1
|
Arlat A, Renoud ML, Nakhle J, Thomas M, Fontaine J, Arnaud E, Dray C, Authier H, Monsarrat P, Coste A, Casteilla L, Ousset M, Cousin B. Generation of functionally active resident macrophages from adipose tissue by 3D cultures. Front Immunol 2024; 15:1356397. [PMID: 38975341 PMCID: PMC11224291 DOI: 10.3389/fimmu.2024.1356397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Within adipose tissue (AT), different macrophage subsets have been described, which played pivotal and specific roles in upholding tissue homeostasis under both physiological and pathological conditions. Nonetheless, studying resident macrophages in-vitro poses challenges, as the isolation process and the culture for extended periods can alter their inherent properties. Methods Stroma-vascular cells isolated from murine subcutaneous AT were seeded on ultra-low adherent plates in the presence of macrophage colony-stimulating factor. After 4 days of culture, the cells spontaneously aggregate to form spheroids. A week later, macrophages begin to spread out of the spheroid and adhere to the culture plate. Results This innovative three-dimensional (3D) culture method enables the generation of functional mature macrophages that present distinct genic and phenotypic characteristics compared to bone marrow-derived macrophages. They also show specific metabolic activity and polarization in response to stimulation, but similar phagocytic capacity. Additionally, based on single-cell analysis, AT-macrophages generated in 3D culture mirror the phenotypic and functional traits of in-vivo AT resident macrophages. Discussion Our study describes a 3D in-vitro system for generating and culturing functional AT-resident macrophages, without the need for cell sorting. This system thus stands as a valuable resource for exploring the differentiation and function of AT-macrophages in vitro in diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- Adèle Arlat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Marie-Laure Renoud
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Jean Nakhle
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Miguel Thomas
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Jessica Fontaine
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Emmanuelle Arnaud
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Cédric Dray
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Hélène Authier
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Paul Monsarrat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
- Dental Faculty and Hospital of Toulouse – Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France
| | - Agnès Coste
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Marielle Ousset
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Béatrice Cousin
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| |
Collapse
|
2
|
Jiang Y, Liang M, Chen L, Wang J, Huang Y, Huo H, Xiao D, Hu Y, Wang Z, Ji Q, Li Y, Cai Z, He B. Myeloid SENP3 deficiency protects mice from diet and age-induced obesity via regulation of YAP1 SUMOylation. Cell Mol Life Sci 2023; 81:4. [PMID: 38070059 PMCID: PMC10710392 DOI: 10.1007/s00018-023-05050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Obesity is characterized by chronic low-grade inflammation, which is driven by macrophage infiltration in adipose tissue and leads to elevated cytokines such as interleukin-1β (IL-1β) in the circulation and tissues. Previous studies demonstrate that SENP3, a redox-sensitive SUMO2/3-specific protease, is strongly implicated in the development and progression of cancer and cardiovascular diseases. However, the role of SENP3 in obesity-associated inflammation remains largely unknown. To better understand the effects of SENP3 on adipose tissue macrophage (ATM) activation and function within the context of obesity, we generated mice with myeloid-specific deletion of SENP3 (Senp3flox/flox;Lyz2-Cre mice). We found that the expression of SENP3 is dramatically increased in ATMs during high-fat diet (HFD)-induced obesity in mice. Senp3flox/flox;Lyz2-Cre mice show lower body weight gain and reduced adiposity and adipocyte size after challenged with HFD and during aging. Myeloid-specific SENP3 deletion attenuates macrophage infiltration in adipose tissue and reduces serum levels of inflammatory factors during diet and age-induced obesity. Furthermore, we found that SENP3 knockout markedly inhibits cytokine release from macrophage after lipopolysaccharide and palmitic acid treatment in vitro. Mechanistically, in cultured peritoneal macrophages, SENP3 protein level is enhanced by IL-1β, in parallel with the upregulation of Yes-associated protein 1 (YAP1). Moreover, we demonstrated that SENP3 modulates de-SUMO modification of YAP1 and SENP3 deletion abolishes the upregulation of YAP1 induced by IL-1β. Most importantly, SENP3 deficiency reduces YAP1 protein level in adipose tissue during obesity. Our results highlight the important role of SENP3 in ATM inflammation and diet and age-induced obesity.
Collapse
Affiliation(s)
- Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Min Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jian Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Danrui Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zi Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yanjie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
3
|
Kong F, Huang J, Xu C, Huang T, Wen G, Cheng W. System inflammation response index: a novel inflammatory indicator to predict all-cause and cardiovascular disease mortality in the obese population. Diabetol Metab Syndr 2023; 15:195. [PMID: 37821960 PMCID: PMC10566161 DOI: 10.1186/s13098-023-01178-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
AIM This study aims to investigate the relationship between two novel inflammatory markers, namely, the Systemic Inflammatory Response Index (SIRI) and the Systemic Immune Inflammatory Index (SII), as well as the all-cause and cardiovascular disease (CVD) mortality in the obese population. MATERIALS AND METHODS We conducted a prospective cohort study based on the data of 13,026 obese adults (age ≥ 18 years) from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2014 and followed until December 2019. SIRI was calculated by the formula: (neutrophil count × monocyte count) / lymphocyte count, while that of SII was: (platelet count × neutrophil count)/lymphocyte count. The association of SIRI and SII with all-cause and CVD mortality was evaluated using Cox regression. In addition, the nomogram was performed to predict 10-year survival probability. RESULTS During a median follow-up of 137 months, 1959 and 553 all-cause and CVD deaths were recorded, respectively. Spearman correlation analysis indicated that SIRI and SII were unrelated to almost all baseline characteristics (r < 0.15). Multivariate Cox regression models displayed that each standard deviation (SD) increase in SIRI was associated with a 16% (HR 1.16; 95% CI 1.09-1.24) and 22% (HR 1.22; 95% CI 1.10-1.36) increase in the risk of all-cause and CVD mortality, respectively. Likewise, every SD increase in SII was correlated with a 9% (HR 1.09; 95% CI 1.02-1.16) and 14% (HR 1.14; 95% CI 1.04-1.26) increase in the risk of all-cause and CVD mortality, respectively. The predictive value of SIRI for all-cause and CVD mortality (AUC = 0.601 and 0.624) exceeded that of SII (AUC = 0.528 and 0.539). Moreover, the nomogram displayed a substantial predictive value for 10-year survival (AUC = 0.847) with sensitivity and specificity exceeding 75%. CONCLUSIONS In the obese population, SIRI and SII are independent risk factors for all-cause and CVD mortality. Notably, the predictive ability of SIRI for both all-cause and CVD mortality significantly outperforms that of SII, suggesting that SIRI is a more valuable marker of inflammation.
Collapse
Affiliation(s)
- Fanliang Kong
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Junhao Huang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Chunhua Xu
- Department of Recuperation, Lintong Rehabilitation, and Recuperation Center, Xian, Shaanxi, China
| | - Tingyuan Huang
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Grace Wen
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Wenke Cheng
- Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Sharifi-Zahabi E, Rezvani N, Hajizadeh-Sharafabad F, Hosseini-Baharanchi FS, Shidfar F, Rahimi M. Theobromine supplementation in combination with a low-calorie diet improves cardiovascular risk factors in overweight and obese subjects with metabolic syndrome: a randomized controlled trial. Food Funct 2023; 14:8431-8441. [PMID: 37615657 DOI: 10.1039/d3fo00555k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Background & aims: The beneficial effects of theobromine (TB) on obesity and features of metabolic syndrome (MetS) have been reported in several studies. However, the findings are equivocal. The present study aimed to investigate the effects of 12 week pure TB supplementation (450 mg day-1) combined with a low-calorie diet on the anthropometric and metabolic syndrome indices in overweight and obese adults with MetS. Methods: In a randomized double-blind parallel controlled trial, 80 participants aged 40-55 years were randomly assigned to take 450 mg day-1 TB or placebo along with a low-calorie diet for 12 weeks. Dietary intake, anthropometric indices, blood pressure, lipid profile and glycemic indices were assessed at the start and end of the intervention. Results: Seventy-two participants completed the study. After 12 weeks, TB supplementation significantly decreased the waist circumference (WC) (-0.86 cm; P = 0.045), LDL-c/HDL-c (-0.26; P = 0.008), TG/HDL-c (-0.41; P = 0.001), TC/HDL-c (-0.38; P = 0.006) and increased HDL-c (1.72 mg dl-1; P = 0.036) compared to the placebo group. There were no significant differences regarding body weight, BMI, hip circumference (HC), hip-to-waist circumference ratio (WHR), systolic and diastolic blood pressure, fasting levels of total cholesterol (TC), triacylglycerol (TAG), low-density lipoprotein cholesterol (LDL-c), fasting blood glucose, insulin, homoeostatic model assessment for insulin resistance (HOMA-IR) and homeostasis model assessment of β-cell function (HOMA-β) between the two groups (p > 0.05). Conclusion: The results of the current study revealed that TB supplementation along with a low-calorie diet had favorable effects on WC, LDL-c/HDL-c, TG/HDL-c, TC/HDL-c, and serum level of HDL-c in overweight and obese subjects with MetS. Trial registration number: IRCT20091114002709N59. Registration date: 5 March 2022.
Collapse
Affiliation(s)
- Elham Sharifi-Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nayebali Rezvani
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Fatemeh Sadat Hosseini-Baharanchi
- Minimally Invasive Surgery Research Center, & Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehrali Rahimi
- School of Medicine, Diabetic Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Sharifi-Zahabi E, Hajizadeh-Sharafabad F, Nachvak SM, Mirzaian S, Darbandi S, Shidfar F. A comprehensive insight into the molecular effect of theobromine on cardiovascular-related risk factors: A systematic review of in vitro and in vivo studies. Phytother Res 2023; 37:3765-3779. [PMID: 37309834 DOI: 10.1002/ptr.7916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Theobromine may have beneficial effects on cardiovascular risk factors. This study aimed to find molecular effects of theobromine on lipid profile, glycemic status, inflammatory factors, and vascular function through a comprehensive assessment of all in vitro and in vivo studies. The search process was started at 18 July 2022. Databases including PubMed, Scopus, and Web of Science were searched to find all articles published up to 18 July 2022. Nineteen studies were included in this study. In vitro studies showed the improving effects of theobromine on inflammatory markers. Of four animal studies assessing the effect of theobromine on inflammatory markers, two reported favorable effects. Among five animal studies assessing the effects of theobromine on lipid profile, three reported improving effects on either triglyceride, total cholesterol, low- or high-density lipoprotein cholesterol. Of the three human studies, two revealed that theobromine had improving effects on lipid profile. A favorable effect of theobromine on augmentation index was also reported in two RCTs. The results for other outcomes were inconclusive. Theobromine may have favorable effects on inflammatory factors, lipid profile, and vascular function markers. However, studies with a longer duration and lower, dietary-relevant doses are required for future confirmation.
