1
|
Rezende RM, Weiner HL. Oral tolerance: an updated review. Immunol Lett 2022; 245:29-37. [PMID: 35395272 DOI: 10.1016/j.imlet.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Oral tolerance (OT) has classically been defined as the specific suppression of cellular and/or humoral immune responses to an antigen by prior administration of the antigen through the oral route. Multiple mechanisms have been proposed to explain the induction of OT including T cell clonal depletion and anergy when high doses of antigens are fed, and regulatory T (Treg) cell generation following oral administration of low and repeated doses of antigens. Oral antigen administration suppresses the immune response in several animal models of autoimmune disease, including experimental autoimmune encephalomyelitis, uveitis, thyroiditis, myasthenia, arthritis and diabetes, but also non-autoimmune inflammatory conditions such as asthma, atherosclerosis, graft rejection, allergy and stroke. However, human trials have given mixed results and a great deal remains to be learned about the mechanisms of OT before it can be successfully applied to people. One of the possible mechanisms relates to the gut microbiota and in this review, we will explore the cellular components involved in the induction of OT and the role of the gut microbiota in contributing to OT development.
Collapse
Affiliation(s)
- Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Palomares F, Gómez F, Bogas G, Maggi L, Cosmi L, Annunziato F, Núñez R, Pérez N, Muñoz‐Cano R, Torres MJ, Mayorga C. Innate lymphoid cells type 2 in LTP-allergic patients and their modulation during sublingual immunotherapy. Allergy 2021; 76:2253-2256. [PMID: 33476397 PMCID: PMC8359238 DOI: 10.1111/all.14745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Francisca Palomares
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
| | - Francisca Gómez
- Allergy Clinical Unit Hospital Regional Universitario de Málaga Málaga Spain
| | - Gádor Bogas
- Allergy Clinical Unit Hospital Regional Universitario de Málaga Málaga Spain
| | - Laura Maggi
- Department of Experimental and Clinical Medicine University of Florence Florence Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine University of Florence Florence Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine University of Florence Florence Italy
| | - Rafael Núñez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
| | - Natalia Pérez
- Allergy Clinical Unit Hospital Regional Universitario de Málaga Málaga Spain
| | - Rosa Muñoz‐Cano
- Allergy Section Pneumology Department Institut Clínic Respiratori (ICR) Hospital Clínic de Barcelona Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS) Universitat de Barcelona Barcelona Spain
| | - María José Torres
- Allergy Clinical Unit Hospital Regional Universitario de Málaga Málaga Spain
- Medicine Department Universidad de Málaga‐UMA Málaga Spain
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Allergy Clinical Unit Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
3
|
Wang YT, Liu HC, Chen HC, Lee YC, Tsai TC, Chen HL, Fan HC, Chen CM. Oral immunotherapy with the ingestion of house dust mite extract in a murine model of allergic asthma. Allergy Asthma Clin Immunol 2018; 14:43. [PMID: 30356799 PMCID: PMC6190578 DOI: 10.1186/s13223-018-0269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background Allergen-specific immunotherapy (ASIT) has the potential to modify allergic diseases, and it is also considered a potential therapy for allergic asthma. House dust mite (HDM) allergens, a common source of airborne allergen in human diseases, have been developed as an immunotherapy for patients with allergic asthma via the subcutaneous and sublingual routes. Oral immunotherapy with repeated allergen ingestion is emerging as another potential modality of ASIT. The aim of this study was to evaluate the therapeutic efficacy of the oral ingestion of HDM extracts in a murine model of allergic asthma. Methods BABL/c mice were sensitized twice by intraperitoneal injection of HDM extracts and Al(OH)3 on day 1 and day 8. Then, the mice received challenge to induce airway inflammation by intratracheal instillation of HDM extracts on days 29–31. The treatment group received immunotherapy with oral HDM extracts ingestion before the challenge. All the mice were sacrificed on day 32 for bronchoalveolar inflammatory cytokines, mediastinal lymph node T cells, lung histology, and serum HDM-specific immunoglobulins analyses. Results Upon HDM sensitization and following challenge, a robust Th2 cell response and eosinophilic airway inflammation were observed in mice of the positive control group. The mice treated with HDM extracts ingestion had decreased eosinophilic airway inflammation, suppressed HDM-specific Th2 cell responses in the mediastinal lymph nodes, and attenuated serum HDM-specific IgE levels. Conclusions Oral immunotherapy with HDM extracts ingestion was demonstrated to have a partial therapeutic effect in the murine model of allergic asthma. This study may serve as the basis for the further development of oral immunotherapy with HDM extracts in allergic asthma.
