1
|
Saha P, Saha R, Datta Chaudhuri R, Sarkar R, Sarkar M, Koley H, Chawla-Sarkar M. Unveiling the Antiviral Potential of Minocycline: Modulation of Nuclear Export of Viral Ribonuclear Proteins during Influenza Virus Infection. Viruses 2024; 16:1317. [PMID: 39205291 PMCID: PMC11359333 DOI: 10.3390/v16081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Influenza A virus (IAV) poses a global threat worldwide causing pandemics, epidemics, and seasonal outbreaks. Annual modification of vaccines is costly due to continual shifts in circulating genotypes, leading to inadequate coverage in low- and middle-income countries like India. Additionally, IAVs are evolving resistance to approved antivirals, necessitating a search for alternative treatments. In this study, the antiviral role of the FDA-approved antibiotic minocycline against IAV strains was evaluated in vitro and in vivo by quantifying viral gene expression by qRT-PCR, viral protein levels by Western blotting, and viral titers. Our findings demonstrate that minocycline at a non-toxic dose effectively inhibits IAV replication, regardless of viral strain or cell line. Its antiviral mechanism operates independently of interferon signaling by targeting the MEK/ERK signaling pathway, which is crucial for the export of viral ribonucleoproteins (vRNPs). Minocycline prevents the assembly and release of infectious viral particles by causing the accumulation of vRNPs within the nucleus. Moreover, minocycline also inhibits IAV-induced late-stage apoptosis, further suppressing viral propagation. The antiviral activity of minocycline against IAVs could offer a promising solution amidst the challenges posed by influenza and the limitations of current treatments.
Collapse
Affiliation(s)
- Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ritubrita Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ratul Datta Chaudhuri
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Mehuli Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| |
Collapse
|
2
|
Phelps AL, Salguero FJ, Hunter L, Stoll AL, Jenner DC, O’Brien LM, Williamson ED, Lever MS, Laws TR. Tumour Necrosis Factor-α, Chemokines, and Leukocyte Infiltrate Are Biomarkers for Pathology in the Brains of Venezuelan Equine Encephalitis (VEEV)-Infected Mice. Viruses 2023; 15:1307. [PMID: 37376607 PMCID: PMC10302690 DOI: 10.3390/v15061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.
Collapse
Affiliation(s)
- Amanda L. Phelps
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - Laura Hunter
- UK Health Security Agency, Salisbury SP4 0JG, UK
| | | | | | - Lyn M. O’Brien
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - M. Stephen Lever
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| |
Collapse
|
3
|
Abdulaziz L, Elhadi E, Abdallah EA, Alnoor FA, Yousef BA. Antiviral Activity of Approved Antibacterial, Antifungal, Antiprotozoal and Anthelmintic Drugs: Chances for Drug Repurposing for Antiviral Drug Discovery. J Exp Pharmacol 2022; 14:97-115. [PMID: 35299994 PMCID: PMC8922315 DOI: 10.2147/jep.s346006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing process aims to identify new uses for the existing drugs to overcome traditional de novo drug discovery and development challenges. At the same time, as viral infections became a serious threat to humans and the viral organism itself has a high ability to mutate genetically, and due to serious adverse effects that result from antiviral drugs, there are crucial needs for the discovery of new antiviral drugs, and to identify new antiviral effects for the exciting approved drugs towards different types of viral infections depending on the observed antiviral activity in preclinical studies or clinical findings is one of the approaches to counter the viral infections problems. This narrative review article summarized mainly the published preclinical studies that evaluated the antiviral activity of drugs that are approved and used mainly as antibacterial, antifungal, antiprotozoal, and anthelmintic drugs, and the preclinical studies included the in silico, in vitro, and in vivo findings, additionally some clinical observations were also included while trying to relate them to the preclinical findings. Finally, the structure used for writing about the antiviral activity of the drugs was according to the families of the viruses used in the studies to form a better image for the target of antiviral activity of different drugs in the different kinds of viruses and to relate between the antiviral activity of the drugs against different strains of viruses within the same viral family.