Collapse
Affiliation(s)
| | | | - Seyed Mostafa Nachvak
- School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mirzaian
- Department of Food and Human Nutrition Sciences, University of Manitoba, Winnipeg, Canada
| | - Sahar Darbandi
- Imam Khomeini comprehensive health center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Stenberg K, Gensby L, Cremer SE, Nielsen MM, Bjørnvad CR. Analytical performance of a canine ELISA monocyte chemoattractant protein-1 assay for use in cats and evaluation of circulating levels in normal weight and obese cats. Acta Vet Scand 2022; 64:22. [PMID: 36064726 PMCID: PMC9446815 DOI: 10.1186/s13028-022-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In human and murine obesity, adipose tissue dwelling macrophages and adipocytes produce monocyte chemoattractant protein-1 (MCP-1) leading to systemic low-grade inflammation. The aim of the study was to validate a canine MCP-1 ELISA assay for use in cats and to investigate whether a difference in MCP-1 concentrations could be detected between: a) cats having normal or elevated circulating serum amyloid A (SAA) levels and b) normal weight and obese cats. Serum obtained from 36 client-owned cats of various breed, age and sex with normal (n = 20) to elevated SAA (n = 16) was used for the validation of the canine MCP-1 ELISA assay. As no golden standard exists for measurement of inflammation, circulating MCP-1 concentrations were compared to SAA measurements, as an indicator of systemic inflammation. Analytical precision, dilution recovery and detection limit were calculated. A possible correlation between MCP-1 concentrations and obesity related measures (body fat percentage (BF%), insulin sensitivity and cytokine expression) were investigated in another population of 73 healthy, lean to obese, neutered domestic short-haired cats. RESULTS Intra- (2.7-4.1%) and inter-assay (2.2-3.6%) coefficient of variation and dilution recovery were acceptable, and the detection limit was 27.1 pg/mL. MCP-1 did not correlate with SAA, and there was no difference between the inflammatory (SAA > 20 mg/L) and non-inflammatory group, due to a marked overlap in MCP-1 concentrations. Circulating MCP-1 concentrations were unaffected by BF% (r2 = 2.7 × 10-6, P = 0.21) and other obesity-related markers. CONCLUSIONS The present canine ELISA assay seems to be able to measure circulating feline MCP-1. However, further studies are needed to determine its possible use for detecting inflammation in relation to disease processes or obesity-related low-grade inflammation in cats.
Collapse
Affiliation(s)
- Kathrine Stenberg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Line Gensby
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: AniCura Vangede Animal Hospital, Plantevej 2, 2870 Dyssegård, Denmark
| | - Signe Emilie Cremer
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: Coloplast, Holtedam 1-3, 3050 Humlebæk, Denmark
| | - Michelle Møller Nielsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Charlotte Reinhard Bjørnvad
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| |
Collapse
|
7
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
8
|
The promising role of CCL2 as a noninvasive marker for nonalcoholic steatohepatitis diagnosis in Egyptian populations. Eur J Gastroenterol Hepatol 2021; 33:e954-e960. [PMID: 34907983 DOI: 10.1097/meg.0000000000002324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common liver problem, including both nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). In this study, we investigated the role of CCL2 and IL6 as a noninvasive tool for the diagnosis of NASH in clinical practice and to establish criteria for discrimination NASH from NAFL in Egyptian populations with NAFLD. METHOD In addition to 30 healthy controls, serum samples from 66 NAFLD patients histologically diagnosed by biopsy (32 NAFL and 34 NASH) were analyzed for serum IL6, CCL2, liver biomarkers, complete blood count and lipid profile. Serum IL6 or CCL2 levels were tested for correlation with the NASH activity score (NAS score). RESULT Both IL6 and CCL2 were significantly upregulated in NASH patients compared with NAFL patients or control. Serum CCL2 was significantly correlated with the degree of hepatocytes ballooning (the diagnostic endpoint for NASH) without any significant correlation with steatosis or lobular inflammation. Serum IL6 was not correlated with the NAS score. The ROC curve analysis of CCL2 for NASH diagnosis revealed an area under curve (AUROC) of 0.959 at cutoff ≥227 pg/ml. While IL6 revealed an (AUROC) of 0.790. CONCLUSION Serum CCL2 but not IL6 is a promising noninvasive tool for NASH diagnosis and CCL2 can provide a reliable, validated scoring system to discriminate NAFL from NASH in the Egyptian population confirming the role of CCL2 in NASH pathogenesis. These findings will aid in the development of innovative NASH treatment strategies in Egypt and improve the quality of clinical care.
Collapse
|
9
|
Shan X, Zhang C, Mai C, Hu X, Cheng N, Chen W, Peng D, Wang L, Ji Z, Xie Y. The Biogenesis, Biological Functions, and Applications of Macrophage-Derived Exosomes. Front Mol Biosci 2021; 8:715461. [PMID: 34368234 PMCID: PMC8333870 DOI: 10.3389/fmolb.2021.715461] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophage-derived exosomes have been implicated on the modulation of inflammatory processes. Recent studies have shown that macrophage-derived exosomes contribute to the progression of many diseases such as cancer, atherosclerosis, diabetes and heart failure. This review describes the biogenesis of macrophage-derived exosomes and their biological functions in different diseases. In addition, the challenges facing the use of macrophage-derived exosomes as delivery tools for drugs, genes, and proteins in clinical applications are described. The application of macrophage-derived exosomes in the diagnosis and treatment of diseases is also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Chutian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, China
| | - Xuerui Hu
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Nuo Cheng
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Zhaojie Ji
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, China
| |
Collapse
|
10
|
Raeisi-Dehkordi H, Amiri M, Zimorovat A, Moghtaderi F, Zarei S, Forbes SC, Salehi-Abargouei A. Canola oil compared with sesame and sesame-canola oil on glycaemic control and liver function in patients with type 2 diabetes: A three-way randomized triple-blind cross-over trial. Diabetes Metab Res Rev 2021; 37:e3399. [PMID: 32860716 DOI: 10.1002/dmrr.3399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND This study aimed to compare the effects of sesame (SO), canola (CO), and sesame-canola (SCO: a blend) oils on glycaemic control markers and liver function enzymes in adults with type 2 diabetes. METHODS In this randomized, triple-blind, three-way, cross-over clinical trial, participants replaced their usual oil with the intervention oils for 9 weeks. Serum fasting blood sugar, fasting serum insulin (FSI), insulin resistance (HOMA2-IR), beta-cell function (HOMA2-%B), insulin sensitivity (HOMA2-%S), quantitative insulin sensitivity check index (QUICKI), as well as serum liver function enzymes were measured at baseline and end of intervention periods. RESULTS Ninety-two participants completed all treatment periods. After adjusting for confounders, all treatment oils resulted in significant improvements in FSI and HOMA2-%S (p < 0.05). SO and SCO led to favourable changes in HOMA2-IR and QUICKI (p < 0.05). Following CO and SCO, there was a significant decrease in HOMA2-%B (p < 0.05). The sex-stratified analysis revealed that FSI and HOMA2-IR were decreased after SO compared to CO in males (p = 0.024). Serum gamma-glutamyltransferase (GGT) was significantly lower following SO compared to CO in females (p = 0.02), however, the difference in change values was not significant (p = 0.058). CONCLUSIONS SO consumption appears to improve glycaemic control markers in males and serum GGT in females compared with CO in patients with type 2 diabetes (registration code: IRCT2016091312571N6).
Collapse
Affiliation(s)
- Hamidreza Raeisi-Dehkordi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojgan Amiri
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Zimorovat
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moghtaderi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, Faculty of medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, Manitoba, Canada
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Bourgeois C, Gorwood J, Olivo A, Le Pelletier L, Capeau J, Lambotte O, Béréziat V, Lagathu C. Contribution of Adipose Tissue to the Chronic Immune Activation and Inflammation Associated With HIV Infection and Its Treatment. Front Immunol 2021; 12:670566. [PMID: 34220817 PMCID: PMC8250865 DOI: 10.3389/fimmu.2021.670566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (AT) contributes significantly to inflammation – especially in the context of obesity. Several of AT’s intrinsic features favor its key role in local and systemic inflammation: (i) large distribution throughout the body, (ii) major endocrine activity, and (iii) presence of metabolic and immune cells in close proximity. In obesity, the concomitant pro-inflammatory signals produced by immune cells, adipocytes and adipose stem cells help to drive local inflammation in a vicious circle. Although the secretion of adipokines by AT is a prime contributor to systemic inflammation, the lipotoxicity associated with AT dysfunction might also be involved and could affect distant organs. In HIV-infected patients, the AT is targeted by both HIV infection and antiretroviral therapy (ART). During the primary phase of infection, the virus targets AT directly (by infecting AT CD4 T cells) and indirectly (via viral protein release, inflammatory signals, and gut disruption). The initiation of ART drastically changes the picture: ART reduces viral load, restores (at least partially) the CD4 T cell count, and dampens inflammatory processes on the whole-body level but also within the AT. However, ART induces AT dysfunction and metabolic side effects, which are highly dependent on the individual molecules and the combination used. First generation thymidine reverse transcriptase inhibitors predominantly target mitochondrial DNA and induce oxidative stress and adipocyte death. Protease inhibitors predominantly affect metabolic pathways (affecting adipogenesis and adipocyte homeostasis) resulting in insulin resistance. Recently marketed integrase strand transfer inhibitors induce both adipocyte adipogenesis, hypertrophy and fibrosis. It is challenging to distinguish between the respective effects of viral persistence, persistent immune defects and ART toxicity on the inflammatory profile present in ART-controlled HIV-infected patients. The host metabolic status, the size of the pre-established viral reservoir, the quality of the immune restoration, and the natural ageing with associated comorbidities may mitigate and/or reinforce the contribution of antiretrovirals (ARVs) toxicity to the development of low-grade inflammation in HIV-infected patients. Protecting AT functions appears highly relevant in ART-controlled HIV-infected patients. It requires lifestyle habits improvement in the absence of effective anti-inflammatory treatment. Besides, reducing ART toxicities remains a crucial therapeutic goal.
