1
|
Mohamad Yusoff F, Higashi Y. Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells 2023; 12:2162. [PMID: 37681894 PMCID: PMC10486439 DOI: 10.3390/cells12172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known to possess medicinal properties to facilitate vascular regeneration. Recent advances in the understanding of the utilities of MSCs in physiological/pathological tissue repair and technologies in isolation, expansion, and enhancement strategies have led to the use of MSCs for vascular disease-related treatments. Various conditions, including chronic arterial occlusive disease, diabetic ulcers, and chronic wounds, cause significant morbidity in patients. Therapeutic angiogenesis by cell therapy has led to the possibilities of treatment options in promoting angiogenesis, treating chronic wounds, and improving amputation-free survival. Current perspectives on the options for the use of MSCs for therapeutic angiogenesis in vascular research and in medicine, either as a monotherapy or in combination with conventional interventions, for treating patients with peripheral artery diseases are discussed in this review.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
2
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
3
|
Li Q, Michaud M, Shankar R, Canosa S, Schwartz M, Madri JA. MMP-2: A modulator of neuronal precursor activity and cognitive and motor behaviors. Behav Brain Res 2017; 333:74-82. [DOI: 10.1016/j.bbr.2017.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
4
|
Arrigo M, Truong QA, Onat D, Szymonifka J, Gayat E, Tolppanen H, Sadoune M, Demmer RT, Wong KY, Launay JM, Samuel JL, Cohen-Solal A, Januzzi JL, Singh JP, Colombo PC, Mebazaa A. Soluble CD146 Is a Novel Marker of Systemic Congestion in Heart Failure Patients: An Experimental Mechanistic and Transcardiac Clinical Study. Clin Chem 2017; 63:386-393. [DOI: 10.1373/clinchem.2016.260471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Abstract
BACKGROUND
Soluble CD146 (sCD146), is an endothelial marker with similar diagnostic power as natriuretic peptides in decompensated heart failure (HF). While natriuretic peptides are released by the failing heart, sCD146 may be released by veins in response to stretch induced by systemic congestion in HF. This study investigated the source, effects of vascular stress on release and prognostic properties of sCD146 in HF.
METHODS
In a peripheral venous stress study, plasma concentrations of sCD146 and N-terminal probrain natriuretic-peptide (NT-proBNP) were measured in 44 HF patients at baseline and after 90 min of unilateral forearm venous congestion. In addition, sCD146 and NT-proBNP were measured in peripheral vein (PV) and coronary sinus (CS) blood samples of 137 HF patients and the transcardiac gradient was calculated. Those patients were followed for major adverse cardiovascular events (MACE) during 2 years.
RESULTS
The induction of venous stress was associated with a pronounced increase in circulating concentrations of sCD146 in the congested arm (+60 μg/L) compared to the control arm (+16 μg/L, P = 0.025), while no difference in NT-proBNP concentrations was seen. In contrast to positive transcardiac gradient for NT-proBNP, median sCD146 concentrations were lower in CS than in PV (396 vs 434, P < 0.001), indicating a predominantly extracardiac source of sCD146. Finally, increased PV concentrations of sCD146 were associated with higher risk of MACE at 2 years.
CONCLUSIONS
Soluble CD146 is released from the peripheral vasculature in response to venous stretch and may reflect systemic congestion in chronic HF patients.
Collapse
Affiliation(s)
- Mattia Arrigo
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France; Department of Anesthesiology and Critical Care Medicine, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France, Department of Cardiology, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Quynh A Truong
- Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Duygu Onat
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Jackie Szymonifka
- Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Etienne Gayat
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France; Department of Anesthesiology and Critical Care Medicine, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
| | | | | | - Ryan T Demmer
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Ka Y Wong
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Jean Marie Launay
- Université Paris Diderot, PRES Sorbonne Paris Cité, France, Department of Biochemistry, AP-HP, Lariboisière University Hospitals, Paris, France
| | | | - Alain Cohen-Solal
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France, Department of Cardiology, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
| | - James L Januzzi
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jagmeet P Singh
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Paolo C Colombo
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Alexandre Mebazaa
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France; Department of Anesthesiology and Critical Care Medicine, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
| |
Collapse
|
5
|
Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis 2016; 19:155-71. [PMID: 26850053 PMCID: PMC4819519 DOI: 10.1007/s10456-016-9495-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/23/2016] [Indexed: 12/31/2022]
Abstract
After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation, Klf6+/− mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.
Collapse
|
6
|
Figueroa DS, Kemeny SF, Clyne AM. Glycated Collagen Decreased Endothelial Cell Fibronectin Alignment in Response to Cyclic Stretch Via Interruption of Actin Alignment. J Biomech Eng 2014; 136:101010. [DOI: 10.1115/1.4028037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/18/2014] [Indexed: 11/08/2022]
Abstract
Hyperglycemia is a defining characteristic of diabetes, and uncontrolled blood glucose in diabetes is associated with accelerated cardiovascular disease. Chronic hyperglycemia glycates extracellular matrix (ECM) collagen, which can lead to endothelial cell dysfunction. In healthy conditions, endothelial cells respond to mechanical stimuli such as cyclic stretch (CS) by aligning their actin cytoskeleton. Other cell types, specifically fibroblasts, align their ECM in response to CS. We previously demonstrated that glycated collagen inhibits endothelial cell actin alignment in response to CS. The aim of this study was to determine the effect of glycated collagen on ECM remodeling and protein alignment in response to stretch. Porcine aortic endothelial cells (PAEC) seeded on native or glycated collagen coated elastic substrates were exposed to 10% CS. Cells on native collagen aligned subcellular fibronectin fibers in response to stretch, whereas cells on glycated collagen did not. The loss of fibronectin alignment was due to inhibited actin alignment in response to CS, since fibronectin alignment did not occur in cells on native collagen when actin alignment was inhibited with cytochalasin. Further, while ECM protein content did not change in cells on native or glycated collagen in response to CS, degradation activity decreased in cells on glycated collagen. Matrix metalloproteinase 2 (MMP-2) and membrane-associated type 1 matrix metalloproteinase (MT1-MMP) protein levels decreased, and therefore MMP-2 activity also decreased. These MMP changes may relate to c-Jun N-terminal kinase (Jnk) phosphorylation inhibition with CS, which has previously been linked to focal adhesion kinase (FAK). These data demonstrate the importance of endothelial cell actin tension in remodeling and aligning matrix proteins in response to mechanical stimuli, which is critical to vascular remodeling in health and disease.
Collapse
Affiliation(s)
- Dannielle S. Figueroa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Steven F. Kemeny
- Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Alisa Morss Clyne
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
- Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
7
|
Abstract
Control is intrinsic to biological organisms, whose cells are in a constant state of sensing and response to numerous external and self-generated stimuli. Diverse means are used to study the complexity through control-based approaches in these cellular systems, including through chemical and genetic manipulations, input-output methodologies, feedback approaches, and feed-forward approaches. We first discuss what happens in control-based approaches when we are not actively examining or manipulating cells. We then present potential methods to determine what the cell is doing during these times and to reverse-engineer the cellular system. Finally, we discuss how we can control the cell's extracellular and intracellular environments, both to probe the response of the cells using defined experimental engineering-based technologies and to anticipate what might be achieved by applying control-based approaches to affect cellular processes. Much work remains to apply simplified control models and develop new technologies to aid researchers in studying and utilizing cellular and molecular processes.
