1
|
Prevete E, Mason NL, Kuypers KPC, Theunissen EL, Mallaroni P, Pasquini M, Ramaekers JG. Use patterns of classic, novel, and herbal opioids. EMERGING TRENDS IN DRUGS, ADDICTIONS, AND HEALTH 2025; 5:100166. [DOI: 10.1016/j.etdah.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
|
2
|
Bacon EK, Donnelly CG, Finno CJ, Haase B, Velie BD. Exploring the genetic influences on equine analgesic efficacy through genome-wide association analysis of ranked pain responses. Vet J 2025; 312:106347. [PMID: 40216012 DOI: 10.1016/j.tvjl.2025.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Multimodal analgesic administration is a promising strategy for mitigating side effects typically associated with analgesia; nevertheless, variation in analgesic effectiveness still poses a considerable safety concern for both horses and veterinarians. Pharmacogenomic studies have started delving into genetic influences on varying drug effectiveness and related side effects. However, current findings have narrow implications and are limited in their ability to individualize analgesic dosages in horses. Hydromorphone and detomidine were administered to a cohort of 48 horses at standardized time intervals, with dosage rates recorded. Analgesic effectiveness was scored (1-3) based on pain response to dura penetration during cerebrospinal fluid centesis. Genome-wide association (GWA) analyses identified two SNVs passing the nominal significance threshold (P < 1 ×10-5) in association with analgesic effectiveness. One SNV identified on chromosome 27 (rs1142378599) is contained within the LOC100630731 disintegrin and metalloproteinase domain-containing protein 5 gene. The second identified SNV is an intergenic variant located on chromosome 29 (rs3430772468) These SNVs accounted for 26.11 % and 31.72 % of explained variation in analgesic effectiveness respectively, with all eight of the horses with the lowest analgesic effectiveness expressing the A/C genotype at rs3430772468, with six of which also expressing the C/T genotype at rs1142872965. Whilst highlighting the multifactorial nature of analgesic efficacy, this study serves as an important step in the application of genome-wide approaches to better understand genetic factors underpinning commonly observed variation in analgesic effectiveness in horses, with the goal of tailoring analgesic dosage to minimize commonly observed side effects and improve the outcomes of equine pain management.
Collapse
Affiliation(s)
- Elouise K Bacon
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| | - Callum G Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithica, NY, 14850, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Bianca Haase
- School of Veterinary Science, University of Sydney, NSW, Australia
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| |
Collapse
|
3
|
Pillaiyar T, Laufer S. A patent review of CXCR7 modulators (2019-present). Expert Opin Ther Pat 2025:1-27. [PMID: 40122070 DOI: 10.1080/13543776.2025.2477475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Atypical chemokine receptor 3 (ACKR3) (formerly CXCR7) regulates various biological processes through its ligands and is closely associated with numerous diseases, including inflammation, cancer, cardiovascular diseases (CVDs), pain, and neurological disorders. Therefore, ACKR3 has emerged as a potential target for disease treatment. AREAS COVERED This review summarizes the ACKR3 modulators published in patents from 2019 to 2024 using data from Google Patents, the European Patent Office, and the World Intellectual Property Organization's online databases. This includes information on their chemical structures, syntheses, activities, and developmental stages. EXPERT OPINION ACKR3 agonists gained traction as a treatment for cardiovascular and pain conditions. WW-12, which was derived from the chemical modifications of conolidine, became a novel small-molecule pain modulator by activating ACKR3, which in turn boosted endogenous opioid peptides for the classical opioid receptors.ACKR3 antagonist ACT-1004-1239 from Idorsia Pharmaceuticals Ltd. has demonstrated the ability to treat cancer, acute lung injury/ARDS, and autoimmune diseases, including multiple sclerosis. The outcomes of these clinical trials will direct the development and indications of future ACKR3 modulators.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Caccavano AP, Vlachos A, McLean N, Kimmel S, Kim JH, Vargish G, Mahadevan V, Hewitt L, Rossi AM, Spineux I, Wu SJ, Furlanis E, Dai M, Leyva Garcia B, Wang Y, Chittajallu R, London E, Yuan X, Hunt S, Abebe D, Eldridge MAG, Cummins AC, Hines BE, Plotnikova A, Mohanty A, Averbeck BB, Zaghloul KA, Dimidschstein J, Fishell G, Pelkey KA, McBain CJ. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. Neuron 2025:S0896-6273(25)00177-1. [PMID: 40147437 DOI: 10.1016/j.neuron.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Within adult rodent hippocampus (HPC), opioids suppress inhibitory parvalbumin-expressing interneurons (PV-INs), disinhibiting local microcircuits. However, it is unknown whether this disinhibitory motif is conserved across cortical regions, species, or development. We observed that PV-IN-mediated inhibition is robustly suppressed by opioids in HPC proper but not primary neocortex in mice and non-human primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif is established in early development when PV-INs and opioids regulate early population activity. Morphine pretreatment partially occludes this acute opioid-mediated suppression, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Our findings demonstrate that PV-INs exhibit divergent opioid sensitivity across brain regions, which is remarkably conserved over evolution, and highlight the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.
Collapse
Affiliation(s)
- Adam P Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Kimmel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - June Hoan Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anthony M Rossi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ilona Spineux
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Brendan E Hines
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Anya Plotnikova
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Arya Mohanty
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Coschi CH, Ding K, Tong J, Tu D, O'Callaghan C, Leighl NB, Vera-Badillo F, Juergens RA, Hao D, Seymour L, Renouf DJ, Chen E, Gaudreau PO, Fung AS. Effects of cannabinoids on immune checkpoint inhibitor response: CCTG pooled analysis of individual patient data. Immunotherapy 2025; 17:257-268. [PMID: 40184324 DOI: 10.1080/1750743x.2025.2485012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/24/2025] [Indexed: 04/06/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) benefit patients across various tumor types. ICIs block cancer and T-cell interactions whereas cannabinoids may inhibit T-cell activation, reducing lysis of tumor cells. Interactions between cannabinoid use and dual ICI treatment remain unknown. METHODS Individual patient data from 4 Canadian Cancer Trials Group (CCTG) trials of patients treated with dual ICI ± chemotherapy (n = 684) were pooled. Cochran - Mantel - Haenszel and log-rank tests (stratified by trial/treatment arms) correlated cannabinoid use with clinicopathologic characteristics, Best Overall Response (BOR)/iBOR per RECIST 1.1/iRECIST, Progression-Free Survival (PFS)/iPFS, Overall Survival (OS) and immune-related adverse events (irAEs). RESULTS Sixty-five (9.5%) patients took cannabinoids at any time on trial, 32 (4.7%) of which were using cannabinoids at baseline. By multivariate analysis, cannabinoid use at baseline was significantly associated with improved iPFS (0.05), but not iBOR (p = 0.15), PFS (p = 0.12), OS (p = 0.35) or incidence of grade 1/2 or 3/4 irAEs (p = 0.96 and 0.65 respectively). Results were not significantly different with cannabinoid use at any time on trial. CONCLUSION Improved iPFS with cannabinoid use in patients treated with durvalumab plus tremelimumab ± chemotherapy did not translate into OS benefits. This study supports the safe use of cannabinoids in the context of combination ICI therapy.
Collapse
Affiliation(s)
| | - Keyue Ding
- Canadian Cancer Trials Group, Kingston, ON, Canada
| | - Justin Tong
- Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group, Kingston, ON, Canada
| | | | | | | | | | - Desiree Hao
- Arthur J.E. Child Comprehensive Cancer Centre and Cumming School of Medicine, Calgary, AB, Canada
| | | | | | - Eric Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Andrea S Fung
- Arthur J.E. Child Comprehensive Cancer Centre, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Li Y, Wang W, She H, Cui Z, Liu Z, Yang H, Zhang J, Zhou X, Bao D, Yao Y, Luo S, Cai R, Shi Y, Ping YF, Mao Q. Kappa opioid receptor internalisation-induced p38 nuclear translocation suppresses glioma progression. Br J Anaesth 2025; 134:759-771. [PMID: 39741108 DOI: 10.1016/j.bja.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Recent studies have implicated a role for perioperative medications in determining patient outcomes after surgery for malignant tumours, including relapse and metastasis. METHODS A combined approach spanned molecular, cellular, and organismal levels, including bioinformatics, immunohistochemical staining of clinical and animal samples, RNA sequencing of glioblastoma multiforme (GBM) cells with Ingenuity Pathway Analysis, lentiviral-mediated gene expression modulation, in vitro cell experiments, and in vivo orthotopic tumour transplantation. RESULTS We observed a significant correlation between increased kappa opioid receptor (KOP receptor) expression and better prognosis in patients with glioma. Exogenous KOP receptor overexpression in GBM cells in vitro induced cell cycle arrest, suppressed cell growth, and promoted apoptosis. Conversely, reducing KOP receptor expression in GBM cells reduced the proportion of cells in S and G2/M phases, accelerating cell growth. KOP receptor overexpression inhibited glioma cell growth and prolonged survival in mice in vivo, while KOP receptor knockdown had the opposite effect. Mechanistically, internalised KOP receptors were found to bind cytoplasmic p38, facilitating its nuclear translocation and phosphorylation, which influences downstream gene expression. The selective KOP receptor agonist TRK-820 triggered KOP receptor internalisation, activated the p38 pathway, and diminished glioma cell viability in vitro. CONCLUSIONS This combined molecular, cellular, and in vivo approach supports use of KOP receptor agonists as potential adjuvant therapeutics for glioma.
Collapse
Affiliation(s)
- Yong Li
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenying Wang
- Department of Rehabilitation, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhibo Cui
- Jinfeng Laboratory, Chongqing, China
| | - Zhengchao Liu
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai Yang
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqiong Zhou
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Yao
- Jinfeng Laboratory, Chongqing, China
| | | | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; Jinfeng Laboratory, Chongqing, China.
