1
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:91-106. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
2
|
Tarracchini C, Lugli GA, Mancabelli L, van Sinderen D, Turroni F, Ventura M, Milani C. Exploring the vitamin biosynthesis landscape of the human gut microbiota. mSystems 2024; 9:e0092924. [PMID: 39287373 PMCID: PMC11494892 DOI: 10.1128/msystems.00929-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The human gut microbiota possesses the capacity to synthesize vitamins, especially B group vitamins, which are recognized as indispensable for various biological processes both among members of these bacterial communities and host cells. Accordingly, vitamin production by intestinal commensals has attracted significant interest. Nevertheless, our current understanding of bacterial vitamin synthesis is primarily based on individual genomic and monoculture investigations, therefore not providing an overall view of the biosynthetic potential of complex microbial communities. In the current study, we utilized over 100 bacterial genes known to be involved in the biosynthesis of B group and K vitamins to assess the corresponding vitamin biosynthetic potential of approximately 8,000 human gut microbiomes. Our analyses reveal that host-associated factors, such as age and geographical origin, appear to influence the diversity and abundance of vitamin biosynthetic pathways. Furthermore, we identify gut microbiota members that substantially contribute to these biosynthetic functions at each stage of human life. Interestingly, inference of microbial co-associations and network relationships uncovered the apparent key role played by folate and cobalamin in equilibrium establishment of the infant and adult gut microbial communities, respectively.IMPORTANCEOverall, this study expands our understanding of microbe-mediated vitamin biosynthesis in the human gut and may provide potential novel targets to improve availability of these essential micronutrients in the host.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Kundra P, Geirnaert A, Pugin B, Plüss S, Kariluoto S, Lacroix C, Greppi A. Microbially-produced folate forms support the growth of Roseburia intestinalis but not its competitive fitness in fecal batch fermentations. BMC Microbiol 2024; 24:366. [PMID: 39342101 PMCID: PMC11438134 DOI: 10.1186/s12866-024-03528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Folate (vitamin B9) occurs naturally mainly as tetrahydrofolate (THF), methyl-tetrahydrofolate (M-THF), and formyl-tetrahydrofolate (F-THF), and as dietary synthetic form (folic acid). While folate auxotrophy and prototrophy are known for several gut microbes, the specific folate forms produced by gut prototrophs and their impact on gut auxotrophs and microbiota remain unexplored. METHODS Here, we quantified by UHPLC-FL/UV folate produced by six predicted gut prototrophs (Marvinbryantia formatexigens DSM 14469, Blautia hydrogenotrophica 10507 T, Blautia producta DSM 14466, Bacteroides caccae DSM 19024, Bacteroides ovatus DSM 1896, and Bacteroides thetaiotaomicron DSM 2079 T) and investigated the impact of different folate forms and doses (50 and 200 µg/l) on the growth and metabolism of the gut auxotroph Roseburia intestinalis in pure cultures and during fecal anaerobic batch fermentations (48 h, 37 °C) of five healthy adults. RESULTS Our results confirmed the production of folate by all six gut strains, in the range from 15.3 ng/ml to 205.4 ng/ml. Different folate forms were detected, with THF ranging from 12.8 to 41.4 ng/ml and 5-MTHF ranging from 0.2 to 113.3 ng/ml, and being detected in all strains. Natural folate forms, in contrast to folic acid, promoted the growth and metabolism of the auxotroph R. intestinalis L1-82, with dose-dependent effects. During fecal batch fermentations, folate forms at both levels had no detectable effect on total bacteria concentration, on gut community composition and metabolic activity and on Roseburia spp. abundance, compared to the control without folate addition. CONCLUSIONS Our study demonstrates for the first time in vitro the production of different natural folate forms by predicted gut prototrophs and the stimulation on the growth of the folate auxotrophic butyrate-producing R. intestinalis L1-82. Surprisingly, folate did not impact fecal fermentations. Our data suggest that the dietary folate forms at the tested levels may only have limited effects, if any, on the human gut microbiota in vivo.
Collapse
Affiliation(s)
- Palni Kundra
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Annelies Geirnaert
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Benoit Pugin
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Serafina Plüss
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin Katu 2, 00014, Helsinki, Finland
| | - Christophe Lacroix
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.
| | - Anna Greppi
- Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.
- Present Address: Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Systems Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.
| |
Collapse
|
4
|
Grant ET, Parrish A, Boudaud M, Hunewald O, Hirayama A, Ollert M, Fukuda S, Desai MS. Dietary fibers boost gut microbiota-produced B vitamin pool and alter host immune landscape. MICROBIOME 2024; 12:179. [PMID: 39307855 PMCID: PMC11418204 DOI: 10.1186/s40168-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Dietary fibers can alter microbial metabolic output in support of healthy immune function; however, the impact of distinct fiber sources and immunomodulatory effects beyond short-chain fatty acid production are underexplored. In an effort to discern the effects of diverse fibers on host immunity, we employed five distinct rodent diets with varying fiber content and source in specific-pathogen-free, gnotobiotic (containing a 14-member synthetic human gut microbiota), and germ-free mice. RESULTS Broad-scale metabolomics analysis of cecal contents revealed that fiber deprivation consistently reduced the concentrations of microbiota-produced B vitamins. This phenomenon was not always explained by reduced biosynthesis, rather, metatranscriptomic analyses pointed toward increased microbial usage of certain B vitamins under fiber-free conditions, ultimately resulting in a net reduction of host-available B vitamins. Broad immunophenotyping indicated that the local gut effector immune populations and activated T cells accumulate in a microbiota-dependent manner. Supplementation with the prebiotic inulin recovered the availability of microbially produced B vitamins and restored immune homeostasis. CONCLUSIONS Our findings highlight the potential to use defined fiber polysaccharides to boost microbiota-derived B vitamin availability in an animal model and to regulate local innate and adaptive immune populations of the host. Video abstract.
Collapse
Affiliation(s)
- Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, 210-0821, Japan
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark.
| |
Collapse
|
5
|
Yang Y, Ke Y, Liu X, Zhang Z, Zhang R, Tian F, Zhi L, Zhao G, Lv B, Hua S, Wu H. Navigating the B vitamins: Dietary diversity, microbial synthesis, and human health. Cell Host Microbe 2024; 32:12-18. [PMID: 38211561 DOI: 10.1016/j.chom.2023.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
B vitamins are intricately involved in various physiological processes vital for health. Their significance is complicated by the heterogeneous landscape of B vitamin distribution in diets and the contributions of the gut microbiota. Here, we delve into the impact of these factors on B vitamins and introduce strategies, with a focus on microbiota-based therapeutic options, to enhance their availability for improved well-being. Additionally, we provide an ecological and evolutionary perspective on the importance of B vitamins to human-microbiota interactions. In the dynamic realms of nutrition and microbiome science, these essential micronutrients continue to play a fundamental role in our understanding of disease development.
Collapse
Affiliation(s)
- Yudie Yang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yize Ke
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Xinyan Liu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhidong Zhang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rongji Zhang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fang Tian
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Luqian Zhi
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Bomin Lv
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China.
| | - Sha Hua
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
6
|
Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W. Host-microbiota interaction in intestinal stem cell homeostasis. Gut Microbes 2024; 16:2353399. [PMID: 38757687 PMCID: PMC11110705 DOI: 10.1080/19490976.2024.2353399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Huo YM, Zhang SQ, Wu GP, Shan HB, Pan C. A robust method for simultaneous determination of eight B vitamins in human serum by liquid chromatography tandem mass spectrometry. J Sep Sci 2024; 47:e2300576. [PMID: 38117985 DOI: 10.1002/jssc.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
The level of vitamin B group in human serum is an important index of human health. Among B vitamins, cyanocobalamin in serum is unstable and its content is extremely low. Rapid and simultaneous detection of multiple B vitamins including cyanocobalamin is a challenge. Herein, we have developed a rapid and stable method that can realize the determination of thiamine, riboflavin, nicotinamide, pantothenic acid, pyridoxic acid, biotin, 5-methyltetrahydrofolate, and cyanocobalamin simultaneously in 6 min. The method was established based on protein precipitation with methanol and then chromatographic separation was achieved using Waters acquity ultra-high-performance liquid chromatography high strength silica T3 column, which was stable and sensitive especially for cyanocobalamin. Limit of quantification, precision, trueness, and matrix effect were validated according to the European Medicines Agency and United States Food and Drug guidelines and Clinical and Laboratory Standards Institute guidelines on bioanalytical method. The limit of quantification for thiamine, riboflavin, nicotinamide, pantothenic acid, pyridoxic acid, biotin, 5-methyltetrahydrofolate, and cyanocobalamin was 0.4, 0.4, 0.8, 2.0, 0.4, 0.1, 0.4, and 0.04 ng/mL separately, respectively. Intra- and interday precisions were 1.1%-12.4% and 2.0%-13.5%, respectively. The relative errors were between 0.3% and 13.3%, and the matrix effects were between 2.6% and 10.4%.