Collapse
Affiliation(s)
- Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
8
|
Zile MR, Baicu CF, Stroud RE, Van Laer A, Arroyo J, Mukherjee R, Jones JA, Spinale FG. Pressure overload-dependent membrane type 1-matrix metalloproteinase induction: relationship to LV remodeling and fibrosis. Am J Physiol Heart Circ Physiol 2012; 302:H1429-37. [PMID: 22287584 DOI: 10.1152/ajpheart.00580.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased myocardial extracellular matrix collagen represents an important structural milestone during the development of left ventricular (LV) pressure overload (PO); however, the proteolytic pathways that contribute to this process are not fully understood. This study tested the hypothesis that membrane type 1-matrix metalloproteinase (MT1-MMP) is directly induced at the transcriptional level in vivo during PO and is related to changes in LV collagen content. PO was induced in vivo by transverse aortic constriction in transgenic mice containing the full length human MT1-MMP promoter region ligated to luciferase (MT1-MMP Prom mice). MT1-MMP promoter activation (luciferase expression), expression, and activity; collagen volume fraction (CVF); and left atrial dimension were measured at 1 (n = 8), 2 (n = 12), and 4 (n = 17) wk following PO. Non-PO mice (n = 10) served as controls. Luciferase expression increased by fivefold at 1 wk, fell at 2 wk, and increased again by ninefold at 4 wk of PO (P < 0.05). MT1-MMP expression and activity increased at 1 wk, fell at 2 wk, and increased again at 4 wk after PO. CVF increased at 1 wk, remained unchanged at 2 wk, and increased by threefold at 4 wk of PO (P < 0.05). There was a strong positive correlation between CVF and MT1-MMP activity (r = 0.80, P < 0.05). Left atrial dimension remained unchanged at 1 and 2 wk but increased by 25% at 4 wk of PO. When a mechanical load was applied in vitro to LV papillary muscles isolated from MT1-MMP Prom mice, increased load caused MT1-MMP promoter activation to increase by twofold and MT1-MMP expression to increase by fivefold (P < 0.05). These findings challenge the canonical belief that PO suppresses overall matrix proteolytic activity, but rather supports the concept that certain proteases, such as MT1-MMP, play a pivotal role in PO-induced matrix remodeling and fibrosis.
Collapse
Affiliation(s)
- Michael R Zile
- Divisions of Cardiology, Department of Medicine, Medical University of South Carolina, 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lupu M, Khalil M, Iordache F, Andrei E, Pfannkuche K, Spitkovsky D, Baumgartner S, Rubach M, Abdelrazik H, Buzila C, Brockmeier K, Simionescu M, Hescheler J, Maniu H. Direct contact of umbilical cord blood endothelial progenitors with living cardiac tissue is a requirement for vascular tube-like structures formation. J Cell Mol Med 2012; 15:1914-26. [PMID: 21029374 PMCID: PMC3918047 DOI: 10.1111/j.1582-4934.2010.01197.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The umbilical cord blood derived endothelial progenitor cells (EPCs) contribute to vascular regeneration in experimental models of ischaemia. However, their ability to participate in cardiovascular tissue restoration has not been elucidated yet. We employed a novel coculture system to investigate whether human EPCs have the capacity to integrate into living and ischaemic cardiac tissue, and participate to neovascularization. EPCs were cocultured with either living or ischaemic murine embryonic ventricular slices, in the presence or absence of a pro-angiogenic growth factor cocktail consisting of VEGF, IGF-1, EGF and bFGF. Tracking of EPCs within the cocultures was performed by cell transfection with green fluorescent protein or by immunostaining performed with anti-human vWF, CD31, nuclei and mitochondria antibodies. EPCs generated vascular tube-like structures in direct contact with the living ventricular slices. Furthermore, the pro-angiogenic growth factor cocktail reduced significantly tubes formation. Coculture of EPCs with the living ventricular slices in a transwell system did not lead to vascular tube-like structures formation, demonstrating that the direct contact is necessary and that the soluble factors secreted by the living slices were not sufficient for their induction. No vascular tubes were formed when EPCs were cocultured with ischaemic ventricular slices, even in the presence of the pro-angiogenic cocktail. In conclusion, EPCs form vascular tube-like structures in contact with living cardiac tissue and the direct cell-to-cell interaction is a prerequisite for their induction. Understanding the cardiac niche and micro-environmental interactions that regulate EPCs integration and neovascularization are essential for applying these cells to cardiovascular regeneration.
Collapse
Affiliation(s)
- Marilena Lupu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hale SA, Weger L, Mandala M, Osol G. Reduced NO signaling during pregnancy attenuates outward uterine artery remodeling by altering MMP expression and collagen and elastin deposition. Am J Physiol Heart Circ Physiol 2011; 301:H1266-75. [PMID: 21856919 DOI: 10.1152/ajpheart.00519.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings indicate that endothelial nitric oxide (NO) plays a key role in uterine artery outward circumferential remodeling during pregnancy. Although the underlying mechanisms are not known, they likely involve matrix metalloproteinases (MMPs). The goal of this study was to examine the linkage among NO inhibition, expansive remodeling, and MMP expression within the uterine vascular wall. Adult female rats were treated with N(G)-nitro-L-arginine methyl ester [L-NAME (LPLN)] beginning on day 10 of pregnancy and until death at day 20 and compared with age-matched controls [late pregnant (LP)]. Mean arterial pressure of LPLN rats was significantly higher than controls. LPLN fetal and placental weights were significantly reduced compared with controls. Main uterine arteries (mUA) were collected to determine dimensional properties (lumen area and wall thickness), collagen and elastin content, and levels of endothelial nitric oxide synthase (eNOS) and MMP expression. Circumferential remodeling was attenuated, as evidenced by significantly smaller lumen diameters. eNOS RNA and protein were significantly (>90%) decreased in the LPLN mUA compared with LP. Collagen and elastin contents were significantly increased in LPLN rats by ∼10 and 25%, respectively, compared with LP (P < 0.05). Both MMP-2 and tissue inhibitors of metalloproteinase-2 as assessed by immunofluorescence were lower in the endothelium (reduction of 60%) and adventitia (reduction of 50%) of LPLN compared with LP mUA. Membrane bound MMP-1 (MT1-MMP) as assessed by immunoblot was significantly decreased in LPLN. These data suggest a novel contribution of MMPs to gestational uterine vascular remodeling and substantiate the linkage between NO signaling and gestational remodeling of the uterine circulation via altered MMP, TIMP-2, and MT1-MMP expression and activity.
Collapse
Affiliation(s)
- Sarah A Hale
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | |
Collapse
|
11
|
De Croos JNA, Roughley PJ, Kandel RA. Improved bioengineered cartilage tissue formation following cyclic compression is dependent on upregulation of MT1-MMP. J Orthop Res 2010; 28:921-7. [PMID: 20058268 DOI: 10.1002/jor.21064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The generation of bioengineered cartilage tissue suitable for transplantation is a potential therapy to treat damaged cartilage. We have shown previously that the physical and biomechanical properties of bioengineered cartilage can be improved by the application of 30 min of cyclic compression by a mechanism involving sequential upregulation of gene and protein levels of membrane type-1 matrix metalloproteinase (MT1-MMP) and MMP-13. In the current study, we demonstrated that MT1-MMP is critical to this response, as blocking the upregulation of MT1-MMP prevented the improvement in tissue formation. MT1-MMP seems to act by inducing tissue remodeling as evidenced by the presence of aggrecan degradation products by Western blot analysis and increased release of matrix molecules into the media. Release of these molecules was diminished when MT1-MMP upregulation was prevented. This matrix degradation was likely due to MT1-MMP, as under conditions where MMP-13 expression is maintained (stimulation in the presence of MT1-MMP siRNA) the release of these matrix molecules into the media was still prevented. It also appears that MT1-MMP does not regulate MMP-13 gene expression, as MT1-MMP-siRNA pretreatment had no effect on MMP-13 expression following mechanical stimulation. Further analysis of the anabolic genes and proteins involved in mechanically stimulated cartilage will lead to better understanding of the mechanism(s) underlying tissue formation yielding improved bioengineered cartilage.
