1
|
Ge Y, Teng R, Jia Z, Li Y, Lu Y, Yuan J. Elevated NGF provokes decidual lipid peroxidation and promotes preterm birth in mice. J Transl Med 2025; 23:481. [PMID: 40296138 PMCID: PMC12036137 DOI: 10.1186/s12967-025-06424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Preterm birth (PTB) is a major cause of neonatal morbidity and mortality worldwide, with infection and inflammation being the most common triggers. However, many cases of preterm labor have unknown causes. The maternal decidua is a highly dynamic and heterogeneous region, serving as the nexus at the maternal-fetal interface, connecting the mother and the fetus. Increasing evidence suggests that the maternal decidua plays a crucial role in the initiation of labor. Nerve growth factor (NGF), is an important member of the neurotrophin family and is identified to play a crucial role in initiating the decidual response. METHODS To investigate whether NGF contributes to preterm birth via lipid peroxidation-dependent pathways, we selected both NGF and erastin (a pharmacological lipid peroxidation inducer) for parallel experimental treatments to examine how these pathways mediate the initiation of parturition. Mice were administered intraperitoneal injections of NGF and erastin. Gestational durations less than 19.5 days were classified as preterm birth. This study employed biological technologies and experimental methods to explore the initiation of delivery and the associated signaling pathways. RESULTS Elevated NGF levels in late-stage pregnancy increased the incidence of preterm birth in mice, independent of decidual senescence, placenta abnormal structure and ovarian dysfunction. Instead, NGF treatment activated lipid peroxidation and upregulated inflammatory markers in maternal decidua, particularly cyclooxygenase enzymes, which are critical for labor initiation. Notably, administration of erastin corroborated these findings, leading to similar outcomes in preterm labor. CONCLUSIONS This study reveals the pivotal role of NGF signaling in promoting excessive lipid peroxidation to disrupt decidual homeostasis and ultimately triggering preterm labor in mice.
Collapse
Affiliation(s)
- Yuhang Ge
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruxin Teng
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoyu Jia
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongyue Li
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yafang Lu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jia Yuan
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Ohkawa N, Shoji H, Ikeda N, Murano Y, Okuno T, Kantake M, Yokomizo T, Shimizu T. The impact of cyclooxygenase inhibitor use on urinary prostaglandin metabolites in preterm infants. Pediatr Neonatol 2024; 65:123-126. [PMID: 37696728 DOI: 10.1016/j.pedneo.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/03/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND There is limited evidence on the association between the clinical course of patent ductus arteriosus (PDA) and prostaglandin (PG) metabolites. This study aimed to determine the influence of PDA treatment on urinary PG metabolite excretion in very-low-birth-weight (VLBW) infants. METHODS Urine samples were collected from 25 VLBW infants at 1, 3, and 7 days of age. Infants were separated into two groups: a PDA-treated group that received a cyclooxygenase-2 (COX) inhibitor (n = 12) and a control group that did not receive a COX inhibitor during the first 7 days after birth (n = 13). Urinary PG metabolite tetranor prostaglandin E2 metabolite (t-PGEM) and tetranor prostaglandin D2 metabolite (t-PGDM) levels were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS Urinary t-PGEM excretion levels were not significantly different between the groups at 1, 3, and 7 days of age. Urinary t-PGDM excretion levels at 1 day of age were higher in PDA-treated infants than in control infants (median [interquartile range]: 5.5 [2.6, 12.2] versus 2.1 [1.0, 3.9] ng/mg creatinine; p = 0.017); however, among PDA-treated infants, the levels were significantly lower at 3 and 7 days than at 1 day of age (5.5 [2.6, 12.2] versus 3.4 [1.7, 4.5] and 4.0 [1.7, 5.3] ng/mg creatinine, respectively; p < 0.05). The urinary t-PGDM excretion level in the control group did not significantly differ among the time points. CONCLUSION PDA and COX inhibitor administration affected PG metabolism in VLBW infants. Our results indicated that urinary t-PGDM excretion was significantly associated with PDA-treatment in preterm infants.
Collapse
Affiliation(s)
- Natsuki Ohkawa
- Department of Neonatology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni-shi, Shizuoka, 410-2295, Japan.
| | - Hiromichi Shoji
- Department of Neonatology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni-shi, Shizuoka, 410-2295, Japan; Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Naho Ikeda
- Department of Neonatology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni-shi, Shizuoka, 410-2295, Japan
| | - Yayoi Murano
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-koi, Tokyo 113-8421, Japan
| | - Masato Kantake
- Department of Neonatology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni-shi, Shizuoka, 410-2295, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-koi, Tokyo 113-8421, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
4
|
Richardson L, Kammala AK, Kim S, Lam PY, Truong N, Radnaa E, Urrabaz-Garza R, Han A, Menon R. Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip. FASEB J 2023; 37:e23000. [PMID: 37249377 PMCID: PMC10259454 DOI: 10.1096/fj.202300531r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge. The FMi-OOC contained fetal (amnion epithelial, mesenchymal, and chorion) and maternal (decidua) cells cultured in four compartments interconnected by arrays of microchannels to allow independent but interconnected co-cultivation. Using this model, we tested the effects of OS and inflammation on both fetal (fetal → maternal) and maternal (maternal → fetal) sides of the FMi and determined their differential impact on PTB-associated pathways. OS was induced using cigarette smoke extract (CSE) exposure. The impacts of OS were assessed by measuring cell viability, disruption of immune homeostasis, epithelial-to-mesenchymal transition (EMT), development of senescence, and inflammation. CSE propagated (LC/MS-MS analysis for nicotine) over a 72-hour period from the maternal to fetal side, or vice versa. However, they caused two distinct pathological effects on the maternal and fetal cells. Specifically, fetal OS induced cellular pathologies and inflammation, whereas maternal OS caused immune intolerance. The pronounced impact produced by the fetus supports the hypothesis that fetal inflammatory response is a mechanistic trigger for parturition. The FMi disease-associated changes identified in the FMi-OOC suggest the unique capability of this in vitro model in testing in utero conditions.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Nina Truong
- John Sealy School of Medicine at Galveston, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA5
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
5
|
Eick SM, Geiger SD, Alshawabkeh A, Aung M, Barrett ES, Bush N, Carroll KN, Cordero JF, Goin DE, Ferguson KK, Kahn LG, Liang D, Meeker JD, Milne GL, Nguyen RHN, Padula AM, Sathyanarayana S, Taibl KR, Schantz SL, Woodruff TJ, Morello-Frosch R. Urinary oxidative stress biomarkers are associated with preterm birth: an Environmental Influences on Child Health Outcomes program study. Am J Obstet Gynecol 2023; 228:576.e1-576.e22. [PMID: 36400174 PMCID: PMC10149536 DOI: 10.1016/j.ajog.2022.11.1282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Preterm birth is the leading cause of infant morbidity and mortality worldwide. Elevated levels of oxidative stress have been associated with an increased risk of delivering before term. However, most studies testing this hypothesis have been conducted in racially and demographically homogenous study populations, which do not reflect the diversity within the United States. OBJECTIVE We leveraged 4 cohorts participating in the Environmental Influences on Child Health Outcomes Program to conduct the largest study to date examining biomarkers of oxidative stress and preterm birth (N=1916). Furthermore, we hypothesized that elevated oxidative stress would be associated with higher odds of preterm birth, particularly preterm birth of spontaneous origin. STUDY DESIGN This study was a pooled analysis and meta-analysis of 4 birth cohorts spanning multiple geographic regions in the mainland United States and Puerto Rico (208 preterm births and 1708 full-term births). Of note, 8-iso-prostaglandin-F2α, 2,3-dinor-5,6-dihydro-8-iso-prostaglandin-F2α (F2-IsoP-M; the major 8-iso-prostaglandin-F2α metabolite), and prostaglandin-F2α were measured in urine samples obtained during the second and third trimesters of pregnancy. Logistic regression was used to calculate adjusted odds ratios and 95% confidence intervals for the associations between averaged biomarker concentrations for each participant and all preterm births, spontaneous preterm births, nonspontaneous preterm births (births of medically indicated or unknown origin), and categories of preterm birth (early, moderate, and late). Individual oxidative stress biomarkers were examined in separate models. RESULTS Approximately 11% of our analytical sample was born before term. Relative to full-term births, an interquartile range increase in averaged concentrations of F2-IsoP-M was associated with higher odds of all preterm births (odds ratio, 1.29; 95% confidence interval, 1.11-1.51), with a stronger association observed for spontaneous preterm birth (odds ratio, 1.47; 95% confidence interval, 1.16-1.90). An interquartile range increase in averaged concentrations of 8-iso-prostaglandin-F2α was similarly associated with higher odds of all preterm births (odds ratio, 1.19; 95% confidence interval, 0.94-1.50). The results from our meta-analysis were similar to those from the pooled combined cohort analysis. CONCLUSION Here, oxidative stress, as measured by 8-iso-prostaglandin-F2α, F2-IsoP-M, and prostaglandin-F2α in urine, was associated with increased odds of preterm birth, particularly preterm birth of spontaneous origin and delivery before 34 completed weeks of gestation.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA.