Collapse
Affiliation(s)
- Christine Bourgeois
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Anaelle Olivo
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Laura Le Pelletier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Jacqueline Capeau
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Olivier Lambotte
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France.,AP-HP, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Claire Lagathu
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| |
Collapse
|
12
|
Cui J, Shan K, Yang Q, Qi Y, Qu H, Li J, Wang R, Jia L, Chen W, Feng N, Chen YQ. Prostaglandin E 3 attenuates macrophage-associated inflammation and prostate tumour growth by modulating polarization. J Cell Mol Med 2021; 25:5586-5601. [PMID: 33982835 PMCID: PMC8184682 DOI: 10.1111/jcmm.16570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/29/2022] Open
Abstract
Alternative polarization of macrophages regulates multiple biological processes. While M1‐polarized macrophages generally mediate rapid immune responses, M2‐polarized macrophages induce chronic and mild immune responses. In either case, polyunsaturated fatty acid (PUFA)‐derived lipid mediators act as both products and regulators of macrophages. Prostaglandin E3 (PGE3) is an eicosanoid derived from eicosapentaenoic acid, which is converted by cyclooxygenase, followed by prostaglandin E synthase successively. We found that PGE3 played an anti‐inflammatory role by inhibiting LPS and interferon‐γ‐induced M1 polarization and promoting interleukin‐4‐mediated M2 polarization (M2a). Further, we found that although PGE3 had no direct effect on the growth of prostate cancer cells in vitro, PGE3 could inhibit prostate cancer in vivo in a nude mouse model of neoplasia. Notably, we found that PGE3 significantly inhibited prostate cancer cell growth in a cancer cell‐macrophage co‐culture system. Experimental results showed that PGE3 inhibited the polarization of tumour‐associated M2 macrophages (TAM), consequently producing indirect anti‐tumour activity. Mechanistically, we identified that PGE3 regulated the expression and activation of protein kinase A, which is critical for macrophage polarization. In summary, this study indicates that PGE3 can selectively promote M2a polarization, while inhibiting M1 and TAM polarization, thus exerting an anti‐inflammatory effect and anti‐tumour effect in prostate cancer.
Collapse
Affiliation(s)
- Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Dong Y, Li X, Liu Y, Gao J, Tao J. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sci 2021; 278:119579. [PMID: 33961852 DOI: 10.1016/j.lfs.2021.119579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Hyperlipidemia, an independent risk factor for atherosclerosis, is regarded as a lipid metabolism disorder associated with elevated plasma triglyceride and/or cholesterol. Genetic factors and unhealthy lifestyles, such as excess caloric intake and physical inactivity, can result in hyperlipidemia. Taurine, a sulfur-containing non-essential amino acid, is abundant in marine foods and has been associated with wide-ranging beneficial physiological effects, with special reference to regulating aberrant lipid metabolism. Its anti-hyperlipidemic mechanism is complex, which is related to many enzymes in the process of fat anabolism and catabolism (e.g., HMGCR, CYP7A1, LDLR, FXR, FAS and ACC). Anti-inflammatory and antioxidant molecular targets, lipid autophagy, metabolic reprogramming and gut microbiota will also be reviewed.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Xiaoling Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Yaling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China.
| |
Collapse
|
14
|
Passos GR, Ghezzi AC, Antunes E, de Oliveira MG, Mónica FZ. The Role of Periprostatic Adipose Tissue on Prostate Function in Vascular-Related Disorders. Front Pharmacol 2021; 12:626155. [PMID: 33643052 PMCID: PMC7908035 DOI: 10.3389/fphar.2021.626155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are highly prevalent worldwide. Clinical and experimental data suggest that the incidence of LUTS-BPH is higher in patients with vascular-related disorders such as in pelvic ischemia, obesity and diabetes as well as in the ageing population. Obesity is an important risk factor that predisposes to glucose intolerance, insulin resistance, dyslipidemia, type 2 diabetes mellitus and cardiovascular disorders. Prospective studies showed that obese men are more likely to develop LUTS-BPH than non-obese men. Yet, men with greater waist circumferences were also at a greater risk of increased prostate volume and prostate-specific antigen than men with lower waist circumference. BPH is characterized by an enlarged prostate and increased smooth muscle tone, thus causing urinary symptoms. Data from experimental studies showed a significant increase in prostate and epididymal adipose tissue weight of obese mice when compared with lean mice. Adipose tissues that are in direct contact with specific organs have gained attention due to their potential paracrine role. The prostate gland is surrounded by periprostatic adipose tissue (PPAT), which is believed to play a paracrine role by releasing growth factors, pro-inflammatory, pro-oxidant, contractile and anti-contractile substances that interfere in prostate reactivity and growth. Therefore, this review is divided into two main parts, one focusing on the role of adipokines in the context of obesity that can lead to LUTS/BPH and the second part focusing on the mediators released from PPAT and the possible pathways that may interfere in the prostate microenvironment.
Collapse
|
15
|
Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, Sundrud MS, Ilic S, Cominelli F, Rodriguez-Palacios A. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 2021; 11:604989. [PMID: 33603741 PMCID: PMC7884479 DOI: 10.3389/fimmu.2020.604989] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail R. Basson
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christy Chen
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Filip Sagl
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ashley Trotter
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Hospital Medicine, Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark S. Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
16
|
Luo S, Ezrokhi M, Cominos N, Tsai TH, Stoelzel CR, Trubitsyna Y, Cincotta AH. Experimental dopaminergic neuron lesion at the area of the biological clock pacemaker, suprachiasmatic nuclei (SCN) induces metabolic syndrome in rats. Diabetol Metab Syndr 2021; 13:11. [PMID: 33485386 PMCID: PMC7825247 DOI: 10.1186/s13098-021-00630-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The daily peak in dopaminergic neuronal activity at the area of the biological clock (hypothalamic suprachiasmatic nuclei [SCN]) is diminished in obese/insulin resistant vs lean/insulin sensitive animals. The impact of targeted lesioning of dopamine (DA) neurons specifically at the area surrounding (and that communicate with) the SCN (but not within the SCN itself) upon glucose metabolism, adipose and liver lipid gene expression, and cardiovascular biology in normal laboratory animals has not been investigated and was the focus of this study. METHODS Female Sprague-Dawley rats received either DA neuron neurotoxic lesion by bilateral intra-cannula injection of 6-hydroxydopamine (2-4 μg/side) or vehicle treatment at the area surrounding the SCN at 20 min post protriptyline ip injection (20 mg/kg) to protect against damage to noradrenergic and serotonergic neurons. RESULTS At 16 weeks post-lesion relative to vehicle treatment, peri-SCN area DA neuron lesioning increased weight gain (34.8%, P < 0.005), parametrial and retroperitoneal fat weight (45% and 90% respectively, P < 0.05), fasting plasma insulin, leptin and norepinephrine levels (180%, 71%, and 40% respectively, P < 0.05), glucose tolerance test area under the curve (AUC) insulin (112.5%, P < 0.05), and insulin resistance (44%-Matsuda Index, P < 0.05) without altering food consumption during the test period. Such lesion also induced the expression of several lipid synthesis genes in adipose and liver and the adipose lipolytic gene, hormone sensitive lipase in adipose (P < 0.05 for all). Liver monocyte chemoattractant protein 1 (a proinflammatory protein associated with metabolic syndrome) gene expression was also significantly elevated in peri-SCN area dopaminergic lesioned rats. Peri-SCN area dopaminergic neuron lesioned rats were also hypertensive (systolic BP rose from 157 ± 5 to 175 ± 5 mmHg, P < 0.01; diastolic BP rose from 109 ± 4 to 120 ± 3 mmHg, P < 0.05 and heart rate increase from 368 ± 12 to 406 ± 12 BPM, P < 0.05) and had elevated plasma norepinephrine levels (40% increased, P < 0.05) relative to controls. CONCLUSIONS These findings indicate that reduced dopaminergic neuronal activity in neurons at the area of and communicating with the SCN contributes significantly to increased sympathetic tone and the development of metabolic syndrome, without effect on feeding.
Collapse
Affiliation(s)
- Shuqin Luo
- VeroScience LLC, 1334 Main Road, Tiverton, RI, 02878, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
McKernan K, Varghese M, Patel R, Singer K. Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte 2020; 9:212-222. [PMID: 32403975 PMCID: PMC7238871 DOI: 10.1080/21623945.2020.1760674] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In obesity, high levels of saturated fatty acids (SFAs) contribute to adipose tissue inflammation and dysfunction. Obesity-induced macrophage infiltration leads to insulin resistance, but the adipocyte itself may play a role in generating the inflammatory milieu. Given our recent findings of the role of TLR4 in myeloid biasing in obesity, we next investigated the role of TLR4 in adipocyte generated inflammatory responses to SFAs and lipopolysaccharides. We used WT and Tlr4-/- ear mesenchymal stem cell derived adipocytes (EMSC Ad) and bone marrow dendritic cells (BMDCs) to evaluate cell specific responses. Our work demonstrates a role for TLR4 in adipocyte- immune cell crosstalk and that SFA derived metabolites from adipocytes may induce proinflammatory stimulation of immune cells in a TLR4 independent manner.