Collapse
Affiliation(s)
- Yu-Mei Huo
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, P. R. China
| | - Shang-Qing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Gao-Ping Wu
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, P. R. China
| | - Hong-Bo Shan
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, P. R. China
| | - Chao Pan
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, P. R. China
| |
Collapse
|
8
|
Sugandhi VV, Pangeni R, Vora LK, Poudel S, Nangare S, Jagwani S, Gadhave D, Qin C, Pandya A, Shah P, Jadhav K, Mahajan HS, Patravale V. Pharmacokinetics of vitamin dosage forms: A complete overview. Food Sci Nutr 2024; 12:48-83. [PMID: 38268871 PMCID: PMC10804103 DOI: 10.1002/fsn3.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2024] Open
Abstract
Vitamins are crucial for sustaining life because they play an essential role in numerous physiological processes. Vitamin deficiencies can lead to a wide range of severe health issues. In this context, there is a need to administer vitamin supplements through appropriate routes, such as the oral route, to ensure effective treatment. Therefore, understanding the pharmacokinetics of vitamins provides critical insights into absorption, distribution, and metabolism, all of which are essential for achieving the desired pharmacological response. In this review paper, we present information on vitamin deficiencies and emphasize the significance of understanding vitamin pharmacokinetics for improved clinical research. The pharmacokinetics of several vitamins face various challenges, and thus, this work briefly outlines the current issues and their potential solutions. We also discuss the feasibility of enhanced nanocarrier-based pharmaceutical formulations for delivering vitamins. Recent studies have shown a preference for nanoformulations, which can address major limitations such as stability, solubility, absorption, and toxicity. Ultimately, the pharmacokinetics of pharmaceutical dosage forms containing vitamins can impede the treatment of diseases and disorders related to vitamin deficiency.
Collapse
Affiliation(s)
| | - Rudra Pangeni
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Sagun Poudel
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Sopan Nangare
- Department of PharmaceuticsH. R. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Satveer Jagwani
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Dnyandev Gadhave
- Department of PharmaceuticsSinhgad Technical Education SocietySinhgad Institute of PharmacyPuneMaharashtraIndia
| | - Chaolong Qin
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Purav Shah
- Thoroughbred Remedies ManufacturingTRM Industrial EstateNewbridgeIreland
| | - Kiran Jadhav
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Hitendra S. Mahajan
- Department of PharmaceuticsR. C. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| |
Collapse
|
9
|
Munteanu C, Schwartz B. B Vitamins, Glucoronolactone and the Immune System: Bioavailability, Doses and Efficiency. Nutrients 2023; 16:24. [PMID: 38201854 PMCID: PMC10780850 DOI: 10.3390/nu16010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The present review deals with two main ingredients of energy/power drinks: B vitamins and glucuronolactone and their possible effect on the immune system. There is a strong relationship between the recommended daily dose of selected B vitamins and a functional immune system. Regarding specific B vitamins: (1) Riboflavin is necessary for the optimization of reactive oxygen species (ROS) in the fight against bacterial infections caused by Staphylococcus aureus and Listeria monocytogenes. (2) Niacin administered within normal doses to obese rats can change the phenotype of skeletal fibers, and thereby affect muscle metabolism. This metabolic phenotype induced by niacin treatment is also confirmed by stimulation of the expression of genes involved in the metabolism of free fatty acids (FFAs) and oxidative phosphorylation at this level. (3) Vitamin B5 effects depend primarily on the dose, thus large doses can cause diarrhea or functional disorders of the digestive tract whereas normal levels are effective in wound healing, liver detoxification, and joint health support. (4) High vitamin B6 concentrations (>2000 mg per day) have been shown to exert a significant negative impact on the dorsal root ganglia. Whereas, at doses of approximately 70 ng/mL, sensory symptoms were reported in 80% of cases. (5) Chronic increases in vitamin B12 have been associated with the increased incidence of solid cancers. Additionally, glucuronolactone, whose effects are not well known, represents a controversial compound. (6) Supplementing with D-glucarates, such as glucuronolactone, may help the body's natural defense system function better to inhibit different tumor promoters and carcinogens and their consequences. Cumulatively, the present review aims to evaluate the relationship between the selected B vitamins group, glucuronolactone, and the immune system and their associations to bioavailability, doses, and efficiency.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
D’Aimmo MR, Satti M, Scarafile D, Modesto M, Pascarelli S, Biagini SA, Luiselli D, Mattarelli P, Andlid T. Folate-producing bifidobacteria: metabolism, genetics, and relevance. MICROBIOME RESEARCH REPORTS 2023; 3:11. [PMID: 38455078 PMCID: PMC10917623 DOI: 10.20517/mrr.2023.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024]
Abstract
Folate (the general term for all bioactive forms of vitamin B9) plays a crucial role in the evolutionary highly conserved one-carbon (1C) metabolism, a network including central reactions such as DNA and protein synthesis and methylation of macromolecules. Folate delivers 1C units, such as methyl and formyl, between reactants. Plants, algae, fungi, and many bacteria can naturally produce folate, whereas animals, including humans, must obtain folate from external sources. For humans, folate deficiency is, however, a widespread problem. Bifidobacteria constitute an important component of human and many animal microbiomes, providing various health advantages to the host, such as producing folate. This review focuses on bifidobacteria and folate metabolism and the current knowledge of the distribution of genes needed for complete folate biosynthesis across different bifidobacterial species. Biotechnologies based on folate-trophic probiotics aim to create fermented products enriched with folate or design probiotic supplements that can synthesize folate in the colon, improving overall health. Therefore, bifidobacteria (alone or in association with other microorganisms) may, in the future, contribute to reducing widespread folate deficiencies prevalent among vulnerable human population groups, such as older people, women at child-birth age, and people in low-income countries.
Collapse
Affiliation(s)
| | - Maria Satti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Pascarelli
- Protein Engineering and Evolution Unit, Okinawa Institute of Science, Technology Graduate University, Okinawa 40-0193, Japan
| | - Simone Andrea Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Donata Luiselli
- Department for the Cultural Heritage (DBC), University of Bologna, Ravenna 48121, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | | |
Collapse
|
11
|
Li K, Chen Y, Xie J, Cai W, Pang C, Cui C, Huan Y, Deng B. How vitamins act as novel agents for ameliorating diabetic peripheral neuropathy: A comprehensive overview. Ageing Res Rev 2023; 91:102064. [PMID: 37689144 DOI: 10.1016/j.arr.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a pervasive and incapacitating sequela of diabetes, affecting a significant proportion of those diagnosed with the disease, yet an effective treatment remains elusive. Vitamins have been extensively studied, emerging as a promising target for diagnosing and treating various systemic diseases, but their role in DPN is not known. This review collates and synthesizes knowledge regarding the interplay between vitamins and DPN, drawing on bibliographies from prior studies and relevant articles, and stratifying the therapeutic strategies from prophylactic to interventional. In addition, the clinical evidence supporting the use of vitamins to ameliorate DPN is also evaluated, underscoring the potential of vitamins as putative therapeutic agents. We anticipate that this review will offer novel insights for developing and applying vitamin-based therapies for DPN.
Collapse
Affiliation(s)
- Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Weiwei Cai
- Department of Rheumatology and Immunology, Beijing Hospital, Beijing, PR China
| | - Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Can Cui
- Department of Clinical Sciences Malmö, Lund University, Skåne, Sweden
| | - Yu Huan
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
12
|
Liwinski T, Lang UE. Folate and Its Significance in Depressive Disorders and Suicidality: A Comprehensive Narrative Review. Nutrients 2023; 15:3859. [PMID: 37686891 PMCID: PMC10490031 DOI: 10.3390/nu15173859] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Depressive disorders pose significant challenges to global public health, necessitating effective prevention and management strategies. Notably, the occurrence of suicide frequently coincides with depressive episodes. Suicide is as a paramount global health concern that demands efficacious preventive strategies. Current psychiatric approaches heavily rely on pharmacological interventions but have had limited success in addressing the global burden of mental health issues. Suboptimal nutrition, with its impact on the neuroendocrine system, has been implicated in the underlying pathology of depressive disorders. Folate, a group of water-soluble compounds, plays a crucial role in various central nervous system functions. Depressed individuals often exhibit low levels of serum and red blood cell folate. Multiple studies and systematic reviews have investigated the efficacy of folic acid and its derivative, L-methylfolate, which can cross the blood-brain barrier, as stand-alone or adjunct therapies for depression. Although findings have been mixed, the available evidence generally supports the use of these compounds in depressed individuals. Recent studies have established links between the one-carbon cycle, folate-homocysteine balance, immune system function, glutamate excitation via NMDA (N-methyl-D-aspartate) receptors, and gut microbiome eubiosis in mood regulation. These findings provide insights into the complex neurobiological mechanisms underlying the effects of folate and related compounds in depression. Through a comprehensive review of the existing literature, this study aims to advance our understanding of the therapeutic potential of folic acid and related compounds in depression treatment. It also seeks to explore their role in addressing suicidal tendencies and shed light on the neurobiological mechanisms involved, leveraging the latest discoveries in depression research.