| | - Sarah D Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL
| | | | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Rutgers University, Piscataway, NJ
| | - Nicole Bush
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA
| | - Kecia N Carroll
- Departments of Pediatrics and Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA
| | - Dana E Goin
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC
| | - Linda G Kahn
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Amy M Padula
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA; Seattle Children's Research Institute, Seattle, WA
| | - Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA; Department of Environmental Science, Policy, and Management, School of Public Health, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
6
|
Martini S, Aceti A, Della Gatta AN, Beghetti I, Marsico C, Pilu G, Corvaglia L. Antenatal and Postnatal Sequelae of Oxidative Stress in Preterm Infants: A Narrative Review Targeting Pathophysiological Mechanisms. Antioxidants (Basel) 2023; 12:422. [PMID: 36829980 PMCID: PMC9952227 DOI: 10.3390/antiox12020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The detrimental effects of oxidative stress (OS) can start as early as after conception. A growing body of evidence has shown the pivotal role of OS in the development of several pathological conditions during the neonatal period, which have been therefore defined as OS-related neonatal diseases. Due to the physiological immaturity of their antioxidant defenses and to the enhanced antenatal and postnatal exposure to free radicals, preterm infants are particularly susceptible to oxidative damage, and several pathophysiological cascades involved in the development of prematurity-related complications are tightly related to OS. This narrative review aims to provide a detailed overview of the OS-related pathophysiological mechanisms that contribute to the main OS-related diseases during pregnancy and in the early postnatal period in the preterm population. Particularly, focus has been placed on pregnancy disorders typically associated with iatrogenic or spontaneous preterm birth, such as intrauterine growth restriction, pre-eclampsia, gestational diabetes, chorioamnionitis, and on specific postnatal complications for which the role of OS has been largely ascertained (e.g., respiratory distress, bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, necrotizing enterocolitis, neonatal sepsis). Knowledge of the underlying pathophysiological mechanisms may increase awareness on potential strategies aimed at preventing the development of these conditions or at reducing the ensuing clinical burden.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Arianna Aceti
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Anna Nunzia Della Gatta
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| | - Isadora Beghetti
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Concetta Marsico
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| | - Gianluigi Pilu
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS AOU S. Orsola, 40138 Bologna, Italy
| |
Collapse
|
7
|
Rathod P, Desai A, Chandel D. Association of MTHFR C677T polymorphism with risk of preterm birth in Indian mothers: a case–control study. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Background
Since MTHFR is the key enzyme in folate metabolism, its reduction can lead to hyperhomocysteinemia, which can have a negative impact on pregnancy outcome. Moreover, MTHFR polymorphism has also been linked with oxidative stress and genotoxicity. Identifying its ethnicity-specific association can help to reduce the incidence of preterm birth (PTB). Material and methods: Age-matched preterm birth mothers (< 37 weeks) and full-term mothers (> 37 weeks) were carefully selected for the study. The polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method was adopted to analyse MTHFR C677T polymorphism. Oxidative stress (OS) analysis was performed by measuring the levels of antioxidants (superoxide dismutase (SOD) and catalase (CAT)) and OS damage markers (lipid peroxidation (LPO), total protein). Genotoxicity was confirmed by the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The statistical analysis was performed by Student’s t test, chi-square test, and one-way ANOVA. The relevant risk of premature delivery was represented by odds ratios (ORs) with 95% confidence intervals (95% CIs).
Results
The MTHFR polymorphism showed statistical significance for PTB outcome with CT and TT genotype frequencies at p < 0.01 and p < 0.05, respectively, between cases and controls. Within the PTB categories (extreme-, very-, moderate-PTB), TT genotype showed statistical significance at (p < 0.05), while CT genotype remained insignificant. Also, statistically high oxidative stress and DNA damage were observed in cases compared to controls for all genotypes. Furthermore, the T allele of the MTHFR gene was found to be linked with significantly increased OS and DNA damage on comparison within the groups.
Conclusions
This study confirms the MTHFR C677T polymorphism, oxidative stress, and genotoxicity biomarkers are associated with the PTB outcome. Analysis of these biomarkers during pregnancy can be of clinical significance.
Collapse
|
8
|
Richardson LS, Emezienna N, Burd I, Taylor BD, Peltier MR, Han A, Menon R. Adapting an organ-on-chip device to study the effect of fetal sex and maternal race/ethnicity on preterm birth related intraamniotic inflammation leading to fetal neuroinflammation. Am J Reprod Immunol 2022; 88:e13638. [PMID: 36308737 PMCID: PMC9712252 DOI: 10.1111/aji.13638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 01/05/2023] Open
Abstract
PROBLEM Fetal neuroinflammation has been linked to preterm birth-related intraamniotic infection and inflammation; However, the contribution of fetal sex and maternal race/ethnicity is unknown. To determine if fetal sex and maternal race/ethnicity influence neuroinflammation, an organ-on-chip (OOC) model were established under normal or pathologic conditions utilizing amniotic fluid. METHOD OF STUDY OOC is composed of two-cell culture chambers connected by Type IV collagen-coated microchannels. Human fetal astroglia (SVGp12) and microglia (HMC3) were co-cultured at an 80:20 ratio in the inner chamber. The outer chamber contained amniotic fluid (AF) from male and female fetuses of White Hispanic (WH) and African-American (AA) pregnant women with or without lipopolysaccharide (LPS-100 ng/ml) and incubated for 48 h. Glial migration (brightfield microscopy), activation (Immunocytochemistry), and cytokine production (Luminex assays) were quantified and compared (N = 4 for each category of sex and race/ethnicity). RESULTS In a pooled analysis, AF+LPS did not induce glial activation or inflammatory changes compared to AF alone. When stratified by sex, male AF+LPS promoted significant glial activation (high CD11b:p < 0.05; low Iba1:p < 0.01) compared to male AF without LPS; however, this was not associated with changes in pro-inflammatory cytokines. When stratified by race/ethnicity, AF+LPS induced glial activation in both groups, but a differential increase in pro-inflammatory cytokines was seen between WH and AA AF (WH-interleukin-1β: p < 0.05; AA-interleukin-8: p < 0.01). CONCLUSION This OOC model of fetal neuroinflammation has determined that race/ethnicity differences do exist for perinatal brain injury. The fetal sex of neonates was not a determining factor of susceptibility to intraamniotic inflammation leading to neuroinflammation.