Collapse
Affiliation(s)
- J N Amrith De Croos
- CIHR BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Suite 6-500, Toronto, Ontario, Canada
| | | | | |
Collapse
|
12
|
Abstract
Angiogenesis and vessel remodeling determine the integrative control of the architectural structure and functional behaviors of the microcirculation over the lifetime of an organism. Vascular remodeling is the basis of promising therapeutic strategies, including vascularization of ischemic organs. The history of angiogenesis research is long-more than 250 years-and the Microcirculatory Society has been the birthplace of numerous techniques, assays, and scientific concepts that have stimulated massive research endeavors in the pharmaceutical and medical arena. At present, angiogenesis isa dynamic field in which the molecular genetic and proteomic components of the process are still being identified, while integrative systems approaches are once again being recognized as essential to understand microvascular assembly in vivo across multiple scales from cells to whole vessel networks. A short history of people and ideas in this field is presented, followed by discussion of emerging directions receiving intense attention today and major questions that remain unanswered. The primary conclusion is that the need for scientists trained in the integrative approaches nurtured by the Microcirculatory Society over the past 50 years has never been greater, as it is clear that a complete mechanistic understanding of vessel adaptation (based on genomic and proteomic supporting casts) will now require deeper studies of angiogenesis and microvascular remodeling in the exquisite complexity of the native microenvironment-the microcirculation.
Collapse
Affiliation(s)
- Thomas C Skalak
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
13
|
Steward RL, Cheng CM, Wang DL, LeDuc PR. Probing Cell Structure Responses Through a Shear and Stretching Mechanical Stimulation Technique. Cell Biochem Biophys 2009; 56:115-24. [DOI: 10.1007/s12013-009-9075-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Wahl P, Brixius K, Bloch W. Exercise‐induced stem cell activation and its implication for cardiovascular and skeletal muscle regeneration. MINIM INVASIV THER 2009; 17:91-9. [DOI: 10.1080/13645700801969816] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch 2008; 457:963-77. [DOI: 10.1007/s00424-008-0563-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 07/24/2008] [Indexed: 12/18/2022]
|
16
|
TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine (Phila Pa 1976) 2008; 33:356-65. [PMID: 18277865 DOI: 10.1097/brs.0b013e3181642a5e] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro-formed bovine nucleus pulposus (NP) tissues were used as a model for tumor necrosis factor-alpha (TNF-alpha) induced NP degeneration. OBJECTIVE To elucidate the signal transduction mechanisms regulating TNF-alpha induced matrix metalloproteinase (MMP) activity. SUMMARY OF BACKGROUND DATA TNF-alpha is thought to contribute to the pathophysiology of intervertebral disc (IVD) degeneration by up-regulating MMPs, such as MMP-2. MMP-2 has been implicated in influencing disease progression and in the induction of neovascularization. METHODS In vitro-formed bovine NP tissues were treated with TNF-alpha to examine its effect on MMP-2 gene and protein levels and activity. The effect of TNF-alpha on membrane type (MT)1-MMP, an activator of MMP-2, was also assessed. MT1-MMP functional activation by TNF-alpha was confirmed using promoter-reporter luciferase constructs. Immunoblots and electrophoretic mobility shift assays were used to examine the expression and DNA binding activity of transcription factors known to regulate transcriptional activation of MT1-MMP. RESULTS TNF-alpha treatment induced MMP-2 gelatinase activity, which occurred in the absence of any change in MMP-2 gene or protein expression, but did correlate with increased MT1-MMP mRNA and protein levels. Up-regulation of MMP-2 activity was dependent on the ERK-MAPK pathway. ERK-1/2 activation up-regulated early growth factor (Egr-1) expression and its DNA binding activity to the MT1-MMP promoter. There was no effect on Sp-1 binding activity. Reporter constructs demonstrated that TNF-alpha induced MT1-MMP transcriptional activation and that this response was dependant on ERK MAPK and Egr-1. CONCLUSION TNF-alpha induced MMP-2 gelatinase activity correlated with induction of MT1-MMP and not MMP-2 expression. MMP-2 activation was dependent on the ERK-MAPK pathway. As ERK also appeared to regulate MT1-MMP production, this suggests that TNF-alpha induction of MMP-2 gelatinase activity may be regulated by MT1-MMP. These findings elucidate the regulation of gelatinase activity and identify a mechanism whereby TNF-alpha may contribute to matrix degradation in NP tissue.
Collapse
|
17
|
Kim JI, Cordova AC, Hirayama Y, Madri JA, Sumpio BE. Differential effects of shear stress and cyclic strain on Sp1 phosphorylation by protein kinase Czeta modulates membrane type 1-matrix metalloproteinase in endothelial cells. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2008; 15:33-42. [PMID: 18568943 PMCID: PMC2644408 DOI: 10.1080/10623320802092260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) plays a key role in extracellular matrix remodeling, endothelial cell (EC) migration, and angiogenesis. Whereas cyclic strain (CS) increases MT1-MMP expression, shear stress (SS) decreases MT1-MMP expression. The aim of this study was to determine if changes in levels of Sp1 phosphorylation induced by protein kinase Czeta (PKCzeta) in ECs exposed to SS but not CS are important for MT1-MMP expression. The results showed that SS increased Sp1 phosphorylation, which could be inhibited by pretreatment with PKCzeta inhibitors. In the presence of PKCzeta inhibitors, the SS-mediated decrease in MT1-MMP protein expression was also abolished. These data demonstrate that increased affinity of Sp1 for MT1-MMP's promoter site occurs as a consequence of PKCzeta-induced phosphorylation of Sp1 in response to SS, increasing Sp1 binding affinity for the promoter site, preventing Egr-1 binding, and consequently decreasing MT1-MMP expression.
Collapse
Affiliation(s)
- Ji Il Kim
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
18
|
De Croos JNA, Jang B, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA. Membrane type-1 matrix metalloproteinase is induced following cyclic compression of in vitro grown bovine chondrocytes. Osteoarthritis Cartilage 2007; 15:1301-10. [PMID: 17548215 DOI: 10.1016/j.joca.2007.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/15/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if membrane type-1 matrix metalloproteinase (MT1-MMP) will respond to cyclic compression of chondrocytes grown in vitro and the regulatory mechanisms underlying this response. METHODS Cyclic compression (30min, 1kPa, 1Hz) was applied to bovine chondrocytes (6-9-month-old animals) grown on top of a biodegradable substrate within 3 days of initiating culture. Luciferase assays using bovine articular chondrocytes were undertaken to demonstrate the mechanosensitivity of MT1-MMP. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used to establish the time course of gene and protein upregulation in response to cyclic compression. The regulation of MT1-MMP was assessed by electrophoretic mobility shift assays, RT-PCR and western blot analysis. As well, an MT1-MMP decoy oligonucleotide and an extracellular signal-regulated kinase 1/2 (ERK1/2) pharmacological inhibitor were utilized to further characterize MT1-MMP regulation. RESULTS After cyclic compression, MT1-MMP showed a rapid and transient increase in gene expression. Elevated protein levels were detected within 2h of stimulation which returned to baseline by 6h. During cyclic compression, phosphorylation of the mitogen activated protein kinase ERK1/2 increased significantly. This was followed by increased gene and protein expression of the transcription factor; early growth factor-1 (Egr-1) and Egr-1 binding to the MT1-MMP promoter. Blocking Egr-1 DNA binding with a decoy MT1-MMP oligonucleotide, downregulated MT1-MMP gene expression. The ERK1/2 inhibitor U0126 also reduced Egr-1 DNA binding activity to MT1-MMP promoter sequences and subsequent transcription of MT1-MMP. CONCLUSIONS These data suggest that cyclic compression of chondrocytes in vitro upregulates MT1-MMP via ERK1/2 dependent activation of Egr-1 binding. Delineation of the regulatory pathways activated by mechanical stimulation will further our understating of the mechanisms influencing tissue remodeling.
