1
|
Overbeeke C, Tak T, Koenderman L. The journey of neutropoiesis: how complex landscapes in bone marrow guide continuous neutrophil lineage determination. Blood 2022; 139:2285-2293. [PMID: 34986245 PMCID: PMC11022826 DOI: 10.1182/blood.2021012835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are the most abundant white blood cell, and they differentiate in homeostasis in the bone marrow from hematopoietic stem cells (HSCs) via multiple intermediate progenitor cells into mature cells that enter the circulation. Recent findings support a continuous model of differentiation in the bone marrow of heterogeneous HSCs and progenitor populations. Cell fate decisions at the levels of proliferation and differentiation are enforced through expression of lineage-determining transcription factors and their interactions, which are influenced by intrinsic (intracellular) and extrinsic (extracellular) mechanisms. Neutrophil homeostasis is subjected to positive-feedback loops, stemming from the gut microbiome, as well as negative-feedback loops resulting from the clearance of apoptotic neutrophils by mature macrophages. Finally, the cellular kinetics regarding the replenishing of the mature neutrophil pool is discussed in light of recent contradictory data.
Collapse
Affiliation(s)
- Celine Overbeeke
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Wu M, Chen Q, Li J, Xu Y, Lian J, Liu Y, Meng P, Zhang Y. Gfi1aa/Lsd1 Facilitates Hemangioblast Differentiation Into Primitive Erythrocytes by Targeting etv2 and sox7 in Zebrafish. Front Cell Dev Biol 2022; 9:786426. [PMID: 35096818 PMCID: PMC8790037 DOI: 10.3389/fcell.2021.786426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
The first wave of hematopoiesis is the primitive hematopoiesis, which produces embryonic erythroid and myeloid cells. Primitive erythrocytes are thought to be generated from bipotent hemangioblasts, but the molecular basis remains unclear. Transcriptional repressors Gfi1aa and Gfi1b have been shown to cooperatively promote primitive erythrocytes differentiation from hemangioblasts in zebrafish. However, the mechanism of these repressors during the primitive wave is largely unknown. Herein, by functional analysis of zebrafish gfi1aa smu10 , gfi1b smu11 , gfi1ab smu12 single, double, and triple mutants, we found that Gfi1aa not only plays a predominant role in primitive erythropoiesis but also synergizes with Gfi1ab. To screen Gfi1aa downstream targets, we performed RNA-seq and ChIP-seq analysis and found two endothelial transcription factors, etv2 and sox7, to be repressed by Gfi1aa. Genetic analysis demonstrated Gfi1aa to promote hemangioblast differentiation into primitive erythrocytes by inhibiting both etv2 and sox7 in an Lsd1-dependent manner. Moreover, the H3K4me1 level of etv2 and sox7 were increased in gfi1aa mutant. Taken together, these results suggest that Gfi1aa/Lsd1-dependent etv2/sox7 downregulation is critical for hemangioblast differentiation during primitive hematopoiesis by inhibition of endothelial specification. The different and redundant roles for Gfi1(s), as well as their genetic and epigenetic regulation during primitive hematopoiesis, help us to better know the molecular basis of the primitive hematopoiesis and sheds light on the understanding the Gfi1(s) related pathogenesis.
Collapse
Affiliation(s)
- Mei Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jing Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Junwei Lian
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongxiang Liu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China,*Correspondence: Yiyue Zhang,
| |
Collapse
|
3
|
Gerber JP, Russ J, Chandrasekar V, Offermann N, Lee HM, Spear S, Guzzi N, Maida S, Pattabiraman S, Zhang R, Kayvanjoo AH, Datta P, Kasturiarachchi J, Sposito T, Izotova N, Händler K, Adams PD, Marafioti T, Enver T, Wenzel J, Beyer M, Mass E, Bellodi C, Schultze JL, Capasso M, Nimmo R, Salomoni P. Aberrant chromatin landscape following loss of the H3.3 chaperone Daxx in haematopoietic precursors leads to Pu.1-mediated neutrophilia and inflammation. Nat Cell Biol 2021; 23:1224-1239. [PMID: 34876685 PMCID: PMC8683376 DOI: 10.1038/s41556-021-00774-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
Defective silencing of retrotransposable elements has been linked to inflammageing, cancer and autoimmune diseases. However, the underlying mechanisms are only partially understood. Here we implicate the histone H3.3 chaperone Daxx, a retrotransposable element repressor inactivated in myeloid leukaemia and other neoplasms, in protection from inflammatory disease. Loss of Daxx alters the chromatin landscape, H3.3 distribution and histone marks of haematopoietic progenitors, leading to engagement of a Pu.1-dependent transcriptional programme for myelopoiesis at the expense of B-cell differentiation. This causes neutrophilia and inflammation, predisposing mice to develop an autoinflammatory skin disease. While these molecular and phenotypic perturbations are in part reverted in animals lacking both Pu.1 and Daxx, haematopoietic progenitors in these mice show unique chromatin and transcriptome alterations, suggesting an interaction between these two pathways. Overall, our findings implicate retrotransposable element silencing in haematopoiesis and suggest a cross-talk between the H3.3 loading machinery and the pioneer transcription factor Pu.1.
Collapse
Grants
- P01 AG031862 NIA NIH HHS
- C416/A25145 Cancer Research UK
- C16420/A18066 Cancer Research UK
- MC_U132670601 Medical Research Council
- C33499/A20265 Cancer Research UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (German Center for Neurodegenerative Diseases)
- Worldwide Cancer Research
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme People Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster Immunosensation2
- Aging and Metabolic Programming (AMPro) Consortium from Helmholtz
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster Immunosensation2ImmunoSensation2
- Cancer Research UK (CRUK)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster ImmunoSensation2
- EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: Ideas Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- Wilhelm Sander-Stiftung (Wilhelm Sander Foundation)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster ImmunoSensation2 Aging and Metabolic Programming (AMPro) Consortium from Helmholtz
Collapse
Affiliation(s)
- Julia P Gerber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Jenny Russ
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Nina Offermann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hang-Mao Lee
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sarah Spear
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Simona Maida
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Ruoyu Zhang
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amir H Kayvanjoo
- Life and Medical Sciences (LIMES) Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Preeta Datta
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | | | - Teresa Sposito
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Natalia Izotova
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Kristian Händler
- Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Teresa Marafioti
- Department of Cancer Biology, UCL Cancer Institute, London, UK
- Department of Pathology, University College London, London, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Jörg Wenzel
- Department of Dermatology and Allergy, University Medical Center, Bonn, Germany
| | - Marc Beyer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Elvira Mass
- Life and Medical Sciences (LIMES) Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Melania Capasso
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rachael Nimmo
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Cancer Biology, UCL Cancer Institute, London, UK.
| |
Collapse
|
4
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
5
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
6
|
van Bergen MGJM, van der Reijden BA. Targeting the GFI1/1B-CoREST Complex in Acute Myeloid Leukemia. Front Oncol 2019; 9:1027. [PMID: 31649884 PMCID: PMC6794713 DOI: 10.3389/fonc.2019.01027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation. Recent studies have shown that small molecules targeting Lysine Specific Demethylase 1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a core component of the chromatin binding CoREST complex. Together with histone deacetylases CoREST regulates gene expression by histone 3 demethylation and deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence) are major interaction partners of KDM1A and recruit the CoREST complex to chromatin in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt the GFI1/1B-CoREST interaction and that this is key to inducing terminal differentiation of leukemia cells.
Collapse
Affiliation(s)
| | - Bert A. van der Reijden
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Möröy T, Khandanpour C. Role of GFI1 in Epigenetic Regulation of MDS and AML Pathogenesis: Mechanisms and Therapeutic Implications. Front Oncol 2019; 9:824. [PMID: 31508375 PMCID: PMC6718700 DOI: 10.3389/fonc.2019.00824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Growth factor independence 1 (GFI1) is a DNA binding zinc finger protein, which can mediate transcriptional repression mainly by recruiting histone-modifying enzymes to its target genes. GFI1 plays important roles in hematopoiesis, in particular by regulating both the function of hematopoietic stem- and precursor cells and differentiation along myeloid and lymphoid lineages. In recent years, a number of publications have provided evidence that GFI1 is involved in the pathogenesis of acute myeloid leukemia (AML), its proposed precursor, myelodysplastic syndrome (MDS), and possibly also in the progression from MDS to AML. For instance, expression levels of the GFI1 gene correlate with patient survival and treatment response in both AML and MDS and can influence disease progression and maintenance in experimental animal models. Also, a non-synonymous single nucleotide polymorphism (SNP) of GFI1, GFI1-36N, which encodes a variant GFI1 protein with a decreased efficiency to act as a transcriptional repressor, was found to be a prognostic factor for the development of AML and MDS. Both the GFI1-36N variant as well as reduced expression of the GFI1 gene lead to genome-wide epigenetic changes at sites where GFI1 occupies target gene promoters and enhancers. These epigenetic changes alter the response of leukemic cells to epigenetic drugs such as HDAC- or HAT inhibitors, indicating that GFI1 expression levels and genetic variants of GFI1 are of clinical relevance. Based on these and other findings, specific therapeutic approaches have been proposed to treat AML by targeting some of the epigenetic changes that occur as a consequence of GFI1 expression. Here, we will review the well-known role of Gfi1 as a transcription factor and describe the more recently discovered functions of GFI1 that are independent of DNA binding and how these might affect disease progression and the choice of epigenetic drugs for therapeutic regimens of AML and MDS.