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
7
|
Levinstein MR, Budinich RC, Bonaventura J, Schatzberg AF, Zarate CA, Michaelides M. Redefining Ketamine Pharmacology for Antidepressant Action: Synergistic NMDA and Opioid Receptor Interactions? Am J Psychiatry 2025; 182:247-258. [PMID: 39810555 PMCID: PMC11872000 DOI: 10.1176/appi.ajp.20240378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Ketamine is a racemic compound and medication comprised of (S)-ketamine and (R)-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders. Despite its complex pharmacology, ketamine is referred to as an N-methyl-d-aspartate (NMDA) receptor antagonist. In this review, the authors argue that ketamine's pharmacology should be redefined to include opioid receptors and the endogenous opioid system. They also highlight a potential mechanism of action of ketamine for depression that is attributed to bifunctional, synergistic interactions involving NMDA and opioid receptors.
Collapse
Affiliation(s)
- Marjorie R. Levinstein
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Reece C. Budinich
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Manus JP, Crenshaw RC, Ringer LC, Towers SA, Paige NB, Leon F, McCurdy CR, Lester DB. Effects of kratom alkaloids on mesolimbic dopamine release. Neurosci Lett 2025; 850:138153. [PMID: 39923979 DOI: 10.1016/j.neulet.2025.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Kratom is derived from the leaves of a plant (Mitragyna speciosa) native to Southeast Asia that has been consumed for its complex stimulant-like effects at low doses, opiate-like effects at high doses, to treat mood related issues like anxiety or depression, or to help ameliorate opioid withdrawal symptoms. However, the neural mechanisms of its major psychoactive alkaloids, mitragynine (MG) and 7-hydroxymitragynine (7-HMG), are still not clear. Given that the effects of kratom are often compared to drugs with abuse liabilities, the current study examined the effects of MG and 7-HMG on reward-related neurotransmission. Fixed potential amperometry was used to quantify stimulation-evoked phasic dopamine release in the nucleus accumbens (NAc) of anesthetized male and female mice before and after MG (1, 15, or 30 mg/kg i.p.), 7-HMG (0.5, 1, or 2 mg/kg i.p.), or vehicle. MG reduced dopamine release over the recording period (90 min) in a dose dependent manner, and the low dose of MG significantly increased dopamine autoreceptor functioning in males. Both sexes responded similarly to 7-HMG with the low dose of 7-HMG increasing dopamine release while the high dose decreased dopamine release. 7-HMG did not alter dopamine autoreceptor functioning for either sex. Neither MG nor 7-HMG altered the clearance rate of stimulation-evoked dopamine. Findings suggest that these kratom alkaloids do alter dopamine functioning, although potentially not in a way consistent with classic drugs of abuse. Further investigation of the neural mechanisms of kratom's alkaloids will provide crucial and urgent insight into their therapeutic uses or potential abuse liability.
Collapse
Affiliation(s)
| | | | | | | | - Nick B Paige
- Department of Psychology University of Memphis USA
| | - Francisco Leon
- Department of Medicinal Chemistry University of Florida USA
| | | | | |
Collapse
|
9
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. Cell Rep 2025; 44:115293. [PMID: 39923239 PMCID: PMC11938346 DOI: 10.1016/j.celrep.2025.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P D Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Ju J, Li Z, Liu J, Peng X, Gao F. Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles. Int J Mol Sci 2025; 26:1862. [PMID: 40076488 PMCID: PMC11899445 DOI: 10.3390/ijms26051862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Opioids are the most effective option for severe pain. However, it is well documented that the side effects associated with prolonged opioid use significantly constrain dosage in the clinical setting. Recently, researchers have concentrated on the development of biased opioid receptor agonists that preferentially activate the G protein signaling pathway over β-arrestin signaling. This approach is based on the hypothesis that G protein signaling mediates analgesic effects, whereas β-arrestin signaling is implicated in adverse side effects. Although certain studies have demonstrated that the absence or inhibition of β-arrestin signaling can mitigate the incidence of side effects, recent research appears to challenge these earlier findings. In-depth investigations into biased signal transduction of opioid receptor agonists have been conducted, potentially offering novel insights for the development of biased opioid receptors. Consequently, this review elucidates the contradictory roles of β-arrestin signaling in the adverse reactions associated with opioid receptor activation. Furthermore, a comparative analysis was conducted to evaluate the efficacy of the classic G protein-biased agonists, TRV130 and PZM21, relative to the traditional non-biased agonist morphine. This review aims to inform the development of novel analgesic drugs that can optimize therapeutic efficacy and safety, while minimizing adverse reactions to the greatest extent possible.
Collapse
Affiliation(s)
| | | | | | | | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.J.); (Z.L.); (J.L.); (X.P.)
| |
Collapse
|
11
|
Schreiber S, Keidan L, Pick CG. A New Trick of Old Dogs: Can Kappa Opioid Receptor Antagonist Properties of Antidepressants Assist in Treating Treatment-Resistant Depression (TRD)? Pharmaceuticals (Basel) 2025; 18:208. [PMID: 40006022 PMCID: PMC11858657 DOI: 10.3390/ph18020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Approximately one in five individuals will experience major depressive disorder (MDD), and 30% exhibit resistance to standard antidepressant treatments, resulting in a diagnosis of treatment-resistant depression (TRD). Historically, opium was used effectively to treat depression; however, when other medications were introduced, its use was discontinued due to addiction and other hazards. Recently, kappa opioid receptor (KOR) antagonism has been proposed as a potential mechanism for treating TRD. The main research question is whether commonly used psychotropic medications possess KOR antagonist properties and whether this characteristic could contribute to their efficacy in TRD. Methods: We investigated the antinociceptive effects of many psychotropic medications and their interactions with the opioid system. Mice were tested with a hotplate or tail-flick after being injected with different doses of these agents. Results: The antidepressants mianserin and mirtazapine (separately) induced dose-dependent antinociception, each yielding a biphasic dose-response curve. Similarly, the antidepressant venlafaxine produced a potent effect and reboxetine produced a weak effect. The antipsychotics risperidone and amisulpride exhibited a dose-dependent antinociceptive effect. The sedative-hypnotic zolpidem induced a weak bi-phasic dose-dependent antinociceptive effect. All seven psychotropic medications elicited antinociception, which was reversed by the non-selective opiate antagonist naloxone and, separately, by the kappa-selective antagonist Nor-BNI. Conclusions: Clinical studies are mandatory to establish the potential efficacy of augmentation of the treatment with antidepressants with these drugs in persons with treatment-resistant depression and the optimal dosage of medications prescribed. We suggest a possible beneficial effect of antidepressants with kappa antagonistic properties.
Collapse
Affiliation(s)
- Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
- Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine & Health Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6905904, Israel
| | - Lee Keidan
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6905904, Israel;
- Department of Anatomy and Anthropology, Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv 6905904, Israel
| | - Chaim G. Pick
- Faculty of Medicine & Health Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6905904, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6905904, Israel;
- Department of Anatomy and Anthropology, Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv 6905904, Israel
- Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv 6905904, Israel
| |
Collapse
|
12
|
Walter DL, Bian Y, Hu H, Hamid FA, Rostamizadeh K, Vigliaturo JR, DeHority R, Ehrich M, Runyon S, Pravetoni M, Zhang C. The immunological and pharmacokinetic evaluation of Lipid-PLGA hybrid nanoparticle-based oxycodone vaccines. Biomaterials 2025; 313:122758. [PMID: 39182328 PMCID: PMC11402561 DOI: 10.1016/j.biomaterials.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The current opioid epidemic is one of the most profound public health crises facing the United States. Despite that it has been under the spotlight for years, available treatments for opioid use disorder (OUD) and overdose are limited to opioid receptor ligands such as the agonist methadone and the overdose reversing drugs such as naloxone. Vaccines are emerging as an alternative strategy to combat OUD and prevent relapse and overdose. Most vaccine candidates consist of a conjugate structure containing the target opioid attached to an immunogenic carrier protein. However, conjugate vaccines have demonstrated some intrinsic shortfalls, such as fast degradation and poor recognition by immune cells. To overcome these challenges, we proposed a lipid-PLGA hybrid nanoparticle (hNP)-based vaccine against oxycodone (OXY), which is one of the most frequently misused opioid analgesics. The hNP-based OXY vaccine exhibited superior immunogenicity and pharmacokinetic efficacy in comparison to its conjugate vaccine counterpart. Specifically, the hNP-based OXY vaccine formulated with subunit keyhole limpet hemocyanin (sKLH) as the carrier protein and aluminum hydroxide (Alum) as the adjuvant (OXY-sKLH-hNP(Alum)) elicited the most potent OXY-specific antibody response in mice. The induced antibodies efficiently bound with OXY molecules in blood and suppressed their entry into the brain. In a following dose-response study, OXY-sKLH-hNP(Alum) equivalent to 60 μg of sKLH was determined to be the most promising OXY vaccine candidate moving forward. This study provides evidence that hybrid nanoparticle-based vaccines may be superior vaccine candidates than conjugate vaccines and will be beneficial in treating those suffering from OUD.
Collapse
Affiliation(s)
- Debra L Walter
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Yuanzhi Bian
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - He Hu
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Fatima A Hamid
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Jennifer R Vigliaturo
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Riley DeHority
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Scott Runyon
- RTI International, Research Triangle Park, NC, 27709, USA.
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Chenming Zhang
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
13
|
Caccavano AP, Vlachos A, McLean N, Kimmel S, Kim JH, Vargish G, Mahadevan V, Hewitt L, Rossi AM, Spineux I, Wu SJ, Furlanis E, Dai M, Garcia BL, Wang Y, Chittajallu R, London E, Yuan X, Hunt S, Abebe D, Eldridge MAG, Cummins AC, Hines BE, Plotnikova A, Mohanty A, Averbeck BB, Zaghloul K, Dimidschstein J, Fishell G, Pelkey KA, McBain CJ. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.20.576455. [PMID: 38313283 PMCID: PMC10836073 DOI: 10.1101/2024.01.20.576455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Within the adult rodent hippocampus, opioids suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting local micro-circuits. However, it is unknown if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in hippocampus proper but not primary neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when PV-INs and opioids were found to regulate early population activity. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.