Collapse
Affiliation(s)
- Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nkechinyere Emezienna
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Johns Hopkin University, Baltimore, Maryland, USA
| | - Brandie D. Taylor
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
9
|
Arita Y, Kirk M, Gupta N, Antony R, Park HJ, Stecker MM, Peltier MR. Effect of 2,6-xylidine (DMA) on secretion of biomarkers for inflammation and neurodevelopment by the placenta. J Reprod Immunol 2021; 149:103458. [PMID: 34952372 DOI: 10.1016/j.jri.2021.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/17/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cigarette smoke enhances placental inflammation and interferes with steroidogenesis. However, the chemicals in the smoke responsible for these biological activities are unclear. 2,6 xylidine (also called 2,6 Dimethylaniline, DMA) is a component of cigarette smoke that has carcinogenic properties but its effects on the placenta are unknown. Therefore, we hypothesized that DMA may interfere with placental steroidogenesis or enhance placental inflammation. Placental explant cultures were treated with 0-50,000 nM DMA and concentrations of progesterone (P4), estradiol (E2), testosterone (T), IL-1β, TNF-α, IL-6, sgp130, HO-1, IL-10, 8-Isoprostane (8-IsoP), and BDNF in the conditioned medium were quantified. Since many environmental toxins enhance the proinflammatory host response to infection, we also performed experiments on placental cultures co-stimulated with 107 heat-killed E. coli. DMA alone significantly reduced P4 and T secretion but enhanced E2 secretion. The toxin also reduced placental secretion of IL-6, sgp130, and BDNF. For bacteria-stimulated cultures, DMA increased secretion of P4 and T, and proinflammatory cytokines (IL-1β, TNF-α) but had mixed effects on anti-inflammatory markers, increasing some (sgp130, IL-10) and reducing others (HO-1). However, DMA enhanced 8-IsoP levels by bacteria-stimulated placental cultures, suggesting that it increases oxidative stress by the tissues. These studies suggest that DMA affects secretion of biomarkers by the placenta and may promote inflammation. Further studies are needed to determine if these observed changes occur in vivo and the extent to which DMA exposure increases the risk of adverse pregnancy outcomes associated with smoking in pregnancy.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Michael Kirk
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Neha Gupta
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Ronny Antony
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Hyeon-Jeong Park
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Mark M Stecker
- Fresno Institute of Neuroscience, Fresno, CA, United States
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States; Department of Psychiatry, Jersey Shore University Medical Center, Neptune, NJ, 07753, United States.
| |
Collapse
|
10
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Front Immunol 2021; 12:735324. [PMID: 34745106 PMCID: PMC8566738 DOI: 10.3389/fimmu.2021.735324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly associated with preterm labor and premature rupture of membranes, which often lead to adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the amnio-chorionic membrane, protects the embryo/fetus from environmental dangers, including microbial infection. However, weakened amnio-chorionic membrane may be breached or pathogens may enter through a different route, leading to IAI. The hAM and human amniotic fluid (hAF) respond by activation of all components of the innate immune system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7) complement system. Herein we provide a comprehensive and integrative review of the current understanding of the innate immune response in the hAM and hAF, which will aid in design of novel studies that may lead to breakthroughs in how we perceive the IAI.
Collapse
Affiliation(s)
- Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
The Preventive Effects of Quercetin on Preterm Birth Based on Network Pharmacology and Bioinformatics. Reprod Sci 2021; 29:193-202. [PMID: 34231170 DOI: 10.1007/s43032-021-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Our previous study has shown that quercetin prevented lipopolysaccharide-induced preterm birth. This study aims to clarify the potential targets and biological mechanisms of quercetin in preventing preterm birth. We used bioinformatics databases to collect the candidate targets for quercetin and preterm birth. The biological functions and enriched pathways of the intersecting targets were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We obtained 105 targets for quercetin in preventing preterm birth. The biological processes of the intersecting targets are mainly involved in steroid metabolic process, drug metabolic process, oxidation-reduction process, omega-hydroxylase P450 pathway, positive regulation of cell migration, negative regulation of apoptotic process, and positive regulation of cell proliferation. The highly enriched pathways were steroid hormone biosynthesis, metabolism of xenobiotics by cytochrome P450, proteoglycans in cancer, focal adhesion, and arachidonic acid metabolism. The ten hub targets for quercetin in preventing preterm birth were AKT serine/threonine kinase 1, mitogen-activated protein kinase 3, epidermal growth factor receptor, prostaglandin-endoperoxide synthase 2, mitogen-activated protein kinase 1, estrogen receptor 1, heat shock protein 90 alpha family class A member 1, mitogen-activated protein kinase 8, androgen receptor, and matrix metallopeptidase 9. Molecular docking analysis showed good bindings between these proteins and quercetin. In conclusion, these findings highlight the key targets and molecular mechanisms of quercetin in preventing preterm birth.
Collapse
|
12
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
13
|
Li WJ, Lu JW, Zhang CY, Wang WS, Ying H, Myatt L, Sun K. PGE2 vs PGF2α in human parturition. Placenta 2021; 104:208-219. [PMID: 33429118 DOI: 10.1016/j.placenta.2020.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) and F2α (PGF2α) are the two most prominent prostanoids in parturition. They are involved in cervical ripening, membrane rupture, myometrial contraction and inflammation in gestational tissues. Because multiple receptor subtypes for PGE2 and PGF2α exist, coupled with diverse signaling pathways, the effects of PGE2 and PGF2α depend largely on the spatial and temporal expression of these receptors in intrauterine tissues. It appears that PGE2 and PGF2α play different roles in parturition. PGE2 is probably more important for labor onset, while PGF2α may play a more important role in labor accomplishment, which may be attributed to the differential effects of PGE2 and PGF2α in gestational tissues. PGE2 is more powerful than PGF2α in the induction of cervical ripening. In terms of myometrial contraction, PGE2 produces a biphasic effect with an initial contraction and a following relaxation, while PGF2α consistently stimulates myometrial contraction. In the fetal membranes, both PGE2 and PGF2α appear to be involved in the process of membrane rupture. In addition, PGE2 and PGF2α may also participate in the inflammatory process of intrauterine tissues at parturition by stimulating not only neutrophil influx and cytokine production but also cyclooxygenase-2 expression thereby intensifying their own production. This review summarizes the differential roles of PGE2 and PGF2α in parturition with respect to their production and expression of receptor subtypes in gestational tissues. Dissecting the specific mechanisms underlying the effects of PGE2 and PGF2α in parturition may assist in developing specific therapeutic targets for preterm and post-term birth.