Collapse
Affiliation(s)
- Tarik Möröy
- Department of Hematopoiesis and Cancer, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
8
|
Reduced expression but not deficiency of GFI1 causes a fatal myeloproliferative disease in mice. Leukemia 2018; 33:110-121. [PMID: 29925903 PMCID: PMC6326955 DOI: 10.1038/s41375-018-0166-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Growth factor independent 1 (Gfi1) controls myeloid differentiation by regulating gene expression and limits the activation of p53 by facilitating its de-methylation at Lysine 372. In human myeloid leukemia, low GFI1 levels correlate with an inferior prognosis. Here, we show that knockdown (KD) of Gfi1 in mice causes a fatal myeloproliferative disease (MPN) that could progress to leukemia after additional mutations. Both KO and KD mice accumulate myeloid cells that show signs of metabolic stress and high levels of reactive oxygen species. However, only KO cells have elevated levels of Lysine 372 methylated p53. This suggests that in contrast to absence of GFI1, KD of GFI1 leads to the accumulation of myeloid cells because sufficient amount of GFI1 is present to impede p53-mediated cell death, leading to a fatal MPN. The combination of myeloid accumulation and the ability to counteract p53 activity under metabolic stress could explain the role of reduced GF1 expression in human myeloid leukemia.
Collapse
|
9
|
Liu XF, Hummel M, Abecassis M. Epigenetic regulation of cellular and cytomegalovirus genes during myeloid cell development. ACTA ACUST UNITED AC 2017; 3. [PMID: 28707002 DOI: 10.18103/imr.v3i3.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Myeloid cells are important cell types that carry human cytomegalovirus. Latent viral DNA is present in CD34+ progenitor cells and their derived monocytes. However, differentiation of latently infected monocytes to mature macrophages or dendritic cells causes reactivation of latent viruses. During hematopoietic development, pluripotent genes are repressed, and lineage specific genes are activated in a step-wise manner. This process is governed by cell-type specific chromatin states. Enhancers in the hematopoietic system are highly dynamic and established by pioneer (first tier) transcription factors (TFs), which set the stage for second and third tier TF binding. In this review, we examine the epigenetic mechanisms that regulate myeloid cell development, cell identity, and activation with a special focus on factors that regulate viral gene expression and the status of viral infection in myeloid cells.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Mary Hummel
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Michael Abecassis
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| |
Collapse
|
10
|
The role of the transcriptional repressor growth factor independent 1 in the formation of myeloid cells. Curr Opin Hematol 2017; 24:32-37. [DOI: 10.1097/moh.0000000000000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Functional Study of Haplotypes in UGT1A1 Promoter to Find a Novel Genetic Variant Leading to Reduced Gene Expression. Ther Drug Monit 2016; 37:369-74. [PMID: 25478904 DOI: 10.1097/ftd.0000000000000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Uridine diphosphate glucuronyltransferase 1 family, A1 (UGT1A1) encodes for an enzyme that is a part of glucuronidation pathway, and a number of studies have shown that the promoter polymorphisms of UGT1A1 are associated with various diseases and drug response. In this study, we examined a possible association between UGT1A1 promoter haplotypes and the gene expression level. METHODS To identify promoter haplotype structure population, we directly sequenced the promoter region of UGT1A1 in 192 healthy Korean to identify 10 UGT1A1 promoter single-nucleotide polymorphisms (SNPs). Then, we genotyped the 10 SNPs in additional 192 non-Korean samples comprised of Chinese, Japanese, European American, and African American, and constructed haplotype structures. Furthermore, we conducted luciferase assay for the promoter SNP haplotypes to examine a possible expression change. RESULTS rs3755319C-rs2003569A-rs887829C-rs8175347(TA)6 (6.60 ± 0.15) and rs3755319A-rs2003569 G-rs887829C-rs8175347(TA)7 (2.79 ± 0.97) led to significantly lower gene expression when compared with rs3755319C-rs2003569 G-rs887829T-rs8175347(TA)6 (8.28 ± 0.60). CONCLUSIONS Our result suggests that the haplotypes in UGT1A1 promoter region can affect the expression level of the gene and drug metabolism associated with UGT1A1. Furthermore, in addition to rs8175347, rs3755319 was found to induce lower gene expression of UGT1A1.
Collapse
|
12
|
Botezatu L, Michel LC, Helness A, Vadnais C, Makishima H, Hönes JM, Robert F, Vassen L, Thivakaran A, Al-Matary Y, Lams RF, Schütte J, Giebel B, Görgens A, Heuser M, Medyouf H, Maciejewski J, Dührsen U, Möröy T, Khandanpour C. Epigenetic therapy as a novel approach for GFI136N-associated murine/human AML. Exp Hematol 2016; 44:713-726.e14. [PMID: 27216773 DOI: 10.1016/j.exphem.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Epigenetic changes can contribute to development of acute myeloid leukemia (AML), a malignant disease of the bone marrow. A single-nucleotide polymorphism of transcription factor growth factor independence 1 (GFI1) generates a protein with an asparagine at position 36 (GFI1(36N)) instead of a serine at position 36 (GFI1(36S)), which is associated with de novo AML in humans. However, how GFI1(36N) predisposes to AML is poorly understood. To explore the mechanism, we used knock-in mouse strains expressing GFI1(36N) or GFI1(36S). Presence of GFI1(36N) shortened the latency and increased the incidence of AML in different murine models of myelodysplastic syndrome/AML. On a molecular level, GFI1(36N) induced genomewide epigenetic changes, leading to expression of AML-associated genes. On a therapeutic level, use of histone acetyltransferase inhibitors specifically impeded growth of GFI1(36N)-expressing human and murine AML cells in vitro and in vivo. These results establish, as a proof of principle, how epigenetic changes in GFI1(36N)-induced AML can be targeted.
Collapse
Affiliation(s)
- Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Michel
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anne Helness
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Charles Vadnais
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Robert F Lams
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany; Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
13
|
GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia 2016; 30:1237-45. [DOI: 10.1038/leu.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
|
14
|
From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 2015; 126:2561-9. [PMID: 26447191 DOI: 10.1182/blood-2015-06-655043] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
The DNA-binding zinc finger transcription factors Gfi1 and Gfi1b were discovered more than 20 years ago and are recognized today as major regulators of both early hematopoiesis and hematopoietic stem cells. Both proteins function as transcriptional repressors by recruiting histone-modifying enzymes to promoters and enhancers of target genes. The establishment of Gfi1 and Gfi1b reporter mice made it possible to visualize their cell type-specific expression and to understand their function in hematopoietic lineages. We now know that Gfi1 is primarily important in myeloid and lymphoid differentiation, whereas Gfi1b is crucial for the generation of red blood cells and platelets. Several rare hematologic diseases are associated with acquired or inheritable mutations in the GFI1 and GFI1B genes. Certain patients with severe congenital neutropenia carry mutations in the GFI1 gene that lead to the disruption of the C-terminal zinc finger domains. Other mutations have been found in the GFI1B gene in families with inherited bleeding disorders. In addition, the Gfi1 locus is frequently found to be a proviral integration site in retrovirus-induced lymphomagenesis, and new, emerging data suggest a role of Gfi1 in human leukemia and lymphoma, underlining the role of both factors not only in normal hematopoiesis, but also in a wide spectrum of human blood diseases.
