration, neurite growth and branching in the developing nervous system--as well as a growth-restricting function during CNS maturation. The function of Nogo in the adult CNS is now understood to be that of a negative regulator of neuronal growth, leading to stabilization of the CNS wiring at the expense of extensive plastic rearrangements and regeneration after injury. In addition, Nogo proteins interact with various intracellular components and may have roles in the regulation of endoplasmic reticulum (ER) structure, processing of amyloid precursor protein and cell survival.
Collapse
Affiliation(s)
- Martin E Schwab
- University of Zurich and ETH, Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
48
|
Application of Mutant IDH1 Antibody to Differentiate Diffuse Glioma From Nonneoplastic Central Nervous System Lesions and Therapy-induced Changes. Am J Surg Pathol 2010; 34:1199-204. [DOI: 10.1097/pas.0b013e3181e7740d] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Ihara M, Polvikoski TM, Hall R, Slade JY, Perry RH, Oakley AE, Englund E, O’Brien JT, Ince PG, Kalaria RN. Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies. Acta Neuropathol 2010; 119:579-89. [PMID: 20091409 PMCID: PMC2849937 DOI: 10.1007/s00401-009-0635-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 12/24/2009] [Accepted: 12/25/2009] [Indexed: 12/13/2022]
Abstract
The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer’s disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density. Serial adjacent sections were then immunostained for degraded myelin basic protein (dMBP) and the mean percentage area containing dMBP (%dMBP) was determined as an indicator of myelin degeneration. We further assessed the relationship between dMBP and glutathione S-transferase (a marker of mature oligodendrocytes) immunoreactivities. Pathological diagnosis significantly affected the frontal but not temporal lobe myelin attenuation: myelin density was most reduced in VaD compared to AD and DLB, which still significantly exhibited lower myelin density compared to ageing controls. Consistent with this, the degree of myelin loss was correlated with greater %dMBP, with the highest %dMBP in VaD compared to the other groups. The %dMBP was inversely correlated with the mean size of oligodendrocytes in VaD, whereas it was positively correlated with their density in AD. A two-tier regression model analysis confirmed that the type of disorder (VaD or AD) determines the relationship between %dMBP and the size or density of oligodendrocytes across the cases. Our findings, attested by the use of three markers, suggest that myelin loss may evolve in parallel with shrunken oligodendrocytes in VaD but their increased density in AD, highlighting partially different mechanisms are associated with myelin degeneration, which could originate from hypoxic–ischaemic damage to oligodendrocytes in VaD whereas secondary to axonal degeneration in AD.
Collapse
|
50
|
Gil V, Bichler Z, Lee JK, Seira O, Llorens F, Bribian A, Morales R, Claverol-Tinture E, Soriano E, Sumoy L, Zheng B, Del Río JA. Developmental expression of the oligodendrocyte myelin glycoprotein in the mouse telencephalon. ACTA ACUST UNITED AC 2009; 20:1769-79. [PMID: 19892785 DOI: 10.1093/cercor/bhp246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona E-08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|