Collapse
Affiliation(s)
- Wen-Jiao Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
14
|
Peiris HN, Romero R, Vaswani K, Gomez-Lopez N, Tarca AL, Gudicha DW, Erez O, Maymon E, Reed S, Mitchell MD. Prostaglandin and prostamide concentrations in amniotic fluid of women with spontaneous labor at term with and without clinical chorioamnionitis. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102195. [PMID: 33137520 PMCID: PMC8314956 DOI: 10.1016/j.plefa.2020.102195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Prostaglandins (PGs) are considered universal mediators for the process of physiological parturition. This is based on observations that amniotic fluid concentrations of PGs are elevated prior to and during the onset of labor (mostly utilizing immunoassays). Distinguishing PGs from similarly structured molecules (i.e. prostamides; PG-EA) is difficult given the cross-reactivity of available antibodies and the chemical similarity between these compounds. Herein, this limitation was overcome by utilizing mass spectrometry to determine PG and PG-EA concentrations in amniotic fluid of women with spontaneous labor at term and in those with clinical chorioamnionitis (CHAM), the most common infection-related diagnosis made in labor and delivery units worldwide. STUDY DESIGN Liquid chromatography-tandem mass spectrometry (LC MS/MS) was used to determine the PG and PG-EA content in amniotic fluid samples of women with spontaneous labor at term with (n = 14) or without (n = 28) CHAM. Controls included women who delivered at term without labor (n = 10). RESULTS PGE2, PGF2α, and 13,14-dihydro-15-keto-PGF2α (PGFM) were higher in amniotic fluid of women with spontaneous labor at term than in those without labor. PGE2, PGF2α, and PGFM were also higher in amniotic fluid of women with CHAM than in those without labor. However, PGE2-EA and PGF2α-EA were lower in amniotic fluid of women with CHAM than in those without CHAM. The ratios of PGE2 to PGE2-EA and PGF2α to PGF2α-EA were higher in amniotic fluid of women with spontaneous labor at term with or without CHAM than in those without labor; yet, the ratio of PGF2α to PGF2α-EA was greater in women with CHAM than in those without this clinical condition. CONCLUSIONS Spontaneous labor at term with or without CHAM is characterized by elevated amniotic fluid concentrations of prostaglandins (PGE2, PGF2α, and PGFM) but not prostamides. Quantification of these products by LC MS/MSlc==may potentially be of utility in identifying their physiological functions relevant to parturition. SUMMARY Prostaglandins (PGs) are critical for the onset and progression of labor. Structural similarities of PGs and prostamides (PG-EA) prevents their specific identification by immunoassay. We utilized LC MS/MS to determine PG and PG-EA content in amniotic fluid (AF) of women with spontaneous labor at term with or without CHAM and women who delivered at term without labor. Higher aamniotic ffluid PG levels were observed in women with spontaneous labor with and without CHAM compared to women delivering without labor. PG-EA levels in amniotic fluid of women with spontaneous labor and CHAM were lower than in women with spontaneous labor without CHAM but not those without labor. Ratios of PGs to PG-EAs were higher in AF of women with labor and CHAM compared to those without labor. Delineation of these products by LC MS/MS may potentially be of utility in identifying their physiological functions relevant to parturition.
Collapse
Affiliation(s)
- Hassendrini N Peiris
- Institute of Health and Biomedical Innovation, Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, and Detroit, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States; Detroit Medical Center, Detroit, MI, United States; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, United States.
| | - Kanchan Vaswani
- Institute of Health and Biomedical Innovation, Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, and Detroit, MI, United States; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, and Detroit, MI, United States; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, and Detroit, MI, United States; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States; Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli Maymon
- Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Sarah Reed
- UQ Centre for Clinical Research, University of Queensland, QLD, Australia
| | - Murray D Mitchell
- Institute of Health and Biomedical Innovation, Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
15
|
Borkowski K, Newman JW, Aghaeepour N, Mayo JA, Blazenović I, Fiehn O, Stevenson DK, Shaw GM, Carmichael SL. Mid-gestation serum lipidomic profile associations with spontaneous preterm birth are influenced by body mass index. PLoS One 2020; 15:e0239115. [PMID: 33201881 PMCID: PMC7671555 DOI: 10.1371/journal.pone.0239115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023] Open
Abstract
Spontaneous preterm birth (sPTB) is a major cause of infant morbidity and mortality. While metabolic changes leading to preterm birth are unknown, several factors including dyslipidemia and inflammation have been implicated and paradoxically both low (<18.5 kg/m2) and high (>30 kg/m2) body mass indices (BMIs) are risk factors for this condition. The objective of the study was to identify BMI-associated metabolic perturbations and potential mid-gestation serum biomarkers of preterm birth in a cohort of underweight, normal weight and obese women experiencing either sPTB or full-term deliveries (n = 102; n = 17/group). For this purpose, we combined untargeted metabolomics and lipidomics with targeted metabolic profiling of major regulators of inflammation and metabolism, including oxylipins, endocannabinoids, bile acids and ceramides. Women who were obese and had sPTB showed elevated oxidative stress and dyslipidemia characterized by elevated serum free fatty acids. Women who were underweight-associated sPTB also showed evidence of dyslipidemia characterized by elevated phospholipids, unsaturated triglycerides, sphingomyelins, cholesteryl esters and long-chain acylcarnitines. In normal weight women experiencing sPTB, the relative abundance of 14(15)-epoxyeicosatrienoic acid and 14,15-dihydroxyeicosatrienoic acids to other regioisomers were altered at mid-pregnancy. This phenomenon is not yet associated with any biological process, but may be linked to estrogen metabolism. These changes were differentially modulated across BMI groups. In conclusion, using metabolomics we observed distinct BMI-dependent metabolic manifestations among women who had sPTB. These observations suggest the potential to predict sPTB mid-gestation using a new set of metabolomic markers and BMI stratification. This study opens the door to further investigate the role of cytochrome P450/epoxide hydrolase metabolism in sPTB.
Collapse
Affiliation(s)
- Kamil Borkowski
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
- * E-mail:
| | - John W. Newman
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
- United States Department of Agriculture-Agriculture Research Service-Western Human Nutrition Research Center, Davis, CA, United States of America
- Department of Nutrition, University of California-Davis, Davis, CA, United States of America
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jonathan A. Mayo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ivana Blazenović
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
| | - Oliver Fiehn
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Suzan L. Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
16
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
17
|
Pandey M, Awasthi S, Baranwal S. IL-6: An endogenous activator of MMP-9 in preterm birth. J Reprod Immunol 2020; 141:103147. [PMID: 32574873 DOI: 10.1016/j.jri.2020.103147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 11/18/2022]
Abstract
Preterm birth or PTB (<37 weeks) is a heterogeneous phenotype with numerous biological pathways. The lack of explanation due to complex pathways, inconsistent observations indicates the need for employing the role of genetic determinants to anticipate the danger of PTB. In this present study, we investigated the possible gene-gene interaction of five SNPs with PTB and its association with total MMP-9 levels. A total of 510 recruitments (250 terms and preterm each) were made and were genotyped by Restriction Fragment length polymorphism (RFLP). Generalized Multifactor Dimensionality Reduction (GMDR) method was carried out for determining gene-gene interaction. ANOVA and t-test were used to identify the association of IL-6 polymorphism with PTB alone and correspondingly with PTB and low birth weight infants (i.e. < 2500 kg). The combination of IL-6 and MMP-9 and MMP-1, MMP-8 and MMP-9 polymorphism was selected through GMDR analysis concerning mothers with preterm and term birth (accuracy 0.5921 and 0.8030 with Cross-Validation Consistency (CVC) 10/10 respectively). Increased expression of MMP-9 was reported in cases in those mothers carrying IL-6 G allele, which was profoundly associated with PTB independently. IL-6 polymorphisms showed synergistic effects in terms of increased total MMP-9 levels in the present study.