Collapse
|
15
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
16
|
Qu X, Nyeng P, Xiao F, Dorantes J, Jensen J. Growth Factor Independence-1 ( Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation. Cell Mol Gastroenterol Hepatol 2014; 1:233-247.e1. [PMID: 28247862 PMCID: PMC5301134 DOI: 10.1016/j.jcmgh.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The genetic specification of the compartmentalized pancreatic acinar/centroacinar unit is poorly understood. Growth factor independence-1 (Gfi1) is a zinc finger transcriptional repressor that regulates hematopoietic stem cell maintenance, pre-T-cell differentiation, formation of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. METHODS Gfi1 knockout mice were analyzed at histological and molecular levels, including qRT-PCR, in situ hybridization, immunohistochemistry, and electron microscopy. RESULTS Loss of Gfi1 impacted formation and structure of the pancreatic acinar/centroacinar unit. Histologic and ultrastructural analysis of Gfi1-null pancreas revealed specific defects at the level of pancreatic acinar cells as well as the centroacinar cells (CACs) in Gfi1-/- mice when compared with wild-type littermates. Pancreatic endocrine differentiation, islet architecture, and function were unaffected. Organ domain patterning and the formation of ductal cells occurred normally during the murine secondary transition (E13.5-E14.5) in the Gfi1-/- pancreas. However, at later gestational time points (E18.5), expression of cellular markers for CACs was substantially reduced in Gfi1-/- mice, corroborated by electron microscopy imaging of the acinar/centroacinar unit. The reduction in CACs was correlated with an exocrine organ defect. Postnatally, Gfi1 deficiency resulted in severe pancreatic acinar dysplasia, including loss of granulation, autolytic vacuolation, and a proliferative and apoptotic response. CONCLUSIONS Gfi1 plays an important role in regulating the development of pancreatic CACs and the function of pancreatic acinar cells.
Collapse
Key Words
- BPL, Bauhinia purpurea lectin
- BrdU, bromodeoxyuridine
- CACs, centroacinar cells
- Centroacinar Cells
- Claudin 10
- DIG, digoxigenin
- EM, electron micrographs
- Gfi1, growth factor independence-1
- Growth Factor Independence-1 (Gfi1)
- PBS, phosphate-buffered saline
- SD, standard deviation
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
- TipPC, tip progenitor cells
- TrPC, trunk progenitor cells
- WT, wild type
- qRT-PCR, quantitative real-time polymerase chain reaction
- rER, rough endoplasmic reticulum
Collapse
Affiliation(s)
- Xiaoling Qu
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio
| | - Pia Nyeng
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
| | - Fan Xiao
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jorge Dorantes
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio
| | - Jan Jensen
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Correspondence Address correspondence to: Jan Jensen, PhD, Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195.
| |
Collapse
|
17
|
Foudi A, Kramer DJ, Qin J, Ye D, Behlich AS, Mordecai S, Preffer FI, Amzallag A, Ramaswamy S, Hochedlinger K, Orkin SH, Hock H. Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation. ACTA ACUST UNITED AC 2014; 211:909-27. [PMID: 24711581 PMCID: PMC4010908 DOI: 10.1084/jem.20131065] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Strict, lineage-intrinsic requirement for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. The zinc finger transcriptional repressor Gfi-1b is essential for erythroid and megakaryocytic development in the embryo. Its roles in the maintenance of bone marrow erythropoiesis and thrombopoiesis have not been defined. We investigated Gfi-1b’s adult functions using a loxP-flanked Gfi-1b allele in combination with a novel doxycycline-inducible Cre transgene that efficiently mediates recombination in the bone marrow. We reveal strict, lineage-intrinsic requirements for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. Induced disruption of Gfi-1b was lethal within 3 wk with severely reduced hemoglobin levels and platelet counts. The erythroid lineage was arrested early in bipotential progenitors, which did not give rise to mature erythroid cells in vitro or in vivo. Yet Gfi-1b−/− progenitors had initiated the erythroid program as they expressed many lineage-restricted genes, including Klf1/Eklf and Erythropoietin receptor. In contrast, the megakaryocytic lineage developed beyond the progenitor stage in Gfi-1b’s absence and was arrested at the promegakaryocyte stage, after nuclear polyploidization, but before cytoplasmic maturation. Genome-wide analyses revealed that Gfi-1b directly regulates a wide spectrum of megakaryocytic and erythroid genes, predominantly repressing their expression. Together our study establishes Gfi-1b as a master transcriptional repressor of adult erythropoiesis and thrombopoiesis.
Collapse
Affiliation(s)
- Adlen Foudi
- Cancer Center, 2 Center for Regenerative Medicine, and 3 Department of Pathology, Massachusetts General Hospital, 4 Harvard Medical School, Boston, MA 02114
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
19
|
Welcker JE, Hernandez-Miranda LR, Paul FE, Jia S, Ivanov A, Selbach M, Birchmeier C. Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development 2013; 140:4947-58. [DOI: 10.1242/dev.097642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Insm1 gene encodes a zinc finger factor expressed in many endocrine organs. We show here that Insm1 is required for differentiation of all endocrine cells in the pituitary. Thus, in Insm1 mutant mice, hormones characteristic of the different pituitary cell types (thyroid-stimulating hormone, follicle-stimulating hormone, melanocyte-stimulating hormone, adrenocorticotrope hormone, growth hormone and prolactin) are absent or produced at markedly reduced levels. This differentiation deficit is accompanied by upregulated expression of components of the Notch signaling pathway, and by prolonged expression of progenitor markers, such as Sox2. Furthermore, skeletal muscle-specific genes are ectopically expressed in endocrine cells, indicating that Insm1 participates in the repression of an inappropriate gene expression program. Because Insm1 is also essential for differentiation of endocrine cells in the pancreas, intestine and adrenal gland, it is emerging as a transcription factor that acts in a pan-endocrine manner. The Insm1 factor contains a SNAG domain at its N-terminus, and we show here that the SNAG domain recruits histone-modifying factors (Kdm1a, Hdac1/2 and Rcor1-3) and other proteins implicated in transcriptional regulation (Hmg20a/b and Gse1). Deletion of sequences encoding the SNAG domain in mice disrupted differentiation of pituitary endocrine cells, and resulted in an upregulated expression of components of the Notch signaling pathway and ectopic expression of skeletal muscle-specific genes. Our work demonstrates that Insm1 acts in the epigenetic and transcriptional network that controls differentiation of endocrine cells in the anterior pituitary gland, and that it requires the SNAG domain to exert this function in vivo.
Collapse
Affiliation(s)
- Jochen E. Welcker
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Luis R. Hernandez-Miranda
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Florian E. Paul
- Cell Signaling and Mass Spectrometry Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Shiqi Jia
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Matthias Selbach
- Cell Signaling and Mass Spectrometry Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
20
|
Chow KT, Schulz D, McWhirter SM, Schlissel MS. Gfi1 and gfi1b repress rag transcription in plasmacytoid dendritic cells in vitro. PLoS One 2013; 8:e75891. [PMID: 24086657 PMCID: PMC3782466 DOI: 10.1371/journal.pone.0075891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022] Open
Abstract
Growth factor independence genes (Gfi1 and Gfi1b) repress recombination activating genes (Rag) transcription in developing B lymphocytes. Because all blood lineages originate from hematopoietic stem cells (HSCs) and different lineage progenitors have been shown to share transcription factor networks prior to cell fate commitment, we hypothesized that GFI family proteins may also play a role in repressing Rag transcription or a global lymphoid transcriptional program in other blood lineages. We tested the level of Rag transcription in various blood cells when Gfi1 and Gfi1b were deleted, and observed an upregulation of Rag expression in plasmacytoid dendritic cells (pDCs). Using microarray analysis, we observed that Gfi1 and Gfi1b do not regulate a lymphoid or pDC-specific transcriptional program. This study establishes a role for Gfi1 and Gfi1b in Rag regulation in a non-B lineage cell type.
Collapse
Affiliation(s)
- Kwan T. Chow
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
| | - Danae Schulz
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
| | - Sarah M. McWhirter
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
| | - Mark S. Schlissel
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America
- Office of the Provost, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
21
|
Inhibitory role of the transcription repressor Gfi1 in the generation of thymus-derived regulatory T cells. Proc Natl Acad Sci U S A 2013; 110:E3198-205. [PMID: 23918371 DOI: 10.1073/pnas.1300950110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Foxp3(+) regulatory T (T(reg)) cells are essential for the maintenance of self-tolerance and immune homeostasis. The majority of T(reg) cells is generated in the thymus as a specific subset of CD4(+) T cells, known as thymus-derived or natural T(reg) (nT(reg)) cells, in response to signals from T-cell receptors, costimulatory molecules, and cytokines. Recent studies have identified intracellular signaling and transcriptional pathways that link these signals to Foxp3 induction, but how the production of these extrinsic factors is controlled remains poorly understood. Here, we report that the transcription repressor growth factor independent 1 (Gfi1) has a key inhibitory role in the generation of nT(reg) cells by a noncell-autonomous mechanism. T cell-specific deletion of Gfi1 results in aberrant expansion of thymic nT(reg) cells and increased production of cytokines. In particular, IL-2 overproduction plays an important role in driving the expansion of nT(reg) cells. In contrast, although Gfi1 deficiency elevated thymocyte apoptosis, Gfi1 repressed nT(reg) generation independently of its prosurvival effect. Consistent with an inhibitory role of Gfi1 in this process, loss of Gfi1 dampens antitumor immunity. These data point to a previously unrecognized extrinsic control mechanism that negatively shapes thymic generation of nT(reg) cells.