Collapse
Affiliation(s)
- Timur Liwinski
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, CH-4002 Basel, Switzerland;
| | | |
Collapse
|
13
|
Townsend JR, Kirby TO, Marshall TM, Church DD, Jajtner AR, Esposito R. Foundational Nutrition: Implications for Human Health. Nutrients 2023; 15:2837. [PMID: 37447166 DOI: 10.3390/nu15132837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Human nutrition, and what can be considered "ideal" nutrition, is a complex, multi-faceted topic which many researchers and practitioners deliberate. While some attest that basic human nutrition is relatively understood, it is undeniable that a global nutritional problem persists. Many countries struggle with malnutrition or caloric deficits, while others encounter difficulties with caloric overconsumption and micronutrient deficiencies. A multitude of factors contribute to this global problem. Limitations to the current scope of the recommended daily allowances (RDAs) and dietary reference intakes (DRIs), changes in soil quality, and reductions in nutrient density are just a few of these factors. In this article, we propose a new, working approach towards human nutrition designated "Foundational Nutrition". This nutritional lens combines a whole food approach in conjunction with micronutrients and other nutrients critical for optimal human health with special consideration given to the human gut microbiome and overall gut health. Together, this a synergistic approach which addresses vital components in nutrition that enhances the bioavailability of nutrients and to potentiate a bioactive effect.
Collapse
Affiliation(s)
- Jeremy R Townsend
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
- Department of Kinesiology, Lipscomb University, Nashville, TN 37204, USA
| | - Trevor O Kirby
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
| | - Tess M Marshall
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
| | - David D Church
- Department of Geriatrics, Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Adam R Jajtner
- Exercise Science and Exercise Physiology, Kent State University, Kent, OH 44240, USA
| | - Ralph Esposito
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY 10003, USA
| |
Collapse
|
14
|
Gillies NA, Sharma P, Han SM, Teh R, Fraser K, Roy NC, Cameron-Smith D, Milan AM. The acute postprandial response of homocysteine to multivitamin and mineral supplementation with a standard meal is not impaired in older compared to younger adults. Eur J Nutr 2023; 62:1309-1322. [PMID: 36539620 DOI: 10.1007/s00394-022-03068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE B vitamins are required for the complex regulation of homocysteine and one-carbon (1C) metabolism. Nutritional supplements are frequently used by older adults to counter nutritional inadequacies. However, the postprandial use of B vitamins from supplements in 1C metabolism may be altered with age owing to impaired nutrient absorption and metabolic regulation. Despite implications for health and nutritional status, postprandial 1C metabolite responses have not been characterised in older adults. METHODS Healthy older (n = 20, 65-76 years) and younger (n = 20, 19-30 years) participants were recruited through online and printed advertisements in Auckland, New Zealand. Participants consumed a multivitamin and mineral supplement with a standard breakfast meal. Blood samples were collected at baseline and hourly for 4 h following ingestion. Plasma 1C metabolites (betaine, choline, cysteine, dimethylglycine, glycine, methionine, serine) were quantified using liquid chromatography coupled with mass spectrometry. Serum homocysteine, folate and vitamin B12 were quantified on a Cobas e411 autoanalyzer. RESULTS Older adults had higher fasting homocysteine concentrations (older: 14.0 ± 2.9 µmol/L; younger: 12.2 ± 2.5 µmol/L; p = 0.036) despite higher folate (older: 36.7 ± 17.4 nmol/L; younger: 21.6 ± 7.6 nmol/L; p < 0.001) and similar vitamin B12 concentrations (p = 0.143) to younger adults. However, a similar postprandial decline in homocysteine was found in older and younger subjects in response to the combined meal and supplement. Except for a faster decline of cystathionine in older adults (p = 0.003), the postprandial response of other 1C metabolites was similar between young and older adults. CONCLUSION Healthy older adults appear to maintain postprandial responsiveness of 1C metabolism to younger adults, supported by a similar postprandial decline in homocysteine concentrations.
Collapse
Affiliation(s)
- Nicola A Gillies
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
| | - Pankaja Sharma
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
| | - Soo Min Han
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ruth Teh
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- The Riddet Institute, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Nicole C Roy
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, The University of Otago, Dunedin, New Zealand
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
- College of Health, Medicine, and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Amber M Milan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand.
| |
Collapse
|
15
|
van Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiol Rev 2023; 47:fuad012. [PMID: 36931888 PMCID: PMC10062696 DOI: 10.1093/femsre/fuad012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.
Collapse
Affiliation(s)
- Pim T van Leeuwen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianbo Zhang
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike T Wortel
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fanelli F, Montemurro M, Verni M, Garbetta A, Bavaro AR, Chieffi D, Cho GS, Franz CMAP, Rizzello CG, Fusco V. Probiotic Potential and Safety Assessment of Type Strains of Weissella and Periweissella Species. Microbiol Spectr 2023; 11:e0304722. [PMID: 36847557 PMCID: PMC10100829 DOI: 10.1128/spectrum.03047-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Although numerous strains belonging to the Weissella genus have been described in the last decades for their probiotic and biotechnological potential, others are known to be opportunistic pathogens of humans and animals. Here, we investigated the probiotic potential of two Weissella and four Periweissella type strains belonging to the species Weissella diestrammenae, Weissella uvarum, Periweissella beninensis, Periweissella fabalis, Periweissella fabaria, and Periweissella ghanensis by genomic and phenotypic analyses, and performed a safety assessment of these strains. Based on the results of the survival to simulated gastrointestinal transit, autoaggregation and hydrophobicity characteristics, as well as adhesion to Caco-2 cells, we showed that the P. beninensis, P. fabalis, P. fabaria, P. ghanensis, and W. uvarum type strains exhibited a high probiotic potential. The safety assessment, based on the genomic analysis, performed by searching for virulence and antibiotic resistance genes, as well as on the phenotypic evaluation, by testing hemolytic activity and antibiotic susceptibility, allowed us to identify the P. beninensis type strain as a safe potential probiotic microorganism. IMPORTANCE A comprehensive analysis of safety and functional features of six Weissella and Periweissella type strains was performed. Our data demonstrated the probiotic potential of these species, indicating the P. beninensis type strain as the best candidate based on its potential probiotic features and the safety assessment. The presence of different antimicrobial resistance profiles in the analyzed strains highlighted the need to establish cutoff values to perform a standardized safety evaluation of these species, which, in our opinion, should be mandatory on a strain-specific basis.
Collapse
Affiliation(s)
- Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Garbetta
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | | | | | - Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| |
Collapse
|
17
|
Tannock GW. Gnotobiotic experimentation helps define symbiogenesis in vertebrate evolution. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2169943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Liu Z, Gonzalez-Nahm S, Zhang G, Dorsey A, Sela DA. Nutrition and the Gut Microbiome: Insights into New Dietary Strategies for Health. Nutr Health 2023:307-322. [DOI: 10.1007/978-3-031-24663-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Exploring Bacterial Attributes That Underpin Symbiont Life in the Monogastric Gut. Appl Environ Microbiol 2022; 88:e0112822. [PMID: 36036591 PMCID: PMC9499014 DOI: 10.1128/aem.01128-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large bowel of monogastric animals, such as that of humans, is home to a microbial community (microbiota) composed of a diversity of mostly bacterial species. Interrelationships between the microbiota as an entity and the host are complex and lifelong and are characteristic of a symbiosis. The relationships may be disrupted in association with disease, resulting in dysbiosis. Modifications to the microbiota to correct dysbiosis require knowledge of the fundamental mechanisms by which symbionts inhabit the gut. This review aims to summarize aspects of niche fitness of bacterial species that inhabit the monogastric gut, especially of humans, and to indicate the research path by which progress can be made in exploring bacterial attributes that underpin symbiont life in the gut.