Collapse
Affiliation(s)
- Monika Pandey
- King George`s Medical University, Lucknow, Uttar Pradesh, India; Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Shally Awasthi
- King George`s Medical University, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
18
|
Exploring Inflammatory Mediators in Fetal and Maternal Compartments During Human Parturition. Obstet Gynecol 2020; 134:765-773. [PMID: 31503157 DOI: 10.1097/aog.0000000000003470] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine inflammatory mediators in three fetomaternal biological compartments to inform theory related to the fetal and maternal inflammatory contributions to parturition at term and preterm. METHODS We conducted a cross-sectional study of amniotic fluid, cord blood, and maternal plasma from women with singleton pregnancies. Women had one of four conditions: term labor (n=11), term not in labor (n=13), spontaneous preterm birth with intact membranes (preterm birth; n=13), or preterm prelabor rupture of membranes (PROM; n=8). We measured two damage-associated molecular pattern markers (high-mobility group box-1 [HMGB1] and uric acid) and two acute phase response markers (interleukin [IL]-6 and C-reactive protein [CRP]) using enzyme-linked immunosorbent assay. The distribution of each analyte within amniotic fluid, cord blood, and maternal plasma across the four conditions (term not in labor, term labor, preterm birth, and preterm PROM) were calculated. To explore whether there were distributional differences in each analyte across each of the four labor conditions, we used a nonparametric Kruskal-Wallis test. For analytes that differed across groups, we further compared distributions by labor group (term labor vs term not in labor, and preterm PROM vs preterm birth). RESULTS Fetal compartments (amniotic fluid and cord blood) showed higher HMGB1 in term labor vs term not in labor and preterm PROM vs preterm birth. Amniotic fluid IL-6, cord blood CRP and cord blood uric acid were higher in term vs term not in labor. Cord blood uric acid was higher in preterm PROM vs preterm birth. Only maternal plasma IL-6 was higher in term labor vs term not in labor. CONCLUSION Accumulation of HMGB1 and an overall increase in inflammation observed on the fetal side, but not the maternal side, may be signals of parturition. Understanding fetal-derived proparturition inflammatory signals at term and preterm, especially in preterm PROM, might provide fetal-specific biomarkers and identify underlying mechanisms and targets for interventions to reduce the risk of preterm birth and preterm PROM.
Collapse
|
19
|
Peiris HN, Vaswani K, Holland O, Koh YQ, Almughlliq FB, Reed S, Mitchell MD. Altered productions of prostaglandins and prostamides by human amnion in response to infectious and inflammatory stimuli identified by mutliplex mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102059. [PMID: 32014738 DOI: 10.1016/j.plefa.2020.102059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/28/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Prostaglandins are critical for the onset and progression of labor in mammals, and are formed by the metabolism of arachidonic acid. The products of arachidonic acid, 2-arachidonoylglycerol (2-AG), and anandamide (AEA) have a similar lipid back bone but differing polar head groups, meaning that identification of these products by immunoassay can be difficult. MATERIALS AND METHODS In the current study, we present the use of mass spectrometry as multiplex method of identifying the specific end products of arachidonic and anandamide metabolism by human derived amnion explants treated with either an infectious agent (LPS) or inflammatory mediator (IL-1β or TNF-α). RESULTS Human amnion tissue explants treated with LPS, IL-1β, or TNF-α increased production of prostaglandin E2 (PGE2; p < 0.05) but decreased PGFM. Overall, PGE2 production was greater compared to the other prostaglandins and prostamides irrespective of treatment. CONCLUSIONS The findings of the current study are in keeping with the literature which describes amnion tissues as predominantly producing PGE2. The use of mass spectrometry for the differential identification of prostaglandins, prostamides, and other eicosanoids may help better elucidate mechanisms of preterm labor, and lead to new targets for the prediction of risk for preterm labor and/or birth.
Collapse
Affiliation(s)
- Hassendrini N Peiris
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia.
| | - Kanchan Vaswani
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Olivia Holland
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Yong Qin Koh
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia
| | - Fatema B Almughlliq
- University of Queensland Centre for Clinical Research, Building 71/918, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Sarah Reed
- University of Queensland Centre for Clinical Research, Building 71/918, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Murray D Mitchell
- School of Biomedical Science, Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, 62 Graham Street, South Brisbane, QLD 4101, Australia.
| |
Collapse
|
20
|
Peiris HN, Romero R, Vaswani K, Reed S, Gomez-Lopez N, Tarca AL, Gudicha DW, Erez O, Maymon E, Mitchell MD. Preterm labor is characterized by a high abundance of amniotic fluid prostaglandins in patients with intra-amniotic infection or sterile intra-amniotic inflammation. J Matern Fetal Neonatal Med 2019; 34:4009-4024. [PMID: 31885290 DOI: 10.1080/14767058.2019.1702953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: To distinguish between prostaglandin and prostamide concentrations in the amniotic fluid of women who had an episode of preterm labor with intact membranes through the utilisation of liquid chromatography-tandem mass spectrometry.Study design: Liquid chromatography-tandem mass spectrometry analysis of amniotic fluid of women with preterm labor and (1) subsequent delivery at term (2) preterm delivery without intra-amniotic inflammation; (3) preterm delivery with sterile intra-amniotic inflammation (interleukin (IL)-6>2.6 ng/mL without detectable microorganisms); and (4) preterm delivery with intra-amniotic infection [IL-6>2.6 ng/mL with detectable microorganisms].Results: (1) amniotic fluid concentrations of PGE2, PGF2α, and PGFM were higher in patients with intra-amniotic infection than in those without intra-amniotic inflammation; (2) PGE2 and PGF2α concentrations were also greater in patients with intra-amniotic infection than in those with sterile intra-amniotic inflammation; (3) patients with sterile intra-amniotic inflammation had higher amniotic fluid concentrations of PGE2 and PGFM than those without intra-amniotic inflammation who delivered at term; (4) PGFM concentrations were also greater in women with sterile intra-amniotic inflammation than in those without intra-amniotic inflammation who delivered preterm; (5) amniotic fluid concentrations of prostamides (PGE2-EA and PGF2α-EA) were not different among patients with preterm labor; (6) amniotic fluid concentrations of prostaglandins, but no prostamides, were higher in cases with intra-amniotic inflammation; and (7) the PGE2:PGE2-EA and PGF2α:PGF2α-EA ratios were higher in patients with intra-amniotic infection compared to those without inflammation.Conclusions: Mass spectrometric analysis of amniotic fluid indicated that amniotic fluid concentrations of prostaglandins, but no prostamides, were higher in women with preterm labor and intra-amniotic infection than in other patients with an episode of preterm labor. Yet, women with intra-amniotic infection had greater amniotic fluid concentrations of PGE2 and PGF2α than those with sterile intra-amniotic inflammation, suggesting that these two clinical conditions may be differentiated by using mass spectrometric analysis of amniotic fluid.