Collapse
Affiliation(s)
- Leena Abdulaziz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
| | - Esraa Elhadi
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Ejlal A Abdallah
- Department of Pharmacology and Pharmacy Practice, Faculty of Pharmacy, Sudan University of Science and Technology, Khartoum, 11111, Sudan
| | - Fadlalbaseer A Alnoor
- Department of Pharmacology, Faculty of Pharmacy, National University, Khartoum, 11111, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
- Correspondence: Bashir A Yousef, Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum, 11111, Sudan, Tel +249 912932418, Fax +249 183780696, Email
| |
Collapse
|
4
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
5
|
Kulprasertsri S, Aoshima K, Kobayashi A, Kimura T. Minocycline prevents primary duck neurons from duck Tembusu virus-induced death. J Vet Med Sci 2021; 83:734-741. [PMID: 33716232 PMCID: PMC8111341 DOI: 10.1292/jvms.20-0735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Duck Tembusu virus (DTMUV), a neurotropic flavivirus, is a causative agent of severe
neurological diseases in different birds. No approved vaccines or antiviral therapeutic
treatments are available to date. The poultry industry experiences significant economic
losses due to DTMUV infections. Minocycline is a second-generation semi-synthetic
tetracycline analogue that is commonly used as an antimicrobial treatment. Experimental
studies have indicated the successful protective effects of minocycline against neuronal
cell death from neurodegenerative diseases and viral encephalitis. The aim of this study
was to investigate the effects of minocycline on DTMUV infection in neurons. Primary duck
neurons were treated with minocycline, which exhibited neuroprotective effects via
anti-apoptotic function rather than through viral replication inhibition. Minocycline
might serve as a potential effective drug in DTMUV infection.
Collapse
Affiliation(s)
- Sittinee Kulprasertsri
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
6
|
Abstract
Tetracyclines have been used to treat many bacterial infections. The use of these antibiotics for the treatment of viral diseases dates to the 1960s to 1970s. Over the decades, the effect of tetracyclines on the pathogenesis of viral infections has been demonstrated both clinically and experimentally. Tetracyclines can act on viral infections either through their antibacterial properties or through direct antiviral action. This review focuses on clinical and experimental data that support the use of tetracycline in treating viral infections and highlights an important approach to slowing disease progression during viral infections. Tetracycline treatment might represent a strategy for eliminating the infection or inhibiting the progression of COVID-19.
Collapse
|
7
|
Swaroop S, Mahadevan A, Shankar SK, Adlakha YK, Basu A. HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway. J Neuroinflammation 2018; 15:177. [PMID: 29885667 PMCID: PMC5994257 DOI: 10.1186/s12974-018-1214-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin-1β (IL-1β) is one of the most important cytokine secreted by activated microglia as it orchestrates the vicious cycle of inflammation by inducing the expression of various other pro-inflammatory cytokines along with its own production. Microglia-mediated IL-1β production is a tightly regulated mechanism which involves the activation of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome pathway. Our previous study suggests the critical role of heat shock protein 60 (HSP60) in IL-1β-induced inflammation in microglia through TLR4-p38 MAPK axis. However, whether HSP60 regulates endogenous IL-1β production is not known. Therefore, to probe the underlying mechanism, we elucidate the role of HSP60 in endogenous IL-1β production. Methods We used in vitro (N9 murine microglial cells) and in vivo (BALB/c mouse) models for our study. HSP60 overexpression and knockdown experiment was done to elucidate the role of HSP60 in endogenous IL-1β production by microglia. Western blotting and quantitative real-time PCR was performed using N9 cells and BALB/c mice brain, to analyze various proteins and transcript levels. Reactive oxygen species levels and mitochondrial membrane depolarization in N9 cells were analyzed by flow cytometry. We also performed caspase-1 activity assay and enzyme-linked immunosorbent assay to assess caspase-1 activity and IL-1β production, respectively. Results HSP60 induces the phosphorylation and nuclear localization of NF-κB both in vitro and in vivo. It also induces perturbation in mitochondrial membrane potential and enhances reactive oxygen species (ROS) generation in microglia. HSP60 further activates NLRP3 inflammasome by elevating NLRP3 expression both at RNA and protein levels. Furthermore, HSP60 enhances caspase-1 activity and increases IL-1β secretion by microglia. Knockdown of HSP60 reduces the IL-1β-induced production of IL-1β both in vitro and in vivo. Also, we have shown for the first time that knockdown of HSP60 leads to decreased IL-1β production during Japanese encephalitis virus (JEV) infection, which eventually leads to decreased inflammation and increased survival of JEV-infected mice. Conclusion HSP60 mediates microglial IL-1β production by regulating NLRP3 inflammasome pathway and reduction of HSP60 leads to reduction of inflammation in JEV infection. Electronic supplementary material The online version of this article (10.1186/s12974-018-1214-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shalini Swaroop
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Yogita K Adlakha
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
8
|
Blakely PK, Huber AK, Irani DN. Type-1 angiotensin receptor signaling in central nervous system myeloid cells is pathogenic during fatal alphavirus encephalitis in mice. J Neuroinflammation 2016; 13:196. [PMID: 27562117 PMCID: PMC5000512 DOI: 10.1186/s12974-016-0683-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/18/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. METHODS Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. RESULTS The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. CONCLUSIONS Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.