Collapse
|
22
|
McKinney-Freeman S, Cahan P, Li H, Lacadie SA, Huang HT, Curran M, Loewer S, Naveiras O, Kathrein KL, Konantz M, Langdon EM, Lengerke C, Zon LI, Collins JJ, Daley GQ. The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 2013; 11:701-14. [PMID: 23122293 DOI: 10.1016/j.stem.2012.07.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 02/13/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
Transcriptome analysis of adult hematopoietic stem cells (HSCs) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSCs purified from >2,500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network-biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knockdown in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSCs, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification.
Collapse
Affiliation(s)
- Shannon McKinney-Freeman
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kheradpour P, Ernst J, Melnikov A, Rogov P, Wang L, Zhang X, Alston J, Mikkelsen TS, Kellis M. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res 2013; 23:800-11. [PMID: 23512712 PMCID: PMC3638136 DOI: 10.1101/gr.144899.112] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 03/14/2013] [Indexed: 01/06/2023]
Abstract
Genome-wide chromatin annotations have permitted the mapping of putative regulatory elements across multiple human cell types. However, their experimental dissection by directed regulatory motif disruption has remained unfeasible at the genome scale. Here, we use a massively parallel reporter assay (MPRA) to measure the transcriptional levels induced by 145-bp DNA segments centered on evolutionarily conserved regulatory motif instances within enhancer chromatin states. We select five predicted activators (HNF1, HNF4, FOXA, GATA, NFE2L2) and two predicted repressors (GFI1, ZFP161) and measure reporter expression in erythroleukemia (K562) and liver carcinoma (HepG2) cell lines. We test 2104 wild-type sequences and 3314 engineered enhancer variants containing targeted motif disruptions, each using 10 barcode tags and two replicates. The resulting data strongly confirm the enhancer activity and cell-type specificity of enhancer chromatin states, the ability of 145-bp segments to recapitulate both, the necessary role of regulatory motifs in enhancer function, and the complementary roles of activator and repressor motifs. We find statistically robust evidence that (1) disrupting the predicted activator motifs abolishes enhancer function, while silent or motif-improving changes maintain enhancer activity; (2) evolutionary conservation, nucleosome exclusion, binding of other factors, and strength of the motif match are predictive of enhancer activity; (3) scrambling repressor motifs leads to aberrant reporter expression in cell lines where the enhancers are usually inactive. Our results suggest a general strategy for deciphering cis-regulatory elements by systematic large-scale manipulation and provide quantitative enhancer activity measurements across thousands of constructs that can be mined to develop predictive models of gene expression.
Collapse
Affiliation(s)
- Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Jason Ernst
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | | | - Peter Rogov
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Li Wang
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Xiaolan Zhang
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Jessica Alston
- Broad Institute, Cambridge, Massachusetts 02142, USA
- Program in Biological and Biomedical Sciences and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tarjei S. Mikkelsen
- Broad Institute, Cambridge, Massachusetts 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
24
|
Ordoñez-Rueda D, Jönsson F, Mancardi DA, Zhao W, Malzac A, Liang Y, Bertosio E, Grenot P, Blanquet V, Sabrautzki S, de Angelis MH, Méresse S, Duprez E, Bruhns P, Malissen B, Malissen M. A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur J Immunol 2013; 42:2395-408. [PMID: 22684987 DOI: 10.1002/eji.201242589] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using N-ethyl-N-nitrosourea-induced mutagenesis, we established a mouse model with a novel form of neutropenia resulting from a point mutation in the transcriptional repressor Growth Factor Independence 1 (Gfi1). These mice, called Genista, had normal viability and no weight loss, in contrast to mice expressing null alleles of the Gfi1 gene. Furthermore, the Genista mutation had a very limited impact on lymphopoiesis or on T- and B-cell function. Within the bone marrow (BM), the Genista mutation resulted in a slight increase of monopoiesis and in a block of terminal granulopoiesis. This block occurred just after the metamyelocytic stage and resulted in the generation of small numbers of atypical CD11b(+) Ly-6G(int) neutrophils, the nuclear morphology of which resembled that of mature WT neutrophils. Unexpectedly, once released from the BM, these atypical neutrophils contributed to induce mild forms of autoantibody-induced arthritis and of immune complex-mediated lung alveolitis. They additionally failed to provide resistance to acute bacterial infection. Our study demonstrates that a hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia characterized by a split pattern of functional responses, reflecting the distinct thresholds required for eliciting neutrophil-mediated inflammatory and anti-infectious responses.
Collapse
Affiliation(s)
- Diana Ordoñez-Rueda
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Selective capacity of metreleptin administration to reconstitute CD4+ T-cell number in females with acquired hypoleptinemia. Proc Natl Acad Sci U S A 2013; 110:E818-27. [PMID: 23382191 DOI: 10.1073/pnas.1214554110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leptin is an adipocyte-derived hormone that controls food intake and reproductive and immune functions in rodents. In uncontrolled human studies, low leptin levels are associated with impaired immune responses and reduced T-cell counts; however, the effects of leptin replacement on the adaptive immune system have not yet been reported in the context of randomized, controlled studies and/or in conditions of chronic acquired leptin deficiency. To address these questions, we performed a randomized, double-blinded, placebo-controlled trial of recombinant methionyl-human leptin (metreleptin) administration in replacement doses in women experiencing the female triad (hypothalamic amenorrhea) with acquired chronic hypoleptinemia induced by negative energy balance. Metreleptin restored both CD4(+) T-cell counts and their in vitro proliferative responses in these women. These changes were accompanied by a transcriptional signature in which genes relevant to cell survival and hormonal response were up-regulated, and apoptosis genes were down-regulated in circulating immune cells. We also observed that signaling pathways involved in cell growth/survival/proliferation, such as the STAT3, AMPK, mTOR, ERK1/2, and Akt pathways, were activated directly by acute in vivo metreleptin administration in peripheral blood mononuclear cells and CD4(+) T-cells both from subjects with chronic hypoleptinemia and from normoleptinemic, lean female subjects. Our data show that metreleptin administration, in doses that normalize circulating leptin levels, induces transcriptional changes, activates intracellular signaling pathways, and restores CD4(+) T-cell counts. Thus, metreleptin may prove to be a safe and effective therapy for selective CD4(+) T-cell immune reconstitution in hypoleptinemic states such as tuberculosis and HIV infection in which CD4(+) T cells are reduced.
Collapse
|
26
|
Jiang K, Kwak H, Tosato G. GRANULOCYTE INFILTRATION AND EXPRESSION OF THE PRO-ANGIOGENIC BV8 PROTEIN IN EXPERIMENTAL EL4 AND LEWIS LUNG CARCINOMA TUMORS. Cureus 2013; 5:82. [PMID: 25493215 DOI: 10.7759/cureus.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Although Vascular Endothelial Growth Factor (VEGF)-targeted therapies have shown efficacy in the treatment of certain advanced cancers, benefits to patients have been modest, which is attributed to tumor resistance to VEGF neutralization. Recent efforts to identify new targets to inhibit tumor angiogenesis have identified Bv8 (prokineticin 2), a myeloid cell-derived protein that promotes endothelial cell growth and tumor angiogenesis, but many mechanistic aspects of the pro-tumorigenic function of Bv8 are unclear. Here we demonstrate that CD11b+, Ly6C+, Ly6G+ granulocytes are the predominant cell source of Bv8 expression in bone marrow, spleen and in tumor tissues. Using granulocyte-deficient Growth factor independence-1 (Gfi1)-null mutant mice and normal littermates, we found that EL4 lymphoma tumors grow significantly larger in the granulocyte and Bv8-deficient mutant mice in comparison to the normal mice that display abundant tumor-associated granulocytes and Bv8 expression. Conversely, Lewis lung carcinoma (LLC-1) tumors grew to a significantly greater size in the normal mice in comparison to the Gfi1-null mice, but normal granulocyte tumor infiltration was modest. Quantitative analysis of tissue vascularization showed that EL4 and LLC-1 tumors from normal and Gfi1-mutant mice are similarly vascularized. These results confirm the critical contribution of the tumor microenvironment in determining the rate of tumor progression independently of tumor angiogenesis, and reveal some of the complexities of granulocyte and Bv8 functions in modulating tumor growth.