Collapse
Affiliation(s)
- Hassendrini N Peiris
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Kanchan Vaswani
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sarah Reed
- UQ Centre for Clinical Research, University of Queensland, Australia
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Murray D Mitchell
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
21
|
Pogorelova TN, Krukier II, Gunko VO, Nikashina AA, Alliluev IA, Larichkin AV. [The imbalance of vasoactive components and arachidonic acid in the placenta and amniotic fluid in preeclampsia]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:245-250. [PMID: 31258149 DOI: 10.18097/pbmc20196503245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The content of vasoactive compounds and arachidonic acid in the placenta and amniotic fluid was studied in full-term (39-40 weeks) physiological pregnancy and preeclampsia (PE). The content of metabolites of nitric oxide (NOx), endothelin-1, thromboxane B2 (TxB2), prostacycline (PGI2) and arachidonic acid was estimated using spectrophotometric, immunoenzyme methods and gas-liquid chromatography. It was found that in PE the content of vasoconstrictors, of endothelin and TxB2, increased in the placenta and amniotic fluid, while the content of vasodilators, PGI2 and NOx decreased. Despite the same directionality of changes in both studied objects, the degree of changes differed and was more pronounced in the placenta. A direct or inverse correlative relationship was found between various vasoactive components (depending on their effect on vascular tone). In the case of arachidonic acid changes in its content in PE correlated with the level of vasoactive compounds, the source of which it is. The revealed differences in the ratio of vasoactive components obviously play a pathogenetic role in the development of PE and its subsequent complications.
Collapse
Affiliation(s)
- T N Pogorelova
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - I I Krukier
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - V O Gunko
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - A A Nikashina
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| | - I A Alliluev
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia; Academy of Biology and Biotechnology of the South Federal University, Rostov-on-Don, Russia
| | - A V Larichkin
- Scientific-Research Institute of Obstetrics and Pediatrics of Rostov State Medical University, Rostov-on-Don, Russia
| |
Collapse
|
22
|
Moore TA, Ahmad IM, Schmid KK, Berger AM, Ruiz RJ, Pickler RH, Zimmerman MC. Oxidative Stress Levels Throughout Pregnancy, at Birth, and in the Neonate. Biol Res Nurs 2019; 21:485-494. [PMID: 31284724 DOI: 10.1177/1099800419858670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxidative stress is associated with poor perinatal outcomes. Little is known regarding the longitudinal levels of oxidative stress in the perinatal period or the correlation between maternal and neonatal oxidative stress levels. OBJECTIVE Describe and compare oxidative stress, specifically superoxide, superoxide dismutase, catalase, and glutathione levels, over the perinatal period. STUDY DESIGN Longitudinal descriptive design using a convenience sample of medically high- and low-risk pregnant women (n = 140) from a maternal-fetal medicine and general obstetrics practice, respectively. Blood was obtained from women at 12-20 and 24-28 weeks' gestation and during labor, from the umbilical cord at birth, and from neonates at 24-72 hr after birth. Levels of superoxide were measured using electron paramagnetic resonance (EPR) spectroscopy; antioxidants (superoxide dismutase, catalase, and glutathione) were measured using commercial assay kits. Relationships between oxidative stress levels at different time points were examined using nonparametric methods. Pregnancy outcome was collected. RESULTS Demographic variables, outcome variables, and oxidative stress levels in maternal blood, cord blood, and infants differed between medically high- and low-risk women. Descriptive patterns for oxidative stress measures varied over time and between risk groups. Significant correlations between time points were noted, suggesting intraindividual consistency may exist throughout the perinatal period. However, these correlations were not consistent across each medical risk group. CONCLUSION EPR spectroscopy is a feasible method for the perinatal population. Results provide new information on perinatal circulating superoxide levels and warrant further investigation into potential relationships between prenatal and neonatal physiologic dysregulation of oxidative stress.
Collapse
Affiliation(s)
- Tiffany A Moore
- 1 College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- 2 Department of Medical Imaging and Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kendra K Schmid
- 3 Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ann M Berger
- 4 Advanced Practice Nurse-Oncology, College of Nursing, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | | | - Rita H Pickler
- 6 The Ohio State University College of Nursing, Columbus, OH, USA
| | - Matthew C Zimmerman
- 7 Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| |
Collapse
|
23
|
Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet Gynecol Sci 2019; 62:199-211. [PMID: 31338337 PMCID: PMC6629986 DOI: 10.5468/ogs.2019.62.4.199] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
A better understanding of the underlying mechanisms by which signals from the fetus initiate human parturition is required. Our recent findings support the core hypothesis that oxidative stress (OS) and cellular senescence of the fetal membranes (amnion and chorion) trigger human parturition. Fetal membrane cell senescence at term is a natural physiological response to OS that occurs as a result of increased metabolic demands by the maturing fetus. Fetal membrane senescence is affected by the activation of the p38 mitogen activated kinase-mediated pathway. Similarly, various risk factors of preterm labor and premature rupture of the membranes also cause OS-induced senescence. Data suggest that fetal cell senescence causes inflammatory senescence-associated secretory phenotype (SASP) release. Besides SASP, high mobility group box 1 and cell-free fetal telomere fragments translocate from the nucleus to the cytosol in senescent cells, where they represent damage-associated molecular pattern markers (DAMPs). In fetal membranes, both SASPs and DAMPs augment fetal cell senescence and an associated ‘sterile’ inflammatory reaction. In senescent cells, DAMPs are encapsulated in extracellular vesicles, specifically exosomes, which are 30–150 nm particles, and propagated to distant sites. Exosomes traffic from the fetus to the maternal side and cause labor-associated inflammatory changes in maternal uterine tissues. Thus, fetal membrane senescence and the inflammation generated from this process functions as a paracrine signaling system during parturition. A better understanding of the premature activation of these signals can provide insights into the mechanisms by which fetal signals initiate preterm parturition.
Collapse
|
24
|
Smoking alters hydroxyprostaglandin dehydrogenase expression in fetal membranes. Reprod Toxicol 2018; 82:18-24. [PMID: 30248390 DOI: 10.1016/j.reprotox.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The way in which tobacco smoking increases the risk of preterm labor remains uncertain. Altered prostaglandin metabolism is one potential mechanism. METHODS Proteins in fetal membrane samples (amniochoriodecidua) from 20 women were relatively quantified using Tandem Mass Tagging nano-liquid chromatography mass spectrometry. RESULTS Prostaglandin synthases and two enzymes involved in prostaglandin degradation, hydroxyprostaglandin dehydrogenase (HPGD) and CBR1, were detected by the mass spectrometer. The expression of HPGD was significantly lower in smokers relative to non-smokers (0.43 fold, p = 0.016). There was no effect of labor, inflammatory status or gestational age on the HPGD levels. DISCUSSION We describe for the first time an association between maternal smoking and HPGD expression. We propose that reduced expression of HPGD is one mechanism through which smoking may contribute to preterm labor. Lower levels of this enzyme, key to metabolising prostaglandins, may result in higher levels of prostaglandins and therefore precipitate labor prematurely.