Collapse
Affiliation(s)
- Adam P Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Kimmel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - June Hoan Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anthony M Rossi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ilona Spineux
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Brendan E Hines
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Anya Plotnikova
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Arya Mohanty
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Lee SJ, Pearson TD, Dhaynaut M, MacDonagh AC, Wey HY, Wilks MQ, Roth BL, Hooker JM, Normandin MD. Selective Mu-Opioid Receptor Imaging Using 18F-Labeled Carfentanils. J Med Chem 2025; 68:1632-1644. [PMID: 39772615 DOI: 10.1021/acs.jmedchem.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Carfentanil, a highly potent synthetic opioid, paradoxically serves as a crucial positron emission tomography (PET) imaging tool in neurobiological studies of the mu-opioid receptor (MOR) system when labeled with carbon-11 ([11C]CFN). However, its clinical research use is hindered by extreme potency and the limited availability of short-lived carbon-11 (t1/2 = 20.4 min). We present fluorine-18-labeled fluorocarfentanils ([18F]FCFNs), which can be produced at higher molar activity, allowing for lower mass doses and benefiting from the longer half-life of fluorine-18 (t1/2 = 109.8 min), facilitating broader accessibility. Using copper-mediated radiofluorination, we synthesized a small [18F]FCFN library and conducted preclinical imaging evaluations. Two candidates, o-18F-1 and p-18F-2, showed optimal brain uptake, favorable pharmacokinetics, and high MOR-specific binding. Selectivity was confirmed through in vitro binding assays and in vivo PET scans. These [18F]FCFNs are promising for accessible human brain MOR imaging.
Collapse
Affiliation(s)
- So Jeong Lee
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Torben D Pearson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Alexander C MacDonagh
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
15
|
García-Domínguez M. A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines 2025; 13:165. [PMID: 39857749 PMCID: PMC11762748 DOI: 10.3390/biomedicines13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Fibromyalgia represents a chronic pain disorder characterized by musculoskeletal pain, fatigue, and cognitive impairments. The exact mechanisms underlying fibromyalgia remain undefined; as a result, diagnosis and treatment present considerable challenges. On the other hand, the endogenous opioid system is believed to regulate pain intensity and emotional responses; hence, it might be expected to play a key role in the enhanced sensitivity experienced by fibromyalgia patients. One explanation for the emergence of disrupted pain modulation in individuals with fibromyalgia is a significant reduction in opioid receptor activity or an imbalance in the levels of endogenous opioid peptides. Further research is essential to clarify the complex details of the mechanisms underlying this abnormality. This complexity arises from the notion that an improved understanding could contribute to the development of innovative therapeutic strategies aimed at targeting the endogenous opioid system in the context of fibromyalgia. Although progress is being made, a complete understanding of these complexities remains a significant challenge. This paradigm has the potential to revolutionize the complex management of fibromyalgia, although its implementation may experience challenges. The effectiveness of this approach depends on multiple factors, but the implications could be profound. Despite the challenges involved in this transformation, the potential for improving patient care is considerable, as this condition has long been inadequately treated.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
16
|
Tran LT, Freeman KT, Lunzer MM, Portoghese PS, Haskell-Luevano C. Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles. ACS Pharmacol Transl Sci 2025; 8:225-244. [PMID: 39816790 PMCID: PMC11729433 DOI: 10.1021/acsptsci.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including 35S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key "tool" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the GαΔ6qi4myr in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same in vivo tail-flick antinociception assays via intrathecal injection for ED50 potencies. These data provide both in vitro comparative pharmacology as a reference for cellular activities and in vivo antinociception profiles for these tool compounds.
Collapse
Affiliation(s)
- Linh T. Tran
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary M. Lunzer
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip S. Portoghese
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Barletta C, Di Natale V, Esposito M, Chisari M, Cocimano G, Di Mauro L, Salerno M, Sessa F. The Rise of Fentanyl: Molecular Aspects and Forensic Investigations. Int J Mol Sci 2025; 26:444. [PMID: 39859160 PMCID: PMC11765396 DOI: 10.3390/ijms26020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Fentanyl is a synthetic opioid widely used for its potent analgesic effects in chronic pain management and intraoperative anesthesia. However, its high potency, low cost, and accessibility have also made it a significant drug of abuse, contributing to the global opioid epidemic. This review aims to provide an in-depth analysis of fentanyl's medical applications, pharmacokinetics, metabolism, and pharmacogenetics while examining its adverse effects and forensic implications. Special attention is given to its misuse, polydrug interactions, and the challenges in determining the cause of death in fentanyl-related fatalities. Fentanyl misuse has escalated dramatically, driven by its substitution for heroin and its availability through online platforms, including the dark web. Polydrug use, where fentanyl is combined with substances like xylazine, alcohol, benzodiazepines, or cocaine, exacerbates its toxicity and increases the risk of fatal outcomes. Fentanyl undergoes rapid distribution, metabolism by CYP3A4 into inactive metabolites, and renal excretion. Genetic polymorphisms in CYP3A4, OPRM1, and ABCB1 significantly influence individual responses to fentanyl, affecting its efficacy and potential for toxicity. Fentanyl's side effects include respiratory depression, cardiac arrhythmias, gastrointestinal dysfunction, and neurocognitive impairments. Chronic misuse disrupts brain function, contributes to mental health disorders, and poses risks for younger and older populations alike. Fentanyl-related deaths require comprehensive forensic investigations, including judicial inspections, autopsies, and toxicological analyses. Additionally, the co-administration of xylazine presents distinct challenges for the scientific community. Histological and immunohistochemical studies are essential for understanding organ-specific damage, while pharmacogenetic testing can identify individual susceptibilities. The growing prevalence of fentanyl abuse highlights the need for robust forensic protocols, advanced research into its pharmacogenetic variability, and strategies to mitigate its misuse. International collaboration, public education, and harm reduction measures are critical for addressing the fentanyl crisis effectively.
Collapse
Affiliation(s)
- Cecilia Barletta
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Virginia Di Natale
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | | | - Mario Chisari
- “Rodolico-San Marco” Hospital, Santa Sofia Street, 87, 95121 Catania, Italy;
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy;
| | - Lucio Di Mauro
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Monica Salerno
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| | - Francesco Sessa
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.B.); (V.D.N.); (L.D.M.); (M.S.)
| |
Collapse
|
18
|
Pereira-Silva R, Neto FL, Martins I. Diffuse Noxious Inhibitory Controls in Chronic Pain States: Insights from Pre-Clinical Studies. Int J Mol Sci 2025; 26:402. [PMID: 39796255 PMCID: PMC11722076 DOI: 10.3390/ijms26010402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diffuse noxious inhibitory control (DNIC), also known as conditioned pain modulation (CPM) in humans, is a paradigm wherein the heterotopic application of a noxious stimulus results in the attenuation of another spatially distant noxious input. The pre-clinical and clinical studies show the involvement of several neurochemical systems in DNIC/CPM and point to a major contribution of the noradrenergic, serotonergic, and opioidergic systems. Here, we thoroughly review the latest data on the monoaminergic and opioidergic studies, focusing particularly on pre-clinical models of chronic pain. We also conduct an in-depth analysis of these systems by integrating the available data with the descending pain modulatory circuits and the neurochemical systems therein to bring light to the mechanisms involved in the regulation of DNIC. The most recent data suggest that DNIC may have a dual outcome encompassing not only analgesic effects but also hyperalgesic effects. This duality might be explained by the underlying circuitry and the receptor subtypes involved therein. Acknowledging this duality might contribute to validating the prognostic nature of the paradigm. Additionally, DNIC/CPM may serve as a robust paradigm with predictive value for guiding pain treatment through more effective targeting of descending pain modulation.
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fani L. Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Martins
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
19
|
Anjali, Kamboj P, Amir M. Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties. Mini Rev Med Chem 2025; 25:138-162. [PMID: 38910487 DOI: 10.2174/0113895575307480240610055622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024]
Abstract
Quinoxaline molecule has gathered great attention in medicinal chemistry due to its vide spectrum of biological activities and has emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises a bicyclic ring of benzopyrazine and displays a range of pharmacological properties, including antibacterial, antifungal, antiviral, anticancer, and antiinflammatory. This study aims to summarize the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure-activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better antiinflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on the expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and p38α Mitogen Activated Protein Kinase (p38α MAPK). Activators of nuclear factor erythroid 2-related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this study may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profiles.
Collapse
Affiliation(s)
- Anjali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
20
|
Li M, Gan X, Liu K, Walajapet R, Stanczyk MA, Stewart HC, Rech JC, White AD, Traynor JR. Structure-Activity Relationships and Molecular Pharmacology of Positive Allosteric Modulators of the Mu-Opioid Receptor. ACS Chem Neurosci 2025; 16:16-29. [PMID: 39661492 DOI: 10.1021/acschemneuro.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Positive allosteric modulation of the mu-opioid receptor is a promising strategy to address the ever-growing problem of acute and chronic pain management. Positive allosteric modulators (PAMs) of the mu-opioid receptor could be employed to enhance the efficacy of endogenous opioid peptides to a degree that provides pain relief without the need for traditional opioid drugs. Alternatively, PAMs might be used to enhance the action of opioid drugs and so provide an opioid-sparing effect, allowing for the use of lower doses of opioid agonists and potentially decreasing associated side effects. BMS-986122 (2-(3-bromo-4-methoxyphenyl)-3-[(4-chlorophenyl)-sulfonyl]-thiazolidine) has been previously identified as a PAM of the mu-opioid receptor. In the present work, we have designed and synthesized 33 analogs of BMS-986122 to explore the structure-activity relationships of this scaffold and confirm its allosteric mechanism of action. Among several newly identified modulators, the most promising compound (14b) had improved activity to increase the in vitro potency of the standard mu-opioid agonist DAMGO and showed in vivo activity in mice to enhance the antinociceptive action of morphine.