Collapse
|
20
|
Jiang Q, Lin L, Xie F, Jin W, Zhu W, Wang M, Qiu Q, Li Z, Liu J, Mao S. Metagenomic insights into the microbe-mediated B and K 2 vitamin biosynthesis in the gastrointestinal microbiome of ruminants. MICROBIOME 2022; 10:109. [PMID: 35864536 PMCID: PMC9306216 DOI: 10.1186/s40168-022-01298-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND B and K2 vitamins, essential nutrients in host metabolism, can be synthesized by the rumen microbiome in ruminants and subsequently absorbed by the host. However, the B and K2 vitamin biosynthesis by the whole gastrointestinal microbiome and their abundances in different dietary strategies are largely unknown. Here, we reanalyzed our previous large-scale metagenomic data on the gastrointestinal microbiome of seven ruminant species and recruited 17,425 nonredundant microbial genomes from published datasets to gain a comprehensive understanding of the microbe-mediated B and K2 vitamin biosynthesis in ruminants. RESULTS We identified 1,135,807 genes and 167 enzymes involved in B and K2 vitamin biosynthesis. Our results indicated that the total abundances of B and K2 vitamin biosynthesis were dominant in the stomach microbiome, while the biosynthesis of thiamine, niacin, and pyridoxine was more abundant in the large intestine. By examining 17,425 nonredundant genomes, we identified 2366 high-quality genomes that were predicted to de novo biosynthesize at least one vitamin. Genomic analysis suggested that only 2.7% of these genomes can synthesize five or more vitamins, and nearly half of genomes can synthesize only one vitamin. Moreover, we found that most genomes possessed cobalamin transporters or cobalamin-dependent enzymes to consume cobalamin directly, and only a few microbial genomes possessed a complete cobalamin biosynthesis pathway. Based on these genomic data, we examined the effect of the high-grain (HG) diet on the vitamin biosynthesis of the rumen microbiome of dairy cattle. We revealed that most vitamin biosynthesis was enhanced in the HG group, while only cobalamin synthesis was inhibited in the HG group, indicating that dietary fiber is vital for cobalamin biosynthesis. CONCLUSIONS We primarily provided a gene catalog and 2366 microbial genomes involved in B and K2 vitamin biosynthesis in ruminants. Our findings demonstrated the regional heterogeneity and dietary effect of vitamin biosynthetic potential in the ruminant gastrointestinal microbiome and interpreted the biosynthesis mechanisms of these microbes and their physiological adaptability. This study expands our understanding of microbe-mediated vitamin biosynthesis in ruminants and may provide novel targets for manipulation to improve the production of these essential vitamins. Video abstract.
Collapse
Affiliation(s)
- Qian Jiang
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Limei Lin
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Fei Xie
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wei Jin
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Junhua Liu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
21
|
Effect of age-related in vitro human digestion with gut microbiota on antioxidative activity and stability of vitamins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Ng GYQ, Hande V, Ong MH, Wong BWX, Loh ZWL, Ho WD, Handison LB, Tan IMSP, Fann DY, Arumugam TV, Hande MP. Effects of dietary interventions on telomere dynamics. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503472. [PMID: 35483787 DOI: 10.1016/j.mrgentox.2022.503472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Telomeres play a critical role in maintaining cellular fate through tight regulation of cell division and DNA damage or repair. Over the years, it is established that biological ageing is defined by a gradual derangement in functionality, productivity, and robustness of biological processes. The link between telomeres and ageing is highlighted when derangement in telomere biology often leads to premature ageing and concomitant accompaniment of numerous age-associated diseases. Unfortunately, given that ageing is a biologically complicated intricacy, measures to reduce morbidity and improve longevity are still largely in the infancy stage. Recently, it was discovered that dietary habits and interventions might play a role in promoting successful healthy ageing. The intricate relationship between dietary components and its potential to protect the integrity of telomeres may provide unprecedented health benefits and protection against age-related pathologies. However, more focused prospective and follow-up studies with and without interventions are needed to unequivocally link dietary interventions with telomere maintenance in humans. This review aims to summarise recent findings that investigate the roles of nutrition on telomere biology and provide enough evidence for further studies to consider the topic of nutrigenomics and its contributions toward healthy ageing and concomitant strategy against age-associated diseases.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Varsha Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Min Hui Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Beverly Wen-Xin Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei D Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lionel B Handison
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - David Y Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Vellore Institute of Technology, Vellore, India; Mangalore University, Mangalore, India.
| |
Collapse
|
23
|
Hua RX, Gao H, Wang BY, Guo YX, Liang C, Gao L, Shang HW, Xu JD. Insights into correlation between intestinal flora-gut-brain axis and blood-brain barrier permeability. Shijie Huaren Xiaohua Zazhi 2022; 30:100-108. [DOI: 10.11569/wcjd.v30.i2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A wide variety of gut microbes has a non-negligible physiological and pathological impact on the host. Studies show that gut microbes can influence the function of the central nervous system by synthesizing and releasing several key neurotransmitters and neuroregulatory factors. Decreasing the integrity of the blood-brain barrier is related to the disorder of gut microbes, and maintaining the homeostasis of gut microbes is of great significance in preventing and treating neurodegenerative diseases. This review summarizes the possible mechanism of the intestine flora-gut-brain axis as a signaling pathway and presents several ideas and potential directions for regulating gut microbes to achieve the purpose of disease treatment.
Collapse
Affiliation(s)
- Rong-Xuan Hua
- Clinical Medicine "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Bo-Ya Wang
- Clinical Medicine Program, Peking University Health Science Center, Beijing 100081, China
| | - Yue-Xin Guo
- Oral Medicine "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Chen Liang
- Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
24
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P, on behalf of the OEMONOM. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
25
|
Park SY, Faraci G, Nanda S, Ter-Saakyan S, Love TMT, Mack WJ, Dubé MP, Lee HY. Gut microbiome in people living with HIV is associated with impaired thiamine and folate syntheses. Microb Pathog 2021; 160:105209. [PMID: 34563611 PMCID: PMC8530907 DOI: 10.1016/j.micpath.2021.105209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
People living with HIV have a high incidence of cardiovascular and neurological diseases as comorbid disorders that are commonly linked to inflammation. While microbial translocation can augment inflammation during HIV infection, functional microbiome shifts that may increase pro-inflammatory responses have not been fully characterized. In addition, defining HIV-induced microbiome changes has been complicated by high variability among individuals. Here we conducted functional annotation of previously-published 16S ribosomal RNA gene sequences of 305 HIV positive and 249 negative individuals, with adjustment for geographic region, sex, sexual behavior, and age. Metagenome profiles were inferred from these individuals' 16S data. HIV infection was associated with impaired microbial vitamin B synthesis; around half of the gene families in thiamine and folate biosynthesis pathways were significantly less abundant in the HIV positive group than the negative control. These results are consistent with the high prevalence of thiamine and folate deficiencies in HIV infections. These HIV-induced microbiota shifts have the potential to influence cardiovascular and neurocognitive diseases, given the documented associations between B-vitamin deficiencies, inflammation, and these diseases. We also observed that most essential amino acid biosynthesis pathways were downregulated in the microbiome of HIV-infected individuals. Microbial vitamin B and amino acid synthesis pathways were not significantly recovered by antiretroviral treatment when we compared 262 ART positive and 184 ART negative individuals. Our meta-analysis provides a new outlook for understanding vitamin B and amino acid deficiencies in HIV patients, suggesting that interventions for reversing HIV-induced microbiome shifts may aid in lessening the burdens of HIV comorbidities.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sayan Nanda
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sonia Ter-Saakyan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael P Dubé
- Department of Medicine and Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021; 9:1284. [PMID: 34680401 PMCID: PMC8533313 DOI: 10.3390/biomedicines9101284] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson's disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India;
| | - Harry W.M. Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Cognitive Neuroscience, DGIST, Daegu 42988, Korea
| | - Emanuel Vamanu
- Faculty of Biotechnology, The University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 District, 011464 Bucharest, Romania
| | - Ghulam Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| |
Collapse
|
27
|
Rajeev R, Seethalakshmi PS, Jena PK, Prathiviraj R, Kiran GS, Selvin J. Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Crit Rev Food Sci Nutr 2021; 62:7615-7631. [PMID: 34016000 DOI: 10.1080/10408398.2021.1916429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiome and its link with human health and disease have gained a lot of attention recently. The microbiome executes its functions in the host by carrying out the transformation of dietary components and/or de novo synthesis of various essential nutrients. The presence of complex microbial communities makes it difficult to understand the host-microbiome interplay in the metabolism of dietary components. This review attempts to uncover the incredible role of the gut microbiome in the metabolism of dietary components, diet-microbiome interplay, and restoration of the microbiome. The in silico analysis performed in this study elucidates the functional description of essential/hub genes involved in the amino acid degradation pathway, which are mutually present in the host and its gut microbiome. Hence, the computational model helps comprehend the inter-and intracellular molecular networks between humans and their microbial partners.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Prasant Kumar Jena
- Immunology and infectious disease research, Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| |
Collapse
|
28
|
A Role for Folate in Microbiome-Linked Control of Autoimmunity. J Immunol Res 2021; 2021:9998200. [PMID: 34104654 PMCID: PMC8159645 DOI: 10.1155/2021/9998200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D), psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells (T reg). Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation and maintenance of T reg , we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent induction of GI tract T reg , particularly colonic T reg, via anergic T cells (T an). Hence, folate supplementation has potential prophylactic and/or therapeutic benefit in AID/AD.