Collapse
Affiliation(s)
- K. McKernan
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M. Varghese
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| | - R. Patel
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K. Singer
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Takatani N, Taya D, Katsuki A, Beppu F, Yamano Y, Wada A, Miyashita K, Hosokawa M. Identification of Paracentrone in Fucoxanthin-Fed Mice and Anti-Inflammatory Effect against Lipopolysaccharide-Stimulated Macrophages and Adipocytes. Mol Nutr Food Res 2020; 65:e2000405. [PMID: 33215789 DOI: 10.1002/mnfr.202000405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Indexed: 12/16/2022]
Abstract
SCOPE Fucoxanthin is converted to fucoxanthinol and amarouciaxanthin A in the mouse body. However, further metabolism such as cleavage products (i.e., apocarotenoids) remains unclear. The fucoxanthin-derived apocarotenoid in vivo is investigated and the anti-inflammatory effect of apocarotenoids with fucoxanthin partial structure such as allenic bond and epoxide residue against activated macrophages and adipocytes in vitro is evaluated. METHODS AND RESULTS LC-MS analysis indicates the presence of paracentrone, a C31 -allenic-apocarotenoid, in white adipose tissue of diabetic/obese KK-Ay and normal C57BL/6J mice fed 0.2% fucoxanthin diet for 1 week. In lipopolysaccharide-activated RAW264.7 macrophages, paracentrone as well as C26 - and C28 -allenic-apocarotenoids suppresses the overexpression of inflammatory factors. Further, apo-10'-fucoxanthinal, a fucoxanthin-derived apocarotenoid which retained epoxide residue, exhibits a most potent anti-inflammatory activity through regulating mitogen-activated protein kinases and nuclear factor-κB inflammatory signal pathways. In contrast, β-apo-8'-carotenal without allenic bond and epoxide residue lacks suppressed inflammation. In 3T3-L1 adipocytes, paracentrone, and apo-10'-fucoxanthinal downregulate the mRNA expression of proinflammatory mediators and chemokines induced by co-culture with RAW264.7 cells. CONCLUSION Dietary fucoxanthin accumulates as paracentrone as well as fucoxanthinol and amarouciaxanthin A in the mouse body. Allenic bond and epoxide residue of fucoxanthin-derived apocarotenoids have pivotal roles for anti-inflammatory action against activated macrophages and adipocytes.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Daisuke Taya
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Ami Katsuki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|
19
|
Semnani-Azad Z, Connelly PW, Johnston LW, Retnakaran R, Harris SB, Zinman B, Hanley AJ. The Macrophage Activation Marker Soluble CD163 is Longitudinally Associated With Insulin Sensitivity and β-cell Function. J Clin Endocrinol Metab 2020; 105:5611046. [PMID: 31677389 PMCID: PMC7112970 DOI: 10.1210/clinem/dgz166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023]
Abstract
CONTEXT Chronic inflammation arising from adipose tissue macrophage (ATM) activation may be central in type 2 diabetes etiology. Our objective was to assess the longitudinal associations of soluble CD163 (sCD163), a novel biomarker of ATM activation, with insulin sensitivity, β-cell function, and dysglycemia in high-risk subjects. METHODS Adults at risk for type 2 diabetes in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) study had 3 assessments over 6 years (n = 408). Levels of sCD163 were measured using fasting serum. Insulin sensitivity was assessed by HOMA2-%S and the Matsuda index (ISI). β-cell function was determined by insulinogenic index (IGI) over HOMA-IR and insulin secretion-sensitivity index-2 (ISSI-2). Incident dysglycemia was defined as the onset of impaired fasting glucose, impaired glucose tolerance, or type 2 diabetes. Generalized estimating equations (GEE) evaluated longitudinal associations of sCD163 with insulin sensitivity, β-cell function, and incident dysglycemia adjusting for demographic and lifestyle covariates. Areas under receiver-operating-characteristic curve (AROC) tested whether sCD163 improved dysglycemia prediction in a clinical model. RESULTS Longitudinal analyses showed significant inverse associations between sCD163 and insulin sensitivity (% difference per standard deviation increase of sCD163 for HOMA2-%S (β = -7.01; 95% CI, -12.26 to -1.44) and ISI (β = -7.60; 95% CI, -11.09 to -3.97) and β-cell function (ISSI-2 (β = -4.67; 95 %CI, -8.59 to -0.58) and IGI/HOMA-IR (β = -8.75; 95% CI, -15.42 to -1.56)). Increased sCD163 was associated with greater risk for incident dysglycemia (odds ratio = 1.04; 95% CI, 1.02-1.06; P < 0.001). Adding sCD163 data to a model with clinical variables improved prediction of incident dysglycemia (AROC=0.6731 vs 0.638; P < 0.05). CONCLUSIONS sCD163 was longitudinally associated with core disorders that precede the onset of type 2 diabetes.
Collapse
MESH Headings
- Adipose Tissue/cytology
- Adipose Tissue/immunology
- Adult
- Antigens, CD/blood
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomarkers/blood
- Biomarkers/metabolism
- Blood Glucose/analysis
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/physiopathology
- Female
- Glucose Tolerance Test
- Humans
- Insulin Resistance/immunology
- Islets of Langerhans/physiopathology
- Longitudinal Studies
- Macrophage Activation
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Middle Aged
- Prospective Studies
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Zhila Semnani-Azad
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Philip W Connelly
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Luke W Johnston
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ravi Retnakaran
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Stewart B Harris
- Department of Family Medicine, Western University, London, Canada
| | - Bernard Zinman
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Correspondence and Reprint Requests: Anthony J. Hanley, PhD. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8. Tel: 416-978-3616, E-mail: , ORCID ID: 0000-0002-6364-2444
| |
Collapse
|
20
|
Lutkemeyer DDS, Do Amaral MA, Ishida Assunção NH, Marques Tejada NF, Saraiva Camara NO. Obesidade: uma abordagem inflamatória e microbiana. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A obesidade está intimamente ligada ao estado inflamatório, sendo considerada uma patologia metabólica complexa. Dietas hipercalóricas alteram a composição da microbiota intestinal, sendo a mudança da proporção de bactérias dos filos Bacteroidetes e Firmicutes uma das consequências mais conhecidas. Essa mudança determina a produção de metabólitos específicos do sistema imune, induzindo estado inflamatório responsável pelo agravamento de uma série de doenças. A dieta hipercalórica representa um fator de risco para a obesidade e para o diabetes mellitus, doenças interligadas pelo conceito de lipotoxicidade, e o estado inflamatório também contribui para o aparecimento e para a progressão de doenças cardiovasculares. Com esse artigo, objetivamos estudar a obesidade pela perspectiva imunológica e microbiológica, abordando as consequências de dietas hipercalóricas sobre o estado inflamatório e a sobre a microbiota. Ademais, associar a mudança no microbioma a doenças prevalentes como o diabetes mellitus e as doenças cardiovasculares, apontando abordagens terapêuticas potenciais.
Collapse
|
21
|
Nerurkar PV, Orias D, Soares N, Kumar M, Nerurkar VR. Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J Nutr Biochem 2019; 68:16-32. [PMID: 31005847 DOI: 10.1016/j.jnutbio.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic and tissue-specific inflammation has a profound influence on regulation of metabolism, and therefore, strategies to reduce inflammation are of special interest in prevention and treatment of obesity and type 2 diabetes (T2D). Antiobesity and antidiabetic properties of Momordica charantia (bitter melon, BM) have been linked to its protective effects on inflammation and gut microbial dysbiosis. We investigated the mechanisms by which freeze-dried BM juice reduces adipose inflammation in mice fed a 60% high-fat diet (HFD) for 16 weeks. Although earlier studies indicated that BM inhibited recruitment of macrophages (Mφ) infiltration in adipose tissue of rodents and reduced NF-kB and IL-1β secretions, the mechanisms remain unknown. We demonstrate that freeze-dried BM juice inhibits recruitment of Mφ into adipose tissue and its polarization to inflammatory phenotype possibly due to reduction of sphingokinase 1 (SPK1) mRNA in HFD-fed mice. Furthermore, reduction of IL-1β secretion by freeze-dried BM juice in the adipose tissue of HFD-fed mice is correlated to alleviation of NLRP3 inflammasome components and their downstream signaling targets. We confirm previous observations that BM inhibited inflammation of colon and gut microbial dysbiosis in HFD-fed mice, which in part may be associated with the observed anti-inflammatory effects in adipose tissue if HFD-fed mice. Overall, functional foods such as BM may offer potential dietary interventions that may impact sterile inflammatory diseases such as obesity and T2D.
Collapse
Affiliation(s)
- Pratibha V Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Daniella Orias
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Natasha Soares
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology; Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
22
|
Inflammatory Microenvironment and Adipogenic Differentiation in Obesity: The Inhibitory Effect of Theobromine in a Model of Human Obesity In Vitro. Mediators Inflamm 2019; 2019:1515621. [PMID: 30804705 PMCID: PMC6360562 DOI: 10.1155/2019/1515621] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 12/11/2022] Open
Abstract
Objective Obesity is considered a clinic condition characterized by a state of chronic low-grade inflammation. The role of macrophages and adipocytokines in adipose tissue inflammation is in growing investigation. The physiopathological mechanisms involved in inflammatory state in obesity are not fully understood though the adipocytokines seem to characterize the biochemical link between obesity and inflammation. The aim of this work is to analyze the effect of theobromine, a methylxanthine present in the cocoa, on adipogenesis and on proinflammatory cytokines evaluated in a model of fat tissue inflammation in vitro. Methods In order to mimic in vitro this inflammatory condition, we investigated the interactions between human-like macrophages U937 and human adipocyte cell lines SGBS. The effect of theobromine on in vitro cell growth, cell cycle, adipogenesis, and cytokines release in the supernatants has been evaluated. Results Theobromine significantly inhibits the differentiation of preadipocytes in mature adipocytes and reduces the levels of proinflammatory cytokines as MCP-1 and IL-1β in the supernatants obtained by the mature adipocytes and macrophages interaction. Conclusion Theobromine reduces adipogenesis and proinflammatory cytokines; these data suggest its potential therapeutic effect for treating obesity by control of macrophages infiltration in adipose tissue and inflammation.
Collapse
|
23
|
Cui K, Ardell CL, Podolnikova NP, Yakubenko VP. Distinct Migratory Properties of M1, M2, and Resident Macrophages Are Regulated by α Dβ 2 and α Mβ 2 Integrin-Mediated Adhesion. Front Immunol 2018; 9:2650. [PMID: 30524429 PMCID: PMC6262406 DOI: 10.3389/fimmu.2018.02650] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration/accumulation of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in damaged tissue. The mechanism of macrophage migration and subsequent accumulation is still not fully understood. Currently, the amoeboid adhesion-independent motility is considered essential for leukocyte migration in the three-dimensional environment. We challenge this hypothesis by studying the contribution of leukocyte adhesive receptors, integrins αMβ2, and αDβ2, to three-dimensional migration of M1-polarized, M2-polarized, and resident macrophages. Both integrins have a moderate expression on M2 macrophages, while αDβ2 is upregulated on M1 and αMβ2 demonstrates high expression on resident macrophages. The level of integrin expression determines its contribution to macrophage migration. Namely, intermediate expression supports macrophage migration, while a high integrin density inhibits it. Using in vitro three-dimensional migration and in vivo tracking of adoptively-transferred fluorescently-labeled macrophages during the resolution of inflammation, we found that strong adhesion of M1-activated macrophages translates to weak 3D migration, while moderate adhesion of M2-activated macrophages generates dynamic motility. Reduced migration of M1 macrophages depends on the high expression of αDβ2, since αD-deficiency decreased M1 macrophage adhesion and improved migration in fibrin matrix and peritoneal tissue. Similarly, the high expression of αMβ2 on resident macrophages prevents their amoeboid migration, which is markedly increased in αM-deficient macrophages. In contrast, αD- and αM-knockouts decrease the migration of M2 macrophages, demonstrating that moderate integrin expression supports cell motility. The results were confirmed in a diet-induced diabetes model. αD deficiency prevents the retention of inflammatory macrophages in adipose tissue and improves metabolic parameters, while αM deficiency does not affect macrophage accumulation. Summarizing, β2 integrin-mediated adhesion may inhibit amoeboid and mesenchymal macrophage migration or support mesenchymal migration in tissue, and, therefore, represents an important target to control inflammation.