Collapse
Affiliation(s)
- Yao-Tung Wang
- 1Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,2School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsu-Chung Liu
- 2School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,3Division of Chest Medicine, Department of Internal Medicine, Cheng Ching Hospital, Taichung, Taiwan.,4Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 402 Taiwan
| | - Hui-Chen Chen
- 5Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Ching Lee
- 4Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 402 Taiwan
| | - Tung-Chou Tsai
- 4Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 402 Taiwan
| | - Hsiao-Ling Chen
- Department of Bioresources, Da-Yeh University, Changhwa, Taiwan
| | - Hueng-Chuen Fan
- 7Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, No. 699, Sec. 8, Taiwan Blvd., Wuchi, Taichung, 435 Taiwan.,8Department of Medical Research, Tungs' Taichung Metroharbor Hospital, No. 699, Sec. 8, Taiwan Blvd., Wuchi, Taichung, 435 Taiwan.,Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chuan-Mu Chen
- 4Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 402 Taiwan.,10The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,11Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
van Bilsen JHM, Sienkiewicz-Szłapka E, Lozano-Ojalvo D, Willemsen LEM, Antunes CM, Molina E, Smit JJ, Wróblewska B, Wichers HJ, Knol EF, Ladics GS, Pieters RHH, Denery-Papini S, Vissers YM, Bavaro SL, Larré C, Verhoeckx KCM, Roggen EL. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 2017; 7:13. [PMID: 28507730 PMCID: PMC5429547 DOI: 10.1186/s13601-017-0152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). MAIN BODY The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. CONCLUSION The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | | | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Harry J Wichers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Edward F Knol
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Simona L Bavaro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | | | | |
Collapse
|
6
|
Tunis MC, Dawod B, Carson KR, Veinotte LL, Marshall JS. Toll-like receptor 2 activators modulate oral tolerance in mice. Clin Exp Allergy 2016; 45:1690-702. [PMID: 26242919 PMCID: PMC5019435 DOI: 10.1111/cea.12605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Toll-like receptor 2 (TLR2) is a widely expressed pattern recognition receptor critical for innate immunity. TLR2 is also a key regulator of mucosal immunity implicated in the development of allergic disease. TLR2 activators are found in many common foods, but the role of TLR2 in oral tolerance and allergic sensitization to foods is not well understood. OBJECTIVE The purpose of this study was to evaluate the impacts of TLR2 expression and TLR2 activation on oral tolerance to food antigens in a murine model. METHODS Mice were fed ovalbumin (OVA) or peanut butter with or without the addition of low doses of TLR2 activators Pam3 CSK4 or FSL-1. Oral tolerance was assessed by analysing antibody responses after a systemic antigen challenge. OVA-specific Tregs were assessed in the Peyer's patches, mesenteric lymph nodes, and spleen in wild-type and TLR2(-/-) mice. Low-dose Pam3 CSK4 was also tested as an oral adjuvant. RESULTS Oral tolerance was successfully induced in both wild-type and TLR2(-/-) recipient mice, with an associated regulatory T-cell response. Oral TLR2 activation, with low-dose Pam3 CSK4 or FSL-1, during oral antigen exposure was found to alter oral tolerance and was associated with the development of substantial IgE and IgA responses to foods upon systemic challenge. Low-dose oral Pam3 CSK4 treatment also selectively enhanced antigen-specific IgA responses to oral antigen exposure. CONCLUSIONS AND CLINICAL RELEVANCE TLR2 is not necessary for oral tolerance induction, but oral TLR2 activation modulates humoral IgE and IgA responses during tolerance development. Low-dose Pam3 CSK4 is also an effective oral adjuvant that selectively enhances IgA production. These observations are pertinent to the optimization of oral allergen immunotherapy and oral vaccine development.