Collapse
|
29
|
Balakrishnan B, Luckey D, Bodhke R, Chen J, Marietta E, Jeraldo P, Murray J, Taneja V. Prevotella histicola Protects From Arthritis by Expansion of Allobaculum and Augmenting Butyrate Production in Humanized Mice. Front Immunol 2021; 12:609644. [PMID: 34017324 PMCID: PMC8130672 DOI: 10.3389/fimmu.2021.609644] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Bacterial therapeutics are the emergent alternatives in treating autoimmune diseases such as Rheumatoid Arthritis [RA]. P. histicola MCI 001 is one such therapeutic bacterium that has been proven to treat autoimmune diseases such as RA and multiple sclerosis [MS] in animal models. The present study characterized P. histicola MCI 001 isolated from a human duodenal biopsy, and evaluated its impact on the gut microbial and metabolic profile in a longitudinal study using the collagen-induced arthritis model in HLA-DQ8.AEo transgenic mice. P. histicola MCI 001 though closely related to the type strain of P. histicola, DSM 19854, differed in utilizing glycerol. In culture, P. histicola MCI 001 produced vitamins such as biotin and folate, and was involved in digesting complex carbohydrates and production of acetate. Colonization study showed that duodenum was the predominant niche for the gavaged MCI 001. A longitudinal follow-up of gut microbial profile in arthritic mice treated with MCI 001 suggested that dysbiosis caused due to arthritis was partially restored to the profile of naïve mice after treatment. A taxon-level analysis suggested an expansion of intestinal genus Allobaculum in MCI001 treated arthritic mice. Eubiosis achieved post treatment with P. histicola MCI 001 was also reflected in the increased production of short-chain fatty acids [SCFAs]. Present study suggests that the treatment with P. histicola MCI 001 leads to an expansion of Allobaculum by increasing the availability of simple carbohydrates and acetate. Restoration of microbial profile and metabolites like butyrate induce immune and gut homeostasis.
Collapse
Affiliation(s)
| | - David Luckey
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Rahul Bodhke
- Department of Immunology, Mayo Clinic, Rochester, MN, United States.,National Center for Microbial Resource, National Center for Cell Science, Pune, India
| | - Jun Chen
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Eric Marietta
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Patricio Jeraldo
- Department of Surgery, Division of Surgical Research, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Joseph Murray
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
30
|
Al Mansoori A, Shakoor H, Ali HI, Feehan J, Al Dhaheri AS, Cheikh Ismail L, Bosevski M, Apostolopoulos V, Stojanovska L. The Effects of Bariatric Surgery on Vitamin B Status and Mental Health. Nutrients 2021; 13:1383. [PMID: 33923999 PMCID: PMC8073305 DOI: 10.3390/nu13041383] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Diet is a modifiable factor that ensures optimal growth, biochemical performance, improved mood and mental functioning. Lack of nutrients, notably vitamin B, has an impact on human health and wellbeing. The United Arab Emirates is facing a serious problem of micronutrient deficiencies because of the growing trend for bariatric surgery, including Roux-en-Y gastric bypass and sleeve gastrectomy. People undergoing bariatric surgery are at high risk of developing neurological, cognitive, and mental disabilities and cardiovascular disease due to deficiency in vitamin B. Vitamin B is involved in neurotransmitter synthesis, including γ-aminobutyric acid, serotonin, dopamine, and noradrenaline. Deficiency of vitamin B increases the risk of depression, anxiety, dementia and Alzheimer's disease. In addition, vitamin B deficiency can disrupt the methylation of homocysteine, leading to hyperhomocysteinemia. Elevated homocysteine levels are detrimental to human health. Vitamin B deficiency also suppresses immune function, increases the production of pro-inflammatory cytokines and upregulates NF-κB. Considering the important functions of vitamin B and the severe consequences associated with its deficiency following bariatric surgery, proper dietary intervention and administration of adequate supplements should be considered to prevent negative clinical outcomes.
Collapse
Affiliation(s)
- Amna Al Mansoori
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Hira Shakoor
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Habiba I. Ali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC 8001, Australia
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Leila Cheikh Ismail
- Clinical Nutrition and Dietetics Department, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX1 2JD, UK
| | - Marijan Bosevski
- Faculty of Medicine Skopje, University Clinic of Cardiology, University of Ss. Cyril and Methodius, 1010 Skopje, North Macedonia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| |
Collapse
|
31
|
Ni Q, Zhang C, Li D, Xu H, Yao Y, Zhang M, Fan X, Zeng B, Yang D, Xie M. Effects of Dietary Alteration on the Gut Microbiome and Metabolome of the Rescued Bengal Slow Loris. Front Microbiol 2021; 12:650991. [PMID: 33841376 PMCID: PMC8024692 DOI: 10.3389/fmicb.2021.650991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Bengal slow lorises (Nycticebus bengalensis) are threatened by illegal trade. Subsequently, numerous wild-born individuals are rescued and transferred to rescue centers. Metabonomic analysis of intestinal microbiomes has increasingly played a vital role in evaluating the effects of dietary alteration on the captive status of endangered non-human primates. A synthetic analysis was done to test the differences in gut microbes and fecal metabolites between two dietary groups of Bengal slow lorises across 8 weeks. Dietary interventions led to intra-group convergence and inter-group variation in the composition of intestinal flora, metabolites, and short-chain fatty acids (SCFAs). The control diet, consisting of gums and honey, significantly increased the abundance of some potential probiotics, such as Bifidobacterium and Roseburia, and the concentration of some anti-disease related metabolites. The decrease in some amino acid metabolites in the original group fed without gums was attributed to poor body condition. Some distinct SCFAs found in the control group indicated the dietary alteration herein was fat-restricted but fiber deficient. Cognizant of this, plant exudates and fiber-enriched food supplies should be considered an optimal approach for dietary improvement of the confiscated and captive Bengal slow lorises.
Collapse
Affiliation(s)
- Qingyong Ni
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chen Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Mingwang Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Deying Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
32
|
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front Pharmacol 2021; 12:618411. [PMID: 33679401 PMCID: PMC7933596 DOI: 10.3389/fphar.2021.618411] [Citation(s) in RCA: 369] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oral route is the most common route for drug administration. It is the most preferred route, due to its advantages, such as non-invasiveness, patient compliance and convenience of drug administration. Various factors govern oral drug absorption including drug solubility, mucosal permeability, and stability in the gastrointestinal tract environment. Attempts to overcome these factors have focused on understanding the physicochemical, biochemical, metabolic and biological barriers which limit the overall drug bioavailability. Different pharmaceutical technologies and drug delivery systems including nanocarriers, micelles, cyclodextrins and lipid-based carriers have been explored to enhance oral drug absorption. To this end, this review will discuss the physiological, and pharmaceutical barriers influencing drug bioavailability for the oral route of administration, as well as the conventional and novel drug delivery strategies. The challenges and development aspects of pediatric formulations will also be addressed.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Z. Ahmad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Circulatory and Urinary B-Vitamin Responses to Multivitamin Supplement Ingestion Differ between Older and Younger Adults. Nutrients 2020; 12:nu12113529. [PMID: 33212933 PMCID: PMC7698360 DOI: 10.3390/nu12113529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
Multivitamin and mineral (MVM) supplements are frequently used amongst older populations to improve adequacy of micronutrients, including B-vitamins, but evidence for improved health outcomes are limited and deficiencies remain prevalent. Although this may indicate poor efficacy of supplements, this could also suggest the possibility for altered B-vitamin bioavailability and metabolism in older people. This open-label, single-arm acute parallel study, conducted at the Liggins Institute Clinical Research Unit in Auckland, compared circulatory and urinary B-vitamer responses to MVM supplementation in older (70.1 ± 2.7 y, n = 10 male, n = 10 female) compared to younger (24.2 ± 2.8 y, n = 10 male, n = 10 female) participants for 4 h after the ingestion of a single dose of a commercial MVM supplement and standardized breakfast. Older adults had a lower area under the curve (AUC) of postprandial plasma pyridoxine (p = 0.02) and pyridoxal-5′phosphate (p = 0.03) forms of vitamin B6 but greater 4-pyridoxic acid AUC (p = 0.009). Urinary pyridoxine and pyridoxal excretion were higher in younger females than in older females (time × age × sex interaction, p < 0.05). Older adults had a greater AUC increase in plasma thiamine (p = 0.01), riboflavin (p = 0.009), and pantothenic acid (p = 0.027). In older adults, there was decreased plasma responsiveness of the ingested (pyridoxine) and active (pyridoxal-5′phosphate) forms of vitamin B6, which indicated a previously undescribed alteration in either absorption or subsequent metabolic interconversion. While these findings cannot determine whether acute B6 responsiveness is adequate, this difference may have potential implications for B6 function in older adults. Although this may imply higher B vitamin substrate requirements for older people, further work is required to understand the implications of postprandial differences in availability.