Collapse
Affiliation(s)
- Pennelope K Blakely
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
9
|
Huang HZ, Wen XH, Liu H. Sex differences in brain MRI abnormalities and neurodevelopmental outcomes in a rat model of neonatal hypoxia-ischemia. Int J Neurosci 2015; 126:647-57. [DOI: 10.3109/00207454.2015.1047016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Nagarakanti S, Bishburg E. Is Minocycline an Antiviral Agent? A Review of Current Literature. Basic Clin Pharmacol Toxicol 2015; 118:4-8. [PMID: 26177421 DOI: 10.1111/bcpt.12444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
Minocycline is a second-generation semi-synthetic derivative of tetracycline and has well-known anti-bacterial effects. The drug possesses anti-inflammatory, anti-oxidant, anti-apoptotic and immunomodulatory effects. The drug is widely used in bacterial infections and non-infectious conditions such as acne, dermatitis, periodontitis and neurodegenerative conditions. Minocycline was shown to have antiviral activity in vitro and also against different viruses in some animal models. Some studies have been done on human patients infected with Human Immunodeficiency Virus. We have review the available data regarding minocycline activity as an antiviral agent.
Collapse
|
11
|
Vanheusden M, Stinissen P, ’t Hart BA, Hellings N. Cytomegalovirus: a culprit or protector in multiple sclerosis? Trends Mol Med 2015; 21:16-23. [DOI: 10.1016/j.molmed.2014.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
|
12
|
Blakely PK, Delekta PC, Miller DJ, Irani DN. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development. J Neurovirol 2014; 21:43-55. [PMID: 25361697 DOI: 10.1007/s13365-014-0297-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022]
Abstract
While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular, that age, gender, and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery.
Collapse
MESH Headings
- Administration, Intranasal
- Alphavirus Infections/pathology
- Alphavirus Infections/virology
- Animals
- Behavior, Animal
- Cognition
- Disease Models, Animal
- Encephalitis Virus, Western Equine/pathogenicity
- Encephalitis Virus, Western Equine/physiology
- Host Specificity
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- RNA, Viral/blood
- Seizures/pathology
- Seizures/virology
- Species Specificity
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- Pennelope K Blakely
- Department of Neurology, University of Michigan Medical School, 4007 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | | | | | | |
Collapse
|
13
|
Das T, Hoarau JJ, Bandjee MCJ, Maquart M, Gasque P. Multifaceted innate immune responses engaged by astrocytes, microglia and resident dendritic cells against Chikungunya neuroinfection. J Gen Virol 2014; 96:294-310. [PMID: 25351727 DOI: 10.1099/vir.0.071175-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chikungunya virus (CHIKV) has recently affected millions of people in the Indian Ocean, with rare cases of encephalopathy and encephalitis occurring in neonates. In the study described herein, the capacity of mouse brain cells to control infection through innate immune antiviral responses was assessed. In vitro, CHIKV principally infected a subpopulation of mouse GFAP+ primary astrocytes. Oligodendrocytes and neurons could also be infected. An innate immune response was engaged by CHIKV-infected astrocytes with elevated expression of mRNAs for IFN-α-β, inflammatory cytokines (e.g. IL-1β, IL-12, IL-10, IL-24) and proapoptotic factors (e.g. TNF-α, FasL, Lymphotoxin B). Programmed cell death through the intrinsic caspase-9 pathway was observed by immunofluorescence in infected astrocytes and neurons but not in oligodendrocytes. Interestingly, microglia did not replicate CHIKV but responded by elevated mitogen-activated protein kinase (MAPK) activity. Intracerebroventricular injection of CHIKV in neonate mice led to the infection of astrocytes. The astrogliosis response was accompanied by a dendritic CD206+ cell mobilization restricted to the site of infection. The results of this study support the paradigm that a multifaceted innate immune response can be mobilized by both professional immune and glial cells to control CHIKV neuroinfection events in neonates.