Collapse
Affiliation(s)
- M C Tunis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - B Dawod
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - K R Carson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - L L Veinotte
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - J S Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Maina E, Cox E. A double blind, randomized, placebo controlled trial of the efficacy, quality of life and safety of food allergen‐specific sublingual immunotherapy in client owned dogs with adverse food reactions: a small pilot study. Vet Dermatol 2016; 27:361-e91. [DOI: 10.1111/vde.12358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Elisa Maina
- Laboratory of Immunology Ghent University of Veterinary Medicine Salisburylaan 133 Merelbeke 9820 Belgium
| | - Eric Cox
- Laboratory of Immunology Ghent University of Veterinary Medicine Salisburylaan 133 Merelbeke 9820 Belgium
| |
Collapse
|
8
|
Burbank AJ, Burks W. Food specific oral immunotherapy: a potential treatment for food allergy. Expert Rev Gastroenterol Hepatol 2016; 9:1147-59. [PMID: 26145713 DOI: 10.1586/17474124.2015.1065177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Food allergy is a potentially life-threatening condition affecting up to 8% of children and up to 2% of adults in westernized countries. There are currently no approved treatments for food allergy apart from avoidance. The apparent increase in incidence of food allergies over the past few decades calls attention to the need for effective, disease-modifying therapies for food allergies. Oral immunotherapy (OIT) is a promising experimental treatment in which food allergic patients consume increasing quantities of food in attempt to increase their threshold for allergic reaction. Studies are ongoing to determine whether OIT is capable of safely inducing not only desensitization but also tolerance to the allergenic foods. This article focuses on recent relevant studies of OIT for the treatment of common food allergies.
Collapse
Affiliation(s)
- Allison J Burbank
- a University of North Carolina, Department of Allergy, Immunology, and Rheumatology, Chapel Hill, NC, USA
| | | |
Collapse
|
9
|
Abstract
Oral tolerance is an active process of local and systemic immune unresponsiveness to orally ingested antigens such as food. The gut immune system must balance responses to commensal bacteria (microbiome), innocuous antigens, and pathogens. Although it is clear that specialized populations of immune cells and lymph nodes create a unique environment in the gut, there remains evidence to suggest that systemic effector sites also are critical to establishing and maintaining oral tolerance.
Collapse
|
10
|
Abstract
Antigen-specific immunotherapy is expected to be a desirable treatment for allergic diseases. Currently, antigen-specific immunotherapy is performed by administering disease-causing antigens subcutaneously or sublingually. These approaches induce long-term remission in patients with allergic rhinitis or asthma. The oral route is an alternative to subcutaneous and sublingual routes, and can also induce long-term remission, a phenomenon known as "oral tolerance." The effectiveness of oral tolerance has been reported in the context of autoimmune diseases, food allergies, asthma, atopic dermatitis, and allergic rhinitis in both human patients and animal models. However, few studies have examined its efficacy in animal models of allergic conjunctivitis. Previously, we showed that ovalbumin feeding suppressed ovalbumin-induced experimental allergic conjunctivitis, indicating the induction of oral tolerance is effective in treating experimental allergic conjunctivitis. In recent years, transgenic rice has been developed that can induce oral tolerance and reduce the severity of anaphylaxis. The major Japanese cedar pollen antigens in transgenic rice, Cryptomeria japonica 1 and C. japonica 2, were deconstructed by molecular shuffling, fragmentation, and changes in the oligomeric structure. Thus, transgenic rice may be an effective treatment for allergic conjunctivitis.
Collapse
|
11
|
|
12
|
Sestak JO, Fakhari A, Badawi AH, Siahaan TJ, Berkland C. Structure, size, and solubility of antigen arrays determines efficacy in experimental autoimmune encephalomyelitis. AAPS J 2014; 16:1185-93. [PMID: 25193268 PMCID: PMC4389745 DOI: 10.1208/s12248-014-9654-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/26/2014] [Indexed: 01/02/2023] Open
Abstract
Presentation of antigen with immune stimulating "signal" has been a cornerstone of vaccine design for decades. Here, the antigen plus immune "signal" of vaccines is modified to produce antigen-specific immunotherapies (antigen-SITs) that can potentially reprogram the immune response toward tolerance of an autoantigen. The codelivery of antigen with a cell adhesion inhibitor using Soluble Antigen Arrays (SAgAs) was previously shown to slow or halt experimental autoimmune encephalomyelitis (EAE), a murine form of multiple sclerosis (MS). SAgAs are comprised of a hyaluronic acid backbone with cografted intercellular cell adhesion molecule-1 ligand derived from αL-integrin (CD11a237-246, "LABL") and an encephalitogenic epitope peptide of proteolipid protein (PLP139-151, "PLP"). Here, the physical characteristics of the carrier were investigated to evaluate how structure, size, and solubility drive the immune response when treating EAE. A bifunctional peptide (small, soluble), SAgAs (large, soluble), and PLGA nanoparticles (large, insoluble) all displaying PLP and LABL in equimolar ratios were compared. Maximum EAE suppression was achieved with coincident display of both peptides on a soluble construct.