Collapse
|
34
|
Tong J, Satyanarayanan SK, Su H. Nutraceuticals and probiotics in the management of psychiatric and neurological disorders: A focus on microbiota-gut-brain-immune axis. Brain Behav Immun 2020; 90:403-419. [PMID: 32889082 DOI: 10.1016/j.bbi.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jiaqi Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
35
|
Geijsen AJMR, Ulvik A, Gigic B, Kok DE, van Duijnhoven FJB, Holowatyj AN, Brezina S, van Roekel EH, Baierl A, Bergmann MM, Böhm J, Bours MJL, Brenner H, Breukink SO, Bronner MP, Chang-Claude J, de Wilt JHW, Grady WM, Grünberger T, Gumpenberger T, Herpel E, Hoffmeister M, Huang LC, Jedrzkiewicz JD, Keulen ETP, Kiblawi R, Kölsch T, Koole JL, Kosma K, Kouwenhoven EA, Kruyt FM, Kvalheim G, Li CI, Lin T, Ose J, Pickron TB, Scaife CL, Schirmacher P, Schneider MA, Schrotz-King P, Singer MC, Swanson ER, van Duijvendijk P, van Halteren HK, van Zutphen M, Vickers K, Vogelaar FJ, Wesselink E, Habermann N, Ulrich AB, Ueland PM, Weijenberg MP, Gsur A, Ulrich CM, Kampman E. Circulating Folate and Folic Acid Concentrations: Associations With Colorectal Cancer Recurrence and Survival. JNCI Cancer Spectr 2020; 4:pkaa051. [PMID: 33134831 PMCID: PMC7583160 DOI: 10.1093/jncics/pkaa051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Folates, including folic acid, may play a dual role in colorectal cancer development. Folate is suggested to be protective in early carcinogenesis but could accelerate growth of premalignant lesions or micrometastases. Whether circulating concentrations of folate and folic acid, measured around time of diagnosis, are associated with recurrence and survival in colorectal cancer patients is largely unknown. METHODS Circulating concentrations of folate, folic acid, and folate catabolites p-aminobenzoylglutamate and p-acetamidobenzoylglutamate were measured by liquid chromatography-tandem mass spectrometry at diagnosis in 2024 stage I-III colorectal cancer patients from European and US patient cohort studies. Multivariable-adjusted Cox proportional hazard models were used to assess associations between folate, folic acid, and folate catabolites concentrations with recurrence, overall survival, and disease-free survival. RESULTS No statistically significant associations were observed between folate, p-aminobenzoylglutamate, and p-acetamidobenzoylglutamate concentrations and recurrence, overall survival, and disease-free survival, with hazard ratios ranging from 0.92 to 1.16. The detection of folic acid in the circulation (yes or no) was not associated with any outcome. However, among patients with detectable folic acid concentrations (n = 296), a higher risk of recurrence was observed for each twofold increase in folic acid (hazard ratio = 1.31, 95% confidence interval = 1.02 to 1.58). No statistically significant associations were found between folic acid concentrations and overall and disease-free survival. CONCLUSIONS Circulating folate and folate catabolite concentrations at colorectal cancer diagnosis were not associated with recurrence and survival. However, caution is warranted for high blood concentrations of folic acid because they may increase the risk of colorectal cancer recurrence.
Collapse
Affiliation(s)
- Anne J M R Geijsen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Andreana N Holowatyj
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stefanie Brezina
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Vienna, Austria
| | | | - Jürgen Böhm
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Hermann Brenner
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Development Biology, Maastricht University, Maastricht, the Netherlands
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Johannes H W de Wilt
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Tanja Gumpenberger
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Esther Herpel
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lyen C Huang
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Center, Sittard, the Netherlands
| | - Rama Kiblawi
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Torsten Kölsch
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Janna L Koole
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Katharina Kosma
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Flip M Kruyt
- Department of Surgery, Hospital Gelderse Vallei, Ede, the Netherlands
| | | | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Martin A Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Marie C Singer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Eric R Swanson
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Henk K van Halteren
- Department of Internal Medicine, Admiraal de Ruyter Hospital, Goes, the Netherlands
| | - Moniek van Zutphen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Kathy Vickers
- Department of Surgery, Hospital Gelderse Vallei, Ede, the Netherlands
| | - F Jeroen Vogelaar
- Department of Surgery, VieCuri Medical Center, Venlo, the Netherlands
| | - Evertine Wesselink
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Nina Habermann
- Genome Biology, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alexis B Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Andrea Gsur
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
36
|
Abstract
In a healthy colon, the microbiota produces a vast amount of metabolites that are essential to maintaining homeostasis in the colon microenvironment. In fact, these metabolites produced by the microbiota have been linked to diseases such as obesity, cardiovascular disease, and colorectal cancer. In this study, we used healthy nonhuman primate models to investigate the relationship between microbiota and tissue metabolites. We found that both microbiota and metabolites have location-specific signatures along the intestine. Most importantly, we found that metabolites from food sources correlate with multiple bacteria in different intestinal locations. Overall, this work presents a systems-level map of the association between the microbiota and the metabolites in healthy nonhuman primates, provides candidates for experimental validation, and suggests a possibility to regulate the gut microbiota through specific prebiotic combinations. The intestinal microbiota is highly metabolically active and plays an important role in many metabolic processes absent from the human host. Altered microbiota metabolism has been linked to diseases such as obesity, cardiovascular disease, and colorectal cancer. However, there is a gap in the current knowledge on how the microbiota interact with its host in terms of metabolic interactions. Here, we performed an integrated analysis between the mucosa-associated microbiota and the mucosa metabolome in healthy, nonhuman primates to investigate these relationships. The microbiota composition was distinct at each tissue location, with variation by host individual also observed. Microbiota-metabolome dynamics were primarily driven by interactions in the distal colon. These interactions were strongly correlated with dietary component, indicating a possibility to modulate microbiota-metabolomic interactions using prebiotic strategies. IMPORTANCE In a healthy colon, the microbiota produces a vast amount of metabolites that are essential to maintaining homeostasis in the colon microenvironment. In fact, these metabolites produced by the microbiota have been linked to diseases such as obesity, cardiovascular disease, and colorectal cancer. In this study, we used healthy nonhuman primate models to investigate the relationship between microbiota and tissue metabolites. We found that both microbiota and metabolites have location-specific signatures along the intestine. Most importantly, we found that metabolites from food sources correlate with multiple bacteria in different intestinal locations. Overall, this work presents a systems-level map of the association between the microbiota and the metabolites in healthy nonhuman primates, provides candidates for experimental validation, and suggests a possibility to regulate the gut microbiota through specific prebiotic combinations.
Collapse
|
37
|
Maynard C, Weinkove D. Bacteria increase host micronutrient availability: mechanisms revealed by studies in C. elegans. GENES AND NUTRITION 2020; 15:4. [PMID: 32138646 PMCID: PMC7057599 DOI: 10.1186/s12263-020-00662-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Micronutrients cannot be synthesized by humans and are obtained from three different sources: diet, gut microbiota, and oral supplements. The microbiota generates significant quantities of micronutrients, but the contribution of these compounds to total uptake is unclear. The role of bacteria in the synthesis and uptake of micronutrients and supplements is widely unexplored and may have important implications for human health. The efficacy and safety of several micronutrient supplements, including folic acid, have been questioned due to some evidence of adverse effects on health. The use of the simplified animal-microbe model, Caenorhabditis elegans, and its bacterial food source, Escherichia coli, provides a controllable system to explore the underlying mechanisms by which bacterial metabolism impacts host micronutrient status. These studies have revealed mechanisms by which bacteria may increase the bioavailability of folic acid, B12, and iron. These routes of uptake interact with bacterial metabolism, with the potential to increase bacterial pathogenesis, and thus may be both beneficial and detrimental to host health.