Collapse
Affiliation(s)
- Trina Das
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Jean Jacques Hoarau
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Marie Christine Jaffar Bandjee
- Virology laboratory, CHU Félix Guyon of la Réunion, St Denis, Reunion Island.,Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Marianne Maquart
- CIRAD and CYROI, St Denis, Reunion Island.,CRVOI, St Denis, Reunion Island
| | - Philippe Gasque
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| |
Collapse
|
14
|
Esen N, Rainey-Barger EK, Huber AK, Blakely PK, Irani DN. Type-I interferons suppress microglial production of the lymphoid chemokine, CXCL13. Glia 2014; 62:1452-62. [PMID: 24829092 PMCID: PMC4143141 DOI: 10.1002/glia.22692] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/23/2022]
Abstract
Lymphoid chemokines are crucial for the development and maintenance of lymphoid organs, but their ectopic expression in non-lymphoid tissues is implicated in both local response to infection and chronic organ-specific autoimmunity. Production of one such chemokine, C-X-C motif ligand 13 (CXCL13), within the central nervous system (CNS) has been linked to the pathogenesis of multiple sclerosis (MS), although little is known about factors controlling its expression in different neural cell types and across a range of disease states. We provoked acute neuroinflammation in experimental animals without causing any associated demyelination using neuroadapted Sindbis virus (NSV) to better understand the sources and regulators of this chemokine in the CNS. We found that mice genetically deficient in the transcription factor, interferon (IFN) regulatory factor-7 (IRF7), made significantly higher CXCL13 protein levels in the CNS compared with wild-type (WT) controls. Microglia proved to be the main producer of CXCL13 in the brain during infection of both WT and IRF7−/− mice, and primary microglia cultured in vitro generated CXCL13 following stimulation with either virus particles or synthetic Toll-like receptor (TLR) ligands. Microglia cultured from IRF7−/− mice selectively overproduced CXCL13, and manipulation of extracellular type-I IFN levels demonstrated the existence of a negative feedback loop whereby type-I IFN receptor signaling specifically suppressed microglial CXCL13 release. Since IFN-β is used to treat patients with relapsing-remitting MS and yet acts through unknown mechanisms, we speculate that suppressed lymphoid chemokine production by microglia could contribute to its therapeutic effects.
Collapse
Affiliation(s)
- Nilufer Esen
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
15
|
Nath A, Tyler KL. Novel approaches and challenges to treatment of central nervous system viral infections. Ann Neurol 2013; 74:412-22. [PMID: 23913580 PMCID: PMC4052367 DOI: 10.1002/ana.23988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Existing and emerging viral central nervous system (CNS) infections are major sources of human morbidity and mortality. Treatments of proven efficacy are currently limited predominantly to herpesviruses and human immunodeficiency virus (HIV). Development of new therapies has been hampered by the lack of appropriate animal model systems for some important viruses and by the difficulty in conducting human clinical trials for diseases that may be rare, or in the case of arboviral infections, often have variable seasonal and geographic incidence. Nonetheless, many novel approaches to antiviral therapy are available, including candidate thiazolide and pyrazinecarboxamide derivatives with potential broad‐spectrum antiviral efficacy. New herpesvirus drugs include viral helicase‐primase and terminase inhibitors. The use of antisense oligonucleotides and other strategies to interfere with viral RNA translation has shown efficacy in experimental models of CNS viral disease. Identifying specific molecular targets within viral replication cycles has led to many existing antiviral agents and will undoubtedly continue to be the basis of future drug design. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses. Toll‐like receptor agonists and drugs that inhibit specific cytokines as well as interferon preparations have all shown potential therapeutic efficacy. Passive transfer of virus‐specific cytotoxic T lymphocytes has been used in humans and may provide an effective therapy for some herpesvirus infections and potentially for progressive multifocal leukoencephalopathy. Humanized monoclonal antibodies directed against specific viral proteins have been developed and in several cases evaluated in humans in settings including West Nile virus and HIV infection and in pre‐exposure prophylaxis for rabies. Ann Neurol 2013;74:412–422
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous Systems, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
16
|
Lundberg L, Pinkham C, Baer A, Amaya M, Narayanan A, Wagstaff KM, Jans DA, Kehn-Hall K. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res 2013; 100:662-72. [PMID: 24161512 DOI: 10.1016/j.antiviral.2013.10.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Targeting host responses to invading viruses has been the focus of recent antiviral research. Venezuelan Equine Encephalitis Virus (VEEV) is able to modulate host transcription and block nuclear trafficking at least partially due to its capsid protein forming a complex with the host proteins importin α/β1 and CRM1. We hypothesized that disrupting the interaction of capsid with importin α/β1 or the interaction of capsid with CRM1 would alter capsid localization, thereby lowering viral titers in vitro. siRNA mediated knockdown of importin α, importin β1, and CRM1 altered capsid localization, confirming their role in modulating capsid trafficking. Mifepristone and ivermectin, inhibitors of importin α/β-mediated import, were able to reduce nuclear-associated capsid, while leptomycin B, a potent CRM1 inhibitor, confined capsid to the nucleus. In addition to altering the level and distribution of capsid, the three inhibitors were able to reduce viral titers in a relevant mammalian cell line with varying degrees of efficacy. The inhibitors were also able to reduce the cytopathic effects associated with VEEV infection, hinting that nuclear import inhibitors may be protecting cells from apoptosis in addition to disrupting the function of an essential viral protein. Our results confirm that VEEV uses host importins and exportins during part of its life cycle. Further, it suggests that temporarily targeting host proteins that are hijacked for use by viruses is a viable antiviral therapy.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rainey-Barger EK, Blakely PK, Huber AK, Segal BM, Irani DN. Virus-induced CD8+ T cells accelerate the onset of experimental autoimmune encephalomyelitis: implications for how viral infections might trigger multiple sclerosis exacerbations. J Neuroimmunol 2013; 259:47-54. [PMID: 23602715 DOI: 10.1016/j.jneuroim.2013.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
Viral infections can exacerbate multiple sclerosis (MS) through poorly defined mechanisms. We developed an experimental system whereby infection with an asymptomatic neurotropic alphavirus caused a transient acceleration of experimental autoimmune encephalomyelitis (EAE) without altering the expansion or differentiation of autoreactive CD4+ T cells. Instead, this effect on the clinical course of EAE depended on CD8+ T cells that neither participate in viral clearance nor induce neuropathology in infected mice without EAE. Our system should be useful to further unravel how certain viral infections trigger MS exacerbations and to understand how CD8+ T cells can exert pathogenic effects within active demyelinating lesions.