Collapse
Affiliation(s)
- J N A De Croos
- CIHR BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Spinale FG. Myocardial Matrix Remodeling and the Matrix Metalloproteinases: Influence on Cardiac Form and Function. Physiol Rev 2007; 87:1285-342. [DOI: 10.1152/physrev.00012.2007] [Citation(s) in RCA: 830] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is now becoming apparent that dynamic changes occur within the interstitium that directly contribute to adverse myocardial remodeling following myocardial infarction (MI), with hypertensive heart disease and with intrinsic myocardial disease such as cardiomyopathy. Furthermore, a family of matrix proteases, the matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs), has been recognized to play an important role in matrix remodeling in these cardiac disease states. The purpose of this review is fivefold: 1) to examine and redefine the myocardial matrix as a critical and dynamic entity with respect to the remodeling process encountered with MI, hypertension, or cardiomyopathic disease; 2) present the remarkable progress that has been made with respect to MMP/TIMP biology and how it relates to myocardial matrix remodeling; 3) to evaluate critical translational/clinical studies that have provided a cause-effect relationship between alterations in MMP/TIMP regulation and myocardial matrix remodeling; 4) to provide a critical review and analysis of current diagnostic, prognostic, and pharmacological approaches that utilized our basic understanding of MMP/TIMPs in the context of cardiac disease; and 5) most importantly, to dispel the historical belief that the myocardial matrix is a passive structure and supplant this belief that the regulation of matrix protease pathways such as the MMPs and TIMPs will likely yield a new avenue of diagnostic and therapeutic strategies for myocardial remodeling and the progression to heart failure.
Collapse
|
20
|
Chen Y, Du XY. Functional properties and intracellular signaling of CCN1/Cyr61. J Cell Biochem 2007; 100:1337-45. [PMID: 17171641 DOI: 10.1002/jcb.21194] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CCN1/Cyr61 is a member of the protein family that can be promptly induced by growth factors. CCN1/Cyr61 promotes cell proliferation, adhesion, and differentiation. It plays important roles in angiogenesis and extracellular matrix production. In addition, CCN1/Cyr61 has many potential functions in tumorigenesis, development, embryo implantation, as well as formation of endometriotic lesions. Expression of CCN1/Cyr61 is regulated by a variety of agents including cytokines, growth factors, steroid hormones, and some drugs. These inducers regulate the transcription of CCN1/Cyr61 through several signaling transduction pathways. CCN1/Cyr61 is able to interact either with the cell itself or the surrounding cells through an autocrine-paracrine mechanism. It has been reported that CCN1/Cyr61 exerts its functions via interacting with at least five integrins as well as heparan sulfate proteoglycan. By activating Wnt, NF-kappaB, or tyrosine kinase signaling pathways, CCN1/Cyr61 is not only able to control the growth of epithelial cells and fibroblasts, but also induce or suppress apoptosis in a cell type-specific manner.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha 410078, China.
| | | |
Collapse
|
21
|
Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ. Mechanical strain regulates endothelial cell patterning in vitro. ACTA ACUST UNITED AC 2007; 13:207-17. [PMID: 17518594 DOI: 10.1089/ten.2006.0058] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Blood vessels of the vertebrate circulatory system typically exhibit tissue-specific patterning. However, the cues that guide the development of these patterns remain unclear. We investigated the effect of cyclic uniaxial strain on vascular endothelial cell dynamics and sprout formation in vitro in two-dimensional (2D) and three-dimensional (3D) culture systems under the influence of growth factors. Cells preferentially aligned and moved in the direction perpendicular to the major strain axis in monolayer culture, and mechanical strain also regulated the spatial location of cell proliferation in 2D cell culture. Cells in 3D cell culture could be induced to form sprouts by exposure to appropriate growth factor combinations (vascular endothelial growth factor and hepatocyte growth factor), and the strain direction regulated the directionality of this process. Moreover, cyclic uniaxial strain inhibited branching of the structures formed by endothelial cells and increased their thickness. Taken together, these data support the importance of external mechanical stimulation in the regulation of endothelial cell migration, proliferation, and differentiation into primitive vessels.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Milkiewicz M, Mohammadzadeh F, Ispanovic E, Gee E, Haas TL. Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. J Cell Biochem 2007; 100:750-61. [PMID: 17031856 DOI: 10.1002/jcb.21055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
VEGF and MMP protein production are both required for exercise-induced capillary growth in skeletal muscle. The underlying process by which muscle activity initiates an angiogenic response is not established, but it is known that mechanical forces such as muscle stretch are involved. We hypothesized that stretch of skeletal muscle microvascular endothelial cells induces production of MMP-2 and VEGF through a common signal pathway. Endothelial cells were grown on Bioflex plates and exposed to 10% static stretch for up to 24 h. MMP-2 protein level was measured by gelatin zymography and VEGF, MMP-2, and MT1-MMP mRNA levels were quantified by real-time quantitative PCR. ERK1/2 and JNK phosphorylation and VEGF protein levels were assessed by Western blotting. Effects of mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK) and reactive oxygen species (ROS) on stretch-induced expression of MMP-2 and VEGF were tested using pharmacological inhibitors. Stretching of endothelial cells for 24 h caused significant increases in MMP-2 protein and mRNA level, but no change in MT1-MMP mRNA. While MMP-2 protein production was enhanced by H(2)O(2) in unstretched cells, ROS inhibition during stretch did not diminish MMP-2 mRNA or protein production. Inhibition of JNK suppressed stretch-induced MMP-2 protein and mRNA, but inhibition of ERK had no effect. In contrast, inhibition of ERK but not JNK attenuated the stretch-induced increase in VEGF mRNA. Our results demonstrate that differential regulation of MMP-2 and VEGF by MAPK signal pathways contribute to stretch-induced activation of microvascular endothelial cells.
Collapse
Affiliation(s)
- Malgorzata Milkiewicz
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | |
Collapse
|
23
|
Grabellus F, Worm K, Schmid KW. Induction of the matrix metalloproteinase-2 activation system in arteries by tensile stress. Involvement of the p38 MAP-kinase pathway. Pathol Res Pract 2007; 203:135-43. [PMID: 17306932 DOI: 10.1016/j.prp.2007.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/23/2006] [Accepted: 01/04/2007] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in vascular remodeling and cardiovascular diseases by degrading extracellular matrix. Regulation of MMPs can be mediated by mitogen-activated protein kinases (MAPKs). Effects of pressure application on the proteolytic activity of MMP-2 and MAPK pathways were investigated in an organ culture of porcine muscular arteries. Inhibition of MAPKs (ERK1/2 and p38 MAPK) was carried out to prove their effects on MMP-2 activation. After tensile stress, activity and gene expression of MMP-2 were increased (p<0.05) as shown by gelatinase assays and real-time PCR. Whereas protein expression of MMP-2 and TIMP-2 showed no changes, its regulator MT1-MMP decreased in Western blot (p<0.001) and immunohistochemistry. In addition, p38 and ERK1/2 were activated (p38, p<0.05; ERK1/2, p<0.001) by pressure. After inhibition of p38 and ERK1/2 with SB203580 or PD98059, only the inhibition of the p38 pathway had an inhibitory effect on MMP-2 gelatinolytic activity. Tensile stress activates the MMP-2 system in muscular arterial walls. This mechanical signal is mediated by p38 MAPK and can be attenuated by blocking the p38 signal pathway. The regulation of the vascular gelatinolytic system by MAP kinases suggests a therapeutic option against cardiovascular diseases at the level of MAPK signal transduction.