Collapse
Affiliation(s)
- Mengchu Li
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinmin Gan
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kun Liu
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rajeswaran Walajapet
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - M Alex Stanczyk
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah C Stewart
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason C Rech
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D White
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Lee SW, Cullen KR, Rim SR, Toddes C. The jeong and haan of Vincent van Gogh: neuropeptides of bondedness and loss. Front Psychol 2024; 15:1432175. [PMID: 39776974 PMCID: PMC11706215 DOI: 10.3389/fpsyg.2024.1432175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
We introduce two Korean-named yet transcultural feelings, jeong and haan, to fill gaps in neuroscientific understanding of mammalian bondedness, loss, and aggression. Jeong is a visceral sense of connectedness to a person, place, or thing that may arise after proximity, yet does not require intimacy. The brain opioid theory of social attachment (BOTSA) supports the idea that jeong involves increased activity of enkephalins and beta-endorphins. We propose that withdrawal of jeong-related neuropeptides leads to original haan, a sense of "missingness" that is too subtle to be grossly dysphoric. Through narrative, cognitive appraisals, or moral assignments, however, original haan may transform into the feeling of constructed haan-resentment, bitterness, grievance, sorrow, or suppressed anger. In males, the transformation may be driven by arginine vasopressin, an ancient fight-or-flight neurohormone. Constructed haan may also be driven by vasopressin in females, though data is more sparse, and in both sexes it may depend on situational or societal context. Endogenous opioids inhibit vasopressin, so that when jeong diminishes, vasopressin release may become disinhibited. This relationship implies a companion to the BOTSA, which we articulate as the brain opioid and vasopressin theory of original and constructed haan (BOVTOCH). To illustrate, we reflect on borderline personality disorder, and Vincent van Gogh's self-severing of his ear while living and working with Paul Gauguin, and fearing abandonment by him; yet to understand Van Gogh more completely we also present the brain opioid theory of stable euphoric creativity (BOTSEC), to model the subjective "highs" associated with creative flow states. Together these brain opioid theories may help to explain how feelings related to social bondedness can influence a range of phenomena. For example, opioid drug dependence may be, at least partly, a maladaptive response to feelings of isolation or disconnectedness; the health protective effects of social bonds could be related to tonic exposure to endogenous opioids and their anti-inflammatory properties; endogenous opioid-based social relational enhancement may contribute to placebo responding. Finally we conclude by pointing out the possibility of virtuous cycles of social connectedness and creativity, when feelings of bondedness and euphoric flow reinforce one another through endogenous opioid elevation.
Collapse
Affiliation(s)
- Sung W. Lee
- Department of Bioethics and Medical Humanism, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Kathryn R. Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Sung-ryun Rim
- College of Liberal Arts, Pyeongtaek University, Pyeongtaek, Republic of Korea
- Graduate School of Art Therapy, Pyeongtaek University, Pyeongtaek, Republic of Korea
| | - Carlee Toddes
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Patel A, Poddar S, Nierenberg D, Lang S, Wang H, Pires DeMello CP, Gamarra J, Colon A, Kennedy P, Roles J, Klion J, Bogen W, Long C, Guo X, Tighe P, Schmidt S, Shuler ML, Hickman JJ. Microphysiological system to address the opioid crisis: A novel multi-organ model of acute opioid overdose and recovery. Curr Res Toxicol 2024; 8:100209. [PMID: 39839141 PMCID: PMC11745978 DOI: 10.1016/j.crtox.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Opioids have been the primary method used to manage pain for hundreds of years, however the increasing prescription rate of these drugs in the modern world has led to a public health crisis of overdose related deaths. Naloxone is the current standard treatment for opioid overdose rescue, but it has not been fully investigated for potential off-target toxicity effects. The current methods for pharmaceutical development do not correlate well with pre-clinical animal studies compared to clinical results, creating a need for improved methods for therapeutic evaluation. Microphysiological systems (MPS) are a rapidly growing field, and the FDA has accepted this area of research to address this concern, offering a promising alternative to traditional animal models. This study establishes a novel multi-organ MPS model of acute opioid overdose and rescue to investigate the efficacy and off-target toxicity of naloxone in combination with opioids. By integrating primary human and human induced pluripotent stem cell (hiPSC)-derived cells, including preBötzinger complex neurons, liver, cardiac, and skeletal muscle components, this study establishes a novel functional multi-organ MPS model of acute opioid overdose and rescue to investigate the efficacy and off-target toxicity of naloxone in combination with opioids, with clinically relevant functional readouts of organ function. The system was able to successfully exhibit opioid overdose using methadone, as well as rescue using naloxone evidenced by the neuronal component activity. In addition to efficacy, the multi-organ platform was able to characterize potential off-target toxicity effects of naloxone, specifically in the cardiac component.
Collapse
Affiliation(s)
- Aakash Patel
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Suruchi Poddar
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Daniel Nierenberg
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Stephanie Lang
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Hao Wang
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Camilly Pestana Pires DeMello
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Julio Gamarra
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Alisha Colon
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Paula Kennedy
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Jeffry Roles
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Jules Klion
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Will Bogen
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Christopher Long
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - Xiufang Guo
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
| | - Patrick Tighe
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, 32610 USA
| | - Stephan Schmidt
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, 32610 USA
| | - Michael L. Shuler
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| | - James J. Hickman
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States
- Hesperos, Inc, 12501 Research Parkway, Suite 100, Orlando, FL 32826, United States
| |
Collapse
|
23
|
Soleimanii A, Fallah F, Ghorbanzadeh B, Oroojan AA, Amirgholami N, Alboghobeish S. Simultaneous use of venlafaxine and calcium channel blockers on tolerance to morphine: The role of mitochondrial damage and oxidative stress in the brain. Pharmacol Biochem Behav 2024; 245:173864. [PMID: 39216833 DOI: 10.1016/j.pbb.2024.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND One of the reasons for tolerance to morphine is increased oxidative stress and dysfunction of cell mitochondria in the hippocampus. Venlafaxine and calcium channel blockers can protect mitochondrial function. The investigation of the role of mitochondrial damage and oxidative stress in the simultaneous use of venlafaxine and calcium channel blockers on the acute analgesic effects of morphine and the induction of tolerance to its effects in mice was assessed. METHOD In this experimental study, to induce tolerance to morphine, NMRI mice were treated with 50 mg/kg morphine for three consecutive days and 5 mg/kg morphine on the fourth day. Venlafaxine (20 mg/kg) alone or in combination with calcium channel blockers, nimodipine (10 mg/kg), and diltiazem (40 mg/kg) was administered 30 min before morphine, and the hot plate test was used. Then, hippocampal mitochondria were isolated by differential centrifugation method, and the levels of mitochondrial dehydrogenase activity, mitochondrial membrane potential, mitochondrial ROS production rate, as well as the content of glutathione and malondialdehyde in hippocampal mitochondria, were measured. RESULTS The administration of venlafaxine-nimodipine and venlafaxine-diltiazem increased morphine's acute analgesic effects (P < 0.05) and reduced the induction and expression of tolerance to the analgesic effects of morphine (P < 0.05). Morphine significantly decreased MTT and GSH and increased MDA, mitochondrial membrane damage, and ROS compared to the control group (P < 0.01). Injection of venlafaxine-nimodipine and also venlafaxine-diltiazem 30 min before morphine can improve these alterations (P < 0.05). DISCUSSION AND CONCLUSION Our data showed that the simultaneous use of venlafaxine with calcium channel blockers could increase the acute analgesic effects of morphine and reduce the induction and expression of tolerance to it. Also, the preventive and protective roles of simultaneous administration of venlafaxine and calcium channel blockers on morphine-induced mitochondrial oxidative stress and damage during the tolerance test were achieved.
Collapse
Affiliation(s)
- Asma Soleimanii
- School of medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Faezeh Fallah
- School of medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ali Akbar Oroojan
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Neda Amirgholami
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
24
|
Miller JJ, Yazdanpanah M, Colantonio DA, Beriault DR, Delaney SR. New Psychoactive Substances: A Canadian perspective on emerging trends and challenges for the clinical laboratory. Clin Biochem 2024; 133-134:110810. [PMID: 39181179 DOI: 10.1016/j.clinbiochem.2024.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
The production and use of New Psychoactive Substances (NPS) has skyrocketed over the last decade, causing major challenges for government authorities, public health agencies, and laboratories across the world. NPS are designed to mimic the psychoactive effects of unregulated or controlled drugs, while constantly being modified to evade drug control regulation. Hence, they are referred to as "legal highs", as they are technically legal to sell, possess, and use. NPS can be classified by their pharmacological mechanism of action and include cannabimimetic, depressants, dissociatives, hallucinogens, opioids, and stimulants. There is significant structural diversity within each NPS class, leading to variable detection using traditional clinical laboratory testing and complicating the interpretation of results. In this article, we review each of the NPS classes and summarize their associated mechanism of action, common structures, and metabolic pathways, and provide examples of recent drugs and emerging threats with a focus on Canadian drug trends. We also explore the current analytical advantages and limitations commonly faced by the clinical laboratory and provide insight on how toxicosurveillance can improve detection of NPS in the ever-changing NPS landscape.