Collapse
Affiliation(s)
- Kan Jiang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| | - Hyeongil Kwak
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
27
|
Chowdhury AH, Ramroop JR, Upadhyay G, Sengupta A, Andrzejczyk A, Saleque S. Differential transcriptional regulation of meis1 by Gfi1b and its co-factors LSD1 and CoREST. PLoS One 2013; 8:e53666. [PMID: 23308270 PMCID: PMC3538684 DOI: 10.1371/journal.pone.0053666] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/03/2012] [Indexed: 02/01/2023] Open
Abstract
Gfi1b (growth factor independence 1b) is a zinc finger transcription factor essential for development of the erythroid and megakaryocytic lineages. To elucidate the mechanism underlying Gfi1b function, potential downstream transcriptional targets were identified by chromatin immunoprecipitation and expression profiling approaches. The combination of these approaches revealed the oncogene meis1, which encodes a homeobox protein, as a direct and prominent target of Gfi1b. Examination of the meis1 promoter sequence revealed multiple Gfi1/1b consensus binding motifs. Distinct regions of the promoter were occupied by Gfi1b and its cofactors LSD1 and CoREST/Rcor1, in erythroid cells but not in the closely related megakaryocyte lineage. Accordingly, Meis1 was significantly upregulated in LSD1 inhibited erythroid cells, but not in megakaryocytes. This lineage specific upregulation in Meis1 expression was accompanied by a parallel increase in di-methyl histone3 lysine4 levels in the Meis1 promoter in LSD1 inhibited, erythroid cells. Meis1 was also substantially upregulated in gfi1b−/− fetal liver cells along with its transcriptional partners Pbx1 and several Hox messages. Elevated Meis1 message levels persisted in gfi1b mutant fetal liver cells differentiated along the erythroid lineage, relative to wild type. However, cells differentiated along the megakaryocytic lineage, exhibited no difference in Meis1 levels between controls and mutants. Transfection experiments further demonstrated specific repression of meis1 promoter driven reporters by wild type Gfi1b but neither by a SNAG domain mutant nor by a DNA binding deficient one, thus confirming direct functional regulation of this promoter by the Gfi1b transcriptional complex. Overall, our results demonstrate direct yet differential regulation of meis1 transcription by Gfi1b in distinct hematopoietic lineages thus revealing it to be a common, albeit lineage specific, target of both Gfi1b and its paralog Gfi1.
Collapse
Affiliation(s)
- Asif H. Chowdhury
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Johnny R. Ramroop
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Ghanshyam Upadhyay
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Ananya Sengupta
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Anna Andrzejczyk
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Shireen Saleque
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jing CB, Chen Y, Dong M, Peng XL, Jia XE, Gao L, Ma K, Deng M, Liu TX, Zon LI, Zhu J, Zhou Y, Zhou Y. Phospholipase C gamma-1 is required for granulocyte maturation in zebrafish. Dev Biol 2012; 374:24-31. [PMID: 23220656 DOI: 10.1016/j.ydbio.2012.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
The regulation of hematopoiesis is generally evolutionarily conserved from zebrafish to mammals, including hematopoietic stem cell formation and blood cell lineage differentiation. In zebrafish, primitive granulocytes originate at two distinct regions, the anterior lateral plate mesoderm (A-LPM) and the intermediate cell mass (ICM). Few studies in the zebrafish have examined genes specifically required for the granulocytic lineage. In this study, we identified the responsible gene for a zebrafish mutant that has relatively normal hematopoiesis, except decreased expression of the granulocyte-specific gene mpx. Positional cloning revealed that phospholipase C gamma-1 (plcg1) was mutated. Deficiency of plcg1 function specifically affected development of granulocytes, especially the maturation process. These results suggested that plcg1 functioned specifically in zebrafish ICM granulopoiesis for the first time. Our studies suggest that specific pathways regulate the differentiation of the hematopoietic lineages.
Collapse
Affiliation(s)
- Chang-Bin Jing
- Key Laboratory of Stem Cell Biology, Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alberich-Jordà M, Wouters B, Balastik M, Shapiro-Koss C, Zhang H, Di Ruscio A, DiRuscio A, Radomska HS, Ebralidze AK, Amabile G, Ye M, Zhang J, Lowers I, Avellino R, Melnick A, Figueroa ME, Valk PJM, Delwel R, Tenen DG. C/EBPγ deregulation results in differentiation arrest in acute myeloid leukemia. J Clin Invest 2012; 122:4490-504. [PMID: 23160200 DOI: 10.1172/jci65102] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/20/2012] [Indexed: 11/17/2022] Open
Abstract
C/EBPs are a family of transcription factors that regulate growth control and differentiation of various tissues. We found that C/EBPγ is highly upregulated in a subset of acute myeloid leukemia (AML) samples characterized by C/EBPα hypermethylation/silencing. Similarly, C/EBPγ was upregulated in murine hematopoietic stem/progenitor cells lacking C/EBPα, as C/EBPα mediates C/EBPγ suppression. Studies in myeloid cells demonstrated that CEBPG overexpression blocked neutrophilic differentiation. Further, downregulation of Cebpg in murine Cebpa-deficient stem/progenitor cells or in human CEBPA-silenced AML samples restored granulocytic differentiation. In addition, treatment of these leukemias with demethylating agents restored the C/EBPα-C/EBPγ balance and upregulated the expression of myeloid differentiation markers. Our results indicate that C/EBPγ mediates the myeloid differentiation arrest induced by C/EBPα deficiency and that targeting the C/EBPα-C/EBPγ axis rescues neutrophilic differentiation in this unique subset of AMLs.
Collapse
|
30
|
The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice. PLoS One 2012; 7:e29808. [PMID: 22238658 PMCID: PMC3251613 DOI: 10.1371/journal.pone.0029808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022] Open
Abstract
Background Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. Methodology/Principal Findings When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. Conclusions/Significance We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.
Collapse
|
31
|
Anderson AE, Karandikar UC, Pepple KL, Chen Z, Bergmann A, Mardon G. The enhancer of trithorax and polycomb gene Caf1/p55 is essential for cell survival and patterning in Drosophila development. Development 2011; 138:1957-66. [PMID: 21490066 PMCID: PMC3082301 DOI: 10.1242/dev.058461] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2011] [Indexed: 12/18/2022]
Abstract
In vitro data suggest that the human RbAp46 and RbAp48 genes encode proteins involved in multiple chromatin remodeling complexes and are likely to play important roles in development and tumor suppression. However, to date, our understanding of the role of RbAp46/RbAp48 and its homologs in metazoan development and disease has been hampered by a lack of insect and mammalian mutant models, as well as redundancy due to multiple orthologs in most organisms studied. Here, we report the first mutations in the single Drosophila RbAp46/RbAp48 homolog Caf1, identified as strong suppressors of a senseless overexpression phenotype. Reduced levels of Caf1 expression result in flies with phenotypes reminiscent of Hox gene misregulation. Additionally, analysis of Caf1 mutant tissue suggests that Caf1 plays important roles in cell survival and segment identity, and loss of Caf1 is associated with a reduction in the Polycomb Repressive Complex 2 (PRC2)-specific histone methylation mark H3K27me3. Taken together, our results suggest suppression of senseless overexpression by mutations in Caf1 is mediated by participation of Caf1 in PRC2-mediated silencing. More importantly, our mutant phenotypes confirm that Caf1-mediated silencing is vital to Drosophila development. These studies underscore the importance of Caf1 and its mammalian homologs in development and disease.
Collapse
Affiliation(s)
- Aimée E. Anderson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Kathryn L. Pepple
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihong Chen
- Department of Biochemistry and Molecular Biology, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andreas Bergmann
- Department of Biochemistry and Molecular Biology, M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Heyd F, Chen R, Afshar K, Saba I, Lazure C, Fiolka K, Möröy T. The p150 subunit of the histone chaperone Caf-1 interacts with the transcriptional repressor Gfi1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:255-61. [PMID: 21570500 DOI: 10.1016/j.bbagrm.2011.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/07/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
Modification of histones is critically involved in regulating chromatin structure and gene expression. The zinc finger protein Gfi1 silences transcription by recruiting a complex of histone modifying enzymes such as LSD-1/CoRest and HDAC-1 to target gene promoters. Here we present evidence that Gfi1 forms a complex with the p150 subunit of the histone chaperone chromatin assembly factor-1 (Caf-1). Gfi1 and p150 interact at endogenous expression levels and co-localize in distinct sub-nuclear structures. We show that p150 enhances Gfi1-mediated transcriptional repression and that it occupies Gfi1 target gene promoters in transfected cells and primary murine T cells only in the presence of Gfi1. Finally, size exclusion chromatography shows a fraction of p150 to coelute with Gfi1, LSD-1 and HDAC-1 and thus provides evidence that p150 is part of the Gfi1 repression complex. Since p150 binds directly to histones H3 and H4, our findings suggest that p150 may link the DNA-bound Gfi1 repressor complex to histones enabling modifications required for transcriptional silencing.