Collapse
Affiliation(s)
- Joshua O. Sestak
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
| | - Amir Fakhari
- />Department of Bioengineering, University of Kansas, 1520 West 15th Street, Room 1, Eaton Hall, Lawrence, Kansas 66045 USA
| | - Ahmed H. Badawi
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
| | - Teruna J. Siahaan
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
| | - Cory Berkland
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
- />Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th, Rm. 4132 Learned Hall, Lawrence, Kansas 66045 USA
- />Department of Bioengineering, University of Kansas, 1520 West 15th Street, Room 1, Eaton Hall, Lawrence, Kansas 66045 USA
| |
Collapse
|
13
|
Tunis MC, Marshall JS. Toll-like receptor 2 as a regulator of oral tolerance in the gastrointestinal tract. Mediators Inflamm 2014; 2014:606383. [PMID: 25309051 PMCID: PMC4182894 DOI: 10.1155/2014/606383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023] Open
Abstract
Food allergy, other adverse immune responses to foods, inflammatory bowel disease, and eosinophilic esophagitis have become increasingly common in the last 30 years. It has been proposed in the "hygiene hypothesis" that dysregulated immune responses to environmental microbial stimuli may modify the balance between tolerance and sensitization in some patients. Of the pattern recognition receptors that respond to microbial signals, toll-like receptors (TLRs) represent the most investigated group. The relationship between allergy and TLR activation is currently at the frontier of immunology research. Although TLR2 is abundant in the mucosal environment, little is known about the complex relationship between bystander TLR2 activation by the commensal microflora and the processing of oral antigens. This review focuses on recent advances in our understanding of the relationship between TLR2 and oral tolerance, with an emphasis on regulatory T cells, eosinophils, B cells, IgA, intestinal regulation, and commensal microbes.
Collapse
Affiliation(s)
- Matthew C. Tunis
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5
- Dalhousie Inflammation Group, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5
| | - Jean S. Marshall
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5
- Dalhousie Inflammation Group, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5
| |
Collapse
|
14
|
Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14008. [PMID: 26015953 PMCID: PMC4420258 DOI: 10.1038/mtm.2014.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases such as multiple sclerosis (MS) are typified by the misrecognition of self-antigen and the clonal expansion of autoreactive T cells. Antigen-specific immunotherapies (antigen-SITs) have long been explored as a means to desensitize patients to offending self-antigen(s) with the potential to retolerize the immune response. Soluble antigen arrays (SAgAs) are composed of hyaluronic acid (HA) cografted with disease-specific autoantigen (proteolipid protein peptide) and an ICAM-1 inhibitor peptide (LABL). SAgAs were designed as an antigen-SIT that codeliver peptides to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Codelivery of antigen and cell adhesion inhibitor (LABL) conjugated to HA was essential for SAgA treatment of EAE. Individual SAgA components or mixtures thereof reduced proinflammatory cytokines in cultured splenocytes from EAE mice; however, these treatments showed minimal to no in vivo therapeutic effect in EAE mice. Thus, carriers that codeliver antigen and a secondary “context” signal (e.g., LABL) in vivo may be an important design criteria to consider when designing antigen-SIT for autoimmune therapy.
Collapse
|
15
|
Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J Allergy Clin Immunol 2012. [PMID: 23182172 DOI: 10.1016/j.jaci.2012.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The prevalence of peanut allergies is increasing. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCTs), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared with long-chain triglycerides (LCTs), which stimulate mesenteric lymph flow and are absorbed in chylomicrons through mesenteric lymph. OBJECTIVE We sought to test how dietary MCTs affect food allergy. METHODS C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. RESULTS MCT suppressed antigen absorption into blood but stimulated absorption into Peyer patches. A single gavage of peanut protein with MCT, as well as prolonged feeding in MCT-based diets, caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis on systemic challenge and IgE-dependent anaphylaxis on oral challenge. MCT feeding stimulated jejunal-epithelial thymic stromal lymphopoietin, Il25, and Il33 expression compared with that seen after LCT feeding and promoted T(H)2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared with challenges with the LCT. Importantly, the effects of MCTs could be mimicked by adding Pluronic L81 to LCTs, and in vitro assays indicated that chylomicrons prevent basophil activation. CONCLUSION Dietary MCTs promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating T(H)2 responses.