Collapse
Affiliation(s)
- Jessica J Miller
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mehrdad Yazdanpanah
- Department of Laboratory Medicine, Unity Health Toronto (St. Michael's Hospital), Toronto, ON, Canada
| | - David A Colantonio
- The Ottawa Hospital and Eastern Ontario Regional Laboratory Association, Ottawa, ON, Canada; Department of Pathology and Laboratory Medicine, The University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, The University of Ottawa, Ottawa, ON, Canada
| | - Daniel R Beriault
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine, Unity Health Toronto (St. Michael's Hospital), Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Sarah R Delaney
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine, Unity Health Toronto (St. Michael's Hospital), Toronto, ON, Canada.
| |
Collapse
|
25
|
Paliarin F, Duplantis C, Doré E, Basavanhalli S, Weiser E, Jones TW, Maiya R. BLA KOR inputs to the BNST regulate social stress-escalated alcohol consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622470. [PMID: 39574601 PMCID: PMC11581013 DOI: 10.1101/2024.11.07.622470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Background Aversive social experiences can lead to escalated drug consumption and increase the risk of relapse to drug seeking. Individuals who consume alcohol to alleviate the effects of social stress are more likely to develop an alcohol use disorder (AUD). Repeated social defeat stress (SDS) enhances the rewarding and reinforcing effects of alcohol. However, the neural mechanisms that underlie social stress-escalated alcohol drinking are not well understood. Here we explored the role of the dynorphin/kappa opioid receptor (Dyn/KOR) system in regulating social stress-escalated alcohol consumption. Methods Male and female mice were subjected to repeated SDS for 10 days following which they were left undisturbed in their home cages. They were then subject to intermittent access (IA) two-bottle choice alcohol consumption procedure. The effects of systemic and BNST-specific KOR antagonism using the selective KOR antagonist NorBNI on stress-escalated drinking were evaluated. Using chemogenetic approaches in Oprk1-Cre mice, we examined the role of KOR expressing cells in the basolateral amygdala (BLA KORs ) and BLA KOR -BNST pathway in social stress-escalated alcohol consumption. Results Repeated SDS increased alcohol consumption and preference in both males and females. Systemic KOR antagonism attenuated SDS-escalated alcohol consumption in both males and females. BNST -specific KOR antagonism also attenuated stress-escalated drinking in males. Finally, selective chemogenetic activation of BLA KORs and BKA KOR -BNST pathway attenuated social stress-escalated alcohol consumption in both sexes. Conclusion Our results suggest a significant role for BLA KOR projections to the BNST in regulating social stress-escalated alcohol consumption. Our results provide further evidence that the Dyn/KOR system maybe a viable target for medications development to tareat comorbid stress and AUD.
Collapse
Affiliation(s)
- Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Chelsea Duplantis
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Evan Doré
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Samhita Basavanhalli
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Emma Weiser
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Tameka W. Jones
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| |
Collapse
|
26
|
Karavitaki N, Bettinger JJ, Biermasz N, Christ-Crain M, Gadelha MR, Inder WJ, Tsourdi E, Wakeman SE, Zatelli M. Exogenous Opioids and the Human Endocrine System: An Endocrine Society Scientific Statement. Endocr Rev 2024:bnae023. [PMID: 39441725 DOI: 10.1210/endrev/bnae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/25/2024]
Abstract
The use and misuse of opioids are a growing global problem. Although the effects of these drugs on the human endocrine system have been studied for decades, attention on their related clinical consequences, particularly on the hypothalamic-pituitary system and bone health, has intensified over recent years. This Statement appraises research data related to the impact of opioids on the gonadal and adrenal function. Whereas hypogonadism is well recognized as a side effect of opioids, the significance of their inhibitory actions on the hypothalamic-pituitary-adrenal system and the occurrence of clinically relevant adrenal insufficiency is not fully elucidated. The often-inconsistent results of studies investigating how opioids affect the secretion of GH, prolactin, arginine vasopressin, and oxytocin are assessed. The accumulating evidence of opioid actions on bone metabolism and their negative sequelae on bone mineral density and risk of fracture are also reviewed. In each section, available data on diagnostic and management approaches for opioid endocrine sequelae are described. This Statement highlights a plethora of gaps in research associated with the effects and clinical consequences of opioids on the endocrine system. It is anticipated that addressing these gaps will improve the care of people using or misusing opioids worldwide. The Statement is not intended to serve as a guideline or dictate treatment decisions.
Collapse
Affiliation(s)
- Niki Karavitaki
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Jeffrey J Bettinger
- Pain Management and Addiction Medicine, Saratoga Hospital Medical Group, Saratoga Springs, NY 12866, USA
| | - Nienke Biermasz
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, CH-4031 Basel, Switzerland
| | - Monica R Gadelha
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho-Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-913, Brazil
| | - Warrick J Inder
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, QLD 4102, Australia
- Medical School, The University of Queensland, Brisbane, Queensland, QLD 4006, Australia
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden, Dresden 01307, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Sarah E Wakeman
- Massachusetts General Hospital, Program for Substance Use and Addiction Service, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA
| | - Maria Zatelli
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara 44100, Italy
| |
Collapse
|
27
|
Gomes I, Gupta A, Margolis EB, Fricker LD, Devi LA. Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors. Mol Pharmacol 2024; 106:240-252. [PMID: 39187388 PMCID: PMC11493337 DOI: 10.1124/molpharm.124.000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.
Collapse
Affiliation(s)
- Ivone Gomes
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Achla Gupta
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Elyssa B Margolis
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lloyd D Fricker
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lakshmi A Devi
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| |
Collapse
|
28
|
Spencer RH, Noonan PK, Marbury T, Menzaghi F. Impact of renal impairment on the pharmacokinetic profile of intravenous difelikefalin, a kappa opioid receptor agonist for the treatment of pruritus. BMC Nephrol 2024; 25:351. [PMID: 39402448 PMCID: PMC11476771 DOI: 10.1186/s12882-024-03790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Difelikefalin is a selective kappa opioid receptor agonist that is approved for the treatment of moderate-to-severe pruritus associated with chronic kidney disease in adults undergoing hemodialysis (HD). In this study, we assessed the pharmacokinetics (PK) of intravenous (IV) difelikefalin in healthy subjects, in non-dialysis-dependent (NDD) subjects with varying stages of kidney disease, and in subjects with end-stage renal disease (ESRD) undergoing HD. METHODS The PK and safety of single IV doses of difelikefalin (3.0 mcg/kg) were initially evaluated in NDD subjects with mild, moderate, or severe renal impairment compared with matched healthy subjects. Based on those data, the PK and safety of 3 dose levels of IV difelikefalin (0.5, 1.0, or 2.5 mcg/kg) were compared with matched placebo in subjects undergoing HD with each dose administered following dialysis, 3 times over a 1-week treatment period). RESULTS Single IV dosing of difelikefalin in NDD subjects (N = 36) with mild renal impairment demonstrated comparable exposure to healthy subjects with normal renal function, while subjects with moderate or severe renal impairment had higher total exposure. NDD subjects with severe renal impairment had higher total exposure compared with those with moderate renal impairment (i.e., exposure in severe NDD > moderate NDD > mild NDD ≈ healthy subjects). Clearance of difelikefalin correspondingly decreased with increasing renal impairment. In the multiple-dose study in subjects with ESRD undergoing HD (N = 19), IV difelikefalin demonstrated dose proportionality and was shown to be mostly cleared by dialysis; steady state was achieved with the second dose on day 3. Safety findings for all subjects were consistent with the known profile of IV difelikefalin. CONCLUSIONS IV difelikefalin was well tolerated. Similar exposure was observed in NDD subjects with mild renal impairment compared with healthy subjects with normal renal function, with reduced clearance and higher exposure in NDD subjects with moderate or severe renal impairment. Dose proportionality was demonstrated in subjects with ESRD undergoing HD administered IV difelikefalin 3 times per week following dialysis and was shown to be mostly cleared by dialysis. TRIAL REGISTRATION Single-dose study: NA; multiple-dose study: ClinicalTrials.gov registration number NCT02229929, first registration 03/09/2014.
Collapse
|
29
|
Hayward R, Moore S, Artun D, Madhavan A, Harte E, Torres-Pérez JV, Nagy I. Transcriptional reprogramming post-peripheral nerve injury: A systematic review. Neurobiol Dis 2024; 200:106624. [PMID: 39097036 DOI: 10.1016/j.nbd.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.
Collapse
Affiliation(s)
- R Hayward
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - S Moore
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - D Artun
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - A Madhavan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - E Harte
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - J V Torres-Pérez
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain.
| | - I Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
30
|
Li N, Zheng G, Fu L, Liu N, Chen T, Lu S. Designed dualsteric modulators: A novel route for drug discovery. Drug Discov Today 2024; 29:104141. [PMID: 39168404 DOI: 10.1016/j.drudis.2024.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Orthosteric and allosteric modulators, which constitute the majority of current drugs, bind to the orthosteric and allosteric sites of target proteins, respectively. However, the clinical efficacy of these agents is frequently compromised by poor selectivity or reduced potency. Dualsteric modulators feature two linked pharmacophores that bind to orthosteric and allosteric sites of the target proteins simultaneously, thereby offering a promising avenue to achieve both potency and specificity. In this review, we summarize recent structures available for dualsteric modulators in complex with their target proteins, elucidating detailed drug-target interactions and dualsteric action patterns. Moreover, we provide a design and optimization strategy for dualsteric modulators based on structure-based drug design approaches.