Collapse
Affiliation(s)
- Kui Cui
- Department of Biomedical Sciences, Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Christopher L Ardell
- Department of Biomedical Sciences, Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Nataly P Podolnikova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
24
|
Nightingale TE, Moore P, Harman J, Khalil R, Gill RS, Castillo T, Adler RA, Gorgey AS. Body composition changes with testosterone replacement therapy following spinal cord injury and aging: A mini review. J Spinal Cord Med 2018; 41:624-636. [PMID: 28770686 PMCID: PMC6217462 DOI: 10.1080/10790268.2017.1357917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Context Hypogonadism is a male clinical condition in which the body does not produce enough testosterone. Testosterone plays a key role in maintaining body composition, bone mineral density, sexual function, mood, erythropoiesis, cognition and quality of life. Hypogonadism can occur due to several underlying pathologies during aging and in men with physical disabilities, such as spinal cord injury (SCI). This condition is often under diagnosed and as a result, symptoms undertreated. Methods In this mini-review, we propose that testosterone replacement therapy (TRT) may be a viable strategy to improve lean body mass (LBM) and fat mass (FM) in men with SCI. Evidence Synthesis Supplementing the limited data from SCI cohorts with consistent findings from studies in non-disabled aging men, we present evidence that, relative to placebo, transdermal TRT can increase LBM and reduce FM over 3-36 months. The impact of TRT on bone mineral density and metabolism is also discussed, with particular relevance for persons with SCI. Moreover, the risks of TRT remain controversial and pertinent safety considerations related to transdermal administration are outlined. Conclusion Further research is necessary to help develop clinical guidelines for the specific dose and duration of TRT in persons with SCI. Therefore, we call for more high-quality randomized controlled trials to examine the efficacy and safety of TRT in this population, which experiences an increased risk of cardiometabolic diseases as a result of deleterious body composition changes after injury.
Collapse
Affiliation(s)
- Tom E. Nightingale
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pamela Moore
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Joshua Harman
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Refka Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Ranjodh S. Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Teodoro Castillo
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert A. Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA,Correspondence to: Ashraf S. Gorgey, Department of Veterans Affairs, Hunter Holmes McGuire Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA.
| |
Collapse
|
25
|
Sumrell RM, Nightingale TE, McCauley LS, Gorgey AS. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS One 2018; 13:e0203049. [PMID: 30169541 PMCID: PMC6118379 DOI: 10.1371/journal.pone.0203049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/10/2018] [Indexed: 01/21/2023] Open
Abstract
Background/Objectives To examine associations of different anthropometric measurements of central adiposity to visceral adipose tissue (measured via multi-axial magnetic resonance imaging; MRI) and cardiometabolic disease risk factors in men with spinal cord injury (SCI). Additionally, to determine population-specific seated/supine waist and abdominal circumference cutoffs, which may identify men at increased risk of cardiometabolic disease. Participants/Methods Twenty-two men with chronic SCI underwent MRI scans, anthropometric measurements along with assessments of various cardiometabolic risk biomarkers. Pearson/part (accounting for age as a covariate) correlation coefficients were calculated to determine the associations between study variables. Abdominal and waist circumference cutoffs were extrapolated using the slope of linear regression equations. Results Seated/supine abdominal and waist circumferences were (P < 0.01) associated with MRI visceral fat cross-sectional area (VATCSA), VAT volume and CSA:TotalCSA. Low density lipoprotein, non-high-density lipoprotein and total cholesterol were positively associated with seated/supine abdominal and waist circumferences after controlling for age; r = 0.50–0.61, r = 0.46–0.58, r = 0.52–0.58, P < 0.05, respectively. Tumor necrosis factor alpha was associated with seated/supine abdominal and waist circumferences after accounting for age; r = 0.49–0.51 and r = 0.48–0.56, P < 0.05 respectively. The population-specific cutoffs were 86.5cm and 88.3cm for supine waist and abdominal circumferences, respectively, as well as 89cm and 101cm for seated waist and abdominal circumferences, respectively. After dichotomizing VATCSA (< or ≥ 100cm2), peak oxygen uptake, triglycerides, insulin sensitivity and glycated hemoglobin were different (P < 0.05) between groups. After dichotomizing (< or ≥ 86.5cm) supine waist circumference, VATCSA, triglycerides and insulin sensitivity were different (P < 0.05) between groups. Conclusions Seated/supine circumferences are associated with both central adiposity and biomarkers of cardiometabolic disease risk in persons with SCI. Population-specific cutoffs are proposed herein to identify central adiposity and potential cardiometabolic disease risk after SCI.
Collapse
Affiliation(s)
- Ryan M Sumrell
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Thomas E Nightingale
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Liron S McCauley
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Ashraf S Gorgey
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
26
|
Plaza-Díaz J, Fontana L, Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients 2018; 10:1038. [PMID: 30096792 PMCID: PMC6116142 DOI: 10.3390/nu10081038] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Maternal milk contains compounds that may affect newborn immunity. Among these are a group of oligosaccharides that are synthesized in the mammary gland from lactose; these oligosaccharides have been termed human milk oligosaccharides (HMOs). The amount of HMOs present in human milk is greater than the amount of protein. In fact, HMOs are the third-most abundant solid component in maternal milk after lactose and lipids, and are thus considered to be key components. The importance of HMOs may be explained by their inhibitory effects on the adhesion of microorganisms to the intestinal mucosa, the growth of pathogens through the production of bacteriocins and organic acids, and the expression of genes that are involved in inflammation. This review begins with short descriptions of the basic structures of HMOs and the gut immune system, continues with the beneficial effects of HMOs shown in cell and animal studies, and it ends with the observational and randomized controlled trials carried out in humans to date, with particular emphasis on their effect on immune system development. HMOs seem to protect breastfed infants against microbial infections. The protective effect has been found to be exerted through cell signaling and cell-to-cell recognition events, enrichment of the protective gut microbiota, the modulation of microbial adhesion, and the invasion of the infant intestinal mucosa. In addition, infants fed formula supplemented with selected HMOs exhibit a pattern of inflammatory cytokines closer to that of exclusively breastfed infants. Unfortunately, the positive effects found in preclinical studies have not been substantiated in the few randomized, double-blinded, multicenter, controlled trials that are available, perhaps partly because these studies focus on aspects other than the immune response (e.g., growth, tolerance, and stool microbiota).
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs., 18014 Granada, Spain.
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs., 18014 Granada, Spain.
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs., 18014 Granada, Spain.
- CIBEROBN, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Hu T, Yang Z, Li MD. Pharmacological Effects and Regulatory Mechanisms of Tobacco Smoking Effects on Food Intake and Weight Control. J Neuroimmune Pharmacol 2018; 13:453-466. [PMID: 30054897 DOI: 10.1007/s11481-018-9800-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
Beyond promoting smoking initiation and preventing smokers from quitting, nicotine can reduce food intake and body weight and thus is viewed as desirable by some smokers, especially many women. During the last several decades, the molecular mechanisms underlying the inverse correlation between smoking and body weight have been investigated extensively in both animals and humans. Nicotine's weight effects appear to result especially from the drug's stimulation of α3β4 nicotine acetylcholine receptors (nAChRs), which are located on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus (ARC), leading to activation of the melanocortin circuit, which is associated with body weight. Further, α7- and α4β2-containing nAChRs have been implicated in weight control by nicotine. This review summarizes current understanding of the regulatory effects of nicotine on food intake and body weight according to the findings from pharmacological, molecular genetic, electrophysiological, and feeding studies on these appetite-regulating molecules, such as α3β4, α7, and α4β2 nAChRs; neuropeptide Y (NPY); POMC; melanocortin 4 receptor (MC4R); agouti-related peptide (AgRP); leptin, ghrelin, and protein YY (PYY).
Collapse
Affiliation(s)
- Tongyuan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
28
|
Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake. J Physiol Biochem 2018; 74:559-568. [PMID: 29560554 DOI: 10.1007/s13105-018-0622-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Obesity is usually associated with low-grade inflammation, which determines the appearance of comorbidities like atherosclerosis and insulin resistance. Infiltrated macrophages in adipose tissue are partly responsible of this inflammatory condition. Numerous studies point to the existence of close intercommunication between macrophages and adipocytes and pay particular attention to the proinflammatory cytokines released by both cell types. However, it has been recently described that in both, circulation and tissue level, there are extracellular vesicles (including microvesicles and exosomes) containing miRNAs, mRNAs, and proteins that can influence the inflammatory response. The objective of the present research is to investigate the effect of exosomes released by lipopolysaccharide (LPS)-activated macrophages on gene expression and cell metabolism of adipocytes, focusing on the differential exosomal miRNA pattern between LPS- and non-activated macrophages. The results show that the exosomes secreted by the macrophages do not influence the preadipocyte-to-adipocyte differentiation process, fat storage, and insulin-mediated glucose uptake in adipocytes. However, exosomes induce changes in adipocyte gene expression depending on their origin (LPS- or non-activated macrophages), including genes such as CXCL5, SOD, TNFAIP3, C3, and CD34. Some of the pathways or metabolic processes upregulated by exosomes from LPS-activated macrophages are related to inflammation (complement activation, regulation of reactive oxygen species, migration and activation of leukocyte, and monocyte chemotaxis), carbohydrate catabolism, and cell activation. miR-530, chr9_22532, and chr16_34840 are more abundant in exosomes from LPS-activated macrophages, whereas miR-127, miR-143, and miR-486 are more abundant in those secreted by non-activated macrophages.