Collapse
Affiliation(s)
- Florian Grabellus
- Institute of Pathology and Neuropathology, University Hospital of Essen, Essen, Germany.
| | | | | |
Collapse
|
24
|
Barbolina MV, Adley BP, Ariztia EV, Liu Y, Stack MS. Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J Biol Chem 2007; 282:4924-4931. [PMID: 17158885 DOI: 10.1074/jbc.m608428200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Late stage ovarian cancer is characterized by disseminated intraperitoneal metastasis as secondary lesions anchor in the type I and III collagen-rich submesothelial matrix. Ovarian carcinoma cells preferentially adhere to interstitial collagen, and collagen-induced integrin clustering up-regulates the expression of the transmembrane collagenase membrane type 1 matrix metalloproteinase (MT1-MMP). Collagenolytic activity is important in intraperitoneal metastasis, potentiating invasion through the mesothelial cell layer and colonization of the submesothelial collagen-rich matrix. The objective of this study was to elucidate a potential mechanistic link between collagen adhesion and MT1-MMP expression. Our results indicate that culturing cells on three-dimensional collagen gels, but not thin layer collagen or synthetic three-dimensional hydrogels, results in rapid induction of the transcription factor EGR1. Integrin signaling through a SRC kinase-dependent pathway is necessary for EGR1 induction. Silencing of EGR1 expression using small interfering RNA abrogated collagen-induced MT1-MMP expression and inhibited cellular invasion of three-dimensional collagen gels. These data support a model for intraperitoneal metastasis wherein collagen adhesion and clustering of collagen binding integrins activates integrin-mediated signaling via SRC kinases to induce expression of EGR1, resulting in transcriptional activation of the MT1-MMP promoter and subsequent MT1-MMP-catalyzed collagen invasion. This model highlights the role of unique interactions between ovarian carcinoma cells and interstitial collagens in the ovarian tumor microenvironment in inducing gene expression changes that potentiate intraperitoneal metastatic progression.
Collapse
Affiliation(s)
- Maria V Barbolina
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - Brian P Adley
- Pathology, Northwestern University Feinberg School of Medicine and the Chicago, Illinois 60611
| | - Edgardo V Ariztia
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - Yueying Liu
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - M Sharon Stack
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611; Cell & Molecular Biology and Chicago, Illinois 60611; Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611.
| |
Collapse
|
25
|
Zhang JJ, Kelm RJ, Biswas P, Kashgarian M, Madri JA. PECAM-1 modulates thrombin-induced tissue factor expression on endothelial cells. J Cell Physiol 2007; 210:527-37. [PMID: 17111362 DOI: 10.1002/jcp.20908] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) (CD31) is known to inhibit platelet function and thrombus formation. The mechanisms involved in PECAM-1's roles as a modulator of hemostasis are still not completely understood. We examined the role of PECAM-1 as a regulator of tissue factor (TF) expression, a known important inducer of thrombosis. Wildtype and CD31KO mice underwent transient (30 min) renal ischemia followed by 24 h re-perfusion and their kidneys assessed for apoptosis, fibrin formation, and tissue factor expression. CD31KO mice exhibited increased tubular epithelial and endothelial apoptosis, increased fibrin deposition, and tissue factor expression. Human umbilical vein endothelial cells (HUVEC) transfected with antisense (AS) PECAM-1 oligonucleotides to downregulate PECAM-1 expression, exhibited greater induction of TF mRNA and protein expression as well as increased expression and nuclear localization of the transcription factor Egr-1 compared to scrambled AS PECAM-1 (Scr)-treated HUVEC following thrombin stimulation. TF induction was found to be mediated through thrombin receptor PAR-1 and the Galphai/o subunit of G-protein, confirmed by PAR-1 antagonist and pertussis toxin inhibition respectively. Thrombin-mediated TF induction was dependent on Rho Kinase activity, phosphorylation of p38(MAPK) and p85 & Akt dephosphorylation. The inverse correlation of PI3K-Akt phosphorylation with p38 (MAPK) phosphorylation was confirmed by pharmacological inhibition. These studies suggest that PECAM-1 is involved in regulating a signaling pathway, affecting PI3K and Akt activation, p38 (MAPK) phosphorylation, which in turn, affects Egr-1 expression and nuclear translocation, ultimately affecting TF expression. These findings provide new insights into the action of PECAM-1 as a modulator of thrombosis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Blood Coagulation/physiology
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Early Growth Response Protein 1/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Fibrin/metabolism
- Humans
- Kidney/blood supply
- Kidney/metabolism
- Kidney/physiopathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Platelet Endothelial Cell Adhesion Molecule-1/drug effects
- Platelet Endothelial Cell Adhesion Molecule-1/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, PAR-1/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/physiopathology
- Thrombin/metabolism
- Thrombin/pharmacology
- Thromboplastin/drug effects
- Thromboplastin/genetics
- Thromboplastin/metabolism
- Thrombosis/metabolism
- Thrombosis/physiopathology
Collapse
Affiliation(s)
- Jenny J Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
26
|
Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ. Mechanical Strain Regulates Endothelial Cell Patterningin Vitro. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/ten.2006.12.ft-294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Vouyouka AG, Jiang Y, Rastogi R, Basson MD. Ambient pressure upregulates nitric oxide synthase in a phosphorylated-extracellular regulated kinase- and protein kinase C-dependent manner. J Vasc Surg 2006; 44:1076-1084. [PMID: 17098545 DOI: 10.1016/j.jvs.2006.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/27/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Using endothelial cell/smooth muscle cell (SMC) cocultures, we have demonstrated that pressurized endothelial cell coculture inhibits SMC proliferation and promotes apoptosis, and that this effect is transferable through pressurized endothelial medium. We now hypothesized that endothelial nitric oxide synthase (eNOS) plays a significant role in mediating these pressure-induced effects. METHODS Conditioned media from endothelial cells and SMCs exposed to ambient and increased pressure were transferred to recipient SMCs. We counted cells after 5 days of incubation with these media and evaluated eNOS and inducible NOS (iNOS) levels by Western blot. RESULTS Conditioned media from pressurized endothelial cells significantly decreased recipient SMC counts. This effect was sustained when N-nitro-L-arginine-methyl ester (L-NAME) was added to recipient cells but abolished when L-NAME was added to donor cells. SMCs were then exposed to control and pressurized conditions in monoculture or in coculture with endothelial cells. Pressure and coculture caused similar increase in iNOS levels but had no additive effect in combination. Finally, endothelial cells were exposed to control and pressurized environments. Pressure caused a 24% +/- 1.6% increase in eNOS protein (P = .04, n = 12). This effect was sustained when cells were treated with L-NAME (32% +/- 1.6% increase, P = .02) but abolished when endothelial cells were treated with calphostin C or PD98059 to block protein kinase C (PKC) or extracellular regulated kinase (ERK). Pressure also increased endothelial phosphorylated ERK (p-ERK) by 1.8-fold to 2.6-fold compared with control conditions after exposure of 2, 4, and 6 hours (P = .02, n = 4). This increase was sustained after pretreatment with calphostin C. CONCLUSION Pressure modulates endothelial cell effects on SMC growth by increasing eNOS in an ERK-dependent and PKC-dependent manner. CLINICAL RELEVANCE Intimal hyperplasia is the main cause for restenosis that complicates 10% to 30% of all such vascular procedures and 30% to 40% of endovascular procedures. This article provides some novel information about smooth muscle cell/endothelial cell interaction, one of the main regulators of vascular remodeling and intimal hyperplasia. The role of endothelial cell/smooth muscle cell interaction cannot be studied well in vivo because these interactions cannot be distinguished from other factors that coexist in vivo, such as flow dynamics, matrix proteins, inflammatory factors, and interactions with other cells in the vascular wall and in the bloodstream. In this work, we use pressure as a triggering stimulus to alter in vitro endothelial behavior and identify important changes in endothelial regulation of smooth muscle cell biology. The pathways involved in this process and discussed in this article could ultimately be used to manipulate endothelial cell/smooth muscle cell interaction in clinical disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Cell Proliferation
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Enzyme Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- NG-Nitroarginine Methyl Ester/pharmacology
- Naphthalenes/pharmacology
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Rats
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Angela G Vouyouka
- Division of Vascular and General Surgery, John D. Dingell VA Medical Center and Wayne State University School of Medicine, Detroit, MI 48201-1932, USA.
| | | | | | | |
Collapse
|
28
|
Cummins PM, von Offenberg Sweeney N, Killeen MT, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 2006; 292:H28-42. [PMID: 16951049 DOI: 10.1152/ajpheart.00304.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vascular endothelium is a dynamic cellular interface between the vessel wall and the bloodstream, where it regulates the physiological effects of humoral and biomechanical stimuli on vessel tone and remodeling. With respect to the latter hemodynamic stimulus, the endothelium is chronically exposed to mechanical forces in the form of cyclic circumferential strain, resulting from the pulsatile nature of blood flow, and shear stress. Both forces can profoundly modulate endothelial cell (EC) metabolism and function and, under normal physiological conditions, impart an atheroprotective effect that disfavors pathological remodeling of the vessel wall. Moreover, disruption of normal hemodynamic loading can be either causative of or contributory to vascular diseases such as atherosclerosis. EC-matrix interactions are a critical determinant of how the vascular endothelium responds to these forces and unquestionably utilizes matrix metalloproteinases (MMPs), enzymes capable of degrading basement membrane and interstitial matrix molecules, to facilitate force-mediated changes in vascular cell fate. In view of the growing importance of blood flow patterns and mechanotransduction to vascular health and pathophysiology, and considering the potential value of MMPs as therapeutic targets, a timely review of our collective understanding of MMP mechanoregulation and its impact on the vascular endothelium is warranted. More specifically, this review primarily summarizes our current knowledge of how cyclic strain regulates MMP expression and activation within the vascular endothelium and subsequently endeavors to address the direct and indirect consequences of this on vascular EC fate. Possible relevance of these phenomena to vascular endothelial dysfunction and pathological remodeling are also addressed.