Collapse
|
25
|
Richardson L, Menon R. Proliferative, Migratory, and Transition Properties Reveal Metastate of Human Amnion Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2004-2015. [PMID: 29981743 PMCID: PMC6119821 DOI: 10.1016/j.ajpath.2018.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022]
Abstract
Amnion epithelial cell (AEC) shedding causes microfractures in human placental membranes during gestation. However, microfractures are healed to maintain membrane integrity. To better understand the cellular mechanisms of healing and tissue remodeling, scratch assays were performed using primary AECs derived from normal term not in labor membranes. AECs were grown under different conditions: i) normal cultures (control), ii) oxidative stress (OS) induction by cigarette smoke extract (CSE), iii) co-treatment of CSE and antioxidant N-acetyl-l-cysteine, and iv) treatment with amniotic fluid (AF). Cell migration time and distance, changes in intermediate filament (cytokeratin-18 and vimentin) expressions, and cellular senescence were determined. Control AECs in culture exhibited a metastate with the expression of both cytokeratin-18 and vimentin. During healing, AECs proliferated, migrated, and transitioned from epithelial to mesenchymal phenotype with increased vimentin. Wound healing was associated with mesenchymal to epithelial transition (MET). CSE-induced OS and senescence prevented wound healing in which cells sustained mesenchymal state. N-acetyl-l-cysteine reversed CSE's effect to aid wound closure through MET. AF accelerated cellular transitions and healing. Our data suggest that AECs undergo epithelial to mesenchymal transition during proliferation and migration and MET at the injury site to promote healing. AF accelerated whereas OS diminished cellular transitions and healing. OS-inducing pregnancy risk factors may diminish remodeling capacity contributing to membrane dysfunction, leading to preterm birth.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas; Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas.
| |
Collapse
|
26
|
Moore TA, Ahmad IM, Zimmerman MC. Oxidative Stress and Preterm Birth: An Integrative Review. Biol Res Nurs 2018; 20:497-512. [PMID: 30068228 DOI: 10.1177/1099800418791028] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A variety of methods and measures have been used to quantify oxidative stress in clinical studies related to preterm birth (PTB), and studies have reported conflicting findings. No integrative reviews have been conducted. OBJECTIVE To describe specific molecules used as markers of oxidative stress and methods to measure these molecules and to review the literature for associations between oxidative stress and PTB specific to these molecules. METHOD Systematic literature searches were conducted in June 2015 and updated in 2017 in databases from the Biomedical Reference Collection: Basic Edition, including MEDLINE and clinicaltrials.gov . Articles were included if they described original research published after 2009 and compared PTB or preterm premature rupture of membranes with term birth (TB). RESULTS Abstracts ( n = 3,107) were reviewed for inclusion/exclusion criteria. Of these, 308 were full-text reviewed, and 30 articles were included in this review. All were identified as nonexperimental. The most common measurements of oxidative stress were quantification of total oxidant or antioxidant status or lipid peroxidation. Studies measuring reactive oxygen species or by-products of oxidative stress reported higher levels of these molecules for preterm specimens compared to TB specimens. Studies measuring antioxidants reported lower levels for these molecules in PTB specimens. Few of the studies had inconclusive findings. DISCUSSION Findings suggest that an imbalance between oxidants and antioxidants may be associated with PTB. The measurements and findings to date limit interpretation and understanding. Research using multidimensional methods and multidisciplinary teams are necessary to advance research and practice.
Collapse
Affiliation(s)
- Tiffany A Moore
- 1 College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- 2 College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew C Zimmerman
- 3 College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Elharram A, Czegledy NM, Golod M, Milne GL, Pollock E, Bennett BM, Shchepinov MS. Deuterium-reinforced polyunsaturated fatty acids improve cognition in a mouse model of sporadic Alzheimer's disease. FEBS J 2017; 284:4083-4095. [PMID: 29024570 PMCID: PMC5716852 DOI: 10.1111/febs.14291] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023]
Abstract
Oxidative damage resulting from increased lipid peroxidation (LPO) is considered an important factor in the development of late onset/age-related Alzheimer's disease (AD). Deuterium-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to the reactive oxygen species-initiated chain reaction of LPO than regular hydrogenated (H-) PUFAs. We investigated the effect of D-PUFA treatment on LPO and cognitive performance in aldehyde dehydrogenase 2 (Aldh2) null mice, an established model of oxidative stress-related cognitive impairment that exhibits AD-like pathologies. Mice were fed a Western-type diet containing either D- or H-PUFAs for 18 weeks. D-PUFA treatment markedly decreased cortex and hippocampus F2 -isoprostanes by approximately 55% and prostaglandin F2α by 20-25% as compared to H-PUFA treatment. D-PUFAs consistently improved performance in cognitive/memory tests, essentially resetting performance of the D-PUFA-fed Aldh2-/- mice to that of wild-type mice fed a typical laboratory diet. D-PUFAs therefore represent a promising new strategy to broadly reduce rates of LPO, and combat cognitive decline in AD.
Collapse
Affiliation(s)
- Ahmed Elharram
- Department of Biomedical & Molecular Sciences and Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, Canada
| | - Nicole M Czegledy
- Department of Biomedical & Molecular Sciences and Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, Canada
| | - Michael Golod
- Department of Biomedical & Molecular Sciences and Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, Canada
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Erik Pollock
- Stable Isotope Laboratory, University of Arkansas, Fayetteville, AR, USA
| | - Brian M Bennett
- Department of Biomedical & Molecular Sciences and Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, Canada
| | | |
Collapse
|
28
|
Abstract
Preterm prelabor rupture of the membranes (pPROM) remains a significant obstetric problem that affects 3-4% of all pregnancies and precedes 40-50% of all preterm births. pPROM arises from complex, multifaceted pathways. In this review, we summarize some old concepts and introduce some novel theories related to pPROM pathophysiology. Specifically, we introduce the concept that pPROM is a disease of the fetal membranes where inflammation-oxidative stress axis plays a major role in producing pathways that can lead to membrane weakening through a variety of processes. In addition, we report microfractures in fetal membranes that are likely sites of tissue remodeling during gestation; however, increase in number and morphometry (width and depth) of these microfractures in pPROM membranes suggests reduced remodeling capacity of membranes. Microfractures can act as channels for amniotic fluid leak, and inflammatory cell and microbial migration. Further studies on senescence activation and microfracture formation and their role in maintaining membrane homeostasis are needed to fill the knowledge gaps in our understanding of pPROM as well as provide better screening (biomarker and imaging based) tools for predicting women at high risk for pPROM and subsequent preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB, Room 11.138, Galveston, TX 77555-1062.