Collapse
|
16
|
Specific oral desensitization in children with IgE-mediated cow's milk allergy. Evolution in one year. Eur J Pediatr 2012; 171:1389-95. [PMID: 22576806 DOI: 10.1007/s00431-012-1739-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Cow's milk allergy is the most frequent childhood food allergy. Children older than 5 who have not become tolerant have less probabilities of natural tolerance. Specific oral desensitization methods are being investigated in reference centres. The aims of our study were to assess the efficacy of our guideline of specific oral desensitization to cow's milk in children and to know its suitability for anaphylactic children. Both clinical and specific IgE outcomes were evaluated. Eighty-seven children aged 5 to 16 years with a history of cow's milk allergy were included. Prior to desensitization, skin prick test, specific IgE to cow's milk proteins and a double-blind placebo control food challenge were performed in all. Of the 87 patients, 21 had a negative challenge; they were considered tolerant, and they were told to follow a free diet. Of the positive, 44 were anaphylactic and 22 non-anaphylactic. All of them were included. In non-anaphylactic patients, 6 achieved partial and 16 maximum desensitization after 23.1 weeks. In the anaphylactic group, 7 achieved partial and 35 maximum desensitization after 26.4 weeks. Cow's milk-specific IgE levels and casein-specific IgE levels were significantly lower in the tolerant patients at baseline. One year after desensitization, the medium specific cow's milk levels and casein IgE levels had dropped significantly. CONCLUSIONS Our guideline for specific oral desensitization to cow's milk is efficacious even in patients with anaphylactic reactions to cow's milk and represents a significant life change. Immunological changes in 1 year show a drop in cow's milk protein-specific IgE.
Collapse
|
17
|
Tunis MC, Dawicki W, Carson KR, Wang J, Marshall JS. Mast cells and IgE activation do not alter the development of oral tolerance in a murine model. J Allergy Clin Immunol 2012; 130:705-715.e1. [PMID: 22607990 DOI: 10.1016/j.jaci.2012.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND In addition to their well-known role as potent effector cells in patients with allergic disease, mast cells have important immunomodulatory roles regulating tolerance in allograft rejection models. The roles of mast cells in oral tolerance development have not previously been examined. OBJECTIVE We sought to evaluate the importance of mast cells, IgE-mediated mast cell activation, and histamine receptor 1 or 2 blockade on oral tolerance development in mice. METHODS Oral tolerance was assessed in 2 mast cell-deficient murine strains (Kit(W-sh/W-sh) and Kit(W/W-v) mice) and control mice. Mice were fed ovalbumin (OVA) or peanut butter for 1 week and then immunized and boosted with relevant protein antigens. Antibody responses were assessed by using ELISA. The oral antihistamines pyrilamine and ranitidine were administered during tolerance induction to OVA. IgE-mediated mast cell activation was initiated during oral tolerance induction or OVA immunization. OVA-specific regulatory T cells were assessed in the Peyer patches, mesenteric lymph nodes, and spleens by using flow cytometry after adoptive transfer. RESULTS Oral tolerance was successfully induced to OVA and peanut butter in mast cell-deficient mice. Kit(W-sh/W-sh) mice had higher proportions of antigen-specific regulatory T cells in the mesenteric lymph nodes than mast cell-containing control mice. However, mast cell reconstitution studies suggested this effect was mast cell independent. Oral antihistamine treatments with pyrilamine or ranitidine did not impair tolerance and neither did IgE-mediated activation. CONCLUSIONS Mast cells are not necessary for the induction of oral tolerance, and allergic activation of mast cells does not impair tolerance to OVA. Oral antihistamine treatments do not disrupt the development of oral tolerance.
Collapse
Affiliation(s)
- Matthew C Tunis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
18
|
Rashtak S, Murray JA. Review article: coeliac disease, new approaches to therapy. Aliment Pharmacol Ther 2012; 35:768-81. [PMID: 22324389 PMCID: PMC3912561 DOI: 10.1111/j.1365-2036.2012.05013.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/03/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coeliac disease is managed by life-long gluten withdrawal from the diet. However, strict adherence to a gluten-free diet is difficult and is not always effective. Novel therapeutic approaches are needed to supplement or even replace the dietary treatment. AIM To review recent advances in new therapeutic options for coeliac disease. METHODS A literature search was performed on MEDLINE, EMBASE, Web of Science, Scopus, DDW.org and ClinicalTrials.gov for English articles and abstracts. The search terms used included, but not limited to, 'Celiac disease', 'new', 'novel', 'Advances', 'alternatives' and 'Drug therapy'. The cited articles were selected based on the relevancy to the review objective. RESULTS Several new therapeutic approaches for coeliac disease are currently under development by targeting its underlying pathogenesis. Alternative therapies range from reproduction of harmless wheat strains to immunomodulatory approaches. Some of these therapies such as enzymatic cleavage of gluten and permeability inhibitors have shown promise in clinical studies. CONCLUSIONS Gluten-free diet is still the only practical treatment for patients with coeliac disease. Novel strategies provide promise of alternative adjunctive approaches to diet restriction alone for patients with this disorder.