Collapse
Affiliation(s)
- Florian Heyd
- Institut de recherches cliniques de Montréal (IRCM), H2W 1R7, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Kenth G, Puzhko S, Goodyer CG. Human growth hormone receptor gene expression is regulated by Gfi-1/1b and GAGA cis-elements. Mol Cell Endocrinol 2011; 335:135-47. [PMID: 21238539 DOI: 10.1016/j.mce.2011.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/15/2022]
Abstract
Human growth hormone receptor (hGHR) gene regulation is complex: mRNAs are transcribed from multiple variant (V) 5'UTR exons, several ubiquitously while others only in the postnatal hepatocyte. The liver-specific V1 exon promoter contains Gfi-1/1b repressor sites adjacent to a GAGA box, a GH response element (GHRE) in several mammalian genes. GAGA boxes are also present in the ubiquitously expressing V3 exon promoter. Heterologous sites in bovine, ovine and murine GHR genes suggest conserved roles. GAGA factor stimulated V1 and V3 promoters while Gfi-1/1b repressed basal and GAF-stimulated V1 transcription. HGH treatment of HepG2 cells resulted in a new complex forming with V3 GAGA elements, suggesting a functional GHRE. Data suggest liver-specific V1 transcription is regulated by inhibitory Gfi-1/1b and stimulatory GAGA cis-elements and Gfi-1/1b may control the lack of V1 expression in fetal liver, hepatic tumours and non-hepatic tissues. In addition, hGH may regulate hGHR expression through V3 GAGA boxes.
Collapse
Affiliation(s)
- Gurvinder Kenth
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
34
|
Li L, Jothi R, Cui K, Lee JY, Cohen T, Gorivodsky M, Tzchori I, Zhao Y, Hayes SM, Bresnick EH, Zhao K, Westphal H, Love PE. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nat Immunol 2011; 12:129-36. [PMID: 21186366 PMCID: PMC3766981 DOI: 10.1038/ni.1978] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/01/2010] [Indexed: 01/15/2023]
Abstract
The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.
Collapse
Affiliation(s)
- LiQi Li
- Section on Cellular & Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Teylaert B, Meurice E, Bobowski M, Harduin-Lepers A, Gaucher C, Fontayne A, Jorieux S, Delannoy P. Molecular cloning, characterization, genomic organization and promoter analysis of the α1,6-fucosyltransferase gene (fut8) expressed in the rat hybridoma cell line YB2/0. BMC Biotechnol 2011; 11:1. [PMID: 21208406 PMCID: PMC3022693 DOI: 10.1186/1472-6750-11-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 01/05/2011] [Indexed: 02/02/2023] Open
Abstract
Background The rat hybridoma cell line YB2/0 appears a good candidate for the large-scale production of low fucose recombinant mAbs due to its lower expression of fut8 gene than other commonly used rodent cell lines. However, important variations of the fucose content of recombinant mAbs are observed in production culture conditions. To improve our knowledge on the YB2/0 fucosylation capacity, we have cloned and characterized the rat fut8 gene. Results The cDNAs encoding the rat α1,6-fucosyltransferase (FucT VIII) were cloned from YB2/0 cells by polymerase chain reaction-based and 5' RNA-Ligase-Mediated RACE methods. The cDNAs contain an open reading frame of 1728 bp encoding a 575 amino acid sequence showing 94% and 88% identity to human and pig orthologs, respectively. The recombinant protein expressed in COS-7 cells exhibits a α1,6-fucosyltransferase activity toward human asialo-agalacto-apotransferrin. The rat fut8 gene is located on chromosome 6 q and spans over 140 kbp. It contains 9 coding exons and four 5'-untranslated exons. FISH analysis shows a heterogeneous copy number of fut8 in YB2/0 nuclei with 2.8 ± 1.4 mean copy number. The YB2/0 fut8 gene is expressed as two main transcripts that differ in the first untranslated exon by the usage of distinct promoters and alternative splicing. Luciferase assays allow defining the minimal promoting regions governing the initiation of the two transcripts, which are differentially expressed in YB2/0 as shown by duplex Taqman QPCR analysis. Bioinformatics analysis of the minimal promoter regions upstream exons E-2 and E-3, governing the transcription of T1 and T2 transcripts, respectively, evidenced several consensus sequences for potential transcriptional repressors. Transient transfections of Rat2 cells with transcription factor expression vectors allowed identifying KLF15 as a putative repressor of T1 transcript in Rat2 cells. Conclusion Altogether, these data contribute to a better knowledge of fut8 expression in YB2/0 that will be useful to better control the fucosylation of recombinant mAbs produced in these cells.
Collapse
Affiliation(s)
- Béatrice Teylaert
- Laboratoire Français du Fractionnement et des Biotechnologies, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 2010; 116:5149-61. [PMID: 20826720 DOI: 10.1182/blood-2010-04-280305] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Donor-matched transplantation of hematopoietic stem cells (HSCs) is widely used to treat hematologic malignancies but is associated with high mortality. The expansion of HSC numbers and their mobilization into the bloodstream could significantly improve therapy. We report here that adult mice conditionally deficient for the transcription Growth factor independence 1b (Gfi1b) show a significant expansion of functional HSCs in the bone marrow and blood. Despite this expansion, Gfi1b(ko/ko) HSCs retain their ability to self-renew and to initiate multilineage differentiation but are no longer quiescent and contain elevated levels of reactive oxygen species. Treatment of Gfi1b(ko/ko) mice with N-acetyl-cystein significantly reduced HSC numbers indicating that increased reactive oxygen species levels are at least partially responsible for the expansion of Gfi1b-deficient HSCs. Moreover, Gfi1b(-/-) HSCs show decreased expression of CXCR4 and Vascular cell adhesion protein-1, which are required to retain dormant HSCs in the endosteal niche, suggesting that Gfi1b regulates HSC dormancy and pool size without affecting their function. Finally, the additional deletion of the related Gfi1 gene in Gfi1b(ko/ko) HSCs is incompatible with the maintenance of HSCs, suggesting that Gfi1b and Gfi1 have partially overlapping functions but that at least one Gfi gene is essential for the generation of HSCs.
Collapse
|
37
|
Bjerknes M, Cheng H. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Dev Biol 2010; 345:49-63. [PMID: 20599897 DOI: 10.1016/j.ydbio.2010.06.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 06/07/2010] [Accepted: 06/15/2010] [Indexed: 01/28/2023]
Abstract
Elucidating the mechanisms determining multipotent progenitor cell fate remains a fundamental project of contemporary biology. Various tissues of mice and men with defects in the zinc-finger transcriptional repressor Gfi1 have dramatic perturbations in the proportions of their differentiated cell types. In Gfi1-deficient intestinal epithelium there is a shift from mucous and Paneth towards enteroendocrine cells, leading to the proposal that Gfi1 functions in the allocation of the progeny derived from a hypothetical common granulocytic progenitor. However, studies of clones have yielded no evidence of such a common progenitor prompting us to investigate alternate mechanisms explaining the Gfi1-deficient phenotype. We report that mucous and Paneth but not enteroendocrine lineage cells normally express Gfi1. Sporadic mucous and Paneth lineage cells in the crypts of Gfi1-deficient mice aberrantly express the pro-enteroendocrine transcription factor Neurog3, indicating that stable repression of Neurog3 in these lineages requires Gfi1. Importantly, we also find mucous and Paneth lineage cells in various stages of cellular reprogramming into the enteroendocrine lineage in Gfi1-deficient mice. We propose that mucous and Paneth cell lineage metastability, rather than reallocation at the level of a hypothetical common granulocytic progenitor, is responsible for the shifts in cell type proportions observed in Gfi1-deficient intestinal epithelium.