Collapse
|
29
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018. [PMID: 29507865 DOI: 10.1155/2018/8917804]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in "distant" pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
30
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018; 2018:8917804. [PMID: 29507865 PMCID: PMC5821995 DOI: 10.1155/2018/8917804] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
31
|
Zhong JX, Chen J, Rao X, Duan L. Dichotomous roles of co-stimulatory molecules in diabetes mellitus. Oncotarget 2018; 9:2902-2911. [PMID: 29416823 PMCID: PMC5788691 DOI: 10.18632/oncotarget.23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Numerous studies have established the importance of immune dysfunction in the development of diabetes mellitus, including typ1 and typ2 diabetes, and it is worth noting that T cell activation acts a key role in the pathogenesis of loss of β cell mass, adipose inflammation and insulin resistance. Regarding as an important checkpoint in the process of T cell activation, co-stimulatory molecules interaction between antigen present cells and T cells have been identified the critical role in the development of diabetes mellitus. Thus, blockage of co-stimulatory dyads interaction between antigen present cells and T cells was supposed to a potential of therapeutic strategies. However, studies also showed that inhibition or deletion of some co-stimulatory molecules do not always reduce the development of diabetes, and even exacerbate the disease activity. Here, in this context, we highlight the dichotomous role of co-stimulatory molecules interaction in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Ji-Xin Zhong
- Department of Endocrinology, Central Hospital of Wuhan, Wuhan, Hubei, China 430061
| | - Jie Chen
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA 44106
- Basic Medical Department of Medical College, Xiamen University, Xiamen, China 361102
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA 44106
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China 361003
| |
Collapse
|
32
|
Kumar R, Mohan S. Non-alcoholic Fatty Liver Disease in Lean Subjects: Characteristics and Implications. J Clin Transl Hepatol 2017; 5:216-223. [PMID: 28936403 PMCID: PMC5606968 DOI: 10.14218/jcth.2016.00068] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/07/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is commonly diagnosed in obese subjects; however, it is not rare among lean individuals. Given the absence of traditional risk factors, it tends to remain under-recognised. The metabolic profiles of lean NAFLD patients are frequently comparable to those of obese NAFLD patients. Though results from several studies have been mixed, it has been generally revealed that lean subjects with NAFLD have minor insulin resistance compared to that in obese NAFLD. Several genetic variants are associated with NAFLD without insulin resistance. Some data suggest that the prevalence of steatohepatitis and advanced fibrosis do not differ significantly between lean and obese NAFLD; however, the former tend to have less severe disease at presentation. The underlying pathophysiology of lean NAFLD may be quite different. Genetic predispositions, fructose- and cholesterol-rich diet, visceral adiposity and dyslipidaemia have potential roles in the pathogenic underpinnings. Lean NAFLD may pose a risk for metabolic disturbances, cardiovascular morbidity or overall mortality. Secondary causes of hepatic steatosis are also needed to be ruled out in lean subjects with NAFLD. The effectiveness of various treatment modalities, such as exercise and pharmacotherapy, on lean NAFLD is not known. Weight loss is expected to help lean NAFLD patients who have visceral obesity. Further investigation is needed for many aspects of lean NAFLD, including mechanistic pathogenesis, risk assessment, natural history and therapeutic approach.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Medical Gastroenterology, Paras HMR Institute, Patna, India
| | - Shantam Mohan
- Department of Medical Gastroenterology, Paras HMR Institute, Patna, India
| |
Collapse
|
33
|
Tian Y, Gao L, Guo Y, Xu Y. Short-term phlorizin treatment attenuates adipose tissue inflammation without alerting obesity in high-fat diet fed mice. J Food Biochem 2017. [DOI: 10.1111/jfbc.12407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Tian
- Department of Endocrinology; Zhongnan Hospital of Wuhan University; Wuhan Hubei P.R. China
- Department of Endocrinology, Xiangyang Central Hospital; Hubei University of Arts and Science; Xiangyang Hubei P.R. China
| | - Ling Gao
- Department of Endocrinology, Xiangyang Central Hospital; Hubei University of Arts and Science; Xiangyang Hubei P.R. China
| | - Yan Guo
- Department of Endocrinology, Xiangyang Central Hospital; Hubei University of Arts and Science; Xiangyang Hubei P.R. China
| | - Yancheng Xu
- Department of Endocrinology; Zhongnan Hospital of Wuhan University; Wuhan Hubei P.R. China
| |
Collapse
|
34
|
Burcelin R. [Gut microbiota and immune crosstalk in metabolic disease]. Biol Aujourdhui 2017; 211:1-18. [PMID: 28682223 DOI: 10.1051/jbio/2017008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Indexed: 05/28/2023]
Abstract
The aim of the review is to discuss about the role played by the defence crosstalk between the gut microbiota and the intestinal immune system, in the development of metabolic disease focusing on obesity and diabetes. Starting from physiological and pathological stand points and based on the latest published data, this review is addressing how the concept of the hologenome theory of evolution can drive the fate of metabolic disease. The notion of "metabolic infection" to explain the "metabolic inflammation" is discussed. This imply comments about the process of bacterial translocation and impaired intestinal immune defense against commensals. Eventually this review sets the soil for personalized medicine. The monthly increase in the number of publications on the gut microbiota to intestinal immune defense and the control of metabolism demonstrate the importance of this field of investigation. The notion of commensal as "self or non-self" has to be reevaluated in the light of the current data. Furthermore, data demonstrate the major role played by short chain fatty acids, secondary bile acids, LPS, peptidoglycans, indole derivatives, and other bacteria-related molecules on the shaping of cells involved in the intestinal protection against commensals is now becoming a central player in the incidence of metabolic diseases. The literature demonstrates that the onset of metabolic diseases and some specific co-morbidities can be explained by a gut microbiota to intestinal immune system crosstalk. Therefore, one should now consider this avenue of investigation as a putative source of biomarkers and therapeutic targets to personalize the treatment of metabolic disease and its co-morbidities. Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, which induces inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France - Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Hôpital Rangueil, 31400 Toulouse, France - Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432 Toulouse Cedex 4, France
| |
Collapse
|
35
|
Gairolla J, Kler R, Modi M, Khurana D. Leptin and adiponectin: pathophysiological role and possible therapeutic target of inflammation in ischemic stroke. Rev Neurosci 2017; 28:295-306. [DOI: 10.1515/revneuro-2016-0055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/30/2016] [Indexed: 11/15/2022]
Abstract
AbstractStroke is a multifactorial disease contributing to significant noncommunicable disease burden in developing countries. Risk of stroke is largely a consequence of morbidities of diabetes, obesity, hypertension, and heart diseases. Incidence of stroke is directly proportional to body mass index. Adipose tissue stores energy as well as acts as an active endocrine organ, which secretes numerous humoral factors. Adiponectin and leptin are the commonest adipocytokines and have been invariably linked to the development of coronary heart disease and may be involved in the underlying biological mechanism of stroke. Leptin and adiponectin mediate proatherogenic and antiatherogenic responses, respectively, and hence, determining the plasma or serum levels of leptin and adiponectin alone or in combination may act as a novel prognostic biomarker for inflammation and atherosclerosis in stroke. This review addresses leptin- and adiponectin-mediated inflammatory mechanism in ischemic stroke and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jitender Gairolla
- 1Department of Neurology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Rupinder Kler
- 1Department of Neurology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Manish Modi
- 1Department of Neurology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Dheeraj Khurana
- 1Department of Neurology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
36
|
Subramanian S, Pallati PK, Rai V, Sharma P, Agrawal DK, Nandipati KC. Increased expression of triggering receptor expressed on myeloid cells-1 in the population with obesity and insulin resistance. Obesity (Silver Spring) 2017; 25:527-538. [PMID: 28111922 PMCID: PMC5323323 DOI: 10.1002/oby.21714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Triggering receptor expressed on myeloid cells (TREM)-1 has recently been recognized as one of the potent amplifiers of acute and chronic inflammation. However, the exact role of TREM-1 in regard to insulin insensitivity is unknown. METHODS mRNA transcripts and protein expression of TREM-1, TREM-2, and TREM-1/TREM-2 ratio were examined in the tissue biopsies (liver, omentum, and subcutaneous fat) and blood samples (neutrophils and monocytes) of subjects with obesity and diabetes (SO+ D+ ; n = 15), subjects with obesity but not diabetes (SO+ D- ; n = 7), and subjects without obesity (BMI < 30) and diabetes (SO- D- ; n = 5). RESULTS The immunofluorescence and RT-PCR revealed significant increase in TREM-1, decrease in TREM-2, and increase in the TREM1/TREM2 ratio in SO+ D+ group compared with other groups. Overall, increased liver TREM-1 expression and soluble-TREM-1 were found in SO+ D+ group compared with SO+ D- group (100% vs. 57.14%, r = 0.582; P = 0.023). TREM-1 was significantly increased in all subjects with obesity and those with HOMA-IR index of >2. CONCLUSIONS TREM-1 was found to be significantly higher in tissues biopsies and blood of subjects with obesity. Greater expression and activity of TREM-1 suggest a possible role in the underlying pathophysiology of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Pradeep K Pallati
- Department of Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Vikrant Rai
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Poonam Sharma
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Kalyana C Nandipati
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
- Department of Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
- Address for Correspondence: Kalyana C Nandipati, M.D., Associate Professor, Department of Surgery, 601 N. 30th Street, Suite # 3700, Creighton University, School of Medicine, Omaha, NE, 68131, USA, Tel: (402) 280 3488 Fax: (402) 280 1421,
| |
Collapse
|
37
|
Hamlat-Khennaf N, Neggazi S, Ayari H, Feugier P, Bricca G, Aouichat-Bouguerra S, Beylot M. [Inflammation in the perivascular adipose tissue and atherosclerosis]. C R Biol 2017; 340:156-163. [PMID: 28188070 DOI: 10.1016/j.crvi.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
In atherosclerosis studies, there are few data, especially in men, on the biology of perivascular adipose tissue (PVAT) compared to that of other adipose tissue (AT), on amendments in obesity, and its possible role in the development of atherosclerosis. We conducted an ex vivo human study on pericarotid adipose tissue-collected in the immediate vicinity (PVATp) and away from the plate (tapas)-and subcutaneous (SC) neck gathered during surgery from patients suffering from atheromatous carotid disease. In addition, we conducted a study in obese Zucker rats (models of obesity and insulin resistance) and Wistar rats subjected to moderate stress. In these models, we collected renal adipose tissue (RAT), epididymal adipose tissue (EAT), and TAPA samples. On all samples, we measured mRNA levels encoding for proinflammatory cytokines (TNFα, IL-6, IL-1β, MCP-1). Our results showed an increase in mRNA MCP-1, TNF and IL-6 in the adipose tissue around atherosclerotic plaques, an increase that was greater in diabetics than in non-diabetic subjects; we noted for the mRNA of MCP-1 in the TAPAp, 3.49×10-2±1.17×10-2ng/ug 18S in diabetic patients compared to 7.26×10-3±1.00×10-3ng/ug 18S (**P<0.01) in non-diabetic patients. In the obese Zucker rat, we found a significant increase in IL-6 in TAPA in obese animals compared to the corresponding controls (4.24×10-5±1.75×10-6ng/μg 18S vs 1.29×10-5±1.55×10-6ng/ug 18S). In stressed rats, we recorded a TNFα mRNA increase in the PVAT and EAT in the stressed rats compared to fatty tissue of control animals, we note respectively, 7.52×10-3±2.8×10-3ng/μg 18S vs 2.62×10-3±0.57×10-3ng/18S and 4.78×10-3±1.52×10-3ng/μg 18S vs 2.02×10-3±0.3×10-3ng/ug 18S. In summary, our work shows an inflammatory state of the TAPA surrounding the atheromatous plaques in diabetic patients. An obesity or stress state promotes an inflammatory profile of PVAT.