Collapse
Affiliation(s)
- Philip M Cummins
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City Univ., Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
29
|
Moore KA, Polte T, Huang S, Shi B, Alsberg E, Sunday ME, Ingber DE. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 2005; 232:268-81. [PMID: 15614768 DOI: 10.1002/dvdy.20237] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Local alterations in the mechanical compliance of the basement membrane that alter the level of isometric tension in the cell have been postulated to influence tissue morphogenesis. To explore whether cell tension contributes to tissue pattern formation in vivo, we modulated cytoskeletal force generation in embryonic mouse lung (embryonic days 12-14) rudiments using inhibitors of Rho-associated kinase (ROCK), myosin light chain kinase, myosin ATPase, and microfilament integrity, or a Rho stimulator (cytotoxic necrotizing factor-1). Tension inhibition resulted in loss of normal differentials in basement membrane thickness, inhibition of new terminal bud formation, and disorganization of epithelial growth patterns as well as disruption of capillary blood vessels. In contrast, increasing cell tension through Rho activation, as confirmed by quantitation of myosin light chain phosphorylation and immunohistocytochemical analysis of actin organization, accelerated lung branching and increase capillary elongation. These data suggest that changes in cytoskeletal tension mediated by Rho signaling through ROCK may play an important role in the establishment of the spatial differentials in cell growth and extracellular matrix remodeling that drive embryonic lung development.
Collapse
Affiliation(s)
- Kimberly A Moore
- Vascular Biology Program, Department of Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The process of sprouting angiogenesis requires that the endothelial cells degrade the basement membrane matrix and migrate into the interstitial matrix. Matrix metalloproteinases are enzymes capable of cleaving numerous extracellular matrix proteins. Increased production and activity of matrix metalloproteinases in any cell type is associated with a more migratory and invasive phenotype. This paper describes results of recent in-vitro studies of the regulation of transcription and activation of MMP-2 and MT1-MMP in endothelial cells, as well as studies that examined roles of matrix metalloproteinases in activity-induced angiogenesis.
Collapse
Affiliation(s)
- Tara L Haas
- School of Kinesiology and Health Sciences, York University, Toronto, ON, Canada.
| |
Collapse
|
31
|
Tanaka SM, Sun HB, Roeder RK, Burr DB, Turner CH, Yokota H. Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif Tissue Int 2005; 76:261-71. [PMID: 15812578 DOI: 10.1007/s00223-004-0238-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 10/07/2004] [Indexed: 11/26/2022]
Abstract
When bone is loaded, substrate strain is generated by the external force and this strain induces fluid flow that creates fluid shear stress on bone cells. Our current understanding of load-driven gene regulation of osteoblasts is based primarily on in vitro studies on planer two-dimensional tissue culture substrates. However, differences between a flat layer of cells and cells in 3-dimensional (3D) ECM are being recognized for signal transduction. Proliferation and differentiation of osteoblasts are affected by substrate geometry. Here we developed a novel 3D culture system that would mimic physiologically relevant substrate strain as well as strain-induced fluid flow in a 3D porous collagen matrix. The system allowed us to evaluate the responses of osteoblasts in a 3D stress-strain environment similar to a mechanical field to which bone is exposed. Using MC3T3-E1 osteoblasts grown in the 3D collagen matrix with and without hydroxyapatite deposition, we tested the role of strain and the strain-induced fluid flow in the expression of the load-responsive genes such as c-fos, egr1, cox2, osteopontin, and mmp1B involved in transcriptional regulation, osteogenesis, and rearrangement of ECM. Strain-induced fluid flow was visualized with a microspheres approximately 3 microm in diameter in real time, and three viscoelastic parameters were determined. The results obtained by semi-quantitative PCR, immunoblot assay, enzymatic activity assays for collagenase and gelatinase, and mechanical characterization of collagen matrices supported the dominant role of strain-induced fluid flow in expression of the selected genes one hour after the mechanical treatment.
Collapse
Affiliation(s)
- Shigeo M Tanaka
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Von Offenberg Sweeney N, Cummins PM, Cotter EJ, Fitzpatrick PA, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun 2005; 329:573-82. [PMID: 15737624 DOI: 10.1016/j.bbrc.2005.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Indexed: 11/20/2022]
Abstract
UNLABELLED Hemodynamic forces exerted by blood flow (cyclic strain, shear stress) affect the initiation and progression of angiogenesis; however, the precise signaling mechanism(s) involved are unknown. In this study, we examine the role of cyclic strain in regulating bovine aortic endothelial cell (BAEC) migration and tube formation, indices of angiogenesis. Considering their well-documented mechanosensitivity, functional inter-dependence, and involvement in angiogenesis, we hypothesized roles for matrix metalloproteinases (MMP-2/9), RGD-dependent integrins, and urokinase plasminogen activator (uPA) in this process. BAECs were exposed to equibiaxial cyclic strain (5% strain, 1Hz for 24h) before their migration and tube formation was assessed by transwell migration and collagen gel tube formation assays, respectively. In response to strain, both migration and tube formation were increased by 1.83+/-0.1- and 1.84+/-0.1-fold, respectively. Pertussis toxin, a Gi-protein inhibitor, decreased strain-induced migration by 45.7+/-32% and tube formation by 69.8+/-13%, whilst protein tyrosine kinase (PTK) inhibition with genistein had no effect. siRNA-directed attenuation of endothelial MMP-9 (but not MMP-2) expression/activity decreased strain-induced migration and tube formation by 98.6+/-41% and 40.7+/-31%, respectively. Finally, integrin blockade with cRGD peptide and siRNA-directed attenuation of uPA expression reduced strain-induced tube formation by 85.7+/-15% and 84.7+/-31%, respectively, whilst having no effect on migration. CONCLUSIONS Cyclic strain promotes BAEC migration and tube formation in a Gi-protein-dependent PTK-independent manner. Moreover, we demonstrate for the first time a putative role for MMP-9 in both strain-induced events, whilst RGD-dependent integrins and uPA appear only to be involved in strain-induced tube formation.
Collapse
|
33
|
Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005; 85:1-31. [PMID: 15618476 DOI: 10.1152/physrev.00048.2003] [Citation(s) in RCA: 574] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intimal thickening, the accumulation of cells and extracellular matrix within the inner vessel wall, is a physiological response to mechanical injury, increased wall stress, or chemical insult (e.g., atherosclerosis). If excessive, it can lead to the obstruction of blood flow and tissue ischemia. Together with expansive or constrictive remodeling, the extent of intimal expansion determines final lumen size and vessel wall thickness. Plaque rupture represents a failure of intimal remodeling, where the fibrous cap overlying an atheromatous core of lipid undergoes catastrophic mechanical breakdown. Plaque rupture promotes coronary thrombosis and myocardial infarction, the most prevalent cause of premature death in advanced societies. The matrix metalloproteinases (MMPs) can act together to degrade the major components of the vascular extracellular matrix. All cells present in the normal and diseased blood vessel wall upregulate and activate MMPs in a multistep fashion driven in part by soluble cytokines and cell-cell interactions. Activation of MMP proforms requires other MMPs or other classes of protease. MMP activation contributes to intimal growth and vessel wall remodeling in response to injury, most notably by promoting migration of vascular smooth muscle cells. A broader spectrum and/or higher level of MMP activation, especially associated with inflammation, could contribute to pathological matrix destruction and plaque rupture. Inhibiting the activity of specific MMPs or preventing their upregulation could ameliorate intimal thickening and prevent myocardial infarction.