Collapse
Affiliation(s)
- Matthew Bjerknes
- Department of Medicine, Clinical Science Division, Medical Sciences Building, Room 6334, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | | |
Collapse
|
38
|
Zinc finger protein Gfi1 controls the endotoxin-mediated Toll-like receptor inflammatory response by antagonizing NF-kappaB p65. Mol Cell Biol 2010; 30:3929-42. [PMID: 20547752 DOI: 10.1128/mcb.00087-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endotoxin (bacterial lipopolysaccharide [LPS]) causes fatal septic shock via the Toll-like receptor 4 (TLR-4) protein present on innate immunity effector cells, which activates nuclear factor kappa B (NF-kappaB), inducing proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha). An early step in this process involves nuclear sequestration of the p65-RelA NF-kappaB subunit, enabling transcriptional activation of target inflammatory cytokine genes. Here, we analyzed the role of the nuclear zinc finger protein Gfi1 in the TLR response using primary bone marrow-derived macrophages. We show that upon LPS stimulation, expression of Gfi1 is induced with kinetics similar to those of nuclear translocation of p65 and that Gfi1 interacts with p65 and inhibits p65-mediated transcriptional transactivation by interfering with p65 binding to target gene promoter DNA. Gfi1-deficient macrophages show abnormally high mRNA levels of the TNF-alpha gene and many other p65 target genes and a higher rate of TNF promoter occupancy by p65 than wild-type cells after LPS stimulation, suggesting that Gfi1 functions as an antagonist of NF-kappaB activity at the level of promoter binding. Our findings identify a new function of Gfi1 as a general negative regulator of the endotoxin-initiated innate immune responses, including septic shock and possibly other severe inflammatory diseases.
Collapse
|
39
|
Bersenev A, Wu C, Balcerek J, Jing J, Kundu M, Blobel GA, Chikwava KR, Tong W. Lnk constrains myeloproliferative diseases in mice. J Clin Invest 2010; 120:2058-69. [PMID: 20458146 PMCID: PMC2877957 DOI: 10.1172/jci42032] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/31/2010] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) expansion is regulated by intrinsic signaling pathways activated by cytokines. The intracellular kinase JAK2 plays an essential role in cytokine signaling, and activating mutations in JAK2 are found in a number of hematologic malignancies. We previously demonstrated that lymphocyte adaptor protein (Lnk, also known as Sh2b3) binds JAK2 and attenuates its activity, thereby limiting HSPC expansion. Here we show that loss of Lnk accelerates and exacerbates oncogenic JAK2-induced myeloproliferative diseases (MPDs) in mice. Specifically, Lnk deficiency enhanced cytokine-independent JAK/STAT signaling and augmented the ability of oncogenic JAK2 to expand myeloid progenitors in vitro and in vivo. An activated form of JAK2, unable to bind Lnk, caused greater myeloid expansion than activated JAK2 alone and accelerated myelofibrosis, indicating that Lnk directly inhibits oncogenic JAK2 in constraining MPD development. In addition, Lnk deficiency cooperated with the BCR/ABL oncogene, the product of which does not directly interact with or depend on JAK2 or Lnk, in chronic myeloid leukemia (CML) development, suggesting that Lnk also acts through endogenous pathways to constrain HSPCs. Consistent with this idea, aged Lnk-/- mice spontaneously developed a CML-like MPD. Taken together, our data establish Lnk as a bona fide suppressor of MPD in mice and raise the possibility that Lnk dysfunction contributes to the development of hematologic malignancies in humans.
Collapse
Affiliation(s)
- Alexey Bersenev
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chao Wu
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joanna Balcerek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jiang Jing
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mondira Kundu
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kudakwashe R. Chikwava
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Wei Tong
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Abstract
The inherited marrow failure syndromes are a diverse set of genetic disorders characterized by hematopoietic aplasia and cancer predisposition. The clinical phenotypes are highly variable and much broader than previously recognized. The medical management of the inherited marrow failure syndromes differs from that of acquired aplastic anemia or malignancies arising in the general population. Diagnostic workup, molecular pathogenesis, and clinical treatment are reviewed.
Collapse
|
41
|
Barjaktarevic I, Maletkovic-Barjaktarevic J, Kamani NR, Vukmanovic S. Altered functional balance of Gfi-1 and Gfi-1b as an alternative cause of reticular dysgenesis? Med Hypotheses 2010; 74:445-8. [DOI: 10.1016/j.mehy.2009.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 12/20/2022]
|
42
|
Monach PA, Nigrovic PA, Chen M, Hock H, Lee DM, Benoist C, Mathis D. Neutrophils in a mouse model of autoantibody-mediated arthritis: critical producers of Fc receptor gamma, the receptor for C5a, and lymphocyte function-associated antigen 1. ARTHRITIS AND RHEUMATISM 2010; 62:753-64. [PMID: 20191628 PMCID: PMC3057458 DOI: 10.1002/art.27238] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Neutrophils represent a prominent component of inflammatory joint effusions and are required for synovial inflammation in mouse models, but the mechanisms are poorly understood. In this study, we developed a system with which to test the importance of the production of specific factors by neutrophils in a mouse model of arthritis. METHODS Neutrophil-deficient Gfi-1(-/-) mice were administered sublethal doses of radiation and were then engrafted with donor bone marrow cells (BMCs), which resulted in the production of mature neutrophils within 2 weeks. By reconstituting with BMCs from mice lacking selected proinflammatory factors, we generated mice that specifically lacked these factors on their neutrophils. Arthritis was initiated by transfer of K/BxN serum to identify the role of defined neutrophil factors on the incidence and severity of arthritis. RESULTS Neutrophils lacking the signaling chain of stimulatory Fc receptors (FcRgamma(-/-)) were unable to elicit arthritis, but neutrophils lacking FcgammaRIII still did so. Neutrophils lacking the chemotactic or adhesion receptor C5a receptor (C5aR) or CD11a/lymphocyte function-associated antigen 1 (LFA-1) also failed to initiate arthritis but could enter joints in which inflammation had been initiated by wild-type neutrophils. Neutrophils unable to produce interleukin-1alpha (IL-1alpha) and IL-1beta (IL-1alpha/beta(-/-)) or leukotrienes (5-lipoxygenase [5-LOX(-/-)]) produced arthritis of intermediate severity. The inability of neutrophils to make tumor necrosis factor or to express receptors for tumor necrosis factor or IL-1 had no effect on arthritis. CONCLUSION A novel transfer system was developed to identify neutrophil production of FcRgamma, C5aR, and CD11a/LFA-1 as critical components of autoantibody-mediated arthritis. Neutrophil production of IL-1 and leukotriene B(4) likely contributes to inflammation but is not essential. Molecular requirements for neutrophil influx into joints become more permissive after inflammation is initiated.
Collapse
Affiliation(s)
- Paul A Monach
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter A Nigrovic
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mei Chen
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hanno Hock
- Division of Hematology/Oncology, Children’s Hospital and the Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Present address: Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Harvard Medical School, Boston, Massachusetts
| | - David M Lee
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia. Blood 2010; 115:2462-72. [PMID: 20075157 DOI: 10.1182/blood-2009-08-239822] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GFI1 gene encodes a transcriptional repressor, which regulates myeloid differentiation. In the mouse, Gfi1 deficiency causes neutropenia and an accumulation of granulomonocytic precursor cells that is reminiscent of a myelodysplastic syndrome. We report here that a variant allele of GFI1 (GFI1(36N)) is associated with acute myeloid leukemia (AML) in white subjects with an odds ratio of 1.6 (P < 8 x 10(-5)). The GFI1(36N) variant occurred in 1806 AML patients with an allele frequency of 0.055 compared with 0.035 in 1691 healthy control patients in 2 independent cohorts. We observed that both GFI1 variants maintain the same activity as transcriptional repressors but differ in their regulation by the AML1/ETO (RUNX1/RUNX1T1) fusion protein produced in AML patients with a t(8;21) translocation. AML1/ETO interacts and colocalizes with the more common GFI1(36S) form in the nucleus and inhibits its repressor activity. However, the variant GFI1(36N) protein has a different subnuclear localization than GFI1(36S). As a consequence, AML1/ETO does not colocalize with GFI1(36N) and is unable to inhibit its repressor activity. We conclude that both variants of GFI1 differ in their ability to be regulated by interacting proteins and that the GFI1(36N) variant form exhibits distinct biochemical features that may confer a predisposition to AML.