Collapse
Affiliation(s)
- Emily K Rainey-Barger
- Department of Neurology, University of Michigan Medical School, 4007 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| | | | | | | | | |
Collapse
|
18
|
Is minocycline useful for therapy of acute viral encephalitis? Antiviral Res 2012; 95:242-4. [DOI: 10.1016/j.antiviral.2012.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/27/2023]
|
19
|
Complexity of the microglial activation pathways that drive innate host responses during lethal alphavirus encephalitis in mice. ASN Neuro 2012; 4:207-21. [PMID: 22471445 PMCID: PMC3342594 DOI: 10.1042/an20120016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microglia express multiple TLRs (Toll-like receptors) and provide important host defence against viruses that invade the CNS (central nervous system). Although prior studies show these cells become activated during experimental alphavirus encephalitis in mice to generate cytokines and chemokines that influence virus replication, tissue inflammation and neuronal survival, the specific PRRs (pattern recognition receptors) and signalling intermediates controlling microglial activation in this setting remain unknown. To investigate these questions directly in vivo, mice ablated of specific TLR signalling molecules were challenged with NSV (neuroadapted Sindbis virus) and CNS viral titres, inflammatory responses and clinical outcomes followed over time. To approach this problem specifically in microglia, the effects of NSV on primary cells derived from the brains of wild-type and mutant animals were characterized in vitro. From the standpoint of the virus, microglial activation required viral uncoating and an intact viral genome; inactivated virus particles did not elicit measurable microglial responses. At the level of the target cell, NSV triggered multiple PRRs in microglia to produce a broad range of inflammatory mediators via non-overlapping signalling pathways. In vivo, disease survival was surprisingly independent of TLR-driven responses, but still required production of type-I IFN (interferon) to control CNS virus replication. Interestingly, the ER (endoplasmic reticulum) protein UNC93b1 facilitated host survival independent of its known effects on endosomal TLR signalling. Taken together, these data show that alphaviruses activate microglia via multiple PRRs, highlighting the complexity of the signalling networks by which CNS host responses are elicited by these infections.
Collapse
|
20
|
Sindac JA, Yestrepsky BD, Barraza SJ, Bolduc KL, Blakely PK, Keep RF, Irani DN, Miller DJ, Larsen SD. Novel inhibitors of neurotropic alphavirus replication that improve host survival in a mouse model of acute viral encephalitis. J Med Chem 2012; 55:3535-45. [PMID: 22428985 DOI: 10.1021/jm300214e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arboviral encephalitis is a potentially devastating human disease with no approved therapies that target virus replication. We previously discovered a novel class of thieno[3,2-b]pyrrole-based inhibitors active against neurotropic alphaviruses such as western equine encephalitis virus (WEEV) in cultured cells. In this report, we describe initial development of these novel antiviral compounds, including bioisosteric replacement of the 4H-thieno[3,2-b]pyrrole core with indole to improve metabolic stability and the introduction of chirality to assess target enantioselectivity. Selected modifications enhanced antiviral activity while maintaining low cytotoxicity, increased stability to microsomal metabolism, and also revealed striking enantiospecific activity in cultured cells. Furthermore, we demonstrate improved outcomes (both symptoms and survival) following treatment with indole analogue 9h (CCG-203926) in an in vivo mouse model of alphaviral encephalitis that closely correlate with the enantiospecific in vitro antiviral activity. These results represent a substantial advancement in the early preclinical development of a promising class of novel antiviral drugs against virulent neurotropic alphaviruses.