Collapse
Affiliation(s)
- Andrew C Newby
- Bristol Heart Institute, University of Bristol, United Kingdom.
| |
Collapse
|
34
|
Grote K, Bavendiek U, Grothusen C, Flach I, Hilfiker-Kleiner D, Drexler H, Schieffer B. Stretch-inducible Expression of the Angiogenic Factor CCN1 in Vascular Smooth Muscle Cells Is Mediated by Egr-1. J Biol Chem 2004; 279:55675-81. [PMID: 15492009 DOI: 10.1074/jbc.m406532200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CCN1 is an angiogenic factor that promotes cell adhesion, proliferation, and differentiation. CCN1-deficient mice suffer embryonic death because of vascular defects, demonstrating that CCN1 is required for vessel development. Because mechanical stretch may act as a trigger for vessel development, we investigated the impact of mechanical stretch on the regulatory mechanism of CCN1 expression. Mechanical stretch rapidly enhances CCN1 expression and release in vascular smooth muscle cells (VSMC) in vitro and CCN1 expression in murine aortic segments in vivo. Transfection experiments of VSMC with deletion constructs of the CCN1 promoter revealed the regulatory region responsible for the stretch-induced CCN1 expression in the approximately 200-bp promoter region upstream of the TATA-box containing potential binding sites for early growth response-1 (Egr-1), nuclear factor of activated T-cells and cAMP response element binding protein. Decoy oligonucleotides to Egr-1, but not to nuclear factor of activated T-cells or cAMP response element binding protein, abolished the stretch-induced transcription of CCN1. In addition, mutagenesis of the Egr-1 binding site within the CCN1 promoter completely blunted the stretch-induced activation of the promoter. Furthermore, mechanical stretch induced the expression and DNA-binding activity of Egr-1 in VSMC as demonstrated by Western blot and electromobility shift assay. Moreover, a pressure overload-dependent de novo synthesis of Egr-1 was observed after aortic banding. These findings indicate that mechanical stretch leads to enhanced expression of CCN1 via the mechanosensitive transcription factor Egr-1, suggesting a central role for mechanical stretch in the regulation of CCN1-dependent pro-angiogenic potency.
Collapse
Affiliation(s)
- Karsten Grote
- Department of Cardiology and Angiology, Medical School of Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Alfonso-Jaume MA, Mahimkar R, Lovett DH. Co-operative interactions between NFAT (nuclear factor of activated T cells) c1 and the zinc finger transcription factors Sp1/Sp3 and Egr-1 regulate MT1-MMP (membrane type 1 matrix metalloproteinase) transcription by glomerular mesangial cells. Biochem J 2004; 380:735-47. [PMID: 14979875 PMCID: PMC1224202 DOI: 10.1042/bj20031281] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 02/06/2004] [Accepted: 02/23/2004] [Indexed: 01/17/2023]
Abstract
The transition of normally quiescent glomerular MCs (mesangial cells) to a highly proliferative phenotype with characteristics of myofibroblasts is a process commonly observed in inflammatory diseases affecting the renal glomerulus, the ultimate result of which is glomerulosclerosis. Generation of proteolytically active MMP (matrix metalloproteinase)-2 by the membrane-associated membrane type 1 (MT1)-MMP is responsible for the transition of mesangial cells to the myofibroblast phenotype [Turck, Pollock, Lee, Marti and Lovett (1996) J. Biol. Chem. 271, 15074-15083]. In the present study, we show that the expression of MT1-MMP within the context of MCs is mediated by three discrete cis -acting elements: a proximal non-canonical Sp1 site that preferentially binds Sp1; an overlapping Sp1/Egr-1-binding site that preferentially binds Egr-1; and a more distal binding site for the NFAT (nuclear factor of activated T cells) that binds the NFAT c1 isoform present in MC nuclear extracts. Transfection with an NFAT c1 expression plasmid, or activation of calcineurin with a calcium ionophore, yielded major increases in NFAT c1 nuclear DNA-binding activity, MT1-MMP transcription and protein synthesis, which were additive with the lower levels of transactivation provided by the proximal Sp1 and the overlapping Sp1/Egr-1 sites. Specific binding of NFAT c1 to the MT1-MMP promoter was confirmed by chromatin immunoprecipitation studies, while MT1-MMP expression was suppressed by treatment with the calcineurin inhibitor, cyclosporin A. These studies are the first demonstration that a specific NFAT isoform enhances transcription of an MMP (MT1-MMP) that plays a major role in the proteolytic events that are a dominant feature of acute glomerular inflammation. Suppression of MT1-MMP by commonly used calcineurin inhibitors may play a role in the development of renal fibrosis following renal transplantation.
Collapse
Affiliation(s)
- Maria Alejandra Alfonso-Jaume
- The Department of Medicine, San Francisco VAMC/University of California, 111J Medical Service, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | |
Collapse
|
36
|
Ray BK, Shakya A, Turk JR, Apte SS, Ray A. Induction of the MMP-14 gene in macrophages of the atherosclerotic plaque: role of SAF-1 in the induction process. Circ Res 2004; 95:1082-90. [PMID: 15528467 DOI: 10.1161/01.res.0000150046.48115.80] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Based on epidemiological and pathological studies, it is becoming increasingly clear that matrix metalloproteinases (MMPs) play an important role in the pathogenesis of atherosclerosis by participating in vascular remodeling, smooth muscle cell migration, and plaque disruption. MMP-14, because of its unique ability to cause pericellular degradation, its broad substrate specificity, its synthesis in an active form, and its ability to activate other matrix metalloproteinases, is recognized as a prominent member of this family. MMP-14 is detected at high levels in the atherosclerotic plaque. To understand the induction mechanism of MMP-14 under atherogenic conditions, we examined its expression pattern in response to oxidized low-density lipoproteins (ox-LDLs) that are believed to play an important role in atherogenesis. We report that in macrophages, ox-LDLs markedly elevate the levels of MMP-14 mRNA and protein. The cis-acting elements supporting this increase were identified to be present within -213 and -1 nucleotides of the MMP-14 promoter. DNase I protection assay revealed, within this region, two major elements, of which one serves as the DNA-binding site for SAF-1 transcription factor. Increased binding of SAF-1 to the MMP-14 promoter correlated with the transcriptional upregulation of MMP-14 gene. Furthermore, induction of endogenous MMP-14 gene, MMP-14 promoter driven reporter gene expression and MMP-2 processing activity during overexpression of SAF-1 and coexpression of SAF-1 and MMP-14 in the macrophages present in the atherosclerotic plaque implicate SAF-1 as a key regulator of MMP-14 gene induction in macrophage cells.
Collapse
Affiliation(s)
- Bimal K Ray
- Department of Veterinary Pathobiology, University of Missouri, 126A Connaway Hall, 1600 E Rollins Rd, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE To describe a new aqueous outflow model involving a mechanical pump. MATERIALS AND METHODS Laboratory materials include human and monkey eyes; methods include the dissecting microscope, light microscopy, scanning electron microscopy, transmission electron microscopy, and tracer studies. Clinical methods involve human subject slit lamp, gonioscopy, and operating microscope examination. RESULTS Laboratory evidence demonstrates that aqueous outflow tissues are responsive to intraocular pressure induced deformation. Deformation occurs in response to small pressure gradients. Laboratory evidence also demonstrates the presence of valves discharging aqueous to Schlemm's canal. The laboratory model predicts pulsatile aqueous discharge in vivo. Clinical in vivo evidence demonstrates pulsatile aqueous flow from the anterior chamber into Schlemm's canal, from Schlemm's canal into collector channels, and from Schlemm's canal into aqueous and episcleral veins, all synchronous with the ocular pulse. CONCLUSIONS Aqueous outflow tissue deformation caused by normal intraocular pressure transients induces pulsatile one-way discharge of aqueous to the vascular system. The model identifies biomechanical coupling of intraocular pressure with aqueous outflow tissue deformation and also sites of high flow capable of inducing shear stress. These mechanotransduction mechanisms, well characterized as a means of controlling pressure and flow in the vascular system, also provide a means of regulatory feedback to control intraocular pressure and aqueous flow.