Collapse
Affiliation(s)
- Claire Maynard
- Department of Biosciences, Durham University, Durham, UK
| | - David Weinkove
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
38
|
Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig Dis Sci 2020; 65:695-705. [PMID: 32067143 DOI: 10.1007/s10620-020-06118-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gastrointestinal (GI) tract contains communities of microbes (bacteria, fungi, viruses) that vary by anatomic location and impact human health. Microbial communities differ in composition based on age, diet, and location in the gastrointestinal tract. Differences in microbial composition have been associated with chronic disease states. In terms of function, microbial metabolites provide key signals that help maintain healthy human physiology. Alterations of the healthy gastrointestinal microbiome have been linked to the development of various disease states including inflammatory bowel disease, diabetes, and colorectal cancer. While the definition of a healthy GI microbiome cannot be precisely identified, features of a healthy gut microbiome include relatively greater biodiversity and relative abundances of specific phyla and genera. Microbes with desirable functional profiles for the human host have been identified, in addition to specific metabolic features of the microbiome. This article reviews the composition and function of the healthy human GI microbiome, including the relative abundances of different bacterial taxa and the specific metabolic pathways and classes of microbial metabolites contributing to human health and disease prevention.
Collapse
Affiliation(s)
- Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - Jennifer K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA. .,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Engevik MA, Morra CN, Röth D, Engevik K, Spinler JK, Devaraj S, Crawford SE, Estes MK, Kalkum M, Versalovic J. Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Front Microbiol 2019; 10:2305. [PMID: 31649646 PMCID: PMC6795088 DOI: 10.3389/fmicb.2019.02305] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Microbial metabolites, including B complex vitamins contribute to diverse aspects of human health. Folate, or vitamin B9, refers to a broad category of biomolecules that include pterin, para-aminobenzoic acid (pABA), and glutamate subunits. Folates are required for DNA synthesis and epigenetic regulation. In addition to dietary nutrients, the gut microbiota has been recognized as a source of B complex vitamins, including folate. This study evaluated the predicted folate synthesis capabilities in the genomes of human commensal microbes identified in the Human Microbiome Project and folate production by representative strains of six human intestinal bacterial phyla. Bacterial folate synthesis genes were ubiquitous across 512 gastrointestinal reference genomes with 13% of the genomes containing all genes required for complete de novo folate synthesis. An additional 39% of the genomes had the genetic capacity to synthesize folates in the presence of pABA, an upstream intermediate that can be obtained through diet or from other intestinal microbes. Bacterial folate synthesis was assessed during exponential and stationary phase growth through the evaluation of expression of select folate synthesis genes, quantification of total folate production, and analysis of folate polyglutamylation. Increased expression of key folate synthesis genes was apparent in exponential phase, and increased folate polyglutamylation occurred during late stationary phase. Of the folate producers, we focused on the commensal Lactobacillus reuteri to examine host-microbe interactions in relation to folate and examined folate receptors in the physiologically relevant human enteroid model. RNAseq data revealed segment-specific folate receptor distribution. Treatment of human colonoid monolayers with conditioned media (CM) from wild-type L. reuteri did not influence the expression of key folate transporters proton-coupled folate transporter (PCFT) or reduced folate carrier (RFC). However, CM from L. reuteri containing a site-specific inactivation of the folC gene, which prevents the bacteria from synthesizing a polyglutamate tail on folate, significantly upregulated RFC expression. No effects were observed using L. reuteri with a site inactivation of folC2, which results in no folate production. This work sheds light on the contributions of microbial folate to overall folate status and mammalian host metabolism.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Christina N. Morra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Daniel Röth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Kristen Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine – Gastroenterology, Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- Mass Spectrometry and Proteomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
40
|
Abstract
Alternative Splicing produces multiple mRNA isoforms of genes which have important diverse roles such as regulation of gene expression, human heritable diseases, and response to environmental stresses. However, little has been done to assign functions at the mRNA isoform level. Functional networks, where the interactions are quantified by their probability of being involved in the same biological process are typically generated at the gene level. We use a diverse array of tissue-specific RNA-seq datasets and sequence information to train random forest models that predict the functional networks. Since there is no mRNA isoform-level gold standard, we use single isoform genes co-annotated to Gene Ontology biological process annotations, Kyoto Encyclopedia of Genes and Genomes pathways, BioCyc pathways and protein-protein interactions as functionally related (positive pair). To generate the non-functional pairs (negative pair), we use the Gene Ontology annotations tagged with "NOT" qualifier. We describe 17 Tissue-spEcific mrNa iSoform functIOnal Networks (TENSION) following a leave-one-tissue-out strategy in addition to an organism level reference functional network for mouse. We validate our predictions by comparing its performance with previous methods, randomized positive and negative class labels, updated Gene Ontology annotations, and by literature evidence. We demonstrate the ability of our networks to reveal tissue-specific functional differences of the isoforms of the same genes. All scripts and data from TENSION are available at: https://doi.org/10.25380/iastate.c.4275191 .
Collapse
Affiliation(s)
- Gaurav Kandoi
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Julie A Dickerson
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA.
| |
Collapse
|
41
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
42
|
Kundu B, Sarkar D, Ray N, Talukdar A. Understanding the riboflavin biosynthesis pathway for the development of antimicrobial agents. Med Res Rev 2019; 39:1338-1371. [PMID: 30927319 DOI: 10.1002/med.21576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Life on earth depends on the biosynthesis of riboflavin, which plays a vital role in biological electron transport processes. Higher mammals obtain riboflavin from dietary sources; however, various microorganisms, including Gram-negative pathogenic bacteria and yeast, lack an efficient riboflavin-uptake system and are dependent on endogenous riboflavin biosynthesis. Consequently, the inhibition of enzymes in the riboflavin biosynthesis pathway would allow selective toxicity to a pathogen and not the host. Thus, the riboflavin biosynthesis pathway is an attractive target for designing novel antimicrobial drugs, which are urgently needed to address the issue of multidrug resistance seen in various pathogens. The enzymes involved in riboflavin biosynthesis are lumazine synthase (LS) and riboflavin synthase (RS). Understanding the details of the mechanisms of the enzyme-catalyzed reactions and the structural changes that occur in the enzyme active sites during catalysis can facilitate the design and synthesis of suitable analogs that can specifically inhibit the relevant enzymes and stop the generation of riboflavin in pathogenic bacteria. The present review is the first compilation of the work that has been carried out over the last 25 years focusing on the design of inhibitors of the biosynthesis of riboflavin based on an understanding of the mechanisms of LS and RS. This review aimed to address the fundamental advances in our understanding of riboflavin biosynthesis as applied to the rational design of a novel class of inhibitors. These advances have been aided by X-ray structures of ligand-enzyme complexes, rotational-echo, double-resonance nuclear magnetic resonance spectroscopy, high-throughput screening, virtual screenings, and various mechanistic probes.
Collapse
Affiliation(s)
- Biswajit Kundu
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dipayan Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Kolkata, India
| | - Namrata Ray
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Department of Chemistry, Adamas University, Kolkata, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Kolkata, India
| |
Collapse
|
43
|
Das P, Babaei P, Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics 2019; 20:208. [PMID: 30866812 PMCID: PMC6417177 DOI: 10.1186/s12864-019-5591-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human gut microbial communities have been known to produce vitamins, which are subsequently absorbed by the host in the large intestine. However, the relationship between species with vitamin pathway associated functional features or their gene abundance in different states of health and disease is lacking. Here, we analyzed shotgun fecal metagenomes of individuals from four different countries for genes that are involved in vitamin biosynthetic pathways and transport mechanisms and corresponding species' abundance. RESULTS We found that the prevalence of these genes were found to be distributed across the dominant phyla of gut species. The number of positive correlations were high between species harboring genes related to vitamin biosynthetic pathways and transporter mechanisms than that with either alone. Although, the range of total gene abundances remained constant across healthy populations at the global level, species composition and their presence for metabolic pathway related genes determine the abundance and functional genetic content of vitamin metabolism. Based on metatranscriptomics data, the equation between abundance of vitamin-biosynthetic enzymes and vitamin-dependent enzymes suggests that the production and utilization potential of these enzymes seems way more complex usage allocations than just mere direct linear associations. CONCLUSIONS Our findings provide a rationale to examine and disentangle the interrelationship between B-vitamin dosage (dietary or microbe-mediated) on gut microbial members and the host, in the gut microbiota of individuals with under- or overnutrition.