Collapse
Affiliation(s)
- Janice A Sindac
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dutta K, Basu A. Use of minocycline in viral infections. Indian J Med Res 2011; 133:467-70. [PMID: 21623029 PMCID: PMC3121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repurposing of old drugs is a useful concept as it helps to minimize costs associated with the research and development of a new drug. Minocycline, a common second generation antibiotic, has been shown to possess several other beneficial effects other than its intended uses. The antiviral role of minocycline has generated considerable interest from the last decade. It was first shown to be beneficial in preventing human immunodeficiency virus (HIV) infections and later it was reported to improve cognitive deficiencies associate with neuroAIDS. However, its antiviral efficacies are not limited to retroviruses alone. In animal models or in vitro systems of flaviviral infections (especially Japanese encephalitis virus), minocycline has been shown to be highly effective. However, not all effects are based on direct inhibition of viral replication. The general anti-inflammatory and immunomodulatory properties of minocycline are also responsible in part, in imparting the protective effects. Owing to the fact that minocycline is well tolerated by most people and that the drug has nearly 40 years history of usage, it is an exciting prospect to try out in other viral infections.
Collapse
Affiliation(s)
- Kallol Dutta
- National Brain Research Centre, Manesar; Haryana, India
| | - Anirban Basu
- National Brain Research Centre, Manesar; Haryana, India,Reprint requests: Dr Anirban Basu, National Brain Research Centre, Manesar, Haryana 122 050, India e-mail:
| |
Collapse
|
22
|
Kumar M, Verma S, Nerurkar VR. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J Neuroinflammation 2010; 7:73. [PMID: 21034511 PMCID: PMC2984415 DOI: 10.1186/1742-2094-7-73] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/31/2010] [Indexed: 12/20/2022] Open
Abstract
Background WNV-associated encephalitis (WNVE) is characterized by increased production of pro-inflammatory mediators, glial cells activation and eventual loss of neurons. WNV infection of neurons is rapidly progressive and destructive whereas infection of non-neuronal brain cells is limited. However, the role of neurons and pathological consequences of pro-inflammatory cytokines released as a result of WNV infection is unclear. Therefore, the objective of this study was to examine the role of key cytokines secreted by WNV-infected neurons in mediating neuroinflammatory markers and neuronal death. Methods A transformed human neuroblastoma cell line, SK-N-SH, was infected with WNV at multiplicity of infection (MOI)-1 and -5, and WNV replication kinetics and expression profile of key pro-inflammatory cytokines were analyzed by plaque assay, qRT-PCR, and ELISA. Cell death was measured in SK-N-SH cell line in the presence and absence of neutralizing antibodies against key pro-inflammatory cytokines using cell viability assay, TUNEL and flow cytometry. Further, naïve primary astrocytes were treated with UV-inactivated supernatant from mock- and WNV-infected SK-N-SH cell line and the activation of astrocytes was measured using flow cytometry and ELISA. Results WNV-infected SK-N-SH cells induced the expression of IL-1β, -6, -8, and TNF-α in a dose- and time-dependent manner, which coincided with increase in virus-induced cell death. Treatment of cells with anti-IL-1β or -TNF-α resulted in significant reduction of the neurotoxic effects of WNV. Furthermore treatment of naïve astrocytes with UV-inactivated supernatant from WNV-infected SK-N-SH cell line increased expression of glial fibrillary acidic protein and key inflammatory cytokines. Conclusion Our results for the first time suggest that neurons are one of the potential sources of pro-inflammatory cytokines in WNV-infected brain and these neuron-derived cytokines contribute to WNV-induced neurotoxicity. Moreover, cytokines released from neurons also mediate the activation of astrocytes. Our data define specific role(s) of WNV-induced pro-inflammatory cytokines and provide a framework for the development of anti-inflammatory drugs as much-needed therapeutic interventions to limit symptoms associated with WNVE.
Collapse
Affiliation(s)
- Mukesh Kumar
- Retrovirology Research Laboratory, Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A, Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 325AA, Honolulu, Hawaii 96813, USA
| | | | | |
Collapse
|
23
|
Reichert E, Clase A, Bacetty A, Larsen J. Alphavirus antiviral drug development: scientific gap analysis and prospective research areas. Biosecur Bioterror 2010; 7:413-27. [PMID: 20028250 DOI: 10.1089/bsp.2009.0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The New World alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) pose a significant threat to human health as the etiological agents of serious viral encephalitis through natural infection as well as through their potential use as a biological weapon. At present, there is no FDA-approved medical treatment for infection with these viruses. The Defense Threat Reduction Agency, Joint Science and Technology Office for Chemical and Biological Defense (DTRA/JSTO), is currently funding research aimed at developing antiviral drugs and vaccines against VEEV, EEEV, and WEEV. A review of antiviral drug discovery efforts for these viruses revealed significant gaps in the data, assays, and models required for successful drug development. This review provides a description of these gaps and highlights specific critical research areas for the development of a target-based drug discovery program for the VEEV, EEEV, and WEEV nonstructural proteins. These efforts will increase the probability of the successful development of a pharmaceutical intervention against these viral threat agents.