Collapse
Affiliation(s)
- S Rashtak
- Celiac Disease Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
19
|
Jiménez-Saiz R, Rupa P, Mine Y. Immunomodulatory effects of heated ovomucoid-depleted egg white in a BALB/c mouse model of egg allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:13195-13202. [PMID: 22106958 DOI: 10.1021/jf202963r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Oral immunotherapy (OIT) is a promising therapeutic approach for treating food allergy. The treatment with heated ovomucoid-depleted egg white (HOMEW) in egg-allergic patients is noteworthy; however, OIT protocols are still experimental, and a better knowledge of the underlying mechanism is required. The objective of this work was to investigate the immunomodulatory effects of HOMEW and characterize the underlying mechanism in a BALB/c mouse model of egg allergy. Mice were sensitized with EW and treated with HOMEW. Post treatment, mice were challenged with EW and euthanized for collecting blood and spleen. Markers of allergic clinical outcomes were measured as histamine concentration, serum antibody activity, and cytokine production from cultured splenocytes. Digestibility of HOMEW was assessed mimicking physiological conditions in vitro. The HOMEW demonstrated high digestibility. The treatment induced a marked increase of the Th1/Th2 ratio in the high-dose treatment group. Treated mice had significantly less histamine, EW-specific IgE, and IL-4 and more IFN-γ and IL-10. This study confirms the mechanisms involved in successful tolerance induction with OIT using HOMEW and allows understanding of the vital role of surrogate allergy markers involved in immune modulation.
Collapse
Affiliation(s)
- Rodrigo Jiménez-Saiz
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
20
|
Thang CL, Baurhoo B, Boye JI, Simpson BK, Zhao X. Effects of Lactobacillus rhamnosus GG supplementation on cow's milk allergy in a mouse model. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2011; 7:20. [PMID: 22145744 PMCID: PMC3261804 DOI: 10.1186/1710-1492-7-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 12/06/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cow's milk allergy (CMA) is one of the most prevalent human food-borne allergies, particularly in infants and young children from developed countries. Our study aims to evaluate the effects of Lactobacillus rhamnosus GG (LGG) administration on CMA development using whole cow's milk proteins (CMP) sensitized Balb/C mice by two different sensitization methods. METHODS LGG supplemented mice were either sensitized orally with CMP and cholera toxin B-subunit (CTB) as adjuvant, or intraperitoneally (IP) with CMP but without the adjuvant. Mice were then orally challenged with CMP and allergic responses were accessed by monitoring hypersensitivity scores, measuring the levels of CMP-specific immunoglobulins (IgG1, IgG2a and IgG) and total IgE from sera, and cytokines (IL-4 and IFN-γ) from spleen lysates. RESULTS Sensitization to CMP was successful only in IP sensitized mice, but not in orally sensitized mice with CMP and CTB. Interestingly, LGG supplementation appeared to have reduced cow's milk allergy (CMA) in the IP group of mice, as indicated by lowered allergic responses. CONCLUSIONS Adjuvant-free IP sensitization with CMP was successful in inducing CMA in the Balb/C mice model. LGG supplementation favourably modulated immune reactions by shifting Th2-dominated trends toward Th1-dominated responses in CMP sensitized mice. Our results also suggest that oral sensitization by the co-administration of CMP and CTB, as adjuvant, might not be appropriate to induce CMA in mice.
Collapse
Affiliation(s)
- Cin L Thang
- Department of Animal Science, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Bushansingh Baurhoo
- Department of Animal Science, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Joyce I Boye
- Food Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Blvd. West, St-Hyacinthe, Quebec J2S 8E3, Canada
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Xin Zhao
- Department of Animal Science, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
21
|
Abstract
The gut-associated lymphoid tissue is the largest immune organ in the body and is the primary route by which we are exposed to antigens. Tolerance induction is the default immune pathway in the gut, and the type of tolerance induced relates to the dose of antigen fed: anergy/deletion (high dose) or regulatory T-cell (Treg) induction (low dose). Conditioning of gut dendritic cells (DCs) by gut epithelial cells and the gut flora, which itself has a major influence on gut immunity, induces CD103(+) retinoic acid-dependent DC that induces Tregs. A number of Tregs are induced at mucosal surfaces. Th3 type Tregs are transforming growth factor-β dependent and express latency-associated peptide (LAP) on their surface and were discovered in the context of oral tolerance. Tr1 type Tregs (interleukin-10 dependent) are induced by nasal antigen and forkhead box protein 3(+) iTregs are induced by oral antigen and by oral administration of aryl hydrocarbon receptor ligands. Oral or nasal antigen ameliorates autoimmune and inflammatory diseases in animal models by inducing Tregs. Furthermore, anti-CD3 monoclonal antibody is active at mucosal surfaces and oral or nasal anti-CD3 monoclonal antibody induces LAP(+) Tregs that suppresses animal models (experimental autoimmune encephalitis, type 1 and type 2 diabetes, lupus, arthritis, atherosclerosis) and is being tested in humans. Although there is a large literature on treatment of animal models by mucosal tolerance and some positive results in humans, this approach has yet to be translated to the clinic. The successful translation will require defining responsive patient populations, validating biomarkers to measure immunologic effects, and using combination therapy and immune adjuvants to enhance Treg induction. A major avenue being investigated for the treatment of autoimmunity is the induction of Tregs and mucosal tolerance represents a non-toxic, physiologic approach to reach this goal.