Collapse
Affiliation(s)
- Nuan Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, Affiliated to Naval Medical University, Shanghai 200433, China
| | - Lili Fu
- Department of Nephrology, People's Hospital of Pudong New Area, Shanghai University of Medicine & Health Sciences, Shanghai 201299, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
31
|
Damiescu R, Elbadawi M, Dawood M, Klauck SM, Bringmann G, Efferth T. Aniquinazoline B, a Fungal Natural Product, Activates the μ-Opioid Receptor. ChemMedChem 2024; 19:e202400213. [PMID: 38781501 DOI: 10.1002/cmdc.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The development of new μ-opioid receptor (MOR) agonists without the undesirable side effects, such as addiction or respiratory depression, has been a difficult challenge over the years. In the search for new compounds, we screened our chemical database of over 40.000 substances and further assessed the best 100 through molecular docking. We selected the top 10 compounds and evaluated them for their biological activity and potential to influence cyclic adenosine monophosphate (cAMP) levels. From the tested compounds, compound 7, called aniquinazoline B, belonging to the quinazolinone alkaloids class and isolated from the marine fungus Aspergillus nidulans, showed promising results, by inhibiting cAMP levels and in vitro binding to MOR, verified through microscale thermophoresis. Transcriptomic data investigation profiled the genes affected by compound 7 and discovered activation of different pathways compared to opioids. The western blot analysis revealed compound 7 as a balanced ligand, activating both p-ERK1/2 and β-arrestin1/2 pathways, showing this is a favorable candidate to be further tested.
Collapse
Affiliation(s)
- Roxana Damiescu
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Mohamed Elbadawi
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Mona Dawood
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ, University Hospital Heidelberg, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Thomas Efferth
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| |
Collapse
|
32
|
Damiescu R, Dawood M, Elbadawi M, Klauck SM, Bringmann G, Efferth T. Identification of Cytisine Derivatives as Agonists of the Human Delta Opioid Receptor by Supercomputer-Based Virtual Drug Screening and Transcriptomics. ACS Chem Biol 2024; 19:1963-1981. [PMID: 39167688 DOI: 10.1021/acschembio.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Delta opioid receptors (DORs) are rising as therapeutic targets, not only for the treatment of pain but also other neurological disorders (e.g., Parkinson's disease). The advantage of DOR agonists compared to μ-opioid receptor agonists is that they have fewer side effects and a lower potential to induce tolerance. However, although multiple candidates have been tested in the past few decades, none have been approved for clinical use. The current study focused on searching for new DOR agonists by screening a chemical library containing 40,000 natural and natural-derived products. The functional activity of the top molecules was evaluated in vitro through the cyclic adenosine monophosphate accumulation assay. Compound 3 showed promising results, and its activity was further investigated through transcriptomic methods. Compound 3 inhibited the expression of TNF-α, prevented NF-κB translocation to the nucleus, and activated the G-protein-mediated ERK1/2 pathway. Additionally, compound 3 is structurally different from known DOR agonists, making it a valuable candidate for further investigation for its anti-inflammatory and analgesic potential.
Collapse
Affiliation(s)
- Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| |
Collapse
|
33
|
Beltran NM, Parra AN, Serrano AP, Castillo J, Castro IM, Elsey MK, Minervini V, Serafine KM. The Effects of Eating a Traditional High Fat/High Carbohydrate or a Ketogenic Diet on Sensitivity of Female Rats to Morphine. J Pharmacol Exp Ther 2024; 391:30-38. [PMID: 39060162 PMCID: PMC11415821 DOI: 10.1124/jpet.124.002188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients diagnosed with obesity are prescribed opioid medications at a higher rate than the general population; however, it is not known if eating a high fat diet might impact individual sensitivity to these medications. To explore the hypothesis that eating a high fat diet increases sensitivity of rats to the effects of morphine, 24 female Sprague-Dawley rats (n = 8/diet) ate either a standard (low fat) laboratory chow (17% kcal from fat), a high fat/low carbohydrate (ketogenic) chow (90.5% kcal from fat), or a traditional high fat/high carbohydrate chow (60% kcal from fat). Morphine-induced antinociception was assessed using a warm water tail withdrawal procedure, during which latency (in seconds) for rats to remove their tail from warm water baths was recorded following saline or morphine (0.32-56 mg/kg, i.p.) injections. Morphine was administered acutely and chronically (involving 18 days of twice-daily injections, increasing in 1/4 log dose increments every 3 days: 3.2-56 mg/kg, i.p., to induce dependence and assess tolerance). The adverse effects of morphine (i.e., tolerance, withdrawal, and changes in body temperature) were assessed throughout the study. Acute morphine induced comparable antinociception in rats eating different diets, and all rats developed tolerance following chronic morphine exposure. Observable withdrawal signs and body temperature were also comparable among rats eating different diets; however, withdrawal-induced weight loss was less severe for rats eating ketogenic chow. These results suggest that dietary manipulation might modulate the severity of withdrawal-related weight loss in ways that could be relevant for patients.
Collapse
Affiliation(s)
- Nina M Beltran
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Alyssa N Parra
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Ana Paulina Serrano
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Jazmin Castillo
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Isabella M Castro
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Madeline K Elsey
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Vanessa Minervini
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Katherine M Serafine
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| |
Collapse
|
34
|
Afzal M, Lee A, Asad M, Ali A, Farrukh AM, Semakieh B, Levin-Carrion Y, Shah SR, Khan QA. The effect of intrathecal pethidine on post-spinal anesthesia shivering after cesarean section: a systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:5461-5470. [PMID: 39238980 PMCID: PMC11374255 DOI: 10.1097/ms9.0000000000002354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 09/07/2024] Open
Abstract
Background Spinal anesthesia is the most preferred method for cesarean section (C-section). This meta-analysis was performed to determine the effect of low and high intrathecal doses of pethidine on the maternal outcomes after C-section. Methods A systematic search of PubMed, Scopus, Cochrane Library, and Google Scholar was performed. Random-effects meta-analysis was performed to derive odds ratios (ORs) from dichotomous data. Results Seventeen randomized controlled trials with 1304 C-section patients were included. Patients who had received intrathecal pethidine experienced decreased shivering and intensity of shivering (OR 0.13; P<0.001) and (OR 0.21; P<0.001), respectively. Moreover, vomiting (OR 2.47; P=0.002) and pruritus (OR 5.92; P<0.001) were significantly higher in the pethidine group. There was no statistically significant difference in the incidence of nausea (OR 2.55; P=0.06) and hypotension (OR 0.91; P=0.67). Conclusions Intrathecal pethidine can effectively decrease shivering, although it increases the risk of vomiting and pruritus. No significant difference was found both in the maternal hypotension and nausea.
Collapse
Affiliation(s)
- Muhammad Afzal
- St. George's University School of Medicine, True Blue, Grenada
| | - Amber Lee
- Arkansas College of Osteopathic Medicine, Fort Smith, AR
| | | | - Alya Ali
- Nassau University Medical Center Long Island, East Meadow, NY
| | | | - Bader Semakieh
- Arkansas College of Osteopathic Medicine, Fort Smith, AR
| | | | - Shah Rukh Shah
- Khyber Medical University Institute of Medical Sciences, Kohat, Pakistan
| | | |
Collapse
|
35
|
Dong C, Gowrishankar R, Jin Y, He XJ, Gupta A, Wang H, Sayar-Atasoy N, Flores RJ, Mahe K, Tjahjono N, Liang R, Marley A, Or Mizuno G, Lo DK, Sun Q, Whistler JL, Li B, Gomes I, Von Zastrow M, Tejeda HA, Atasoy D, Devi LA, Bruchas MR, Banghart MR, Tian L. Unlocking opioid neuropeptide dynamics with genetically encoded biosensors. Nat Neurosci 2024; 27:1844-1857. [PMID: 39009835 PMCID: PMC11374718 DOI: 10.1038/s41593-024-01697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions.
Collapse
Affiliation(s)
- Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA, USA
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Xinyi Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Nilüfer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Karan Mahe
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Nikki Tjahjono
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Aaron Marley
- Department of Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Grace Or Mizuno
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Darren K Lo
- College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Qingtao Sun
- Cold Spring Harbor Laboratory, New York, NY, USA
| | | | - Bo Li
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Mark Von Zastrow
- Department of Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA, USA.
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
36
|
Kuo CC, McCall JG. Neural circuit-selective, multiplexed pharmacological targeting of prefrontal cortex-projecting locus coeruleus neurons drives antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598059. [PMID: 38895281 PMCID: PMC11185789 DOI: 10.1101/2024.06.08.598059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Selective manipulation of neural circuits using optogenetics and chemogenetics holds great translational potential but requires genetic access to neurons. Here, we demonstrate a general framework for identifying genetic tool-independent, pharmacological strategies for neural circuit-selective modulation. We developed an economically accessible calcium imaging-based approach for large-scale pharmacological scans of endogenous receptor-mediated neural activity. As a testbed for this approach, we used the mouse locus coeruleus due to the combination of its widespread, modular efferent neural circuitry and its wide variety of endogenously expressed GPCRs. Using machine learning-based action potential deconvolution and retrograde tracing, we identified an agonist cocktail that selectively inhibits medial prefrontal cortex-projecting locus coeruleus neurons. In vivo, this cocktail produces synergistic antinociception, consistent with selective pharmacological blunting of this neural circuit. This framework has broad utility for selective targeting of other neural circuits under different physiological and pathological states, facilitating non-genetic translational applications arising from cell type-selective discoveries.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
37
|
Lee JK, Kamran H, Lee KY. L-asparaginase induces IP3R-mediated ER Ca 2+ release by targeting µ-OR1 and PAR2 and kills acute lymphoblastic leukemia cells. Cell Death Discov 2024; 10:366. [PMID: 39147734 PMCID: PMC11327372 DOI: 10.1038/s41420-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
L-asparaginase is a standard therapeutic option for acute lymphoblastic leukemia (aLL), a hematologic cancer that claims the most lives of pediatric cancer patients. Previously, we demonstrated that L-asparaginase kills aLL cells via a lethal rise in [Ca2+]i due to IP3R-mediated ER Ca2+ release followed by calpain-1-Bid-caspase-3/12 activation (Blood, 133, 2222-2232). However, upstream targets of L-asparaginase that trigger IP3R-mediated ER Ca2+ release remain elusive. Here, we show that L-asparaginase targets µ-OR1 and PAR2 and induces IP3R-mediated ER Ca2+ release in aLL cells. In doing so, µ-OR1 plays a major role while PAR2 plays a minor role. Utilizing PAR2- and µ-OR1-knockdown cells, we demonstrate that L-asparaginase stimulation of µ-OR1 and PAR2 relays its signal via Gαi and Gαq, respectively. In PAR2-knockdown cells, stimulation of adenylate cyclase with forskolin or treatment with 8-CPT-cAMP reduces L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, suggesting that activation of µ-OR1 negatively regulates AC and cAMP. In addition, the PKA inhibitor 14-22 amide (myr) alone evokes ER Ca2+ release, and subsequent L-asparaginase treatment does not induce further ER Ca2+ release, indicating the involvement of PKA inhibition in L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, which can bypass the L-asparaginase-µ-OR1-AC-cAMP loop. This coincides with (a) the decreases in PKA-dependent inhibitory PLCβ3 Ser1105 phosphorylation, which prompts PLCβ3 activation and ER Ca2+ release, and (b) BAD Ser118 phosphorylation, which leads to caspase activation and apoptosis. Thus, our findings offer new insights into the Ca2+-mediated mechanisms behind L-asparaginase-induced aLL cell apoptosis and suggest that PKA may be targeted for therapeutic intervention for aLL.