Collapse
Affiliation(s)
- Nadjiba Hamlat-Khennaf
- Laboratoire de biologie et physiologie des organismes, faculté des sciences biologiques, université des sciences et de la technologie Houari-Boumediene, BP n(o) 32 El Alia Bab Ezzouar, 16111 Alger, Algérie; ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France.
| | - Samia Neggazi
- Laboratoire de biologie et physiologie des organismes, faculté des sciences biologiques, université des sciences et de la technologie Houari-Boumediene, BP n(o) 32 El Alia Bab Ezzouar, 16111 Alger, Algérie
| | - Hanene Ayari
- ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France
| | | | - Giampiero Bricca
- ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France
| | - Souhila Aouichat-Bouguerra
- Laboratoire de biologie et physiologie des organismes, faculté des sciences biologiques, université des sciences et de la technologie Houari-Boumediene, BP n(o) 32 El Alia Bab Ezzouar, 16111 Alger, Algérie
| | - Michel Beylot
- ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France
| |
Collapse
|
38
|
Adipocyte C1QTNF5 expression is BMI-dependently related to early adipose tissue dysfunction and systemic CTRP5 serum levels in obese children. Int J Obes (Lond) 2016; 41:955-963. [PMID: 28239164 DOI: 10.1038/ijo.2017.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/29/2017] [Accepted: 02/19/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND/OBJECTIVES The recently identified adipocytokine C1QTNF5 (encodes for CTRP5) has been demonstrated to inhibit pro-metabolic insulin signaling in adipocytes. We hypothesized that adipocyte C1QTNF5 expression in subcutaneous (sc) adipose tissue (AT) would correlate with the degree of obesity, systemic CTRP5 serum levels, and early AT and metabolic dysfunction in children. SUBJECTS/METHODS Sc AT samples were obtained from 33 healthy Caucasian lean children aged 10.06±4.84 years and 42 overweight and obese children aged 13.34±3.12 years. C1QTNF5 expression in sc AT as well as in investigated cell lines was assessed by quantitative real-time PCR. Systemic CTRP5 levels were assessed by ELISA. RESULTS C1QTNF5 expression in sc adipocytes increased with body mass index (BMI) standard deviation score (SDS; R=0.48, P<0.001), body fat percentage (R=0.4, P=0.004), adipocyte number (R=0.69, P<0.001) and systemic CTRP5 serum levels (R=0.28, P=0.025) whereas expression in the stromal vascular fraction (SVF) was inversely correlated with BMI SDS (R=-0.24, P=0.04). Multiple regression analysis confirmed that BMI SDS was the strongest independent predictor for C1QTNF5 expression in sc adipocytes. SVF C1QTNF5 levels strongly correlated with SVF CD31 expression (R=0.54, P<0.001) indicating expression by endothelial cells. Primary human endothelial cells demonstrated stronger expression compared with human Simpson-Golahbi-Behmel syndrome pre-adipocytes and adipocytes. Adipocyte C1QTNF5 expression levels were BMI-dependently related to fasting insulin (R=0.3, P=0.03) and leptin serum levels (R=0.5, P<0.001). Sc AT samples containing crown-like structures (CLS) demonstrated increased adipocyte C1QTNF5 expression compared to CLS-negative samples (P=0.03). Functionally, tumor necrosis factor (TNF)α caused a fourfold induction of C1QTNF5 in human adipocytes (P<0.001) and a 50% reduction in primary human endothelial cells (P<0.001). CONCLUSIONS In children adipocyte C1QTNF5 expression is already strongly related to the degree of obesity and is associated with obesity-related AT alterations, systemic CTRP5 serum levels as well as circulating markers of metabolic disease and is positively regulated by TNFα in vitro.
Collapse
|
39
|
Akram Z, Abduljabbar T, Abu Hassan MI, Javed F, Vohra F. Cytokine Profile in Chronic Periodontitis Patients with and without Obesity: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2016; 2016:4801418. [PMID: 27795608 PMCID: PMC5067315 DOI: 10.1155/2016/4801418] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/25/2016] [Indexed: 01/11/2023]
Abstract
To investigate the cytokine profile as biomarkers in the gingival crevicular fluid (GCF) of chronic periodontitis (CP) patients with and without obesity, MEDLINE/PubMed, EMBASE, ScienceDirect, and SCOPUS databases were combined with handsearching of articles published from 1977 up to May 2016 using relevant MeSH terms. Meta-analyses were conducted separately for each of the cytokines: resistin, adiponectin, TNF-α, leptin, IL-6, IL-8, and IL-1β. Forest plots were produced reporting standardized mean difference of outcomes and 95% confidence intervals. Eleven studies were included. Three studies showed comparable levels of leptin among obese and nonobese patients with CP. Four studies reported comparable levels of interleukin- (IL-) 6 and resistin whereas five studies reported comparable levels of adiponectin. Two studies reported similar levels of CRP in patients with periodontitis with and without obesity. One study showed higher levels of tumor necrosis factor-alpha in obese patients with CP. One study showed higher levels of IL-1β and IL-8 in obese patients with CP. The level of localized periodontal inflammation may have a greater influence on the GCF proinflammatory biomarker levels as compared to systemic obesity. Whether patients having chronic periodontitis with obesity have elevated proinflammatory GCF biomarkers levels compared to nonobese individuals remains debatable.
Collapse
Affiliation(s)
- Zohaib Akram
- Department of Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Periodontology, Faculty of Dentistry, Ziauddin University, Karachi, Pakistan
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Ibrahim Abu Hassan
- Department of Restorative Dentistry, Faculty of Dentistry, MARA University of Technology, Selangor, Malaysia
| | - Fawad Javed
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY 14620, USA
| | - Fahim Vohra
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Akram Z, Rahim ZHA, Taiyeb-Ali TB, Shahdan MSA, Baharuddin NA, Vaithilingam RD, Safii SH. Resistin as potential biomarker for chronic periodontitis: A systematic review and meta-analysis. Arch Oral Biol 2016; 73:311-320. [PMID: 27567495 DOI: 10.1016/j.archoralbio.2016.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To determine the serum and gingival crevicular fluid (GCF) levels of resistin between individuals with chronic periodontitis (CP) and those without CP, and to evaluate the role of resistin in CP. MATERIALS AND METHODS The addressed focused question was "Is there a difference in the resistin levels between individuals with CP and those without CP?" four electronic databases: Medline, PubMed (National Institutes of Health, Bethesda), EMBASE, and Science direct databases from 1977 up to March 2016 for appropriate articles addressing the focused question. EMBASE and Medline were accessed using OVID interface which facilitated simultaneous search of text words, MeSH or Emtree. Unpublished studies (gray literature) were identified by searching the Open-GRAY database and references of the included studies (cross referencing) were performed to obtain new studies. In-vitro studies, animal studies, studies that reported levels of other cytokines but not resistin, letters to the editor and review papers were excluded. RESULTS Ten studies were included. Nine studies compared resistin levels between CP and periodontally healthy (H) individuals and reported higher mean serum and GCF levels of resistin in CP patients than the H controls. Two studies showed comparable resistin levels from GCF and serum between diabetes mellitus with CP (DMCP) and CP groups. Three studies included obese subjects and showed comparable serum and GCF resistin levels between obese subjects with CP (OBCP) and CP subjects. CONCLUSIONS CP patients were presented with elevated levels of GCF or serum resistin as compared with H individuals. Resistin modulates inflammation in chronic periodontal disease and may be used as surrogate measure to identify subjects at risk for periodontitis. Resistin levels in patients with CP and systemic inflammatory disorders such as diabetes, obesity, or rheumatoid arthritis was not significantly higher than the levels in patients with only CP.
Collapse
Affiliation(s)
- Zohaib Akram
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Periodontology, Faculty of Dentistry, Ziauddin University, 75600-Karachi, Pakistan
| | - Zubaidah Haji Abdul Rahim
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, Balai Ungku Aziz, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tara Bai Taiyeb-Ali
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, Balai Ungku Aziz, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Shahril Amin Shahdan
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, Balai Ungku Aziz, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Adinar Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Syarida Hasnur Safii
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep 2016; 6:28056. [PMID: 27321128 PMCID: PMC4913246 DOI: 10.1038/srep28056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 11/25/2022] Open
Abstract
Activation of inflammation in white adipose tissue (WAT), includes infiltration/expansion of WAT macrophages, contributes pathogenesis of obesity, insulin resistance, and metabolic syndrome. The inflammasome comprises an intracellular sensor (NLR), caspase-1 and the adaptor ASC. Inflammasome activation leads to maturation of caspase-1 and processing of IL1β, contributing to many metabolic disorders and directing adipocytes to a more insulin-resistant phenotype. Ablation of PDE3B in WAT prevents inflammasome activation by reducing expression of NLRP3, caspase-1, ASC, AIM2, TNFα, IL1β and proinflammatory genes. Following IP injection of lipopolysaccharide (LPS), serum levels of IL1β and TNFα were reduced in PDE3B−/−mice compared to WT. Activation of signaling cascades, which mediate inflammasome responses, were modulated in PDE3B−/−mice WAT, including smad, NFAT, NFkB, and MAP kinases. Moreover, expression of chemokine CCL2, MCP-1 and its receptor CCR2, which play an important role in macrophage chemotaxis, were reduced in WAT of PDE3B−/−mice. In addition, atherosclerotic plaque formation was significantly reduced in the aorta of apoE−/−/PDE3B−/−and LDL-R−/−/PDE3B−/−mice compared to apoE−/−and LDL-R−/−mice, respectively. Obesity-induced changes in serum-cholesterol were blocked in PDE3B−/−mice. Collectively, these data establish a role for PDE3B in modulating inflammatory response, which may contribute to a reduced inflammatory state in adipose tissue.