Collapse
Affiliation(s)
- Murray A Johnstone
- Glaucoma Consultants Northwest, Swedish Medical Center, Seattle, WA, USA.
| |
Collapse
|
38
|
Abstract
Exercise and muscle contractions create a powerful stimulus for structural remodeling of the vasculature. An increase in flow velocity through a vessel increases shear stress, a major stimulus for enlargement of conduit vessels. This leads to an endothelial-dependent, nitric oxide-dependent enlargement of the vessel. Increased flow within muscle, in the absence of contractions, leads to an enhanced capillarity by intussusceptive angiogenesis, a process of capillary splitting by intraluminal longitudinal divide. In contrast, sprouting angiogenesis requires extensive endothelial cell proliferation, with degradation of the extracellular matrix to permit migration and tube formation. This occurs during muscle adaptations to chronic contractions and/or muscle overload. The angiogenic growth factor VEGF appears to be an important element in angiogenesis. Recent advances in research have identified hemodynamic and mechanical stimuli that upregulate angiogenic processes, demonstrated a complexity of potent growth factors and interactions with their corresponding receptors, detected an interaction of cellular signaling events, and identified important tissue reorganization processes that must be coordinated to effect vascular remodeling. It is likely that much of this information is applicable to the vascular remodeling that occurs in response to exercise and/or muscle contractions.
Collapse
Affiliation(s)
- Barry M Prior
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
39
|
von Offenberg Sweeney N, Cummins PM, Birney YA, Redmond EM, Cahill PA. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration. Biochem Biophys Res Commun 2004; 320:325-33. [PMID: 15219830 DOI: 10.1016/j.bbrc.2004.05.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38+/-6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 microM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration.
Collapse
|
40
|
Konstantinov IE, Coles JG, Boscarino C, Takahashi M, Goncalves J, Ritter J, Van Arsdell GS. Gene expression profiles in children undergoing cardiac surgery for right heart obstructive lesions. J Thorac Cardiovasc Surg 2004; 127:746-54. [PMID: 15001903 DOI: 10.1016/j.jtcvs.2003.08.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The global myocardial stress response during cardiac surgery has not been systematically studied, nor is it known whether the response of the neonatal myocardium is intrinsically different from that of older children. To determine the age-related molecular basis of this response, we conducted microarray-based differential gene expression profiling on right ventricular tissue samples acquired in patients of varying ages with right ventricular outflow tract obstruction. METHODS We studied gene expression profiles in 24 patients during operations for lesions involving right ventricular outflow tract obstruction age stratified into group I (7 patients, aged 5 to 66 days; mean, 30 days) and group II (17 patients, aged 4 months to 12.5 years; mean, 2.8 years). Myocardial samples were taken from the right ventricular outflow tract after aortic occlusion and archived in liquid nitrogen. RNA isolation, fluorescence labeling of complementary DNA, hybridization to spotted arrays containing 19,008 characterized or unknown human complementary DNAs, and quantitative fluorescence scanning of gene-expression intensity were performed at the University of Toronto Health Network Microarray Centre. Data were analyzed with the Significance Analysis for Microarrays program. Minimum Information About Microarray Experiments-compliant, log2-normalized data sets were compared to ascertain potential statistical differences in gene expression between patient groups. RESULTS There were no hospital deaths or major postoperative morbid events. We identified 50 transcripts differentially expressed in the neonatal group (the predicted false discovery rate was <0.8 transcripts). The neonatal pattern of gene expression (group I) was dominated by genes with literature-validated cardioprotective, antihypertrophic, and antiproliferative properties, including increases in atrial natriuretic peptide, protein phosphatase 2A, small GTPase rap1, and protein inhibitor of activated STAT protein, PIASy. Several transcripts have not been previously reported in heart. CONCLUSIONS Neonatal myocardium has a unique pattern of gene expression, which may result from developmental (age-related) differences or reflect a more severe disease phenotype independent of age effects per se. The neonatal transcript profile seems to reflect a stress-induced protective program composed of genes with functions diametrically opposed to those expected to be related to the pathogenesis of critical right ventricular outflow tract obstruction, thus revealing a novel and compensatory antidisease transcriptional response in the neonatal heart.
Collapse
Affiliation(s)
- Igor E Konstantinov
- Division of Cardiovascular Surgery, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Madri JA. The evolving roles of cell surface proteases in health and disease: implications for developmental, adaptive, inflammatory, and neoplastic processes. Curr Top Dev Biol 2003; 54:391-410. [PMID: 12696757 DOI: 10.1016/s0070-2153(03)54016-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
42
|
Affiliation(s)
- Eric Wahlberg
- Department of Vascular Surgery, Karolinska Hospital and Vascular Biology laboratory, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
Haseneen NA, Vaday GG, Zucker S, Foda HD. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 2003; 284:L541-7. [PMID: 12456388 DOI: 10.1152/ajplung.00290.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.
Collapse
MESH Headings
- Antigens, CD
- Antigens, Neoplasm
- Antineoplastic Agents/pharmacology
- Basigin
- Blotting, Western
- Cell Line
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Enzyme Activation/physiology
- Enzyme Induction/physiology
- Enzyme Inhibitors/pharmacology
- Humans
- Lung/blood supply
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase 1/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 3/analysis
- Matrix Metalloproteinase Inhibitors
- Matrix Metalloproteinases, Membrane-Associated
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Organic Chemicals
- Periodicity
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Mechanical
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-2/metabolism
Collapse
Affiliation(s)
- Nadia A Haseneen
- Department of Medicine and Research, Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | | | | | | |
Collapse
|
44
|
Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, Madri JA, Sumpio BE. Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem 2002; 277:34808-14. [PMID: 12093818 DOI: 10.1074/jbc.m205417200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) plays a key role in endothelial cell migration, matrix remodeling, and angiogenesis. Previous studies demonstrated that a mechanical force, cyclic strain, increases MT1-MMP expression by displacing Sp1 with increased Egr-1 expression and binding to the promoter site. However, the effect of shear stress (SS) on MT1-MMP expression is poorly understood. Although Egr-1 mRNA transcription and protein was induced (7.6-fold) in response to SS (n = 5, 0-8 h, p < 0.05), SS decreased MT1-MMP mRNA transcription and protein levels in a time-dependent fashion (10, 50, and 90% reduction at 1, 4, and 8 h, respectively; n = 5, p < 0.05). Egr-1 protein was increased after SS and cyclic strain, but Sp1 was serine-phosphorylated only after SS. SS increased Sp1 DNA binding (3.8-, 5.8-, and 2.4-fold increase at 1, 4, and 8 h, respectively; n = 5, p < 0.05) that was inhibitable by calf intestinal phosphatase. Thus, SS inhibits MT1-MMP expression despite Egr-1 up-regulation by inducing the serine phosphorylation of Sp1, which in turn increases its binding affinity for its site on the MT1-MMP promoter, reducing the ability of Egr-1 to displace it. These data illustrate the complex control of microvascular endothelial cell MT1-MMP expression in response to distinct environmental stimuli (cyclic strain versus shear stress), consisting of both the modulation of specific transcription factor expression (Egr-1) as well as transcription factor post-translational modification (serine phosphorylation of Sp1).
Collapse
Affiliation(s)
- Sangseob Yun
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|