Collapse
Affiliation(s)
- Jung Kwon Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Hamza Kamran
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Ki-Young Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
38
|
Kestering-Ferreira É, Heberle BA, Sindermann Lumertz F, Gobira PH, Orso R, Grassi-Oliveira R, Viola TW. Sex differences in sensitivity to fentanyl effects in mice: Behavioral and molecular findings during late adolescence. Neurosci Lett 2024; 837:137898. [PMID: 39013536 DOI: 10.1016/j.neulet.2024.137898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Sex differences play a crucial role in understanding vulnerability to opioid addiction, yet there have been limited preclinical investigations of this effect during the transition from adolescence to adulthood. The present study compared the behaviors of male and female rodents in response to fentanyl treatment and targeted molecular correlates in the striatum and medial prefrontal cortex. MATERIALS AND METHODS Thirty adolescent C57BL/6J mice underwent a 1-week fentanyl treatment with an escalating dose. In addition to evaluating locomotor activity and anxiety-related parameters, we also assessed naloxone-induced fentanyl acute withdrawal jumps. We employed real-time quantitative PCR (qPCR) to assess overall gene expression of dopaminergic receptors (Drd1, Drd2, Drd4 and Drd5) and the μ-opioid receptor Oprm1. The levels of epigenetic base modifications including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) were assessed on CpG islands of relevant genes. RESULTS Females had higher locomotor activity than males after chronic fentanyl treatment, and they exhibited higher fentanyl withdrawal jumping behavior induced by naloxone. Females also presented lower Drd4 gene expression and DNA methylation (5mC + 5hmC) in the striatum. We found that locomotor activity and fentanyl withdrawal jumps were negatively correlated with Drd4 methylation and gene expression in the striatum, respectively. CONCLUSIONS The findings suggested that female mice displayed heightened sensitivity to the effects of fentanyl treatment during the transition from adolescence to adulthood. This effect may be associated with molecular alterations related to the Drd4 gene.
Collapse
MESH Headings
- Animals
- Fentanyl/pharmacology
- Male
- Female
- Mice, Inbred C57BL
- Sex Characteristics
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Mice
- DNA Methylation/drug effects
- Analgesics, Opioid/pharmacology
- Corpus Striatum/metabolism
- Corpus Striatum/drug effects
- Locomotion/drug effects
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Receptors, Dopamine/genetics
- Receptors, Dopamine/metabolism
- Naloxone/pharmacology
- Behavior, Animal/drug effects
- Substance Withdrawal Syndrome/genetics
- Substance Withdrawal Syndrome/metabolism
- Epigenesis, Genetic/drug effects
Collapse
Affiliation(s)
- Érika Kestering-Ferreira
- School of Medicine, Brain Institute of Rio Grande do Sul, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Francisco Sindermann Lumertz
- School of Medicine, Brain Institute of Rio Grande do Sul, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Pedro Henrique Gobira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Brain Institute of Rio Grande do Sul, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thiago Wendt Viola
- School of Medicine, Brain Institute of Rio Grande do Sul, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Heyns I, Faunce AF, Mumba MN, Kumar MNVR, Arora M. Nanotechnology-Enhanced Naloxone and Alternative Treatments for Opioid Addiction. ACS Pharmacol Transl Sci 2024; 7:2237-2250. [PMID: 39144549 PMCID: PMC11320732 DOI: 10.1021/acsptsci.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/16/2024]
Abstract
Opioids are commonly prescribed to address intense, ongoing pain associated with cancer, as well as long-lasting noncancer-related pain when alternative methods have proven ineffective. Individuals who exhibit both chronic pain and misuse of opioids face a significant danger of experiencing adverse health outcomes and the potential loss of life related to opioid use. Thus, there is a current movement to prescribe naloxone to those considered high-risk for opioid overdose. Naloxone has been explored as an antidote to reverse acute respiratory depression. Conversely, naloxone can give rise to other problems, including hypertension and cardiac arrhythmias. Thus, the importance of nanotechnology-enabled drug delivery strategies and their role in mitigating naloxone side-effects are significant. In this review, we explore the latest advancements in nanotechnology-enabled naloxone and alternative methods for addressing the opioid crisis through the utilization of non-opioid natural alternatives for chronic pain management.
Collapse
Affiliation(s)
- Ingrid
Marie Heyns
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Alina Farah Faunce
- Research
Department, Alabama College of Osteopathic
Medicine, Dothan, Alabama 36303, United States
| | - Mercy Ngosa Mumba
- Center
for Substance Use Research and Related Conditions, Capstone College
of Nursing, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - M. N. V. Ravi Kumar
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Chemical
and Biological Engineering, University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Center for
Free Radical Biology, University of Alabama
at Birmingham, Birmingham, Alabama 35294, United States
- Nephrology
Research and Training Center, Division of Nephrology, Department of
Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Meenakshi Arora
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
40
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607246. [PMID: 39149233 PMCID: PMC11326311 DOI: 10.1101/2024.08.08.607246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without a liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels, but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P. D. Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J. Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Chen Y, Wang E, Sites BD, Cohen SP. Integrating mechanistic-based and classification-based concepts into perioperative pain management: an educational guide for acute pain physicians. Reg Anesth Pain Med 2024; 49:581-601. [PMID: 36707224 DOI: 10.1136/rapm-2022-104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Chronic pain begins with acute pain. Physicians tend to classify pain by duration (acute vs chronic) and mechanism (nociceptive, neuropathic and nociplastic). Although this taxonomy may facilitate diagnosis and documentation, such categories are to some degree arbitrary constructs, with significant overlap in terms of mechanisms and treatments. In clinical practice, there are myriad different definitions for chronic pain and a substantial portion of chronic pain involves mixed phenotypes. Classification of pain based on acuity and mechanisms informs management at all levels and constitutes a critical part of guidelines and treatment for chronic pain care. Yet specialty care is often siloed, with advances in understanding lagging years behind in some areas in which these developments should be at the forefront of clinical practice. For example, in perioperative pain management, enhanced recovery protocols are not standardized and tend to drive treatment without consideration of mechanisms, which in many cases may be incongruent with personalized medicine and mechanism-based treatment. In this educational document, we discuss mechanisms and classification of pain as it pertains to commonly performed surgical procedures. Our goal is to provide a clinical reference for the acute pain physician to facilitate pain management decision-making (both diagnosis and therapy) in the perioperative period.
Collapse
Affiliation(s)
- Yian Chen
- Anesthesiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Wang
- Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Brian D Sites
- Anesthesiology and Orthopaedics, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Steven P Cohen
- Anesthesiology, Neurology, Physical Medicine & Rehabilitation and Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Fipps DC, Oesterle TS, Kolla BP. Opioid Maintenance Therapy: A Review of Methadone, Buprenorphine, and Naltrexone Treatments for Opioid Use Disorder. Semin Neurol 2024; 44:441-451. [PMID: 38848746 DOI: 10.1055/s-0044-1787571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The rates of opioid use and opioid related deaths are escalating in the United States. Despite this, evidence-based treatments for Opioid Use Disorder are underutilized. There are three medications FDA approved for treatment of Opioid Use Disorder: Methadone, Buprenorphine, and Naltrexone. This article reviews the history, criteria, and mechanisms associated with Opioid Use Disorder. Pertinent pharmacology considerations, treatment strategies, efficacy, safety, and challenges of Methadone, Buprenorphine, and Naltrexone are outlined. Lastly, a practical decision making algorithm is discussed to address pertinent psychiatric and medical comorbidities when prescribing pharmacology for Opioid Use Disorder.
Collapse
Affiliation(s)
- David C Fipps
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Tyler S Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Bhanu P Kolla
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Nanda S, Zafar MA, Lamba T, Malik JA, Khan MA, Bhardwaj P, Bisht B, Ghadi R, Kaur G, Bhalla V, Owais M, Jain S, Sehrawat S, Agrewala JN. A novel strategy to elicit enduring anti-morphine immunity and relief from addiction by targeting Acr1 protein nano vaccine through TLR-2 to dendritic cells. Int J Biol Macromol 2024; 274:133188. [PMID: 38880456 DOI: 10.1016/j.ijbiomac.2024.133188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Morphine addiction poses a significant challenge to global healthcare. Current opioid substitution therapies, such as buprenorphine, naloxone and methadone are effective but often lead to dependence. Thus, exploring alternative treatments for opioid addiction is crucial. We have developed a novel vaccine that presents morphine and Pam3Cys (a TLR-2 agonist) on the surface of Acr1 nanoparticles. This vaccine has self-adjuvant properties and targets TLR-2 receptors on antigen-presenting cells, particularly dendritic cells. Our vaccination strategy promotes the proliferation and differentiation of morphine-specific B-cells and Acr1-reactive CD4 T-cells. Additionally, the vaccine elicited the production of high-affinity anti-morphine antibodies, effectively eliminating morphine from the bloodstream and brain in mice. It also reduced the expression of addiction-associated μ-opioid receptor and dopamine genes. The significant increase in memory CD4 T-cells and B-cells indicates the vaccine's ability to induce long-lasting immunity against morphine. This vaccine holds promise as a prophylactic measure against morphine addiction.