Collapse
Affiliation(s)
- Erin Reichert
- Biological Therapeutics, Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060-6201, USA
| | | | | | | |
Collapse
|
24
|
Disrupted glutamate transporter expression in the spinal cord with acute flaccid paralysis caused by West Nile virus infection. J Neuropathol Exp Neurol 2009; 68:1061-72. [PMID: 19918118 DOI: 10.1097/nen.0b013e3181b8ba14] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuroinvasive West Nile virus (WNV) infections may cause acute flaccid paralysis (AFP); in fatal cases, anterior horn cell loss is presumed to be caused by direct viral infection. In related animal models, however, glutamate excitotoxicity mediates bystander injury of uninfected anterior horn cells, suggesting additional pathogenic mechanisms. We examined expression of the principal excitatory amino acid transporter (EAAT) of astrocytes (i.e. EAAT-2 in humans, glutamate transporter 1 in hamsters) in the spinal cord of human WNV-induced AFP patients and in hamsters with WNV-induced AFP by immunohistochemistry. Glial fibrillary acidic protein, synaptic and dendritic markers (i.e. synaptophysin, microtubule-associated protein 2), immune activation (HLA-DR), and viral antigens were also evaluated. Humans and hamsters with WNV-induced AFP had decreased spinal gray matter EAAT expression despite greater numbers of glial fibrillary acidic protein-positive astrocytes compared with controls. Areas of diminished EAAT expression showed reduced synaptic and dendritic protein expression and prominent local inflammation but few infected neurons. These findings suggest that WNV infection results in local immune activation within the spinal cord that in turn causes a failure of astrocyte glutamate reuptake even as the number of astrocytes increases; rising extracellular glutamate levels may then drive excitotoxic injury of both infected and uninfected anterior horn cells. The pathogenesis of this increasingly common disorder likely involves immune response and excitotoxicity mechanisms that are potential therapeutic targets.
Collapse
|
25
|
Galic M, Riazi K, Henderson A, Tsutsui S, Pittman Q. Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiol Dis 2009; 36:343-51. [PMID: 19660546 PMCID: PMC3526656 DOI: 10.1016/j.nbd.2009.07.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/26/2009] [Accepted: 07/29/2009] [Indexed: 11/26/2022] Open
Abstract
Viral infections of the CNS and their accompanying inflammation can cause long-term neurological effects, including increased risk for seizures. To examine the effects of CNS inflammation, we infused polyinosinic:polycytidylic acid, intracerebroventricularly to mimic a viral CNS infection in 14 day-old rats. This caused fever and an increase in the pro-inflammatory cytokine, interleukin (IL)-1beta in the brain. As young adults, these animals were more susceptible to lithium-pilocarpine and pentylenetetrazol-induced seizures and showed memory deficits in fear conditioning. Whereas there was no alteration in adult hippocampal cytokine levels, we found a marked increase in NMDA (NR2A and C) and AMPA (GluR1) glutamate receptor subunit mRNA expression. The increase in seizure susceptibility, glutamate receptor subunits, and hippocampal IL-1beta levels were suppressed by neonatal systemic minocycline. Thus, a novel model of viral CNS inflammation reveals pathophysiological relationships between brain cytokines, glutamate receptors, behaviour and seizures, which can be attenuated by anti-inflammatory agents like minocycline.
Collapse
Affiliation(s)
- M.A. Galic
- Epilepsy and Brain Circuits Program, Hotchkiss Brain Institute, Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - K. Riazi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - A.K. Henderson
- Epilepsy and Brain Circuits Program, Hotchkiss Brain Institute, Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - S. Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Q.J. Pittman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Orr AG, Sharma A, Binder NB, Miller AH, Pearce BD. Interleukin-1 Mediates Long-Term Hippocampal Dentate Granule Cell Loss Following Postnatal Viral Infection. J Mol Neurosci 2009; 41:89-96. [DOI: 10.1007/s12031-009-9293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 09/09/2009] [Indexed: 12/23/2022]
|
27
|
Novel Therapeutics Against West Nile Virus. WEST NILE ENCEPHALITIS VIRUS INFECTION 2009. [PMCID: PMC7122128 DOI: 10.1007/978-0-387-79840-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
No effective therapy is currently available for clinical treatment of flavivirus infections. Recent advances in the structural and molecular biology of flaviviruses have provided new opportunities for the development of antiviral therapies. This chapter summarizes the current status of West Nile virus (WNV) therapeutics. First, strategies for identifying and characterizing small molecular inhibitors are reviewed. These strategies include structure-based rational design, biochemical enzyme-based screening, and reverse genetic system-based screening. Second, known WNV inhibitors are summarized. Both small and macromolecular inhibitors have been identified to inhibit WNV. The macromolecular inhibitors include WNV antibodies, interferon, and nucleic acid-based agents (i.e., antisense oligomer and siRNA). Since the antibody-based therapy is reviewed elsewhere in this book, this chapter emphasizes the nonantibody macromolecular and small molecular inhibitors. Finally, new potential antiviral targets and issues related to WNV therapeutics are discussed.