Collapse
Affiliation(s)
- Promi Das
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Parizad Babaei
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
44
|
Kok DE, Steegenga WT, Smid EJ, Zoetendal EG, Ulrich CM, Kampman E. Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Crit Rev Food Sci Nutr 2018; 60:244-256. [DOI: 10.1080/10408398.2018.1522499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dieuwertje E. Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma T. Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Cornelia M. Ulrich
- Department of Population Health Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
45
|
Akashi Y, Suzuki H, Kanemoto K, Hirose Y, Yamashita K, Yamamoto T, Miyazawa T, Hirose K, Ishikawa H, Maeno T. Thiamine Concentrations in Newly Hospitalized Elderly Patients with Infectious Diseases at a Community Hospital in Japan. J Nutr Sci Vitaminol (Tokyo) 2018; 64:209-214. [PMID: 29962432 DOI: 10.3177/jnsv.64.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The association between advanced age and the thiamine concentration has not been conclusively determined. A recent report from Japan showed that more than half of nursing home elderly residents at an institution had a low whole-blood thiamine concentration (<20 ng/mL). Therefore, a high incidence of low thiamine concentrations among hospitalized elderly has been anticipated in the Japanese population but never investigated. We evaluated the whole thiamine concentration in newly hospitalized elderly patients (≥65 y old) with infectious diseases. Evaluations were performed on admission and at days 6-8 of hospitalization with liquid chromatography tandem mass spectrometry (LC/MS/MS). As a result, we enrolled a total of 471 patients from September 2015 to December 2016. The median thiamine concentration was 46 ng/mL (IQR, 37-58 ng/mL). Only 7 patients (1%) had thiamine concentrations below 20 ng/mL (66 nmol/L) on admission. Five of these patients were bedridden and unable to eat food by themselves, and the other two patients used loop diuretics for chronic heart failure. The thiamine concentration declined in most patients (84%) at days 6-8 of admission, regardless of their dietary intake during hospitalization. In conclusion, a low thiamine concentration was not prevalent among newly hospitalized elderly patients with infectious diseases. However, the thiamine concentration significantly decreased during the 6-8 d of hospitalization.
Collapse
Affiliation(s)
- Yusaku Akashi
- Department of Clinical Laboratory Medicine, Tsukuba Medical Center Hospital.,Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Hiromichi Suzuki
- Department of Clinical Laboratory Medicine, Tsukuba Medical Center Hospital.,Division of Infectious Diseases, Department of Medicine, Tsukuba Medical Center Hospital
| | - Koji Kanemoto
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital
| | - Yumi Hirose
- Department of General Medicine and Primary Care, Tsukuba Medical Center Hospital
| | - Keita Yamashita
- Department of Clinical Laboratory, Tsukuba Medical Center Hospital
| | | | | | - Kazuhito Hirose
- Department of General Medicine and Primary Care, Tsukuba Medical Center Hospital
| | - Hiroichi Ishikawa
- Department of Clinical Laboratory Medicine, Tsukuba Medical Center Hospital.,Department of Respiratory Medicine, Tsukuba Medical Center Hospital
| | - Tetsuhiro Maeno
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
46
|
Hayashi A, Mikami Y, Miyamoto K, Kamada N, Sato T, Mizuno S, Naganuma M, Teratani T, Aoki R, Fukuda S, Suda W, Hattori M, Amagai M, Ohyama M, Kanai T. Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice. Cell Rep 2018; 20:1513-1524. [PMID: 28813664 DOI: 10.1016/j.celrep.2017.07.057] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 03/03/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Metabolism by the gut microbiota affects host physiology beyond the gastrointestinal tract. Here, we find that antibiotic-induced dysbiosis, in particular, overgrowth of Lactobacillus murinus (L. murinus), impaired gut metabolic function and led to the development of alopecia. While deprivation of dietary biotin per se did not affect skin physiology, its simultaneous treatment with vancomycin resulted in hair loss in specific pathogen-free (SPF) mice. Vancomycin treatment induced the accumulation of L. murinus in the gut, which consumes residual biotin and depletes available biotin in the gut. Consistently, L. murinus induced alopecia when monocolonized in germ-free mice fed a biotin-deficient diet. Supplementation of biotin can reverse established alopecia symptoms in the SPF condition, indicating that L. murinus plays a central role in the induction of hair loss via a biotin-dependent manner. Collectively, our results indicate that luminal metabolic alterations associated with gut dysbiosis and dietary modifications can compromise skin physiology.
Collapse
Affiliation(s)
- Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo 114-0016, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo 114-0016, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Toshiro Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinta Mizuno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryo Aoki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Institute of Health Sciences, Ezaki Glico Co., Ltd., Nishiyodogawa, Osaka 555-8502, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Wataru Suda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; Graduate School of Frontier Sciences, University of Tokyo, Chiba 227-8561, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, University of Tokyo, Chiba 227-8561, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, CREST, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Dermatology, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, CREST, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
47
|
Chen K, Zhou XQ, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 74:175-189. [PMID: 29305994 DOI: 10.1016/j.fsi.2017.12.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet.
Collapse
Affiliation(s)
- Kang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
48
|
Dicks L, Geldenhuys J, Mikkelsen L, Brandsborg E, Marcotte H. Our gut microbiota: a long walk to homeostasis. Benef Microbes 2018; 9:3-20. [DOI: 10.3920/bm2017.0066] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The microbiome of the human gastrointestinal tract (GIT) consists of billions of bacteria, fungi and viruses, of which bacteria play the most important role in nutrition, immune development, production of vitamins and maintaining a well-balanced (homeostatic) microbial population. Many papers have been published on the microbiota in the human GIT, but little is known about the first group of bacteria that colonises an infant. The intestinal tract of an unborn is, despite general belief, not sterile, but contains bacteria that have been transferred from the mother. This opens a new research field and may change our understanding about the role bacteria play in early life, the selection of strains with probiotic properties and the treatment of diseases related to bacterial infections. Differences in bacterial populations isolated from meconia may provide answers to the prevention of certain forms of diabetes. More research is now focusing on the effect that a genetically diverse group, versus a much simpler microbial population, may have on the development of a homeostatic gut microbiome. The effect different bacterial species have on the gut-associated lymphoid tissue and cascade of immune responses has been well researched, but we still fail in identifying the ideal group of intestinal bacteria and if we do, it will certainly not be possible to maintain homeostasis with so many challenges the gut faces. Changes in diet, antibiotics, food preservatives and stress are some of the factors we would like to control, but more than often fail to do so. The physiology and genetics of the GIT changes with age and so the microbiome. This review summarises factors involved in the regulation of a gut microbiome.
Collapse
Affiliation(s)
- L.M.T. Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - J. Geldenhuys
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | | | - E. Brandsborg
- Bifodan A/S, Bogbinderivej 6, 3390 Hundested, Denmark
| | - H. Marcotte
- Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge 141 86, Sweden
| |
Collapse
|
49
|
Muroya S, Oe M, Ojima K. Thiamine accumulation and thiamine triphosphate decline occur in parallel with ATP exhaustion during postmortem aging of pork muscles. Meat Sci 2017; 137:228-234. [PMID: 29223015 DOI: 10.1016/j.meatsci.2017.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022]
Abstract
We aimed to clarify the mechanisms affecting postmortem thiamine and its phosphoester contents in major edible pork muscles, namely the longissimus lumborum (LL) in addition to vastus intermedius (VI). Metabolomic analysis by capillary electrophoresis-time of flight mass spectrometry revealed that the level of thiamine triphosphate (ThTP), approximately 1.8-fold higher in LL than in VI muscle at 0h postmortem, declined in the first 24hrs, resulting in an undetectable level at 168h postmortem in both muscles. In contrast, the thiamine content in both muscles increased after 24h postmortem during the aging process. The thiamine accumulation and ThTP decline progressed in parallel with a drastic reduction of the ATP level. The intermuscular differences in pH at 24h and in expression of thiamine transporter and thiamine pyrophosphokinase might result in delayed thiamine generation in LL. These results suggest that postmortem ATP exhaustion forced ThTP hydrolysis and further depyrophosphorylation of thiamine diphosphate in the porcine muscles, which resulted in thiamine accumulation.
Collapse
Affiliation(s)
- S Muroya
- Muscle Biology Research Unit, Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan.
| | - M Oe
- Muscle Biology Research Unit, Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| | - K Ojima
- Muscle Biology Research Unit, Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
50
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|