Collapse
Affiliation(s)
- Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Priya Bhardwaj
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Bhawana Bisht
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, India
| | | | - Mohammad Owais
- Department of Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India.
| |
Collapse
|
44
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
45
|
Bagdasarian FA, Hansen HD, Chen J, Yoo CH, Placzek MS, Hooker JM, Wey HY. Acute Effects of Hallucinogens on Functional Connectivity: Psilocybin and Salvinorin-A. ACS Chem Neurosci 2024; 15:2654-2661. [PMID: 38916752 DOI: 10.1021/acschemneuro.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The extent of changes in functional connectivity (FC) within functional networks as a common feature across hallucinogenic drug classes is under-explored. This work utilized fMRI to assess the dissociative hallucinogens Psilocybin, a classical serotonergic psychedelic, and Salvinorin-A, a kappa-opioid receptor (KOR) agonist, on resting-state FC in nonhuman primates. We highlight overlapping and differing influence of these substances on FC relative to the thalamus, claustrum, prefrontal cortex (PFC), default mode network (DMN), and DMN subcomponents. Analysis was conducted on a within-subject basis. Findings support the cortico-claustro-cortical network model for probing functional effects of hallucinogens regardless of serotonergic potential, with a potential key paradigm centered around the claustrum, PFC, anterior cingulate cortices (ACC), and angular gyrus relationship. Thalamo-cortical networks are implicated but appear dependent on 5-HT2AR activation. Acute desynchronization relative to the DMN for both drugs was also shown. Our findings provide a framework to understand broader mechanisms at which hallucinogens in differing classes may impact subjects regardless of the target receptor.
Collapse
Affiliation(s)
- Frederick A Bagdasarian
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Hanne D Hansen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Jingyuan Chen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Chi-Hyeon Yoo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Michael S Placzek
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Jacob M Hooker
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Center for the Neuroscience of Psychedelics, Charlestown, Massachusetts 02129, United States
| | - Hsiao-Ying Wey
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Center for the Neuroscience of Psychedelics, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
46
|
Bacon EK, Donnelly CG, Bellone RR, Haase B, Finno CJ, Velie BD. Preliminary investigation of potential links between pigmentation variants and opioid analgesic effectiveness in horses during cerebrospinal fluid centesis. BMC Vet Res 2024; 20:311. [PMID: 38997753 PMCID: PMC11245827 DOI: 10.1186/s12917-024-04139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The pleiotropic effects of the melanocortin system show promise in overcoming limitations associated with large variations in opioid analgesic effectiveness observed in equine practice. Of particular interest is variation in the melanocortin-1-receptor (MC1R) gene, which dictates pigment type expression through its epistatic interaction with the agouti signalling protein (ASIP) gene. MC1R has previously been implicated in opioid efficacy in other species; however, this relationship is yet to be explored in horses. In this study, analgesic effectiveness was scored (1-3) based on noted response to dura penetration during the performance of cerebrospinal fluid centisis after sedation and tested for association with known genetic regions responsible for pigmentation variation in horses. RESULTS The chestnut phenotype was statistically significant (P < 0.05) in lowering analgesic effectiveness when compared to the bay base coat colour. The 11bp indel in ASIP known to cause the black base coat colour was not significant (P>0.05); however, six single nucleotide polymorphisms (SNPs) within the genomic region encoding the ASIP gene and one within MC1R were identified as being nominally significant (P<0.05) in association with opioid analgesic effectiveness. This included the location of the known e MC1R variant resulting in the chestnut coat colour. CONCLUSIONS The current study provides promising evidence for important links between pigmentation genes and opioid effectiveness in horses. The application of an easily identifiable phenotype indicating variable sensitivity presents a promising opportunity for accessible precision medicine in the use of analgesics and warrants further investigation.
Collapse
Affiliation(s)
- Elouise K Bacon
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Callum G Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithica, NY, 14850, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Bianca Haase
- School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
47
|
Flammia R, Huang B, Pagare PP, M St Onge C, Abebayehu A, Gillespie JC, Mendez RE, Selley DE, Dewey WL, Zhang Y. Blocking potential metabolic sites on NAT to improve its safety profile while retaining the pharmacological profile. Bioorg Chem 2024; 148:107489. [PMID: 38797065 PMCID: PMC11190787 DOI: 10.1016/j.bioorg.2024.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The number of opioid-related overdose deaths and individuals that have suffered from opioid use disorders have significantly increased over the last 30 years. FDA approved maintenance therapies to treat opioid use disorder may successfully curb drug craving and prevent relapse but harbor adverse effects that reduce patient compliance. This has created a need for new chemical entities with improved patient experience. Previously our group reported a novel lead compound, NAT, a mu-opioid receptor antagonist that potently antagonized the antinociception of morphine and showed significant blood-brain barrier permeability. However, NAT belongs to thiophene containing compounds which are known structural alerts for potential oxidative metabolism. To overcome this, 15 NAT derivatives with various substituents at the 5'-position of the thiophene ring were designed and their structure-activity relationships were studied. These derivatives were characterized for their binding affinity, selectivity, and functional activity at the mu opioid receptor and assessed for their ability to antagonize the antinociceptive effects of morphine in vivo. Compound 12 showed retention of the basic pharmacological attributes of NAT while improving the withdrawal effects that were experienced in opioid-dependent mice. Further studies will be conducted to fully characterize compound 12 to examine whether it would serve as a new lead for opioid use disorder treatment and management.
Collapse
Affiliation(s)
- Rachael Flammia
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Abeje Abebayehu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States; Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, VA 23298-0059.
| |
Collapse
|
48
|
Mathe A, Sudre E, Averous V. [Appropriate use of strong opioids in medical units: Recommendations and action to be taken in daily practice]. Rev Med Interne 2024; 45:400-408. [PMID: 38839485 DOI: 10.1016/j.revmed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
The use of strong opioids in medical units is recurrent, mainly for analgesic purposes. The risk of occurrence of an overdose or an opioid use disorders causes very legitimate concerns for the physician, which may limit the use of opioid treatment or the adaptation of the doses necessary to relieve the patient. We provide a summary of the literature aimed at defining the indications, the adverse effects and the risks involved, the prescribing methods in order to reassure professionals and promote the safe use of these molecules.
Collapse
Affiliation(s)
- A Mathe
- Service de médecine palliative et accompagnement, CHU de Bordeaux, Bordeaux, France.
| | - E Sudre
- Service de médecine palliative et accompagnement, CHU de Bordeaux, Bordeaux, France
| | - V Averous
- Service de médecine palliative et accompagnement, université de Bordeaux, CHU, Bordeaux, France
| |
Collapse
|
49
|
Jones JD, Arout CA, Luba R, Murugesan D, Madera G, Gorsuch L, Schusterman R, Martinez S. The influence of drug class on reward in substance use disorders. Pharmacol Biochem Behav 2024; 240:173771. [PMID: 38670466 PMCID: PMC11162950 DOI: 10.1016/j.pbb.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Caroline A Arout
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Rachel Luba
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dillon Murugesan
- CUNY School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Gabriela Madera
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Liam Gorsuch
- Department of Psychiatry, The University of British Columbia, 430-5950 University Blvd., Vancouver V6T 1Z3, BC, Canada
| | - Rebecca Schusterman
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
50
|
Kavgaci G, Guven DC, Kaygusuz Y, Karaca E, Dizdar O, Kilickap S, Aksoy S, Erman M, Yalcin S. Impact of opioid analgesics on survival in cancer patients receiving immune checkpoint inhibitors. Support Care Cancer 2024; 32:467. [PMID: 38937345 PMCID: PMC11211103 DOI: 10.1007/s00520-024-08681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE This study aimed to assess the effects of concurrent opioid analgesic (OA) use with immune checkpoint inhibitors (ICIs) on progression-free survival (PFS) and overall survival (OS). METHODS In this observational retrospective study, we included advanced cancer patients who received ICIs at Hacettepe University Hospital's Department of Medical Oncology between June 2018 and January 2023. RESULTS Our study included 375 recurrent or metastatic cancer patients treated with ICIs in the first, second line, or beyond. There were no significant differences between the OA-treated and OA-untreated groups regarding median age, age group, gender, primary tumor location, ICI type, or the presence of baseline liver and lung metastases. However, the OA-treated group exhibited a significantly higher proportion of patients who had received three or more prior treatments before initiating ICIs (p = 0.015). OA-Untreatment was significantly correlated with prolonged mPFS (6.83 vs. 4.30 months, HR 0.59, 95% CI 0.44-0.79, p < 0.001) and mOS (17.05 vs. 7.68 months, HR 0.60, 95% CI 0.45-0.80, p < 0.001). CONCLUSIONS Our study demonstrates an association between the concurrent use of OAs and reduced OS and PFS in patients treated with ICIs. While OA treatment serves as a surrogate marker for higher disease burden, it may also suggest a potential biological relationship between opioids and immunotherapy efficacy.
Collapse
Affiliation(s)
- Gozde Kavgaci
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey.
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yunus Kaygusuz
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ece Karaca
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Omer Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Saadettin Kilickap
- Department of Medical Oncology, Liv Hospital, Ankara, Turkey
- Department of Medical Oncology, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Mustafa Erman
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|