Collapse
Affiliation(s)
- Howard L Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
22
|
Moneret-Vautrin DA. Immunothérapie sublinguale et orale de l’allergie alimentaire : effets cliniques et signification des modifications immunologiques. REVUE FRANCAISE D ALLERGOLOGIE 2011. [DOI: 10.1016/j.reval.2011.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
The impact of plant biotechnology on food allergy. Curr Opin Biotechnol 2011; 22:224-30. [DOI: 10.1016/j.copbio.2010.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/07/2010] [Indexed: 11/19/2022]
|
24
|
Bol-Schoenmakers M, Marcondes Rezende M, Bleumink R, Boon L, Man S, Hassing I, Fiechter D, Pieters RHH, Smit JJ. Regulation by intestinal γδ T cells during establishment of food allergic sensitization in mice. Allergy 2011; 66:331-40. [PMID: 20880210 DOI: 10.1111/j.1398-9995.2010.02479.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Food allergy affects approximately 5% of children and is the leading cause of hospitalization for anaphylactic reactions in westernized countries. The mucosal adjuvant cholera toxin induces allergic sensitization to co-administered proteins in mice, while feeding the protein alone induces oral tolerance. Intestinal γδ T cells could be of importance in the induction of oral tolerance. This study aims to investigate whether γδ T cells have functional relevance in food allergic sensitization. METHODS Changes in γδ T cells on days 1, 2, 3, and 7 after initiation of food allergy were evaluated using flowcytometry. Furthermore, the anti-γδ T-cell receptor (TCR) antibody UC7 was used to block the γδ TCR in mice in vivo, followed by sensitization to peanut. After 4 weeks, peanut-specific antibodies in serum and cytokine production in spleen were measured. RESULTS Induction of food allergy resulted in a profound decrease in the percentage of γδ T cells in intestinal tissues and Peyer's Patches, but not in mesenteric lymph nodes or spleen. This decrease could be detected from days 1 to 2 after the initiation of food allergy and the number of γδ T cells returned to normal on day 7. Blockade of the γδ TCR resulted in elevated food allergic responses upon sensitization with peanut characterized by increased IgE and Th2 cytokine production in splenocytes. CONCLUSION These results demonstrate a unique regulatory role of γδ T cells, suggesting that targeting γδ T cells in the intestine may contribute to strategies to prevent and possibly treat food allergy.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Allergens/immunology
- Animals
- Antibodies/pharmacology
- Arachis/immunology
- Cell Count
- Cells, Cultured
- Cholera Toxin/pharmacology
- Female
- Food Hypersensitivity/immunology
- Immunization
- Intestines/cytology
- Intestines/immunology
- Lymph Nodes/cytology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, gamma-delta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
|
25
|
Bibliography. Genetics. Current world literature. Curr Opin Pediatr 2010; 22:833-5. [PMID: 21610333 DOI: 10.1097/mop.0b013e32834179f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Current world literature. Curr Opin Allergy Clin Immunol 2010; 10:603-7. [PMID: 21030837 DOI: 10.1097/aci.0b013e3283413126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Brandtzaeg P. Homeostatic impact of indigenous microbiota and secretory immunity. Benef Microbes 2010; 1:211-27. [DOI: 10.3920/bm2010.0009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the process of evolution, the mucosal immune system has generated two layers of anti-inflammatory defence: (1) immune exclusion performed by secretory IgA (and secretory IgM) antibodies to modulate or inhibit surface colonisation of microorganisms and dampen penetration of potentially dangerous antigens; and (2) suppressive mechanisms to avoid local and peripheral hypersensitivity to innocuous antigens, particularly food proteins and components of commensal bacteria. When induced via the gut, the latter phenomenon is called 'oral tolerance', which mainly depends on the development of regulatory T (Treg) cells in mesenteric lymph nodes to which mucosal dendritic cells (DCs) carry exogenous antigens and become conditioned for induction of Treg cells. Mucosally induced tolerance appears to be a rather robust adaptive immune function in view of the fact that large amounts of food proteins pass through the gut, while overt and persistent food allergy is not so common. DCs are 'decision makers' in the immune system when they perform their antigen-presenting function, thus linking innate and adaptive immunity by sensing the exogenous mucosal impact (e.g. conserved microbial molecular patterns). A balanced indigenous microbiota is required to drive the normal development of both mucosa-associated lymphoid tissue, the epithelial barrier with its secretory IgA (and IgM) system, and mucosally induced tolerance mechanisms including the generation of Treg cells. Notably, polymeric Ig receptor (pIgR/SC) knock-out mice that lack secretory IgA and IgM antibodies show reduced epithelial barrier function and increased uptake of antigens from food and commensal bacteria. They therefore have a hyper-reactive immune system and show predisposition for systemic anaphylaxis after sensitisation; but this development is counteracted by enhanced oral tolerance induction as a homeostatic back-up mechanism.