Collapse
|
44
|
Deng MJ, Li XB, Peng H, Zhang JW. Identification of the Trans-Activation Domain and the Nuclear Location Signals of Human Zinc Finger Protein HZF1 (ZNF16). Mol Biotechnol 2009; 44:83-9. [DOI: 10.1007/s12033-009-9210-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
|
45
|
HUH HJ, CHAE SL, LEE M, HONG KS, MUN YC, SEONG CM, CHUNG WS, HUH JW. CD34, RAB20, PU.1 and GFI1 mRNA expression in myelodysplastic syndrome. Int J Lab Hematol 2009; 31:344-51. [DOI: 10.1111/j.1751-553x.2008.01056.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Loss of the transcriptional repressor PAG-3/Gfi-1 results in enhanced neurosecretion that is dependent on the dense-core vesicle membrane protein IDA-1/IA-2. PLoS Genet 2009; 5:e1000447. [PMID: 19343207 PMCID: PMC2657203 DOI: 10.1371/journal.pgen.1000447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/06/2009] [Indexed: 01/09/2023] Open
Abstract
It is generally accepted that neuroendocrine cells regulate dense core vesicle (DCV) biogenesis and cargo packaging in response to secretory demands, although the molecular mechanisms of this process are poorly understood. One factor that has previously been implicated in DCV regulation is IA-2, a catalytically inactive protein phosphatase present in DCV membranes. Our ability to directly visualize a functional, GFP-tagged version of an IA-2 homolog in live Caenorhabditis elegans animals has allowed us to capitalize on the genetics of the system to screen for mutations that disrupt DCV regulation. We found that loss of activity in the transcription factor PAG-3/Gfi-1, which functions as a repressor in many systems, results in a dramatic up-regulation of IDA-1/IA-2 and other DCV proteins. The up-regulation of DCV components was accompanied by an increase in presynaptic DCV numbers and resulted in phenotypes consistent with increased neuroendocrine secretion. Double mutant combinations revealed that these PAG-3 mutant phenotypes were dependent on wild type IDA-1 function. Our results support a model in which IDA-1/IA-2 is a critical element in DCV regulation and reveal a novel genetic link to PAG-3-mediated transcriptional regulation. To our knowledge, this is the first mutation identified that results in increased neurosecretion, a phenotype that has clinical implications for DCV-mediated secretory disorders. Within secretory cells, hormones are packaged into vesicles (called DCVs) that are released upon stimulation. The number of DCVs is regulated to meet the secretory demands of the cell by a mechanism that is poorly understood, although a protein in the membrane of DCVs, called IA-2, is thought to play a role. A genetic screen in the nematode C. elegans is used, here, to find mutations that mis-regulate the corresponding worm protein called IDA-1. Capitalizing on the simple neuroanatomy of the nematode and its transparency, we visualize IDA-1 protein levels directly in the animal using a fluorescent tag. We find that mutations in the transcription factor PAG-3/Gfi-1 result in elevated levels of IDA-1 protein, increased numbers of presynaptic DCVs, and behaviors consistent with increased neurosecretion. Our results demonstrate that IDA-1/IA-2 protein levels correlate with the biogenesis, utilization, or stability of DCVs. We propose that PAG-3 normally down regulates the production of IDA-1, thus serving as part of the mechanism underlying DCV regulation. This is the first reported mutation that increases DCV numbers and secretion, offering insight into DCV homeostasis and a potential therapeutic target for diseases that would benefit from a boost in neuroendocrine secretion.
Collapse
|
47
|
Gfi-1 represses CDKN2B encoding p15INK4B through interaction with Miz-1. Proc Natl Acad Sci U S A 2009; 106:1433-8. [PMID: 19164764 DOI: 10.1073/pnas.0804863106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gfi-1 is a nuclear zinc finger (ZF) transcriptional repressor that plays an important role in hematopoiesis and inner ear development, and has been implicated in lymphomagenesis. Gfi-1 represses transcription by directly binding to the consensus DNA sequence in the promoters of its target genes. We report here an alternative mechanism by which Gfi-1 represses CDKN2B encoding p15(INK4B). Gfi-1 does not directly bind to CDKN2B, but interacts with Miz-1 and, via Miz-1, is recruited to the core promoter of CDKN2B. Miz-1 is a POZ-ZF transcription factor that has been shown to mediate transcriptional repression by c-Myc. Like c-Myc, upon recruitment to the CDKN2B promoter, Gfi-1 represses transcriptional activation of CDKN2B by Miz-1 and in response to TGFbeta. Consistent with its role in repressing CDKN2B transcription, knockdown of Gfi-1 in human leukemic cells or deficiency of Gfi-1 in mouse bone marrow cells results in augmented expression of p15(INK4B). Notably, Gfi-1 and c-Myc are both recruited to the CDKN2B core promoter and act in collaboration to repress CDKN2B. Our data reveal a mechanism of transcriptional repression by Gfi-1 and may have important implications for understanding the roles of Gfi-1 in normal development and tumorigenesis.
Collapse
|
48
|
Igwe E, Kosan C, Khandanpour C, Sharif-Askari E, Brüne B, Möröy T. The zinc finger protein Gfi1 is implicated in the regulation of IgG2b production and the expression of Igamma2b germline transcripts. Eur J Immunol 2009; 38:3004-14. [PMID: 18991277 DOI: 10.1002/eji.200838251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gfi1 is a zinc finger transcription factor that is undetectable in B lymphocytes but its expression rises rapidly upon antigenic stimulation or treatment with lipopolysaccharide (LPS). Here we show that Gfi1(-/-) mice have higher serum levels of gamma isotype immunoglobulin than WT animals. When challenged with antigen, Gfi1(-/-) mice react with accelerated formation of PNA+/CD19+ germinal center B cells and an increased production of antigen-specific IgG2a and IgG2b. Moreover, Gfi1(-/-) B cells secrete more IgG2a and IgG2b than WT cells and produce higher levels of Igamma2b sterile germline transcripts when cultured with LPS. While the proliferative response to stimulation with anti-IgM antibodies and plasma cell differentiation was normal in Gfi1(-/-) B cells, we found that mRNA and protein levels of TGFbeta1 were significantly increased in the absence of Gfi1. TGFbeta1 has been shown to be essential for the regulation of IgG subclass production and was previously found to selectively stimulate IgG2b secretion. Our findings reveal a new function of Gfi1 in the control of IgG isotype production.
Collapse
Affiliation(s)
- Emeka Igwe
- Institut für Zellbiologie Tumorforschung, IFZ, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Severe congenital neutropenia has been a well known hematological condition for over 50 years. Over this long period of time, the variable genetic causes and associated sequelae of the disease have been ascertained, and successful treatment strategies developed. Over the past 2 years, however, new studies have added greatly to our understanding of the molecular basis of the disease, details of which are presented in this review. RECENT FINDINGS Recent studies have elucidated a role for the unfolded protein response in mediating the pathogenic effects of ELA2 mutations, the most common mutation in severe congenital neutropenia (SCN) as well as cyclic neutropenia. Genetic lesions in HAX1 have also been identified in the original Kostmann pedigree representing the autosomal recessive form of SCN. An emerging theme is the convergence of these and other genetic lesions underlying SCN in enhancing neutrophil apoptosis. Other studies have revealed the importance of multiple independent mutations in these and other genes in SCN. Finally, the key role for signal transducer and activator of transcription 5 in mediating the effects of granulocyte colony-stimulating factor receptor truncation mutations in the development of myelodysplastic syndrome/acute myeloid leukemia following SCN has been elucidated. SUMMARY As the full spectrum of molecular mutations causing neutropenia emerges, it is becoming possible to differentiate patients into subtypes with different prognoses, for whom tailored therapies are indicated.
Collapse
Affiliation(s)
- Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia.
| | | |
Collapse
|
50
|
Loss of function genetic screens reveal MTGR1 as an intracellular repressor of beta1 integrin-dependent neurite outgrowth. J Neurosci Methods 2008; 177:322-33. [PMID: 19026687 DOI: 10.1016/j.jneumeth.2008.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 09/13/2008] [Accepted: 10/15/2008] [Indexed: 02/07/2023]
Abstract
Integrins are transmembrane receptors that promote neurite growth and guidance. To identify regulators of integrin-dependent neurite outgrowth, here we used two loss of function genetic screens in SH-SY5Y neuroblastoma cells. First, we screened a genome-wide retroviral library of genetic suppressor elements (GSEs). Among the many genes identified in the GSE screen, we isolated the hematopoetic transcriptional factor MTGR1 (myeloid translocation gene-related protein-1). Treatment of SH-SY5Y cells with MTGR1 siRNA enhanced neurite outgrowth and concurrently increased expression of GAP-43, a protein linked to neurite outgrowth. Second, we transduced SH-SY5Y with a genome-wide GFP-labeled lentiviral siRNA library, which expressed 40,000 independent siRNAs targeting 8500 human genes. From this screen we isolated GFI1 (growth factor independence-1), which, like MTGR1, is a member of the myeloid translocation gene on 8q22 (MTG8)/ETO protein complex of nuclear repressor proteins. These results reveal novel contributions of MTGR1 and GFI1 to the regulation of neurite outgrowth and identify novel repressors of integrin-dependent neurite outgrowth.
Collapse
|