Collapse
|
28
|
Abstract
Meningitis and myelitis represent common and very infrequent viral infections of the central nervous system, respectively. The number of cases of viral meningitis that occurs annually exceeds the total number of meningitis cases caused by all other etiologies combined. Focal central nervous system infections, such as occur in the spinal cord with viral myelitis, are much less common and may be confused with noninfectious disorders that cause acute flaccid paralysis. This article reviews some of the important clinical features, epidemiology, diagnostic approaches, and management strategies for patients with aseptic meningitis and viral myelitis. Particular focus is placed on the diseases caused by enteroviruses, which as a group account for most aseptic meningitis cases and many focal infections of the spinal cord.
Collapse
Affiliation(s)
- David N Irani
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology, University of Michigan Medical School, BSRB Room 4007, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
29
|
Prow NA, Irani DN. The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 2008; 105:1276-86. [PMID: 18194440 PMCID: PMC2579753 DOI: 10.1111/j.1471-4159.2008.05230.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1beta release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1beta and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1beta-deficient animals. Together, these data show that IL-1beta inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date.
Collapse
Affiliation(s)
- Natalie A Prow
- Department of Microbiology and Parasitology, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
30
|
Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci U S A 2008; 105:3575-80. [PMID: 18296635 DOI: 10.1073/pnas.0712390105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuronal cell death during fatal acute viral encephalomyelitis can result from damage caused by virus replication, glutamate excitotoxicity, and the immune response. A neurovirulent strain of the alphavirus Sindbis virus (NSV) causes fatal encephalomyelitis associated with motor neuron death in adult C57BL/6 mice that can be prevented by treatment with the prototypic noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor antagonist GYKI 52466 [Nargi-Aizenman J, et al. (2004) Ann Neurol 55:541-549]. To determine the mechanism of protection, NSV-infected mice were treated with 7-acetyl-5-(4-aminophenyl)-8(R)-methyl-8,9-dihydro-7H-1,3-dioxolo-(4,5-h)-benzodiazepine (talampanel), a potent, orally available member of the 2,3 benzodiazepine class of noncompetitive AMPA glutamate receptor antagonists. Talampanel-treated mice were protected from NSV-induced paralysis and death. Examination of the brain during infection showed significantly less mononuclear cell infiltration and no increase in astrocyte expression of glial fibrillary acidic protein in treated mice compared with untreated mice. Lack of CNS inflammation was attributable to failure of treated mice to induce activation and proliferation of lymphocytes in secondary lymphoid tissue in response to infection. Antibody responses to NSV were also suppressed by talampanel treatment, and virus clearance was delayed. These studies reveal a previously unrecognized effect of AMPA receptor antagonists on the immune response and suggest that prevention of immune-mediated damage, in addition to inhibition of excitotoxicity, is a mechanism by which these drugs protect from death of motor neurons caused by viral infection.
Collapse
|
31
|
Mishra MK, Basu A. Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J Neurochem 2008; 105:1582-95. [PMID: 18208541 DOI: 10.1111/j.1471-4159.2008.05238.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Minocycline is broadly protective in neurological disease models featuring inflammation and cell death and is being evaluated in clinical trials. Japanese encephalitis virus (JEV) is one of the most important causes of viral encephalitis worldwide. There is no specific treatment for Japanese encephalitis (JE) and no effective antiviral drugs have been discovered. Studies indicate that JE involves profound neuronal loss as well as secondary inflammation caused because of cell death. Minocycline is a semisynthetic second-generation tetracycline that exerts anti-inflammatory and antiapoptotic effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against experimental model of JE. Intravenous inoculation of GP78 strain of JEV in adult mice results in lethal encephalitis and caused primarily because of neuronal death and secondary inflammation caused because of cell death. Minocycline confers complete protection in mice following JEV infection (p < 0.0001). Neuronal apoptosis, microglial activation, active caspase activity, proinflammatory mediators, and viral titer were markedly decreased in minocycline-treated JEV infected mice on ninth day post-infection. Treatment with minocycline may act directly on brain cells, because neuronal cell line Neuro2a were also salvaged from JEV-induced death. Our data suggest that minocycline may be a candidate to consider in human clinical trials for JE patients.
Collapse
|