Collapse
|
42
|
Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol Metab 2016; 5:771-81. [PMID: 27617200 PMCID: PMC5004167 DOI: 10.1016/j.molmet.2016.05.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022] Open
Abstract
Background Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, inducing inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. Scope of review This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. Major conclusions Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities. This article is part of a special issue on microbiota.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432 Toulouse Cedex 4, France
- Inserm 1048, Hôpital Rangueil, 31400 Toulouse, France. Tel.: +33 561 32 56 14; fax: +33 561 32 56 21.Inserm 1048Hôpital RangueilToulouse31400France
| |
Collapse
|
43
|
Affiliation(s)
- Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
44
|
Lin L, Lee JH, Buras ED, Yu K, Wang R, Smith CW, Wu H, Sheikh-Hamad D, Sun Y. Ghrelin receptor regulates adipose tissue inflammation in aging. Aging (Albany NY) 2016; 8:178-91. [PMID: 26837433 PMCID: PMC4761721 DOI: 10.18632/aging.100888] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ligen Lin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jong Han Lee
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric D. Buras
- Department of Internal Medicine at University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Kaijiang Yu
- Department of Intensive Care Unit, the Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Ruitao Wang
- Department of Intensive Care Unit, the Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - C. Wayne Smith
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Sheikh-Hamad
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxiang Sun
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
45
|
Liaw JJT, Peplow PV. Effect of Electroacupuncture on Inflammation in the Obese Zucker Fatty Rat Model of Metabolic Syndrome. J Acupunct Meridian Stud 2015; 9:73-9. [PMID: 27079228 DOI: 10.1016/j.jams.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022] Open
Abstract
Chronic inflammation is known to be associated with visceral obesity and insulin resistance and is characterized by altered levels of production of adipokines such as tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-6, leptin, and adiponectin. Metabolic syndrome (MetS) is a major and escalating public health and clinical challenge worldwide, and patients with MetS have an increased risk of developing cardiovascular disease and type 2 diabetes mellitus. Electroacupuncture (EA) was tested as a means of decreasing inflammation in genetically obese Zucker fatty rats, which serve as a model of MetS. Repeated application of EA at the Zhongwan/Guanyuan acupoints decreased serum TNF-α, but produced no significant alterations in serum leptin, adiponectin, or IL-10. EA had no significant effect on the levels of these four adipokines in white adipose tissue. These findings are consistent with the supposition that EA inhibits proliferation and/or infiltration of macrophages into the adipose tissue of obese rats and stimulates the release of IL-10 from the decreased numbers of macrophages present in adipose tissue. Compared with the control animals, no significant change in body weight occurred. The blood glucose (BG) level over a 30-minute interval in Week 2 was relatively the same as that in Week 1, suggesting that EA treatment does not increase the likelihood of developing hyperglycemia.
Collapse
Affiliation(s)
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
46
|
Moreira MCDS, Pinto ISDJ, Mourão AA, Fajemiroye JO, Colombari E, Reis ÂADS, Freiria-Oliveira AH, Ferreira-Neto ML, Pedrino GR. Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome? Front Physiol 2015; 6:234. [PMID: 26379553 PMCID: PMC4548210 DOI: 10.3389/fphys.2015.00234] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome (MS), formally known as syndrome X, is a clustering of several risk factors such as obesity, hypertension, insulin resistance, and dislypidemia which could lead to the development of diabetes and cardiovascular diseases (CVD). The frequent changes in the definition and diagnostic criteria of MS are indications of the controversy and the challenges surrounding the understanding of this syndrome among researchers. Obesity and insulin resistance are leading risk factors of MS. Moreover, obesity and hypertension are closely associated to the increase and aggravation of oxidative stress. The recommended treatment of MS frequently involves change of lifestyles to prevent weight gain. MS is not only an important screening tool for the identification of individuals at high risk of CVD and diabetes but also an indicator of suitable treatment. As sympathetic disturbances and oxidative stress are often associated with obesity and hypertension, the present review summarizes the role of sympathetic nervous system and oxidative stress in the MS.
Collapse
Affiliation(s)
- Marina C Dos Santos Moreira
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Izabella S de Jesus Pinto
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Aline A Mourão
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - James O Fajemiroye
- Laboratory of Pharmacology of Natural Products, Federal University of Goiás Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista Araraquara, Brazil
| | - Ângela A da Silva Reis
- Department of Biochemistry and Molecular Biology, Federal University of Goiás Goiânia, Brazil
| | - André H Freiria-Oliveira
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Marcos L Ferreira-Neto
- Laboratory of Experimental Physiology, Faculty of Physical Education, Federal University of Uberlândia Uberlândia, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| |
Collapse
|
47
|
Lee WJ, Tateya S, Cheng AM, Rizzo-DeLeon N, Wang NF, Handa P, Wilson CL, Clowes AW, Sweet IR, Bomsztyk K, Schwartz MW, Kim F. M2 Macrophage Polarization Mediates Anti-inflammatory Effects of Endothelial Nitric Oxide Signaling. Diabetes 2015; 64:2836-46. [PMID: 25845662 PMCID: PMC4512216 DOI: 10.2337/db14-1668] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/21/2015] [Indexed: 12/18/2022]
Abstract
Endothelial nitric oxide (NO) signaling plays a physiological role in limiting obesity-associated insulin resistance and inflammation. This study was undertaken to investigate whether this NO effect involves polarization of macrophages toward an anti-inflammatory M2 phenotype. Mice with transgenic endothelial NO synthase overexpression were protected against high-fat diet (HFD)-induced hepatic inflammation and insulin resistance, and this effect was associated with reduced proinflammatory M1 and increased anti-inflammatory M2 activation of Kupffer cells. In cell culture studies, exposure of macrophages to endothelial NO similarly reduced inflammatory (M1) and increased anti-inflammatory (M2) gene expression. Similar effects were induced by macrophage overexpression of vasodilator-stimulated phosphoprotein (VASP), a key downstream mediator of intracellular NO signaling. Conversely, VASP deficiency induced proinflammatory M1 macrophage activation, and the transplantation of bone marrow from VASP-deficient donor mice into normal recipients caused hepatic inflammation and insulin resistance resembling that induced in normal mice by consumption of an HFD. These data suggest that proinflammatory macrophage M1 activation and macrophage-mediated inflammation are tonically inhibited by NO → VASP signal transduction, and that reduced NO → VASP signaling is involved in the effect of HFD feeding to induce M1 activation of Kupffer cells and associated hepatic inflammation. Our data implicate endothelial NO → VASP signaling as a physiological determinant of macrophage polarization and show that signaling via this pathway is required to prevent hepatic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Woo Je Lee
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Sanshiro Tateya
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Andrew M Cheng
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Norma Rizzo-DeLeon
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Nicholas F Wang
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Priya Handa
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Carole L Wilson
- Department of Pathology, University of Washington, Seattle, WA
| | | | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, WA
| | - Michael W Schwartz
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Francis Kim
- Department of Medicine, University of Washington, Seattle, WA Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| |
Collapse
|
48
|
Conti G, Benati D, Bernardi P, Jurga M, Rigotti G, Sbarbati A. The post-adipocytic phase of the adipose cell cycle. Tissue Cell 2015; 46:520-6. [PMID: 25444766 DOI: 10.1016/j.tice.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Subcutaneous white adipose tissue harvested by liposuction has been studied with the aim to understand how the adipocytes modify their morphology when subjected to the passage in a needle for liposuction and to cryopreservation. The work try to clarify the ultrastructural aspects of adipose tissue, in the conditions described before, examining samples of body fat employed in fat graft procedures, and samples after cryopreservation. Scanning and transmission electron microscopy show that the first event that occur in the adipocytes is a lesion of mild degree detectable early in the samples fixed immediately after liposuction. The sequence of events following the adipocyte stress appeared composed by different phases: plasmatic membrane interruption, loss of lipid charge, formation of cup-like adipocytes and formation of post-adipocytes (i.e. cells that survive to traumatic events and restart to internalize lipid droplets). In conclusion, the study suggests that the loss of lipid charge in adipose cell is an active process that can be due to a small hole in the cytoplasmic membrane with the preservation of a large part of the cytoplasmatic content and that at the end of the process of lipid extrusion the cell can maintain viability.
Collapse
Affiliation(s)
- G Conti
- Department of Neurological and Movement Sciences, University of Verona, Str. Le Grazie 8, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Lloret-Linares C, Hachon L. Adaptation posologique chez le sujet obèse. MEDECINE INTENSIVE REANIMATION 2015. [DOI: 10.1007/s13546-015-1086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Liu Y, Liu SX, Cai Y, Xie KL, Zhang WL, Zheng F. Effects of combined aerobic and resistance training on the glycolipid metabolism and inflammation levels in type 2 diabetes mellitus. J Phys Ther Sci 2015; 27:2365-71. [PMID: 26311110 PMCID: PMC4540883 DOI: 10.1589/jpts.27.2365] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/18/2015] [Indexed: 12/26/2022] Open
Abstract
[Purpose] To investigate the effects of combined aerobic and resistance training on glycolipid metabolism and inflammation levels in type 2 diabetes mellitus patients. [Subjects and Methods] Forty-two diabetes patients were randomized to the conventional therapy group (n = 20) or intensive therapy group (n = 22). The control group contained 20 healthy people. The conventional therapy group received routine drug therapy and diet control, while the intensive therapy group additionally underwent combined aerobic and resistance training for 12 weeks. The oral glucose tolerance test and cardiopulmonary exercise testing were performed. Toll-like receptor 4 and NF-κBp65 protein and mRNA expressions were determined by qPCR and western blotting. ELISA was used to determine the expression levels of interleukin-18, interleukin-33, pentraxin-related protein 3, and human cartilage glycoprotein 39. [Results] After exercise training, the intensive therapy group had significantly lower postprandial blood glucose, postprandial insulin, and glycated hemoglobin level and insulin resistance index than the conventional therapy group. The intensive therapy group had significantly lower toll-like receptor 4 and NF-κBp65 protein and mRNA expressions, and serum interleukin-18 levels but significantly higher serum interleukin-33 levels. [Conclusion] Combined aerobic and resistance training can improve glycolipid metabolism and reduce low-grade inflammation in patients with diabetes mellitus patients.
Collapse
Affiliation(s)
- Yuan Liu
- Cardiac Rehabilitation Center, Department of
Rehabilitation, Xiangya Hospital, Central South University, China
| | - Sui-xin Liu
- Cardiac Rehabilitation Center, Department of
Rehabilitation, Xiangya Hospital, Central South University, China
| | - Ying Cai
- Cardiac Rehabilitation Center, Department of
Rehabilitation, Xiangya Hospital, Central South University, China
| | - Kang-ling Xie
- Cardiac Rehabilitation Center, Department of
Rehabilitation, Xiangya Hospital, Central South University, China
| | - Wen-liang Zhang
- Cardiac Rehabilitation Center, Department of
Rehabilitation, Xiangya Hospital, Central South University, China
| | - Fan Zheng
- Cardiac Rehabilitation Center, Department of
Rehabilitation, Xiangya Hospital, Central South University, China
| |
Collapse
|