Collapse
Affiliation(s)
- P. Brandtzaeg
- Department and Institute of Pathology, Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
28
|
Abstract
Numerous genes are involved in innate and adaptive immunity and these have been modified over millions of years. During this evolution, the mucosal immune system has developed two anti-inflammatory strategies: immune exclusion by the use of secretory antibodies to control epithelial colonization of microorganisms and to inhibit the penetration of potentially harmful agents; and immunosuppression to counteract local and peripheral hypersensitivity against innocuous antigens, such as food proteins. The latter strategy is called oral tolerance when induced via the gut. Homeostatic mechanisms also dampen immune responses to commensal bacteria. The mucosal epithelial barrier and immunoregulatory network are poorly developed in newborns. The perinatal period is, therefore, critical with regard to the induction of food allergy. The development of immune homeostasis depends on windows of opportunity during which innate and adaptive immunity are coordinated by antigen-presenting cells. The function of these cells is not only orchestrated by microbial products but also by dietary constituents, including vitamin A and lipids, such as polyunsaturated omega-3 fatty acids. These factors may in various ways exert beneficial effects on the immunophenotype of the infant. The same is true for breast milk, which provides immune-inducing factors and secretory immunoglobulin A, which reinforces the gut epithelial barrier. It is not easy to dissect the immunoregulatory network and identify variables that lead to food allergy. This Review discusses efforts to this end and outlines the scientific basis for future food allergy prevention.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo and Department and Institute of Pathology, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway.
| |
Collapse
|
29
|
|
30
|
Current World Literature. Curr Opin Otolaryngol Head Neck Surg 2010; 18:191-4. [DOI: 10.1097/moo.0b013e32833ad4c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Current World Literature. Curr Opin Allergy Clin Immunol 2010; 10:267-70. [DOI: 10.1097/aci.0b013e32833aa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Abstract
Multiple mechanisms of tolerance are induced by oral antigen. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral antigen induces T-helper 2 [interleukin (IL)-4/IL-10] and Th3 [transforming growth factor (TGF)-beta] T cells plus CD4+CD25+ regulatory cells and latency-associated peptide+ T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-beta, cholera toxin B subunit, Flt-3 ligand, and anti-CD40 ligand. Oral (and nasal) antigen administration suppresses animal models of autoimmune diseases including experimental autoimmune encephalitis, uveitis, thyroiditis, myasthenia, arthritis, and diabetes in the non-obese diabetic (NOD) mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, graft rejection, allergy, colitis, stroke, and models of Alzheimer's disease. Oral tolerance has been tested in human autoimmune diseases including multiple sclerosis (MS), arthritis, uveitis, and diabetes and in allergy, contact sensitivity to dinitrochlorobenzene (DNCB), and nickel allergy. Although positive results have been observed in phase II trials, no effect was observed in phase III trials of CII in rheumatoid arthritis or oral myelin and glatiramer acetate (GA) in MS. Large placebo effects were observed, and new trials of oral GA are underway. Oral insulin has recently been shown to delay onset of diabetes in at-risk populations, and confirmatory trials of oral insulin are being planned. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time, and antigen-specific mechanisms of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral), formulation, mucosal adjuvants, combination therapy, and early therapy.
Collapse
Affiliation(s)
- Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andre Pires da Cunha
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry Wu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|