| | | |
Collapse
|
29
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
30
|
Menon R, Mesiano S, Taylor RN. Programmed Fetal Membrane Senescence and Exosome-Mediated Signaling: A Mechanism Associated With Timing of Human Parturition. Front Endocrinol (Lausanne) 2017; 8:196. [PMID: 28861041 PMCID: PMC5562683 DOI: 10.3389/fendo.2017.00196] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/27/2017] [Indexed: 01/06/2023] Open
Abstract
Human parturition is an inflammatory process that involves both fetal and maternal compartments. The precise immune cell interactions have not been well delineated in human uterine tissues during parturition, but insights into human labor initiation have been informed by studies in animal models. Unfortunately, the timing of parturition relative to fetal maturation varies among viviparous species-indicative of different phylogenetic clocks and alarms-but what is clear is that important common pathways must converge to control the birth process. Herein, we hypothesize a novel signaling mechanism initiated by human fetal membrane aging and senescence-associated inflammation. Programmed events of fetal membrane aging coincide with fetal growth and organ maturation. Mechanistically, senescence involves in telomere shortening and activation of p38 mitogen-activated signaling kinase resulting in aging-associated phenotypic transition. Senescent tissues release inflammatory signals that are propagated via exosomes to cause functional changes in maternal uterine tissues. In vitro, oxidative stress causes increased release of inflammatory mediators (senescence-associated secretory phenotype and damage-associated molecular pattern markers) that can be packaged inside the exosomes. These exosomes traverse through tissues layers, reach maternal tissues to increase overall inflammatory load transitioning them from a quiescent to active state. Animal model studies have shown that fetal exosomes can travel from fetal to the maternal side. Thus, aging fetal membranes and membrane-derived exosomes cargo fetal signals to the uterus and cervix and may trigger parturition. This review highlights a novel hypothesis in human parturition research based on data from ongoing research using human fetal membrane model system.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine Perinatal Research, The University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Ramkumar Menon,
| | - Sam Mesiano
- Department of Reproductive Biology and Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH, United States
| | - Robert N. Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
31
|
Menon R, Behnia F, Polettini J, Saade GR, Campisi J, Velarde M. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY) 2016; 8:216-30. [PMID: 26851389 PMCID: PMC4789578 DOI: 10.18632/aging.100891] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase , and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - Faranak Behnia
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - Jossimara Polettini
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - George R Saade
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Cell and Molecular Biology, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Velarde
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Institute of Biology, University of Philippines, Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
32
|
Peiris HN, Vaswani K, Almughlliq F, Koh YQ, Mitchell MD. Review: Eicosanoids in preterm labor and delivery: Potential roles of exosomes in eicosanoid functions. Placenta 2016; 54:95-103. [PMID: 27988062 DOI: 10.1016/j.placenta.2016.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
Abstract
Preterm delivery is a major obstetric health problem contributing to poor neonatal outcome including low birth weight, respiratory distress syndrome, gastrointestinal, immunologic, central nervous system, hearing, and vision problems. Worldwide, approximately 15 million babies are born prematurely each year. The critical question which remains is how to identify women destined to deliver preterm from those who will achieve a term delivery. Prostaglandins, in all mammals, are important in the parturient process. Increased intrauterine prostaglandin production is associated with labor and in fact prostaglandin E2 (PGE2) or analogs are widely used clinically for cervical ripening and labor induction. Measurements of circulating eicosanoids have been problematic because of the rapid and major clearance by the lungs and then kidneys resulting in very low concentrations in plasma. Moreover, since eicosanoids are produced by all mammalian tissues, the sources of the measured eicosanoids are unknown. Our understanding of how cells communicate has undergone a paradigm shift with the recognition of the role of exosomes in intercellular signaling. Recent publications have identified enzymes and products of arachidonic acid metabolism (eicosanoids) within exosomes. This review will explore the potential roles of exosomes in eicosanoid functions that are critical in preterm labor and delivery.
Collapse
Affiliation(s)
- H N Peiris
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - K Vaswani
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - F Almughlliq
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Y Q Koh
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - M D Mitchell
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
33
|
Maddipati KR, Romero R, Chaiworapongsa T, Chaemsaithong P, Zhou SL, Xu Z, Tarca AL, Kusanovic JP, Gomez R, Chaiyasit N, Honn KV. Lipidomic analysis of patients with microbial invasion of the amniotic cavity reveals up-regulation of leukotriene B4. FASEB J 2016; 30:3296-3307. [PMID: 27312808 PMCID: PMC5024690 DOI: 10.1096/fj.201600583r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
Bioactive lipids derived from the metabolism of polyunsaturated fatty acids are important mediators of the inflammatory response. Labor per se is considered a sterile inflammatory process. Intra-amniotic inflammation (IAI) due to microorganisms (i.e., intra-amniotic infection) or danger signals (i.e., sterile IAI) has been implicated in the pathogenesis of preterm labor and clinical chorioamnionitis at term. Early and accurate diagnosis of microbial invasion of the amniotic cavity (MIAC) requires analysis of amniotic fluid (AF). It is possible that IAI caused by microorganisms is associated with a stereotypic lipidomic profile, and that analysis of AF may help in the identification of patients with this condition. To test this hypothesis, we analyzed the fatty acyl lipidome of AF by liquid chromatography-mass spectrometry from patients in spontaneous labor at term and preterm gestations. We report that the AF concentrations of proinflammatory lipid mediators of the 5-lipoxygenase pathway are significantly higher in MIAC than in cases of sterile IAI. These results suggest that the concentrations of 5-lipoxygenase metabolites of arachidonic acid, 5-hydroxyeicosatetraenoic acid, and leukotriene B4 in particular could serve as potential biomarkers of MIAC. This finding could have important implications for the rapid identification of patients who may benefit from anti-microbial treatment.-Maddipati, K. R., Romero, R., Chaiworapongsa ,T., Chaemsaithong, P., Zhou, S.-L., Xu, Z., Tarca, A. L., Kusanovic, J. P., Gomez, R., Chaiyasit, N., Honn, K. V. Lipidomic analysis of patients with microbial invasion of the amniotic cavity reveals up-regulation of leukotriene B4.
Collapse
Affiliation(s)
- Krishna Rao Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA; Lipidomics Core Facility, Wayne State University School of Medicine, Detroit, Michigan, USA;
| | - Roberto Romero
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sen-Lin Zhou
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA; Lipidomics Core Facility, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile Division of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile; and
| | - Ricardo Gomez
- Division of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile; and Center for Perinatal Diagnosis (CEDIP), Research and Academic Innovations, Hospital Clínico La Florida, Santiago, Chile
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
34
|
Menon R, Papaconstantinou J. p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin Ther Targets 2016; 20:1397-1412. [PMID: 27459026 DOI: 10.1080/14728222.2016.1216980] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) remain as a major clinical and therapeutic problem for intervention and management. Current strategies, based on our knowledge of pathways of preterm labor, have only been effective, in part, due to major gaps in our existing knowledge of risks and risk specific pathways. Areas covered: Recent literature has identified physiologic aging of fetal tissues as a potential mechanistic feature of normal parturition. This process is affected by telomere dependent and p38 mitogen activated protein kinase (MAPK) induced senescence activation. Pregnancy associated risk factors can cause pathologic activation of this pathway that can cause oxidative stress induced p38 MAPK activation leading to senescence and premature aging of fetal tissues. Premature aging is associated with sterile inflammation capable of triggering preterm labor or preterm premature rupture of membranes. Preterm activation of p38MAPK can be considered as a key contributor to adverse pregnancies. Expert opinion: This review considers p38MAPK activation as a potential target for therapeutic interventions to prevent adverse pregnancy outcomes mediated by stress factors. In this review, we propose multiple strategies to prevent p38MAPK activation.
Collapse
Affiliation(s)
- Ramkumar Menon
- a Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - John Papaconstantinou
- b Department of Biochemistry and Molecular Biology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| |
Collapse
|
35
|
Velarde MC, Menon R. Positive and negative effects of cellular senescence during female reproductive aging and pregnancy. J Endocrinol 2016; 230:R59-76. [PMID: 27325241 DOI: 10.1530/joe-16-0018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a phenomenon occurring when cells are no longer able to divide even after treatment with growth stimuli. Because senescent cells are typically associated with aging and age-related diseases, cellular senescence is hypothesized to contribute to the age-related decline in reproductive function. However, some data suggest that senescent cells may also be important for normal physiological functions during pregnancy. Herein, we review the positive and negative effects of cellular senescence on female reproductive aging and pregnancy. We discuss how senescent cells accelerate female reproductive aging by promoting the decline in the number of ovarian follicles and increasing complications during pregnancy. We also describe how cellular senescence plays an important role in placental and fetal development as a beneficial process, ensuring proper homeostasis during pregnancy.
Collapse
Affiliation(s)
- Michael C Velarde
- Institute of BiologyUniversity of the Philippines Diliman, Quezon City, Philippines Buck Institute for Research on AgingNovato, California, USA
| | - Ramkumar Menon
- Department of Obstetrics and GynecologyUniversity of Texas Medical Branch at Galveston, Galveston, Texas, USA Department of Clinical Medicine and Obstetrics and GynecologyAarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, Menon R. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress. PLoS One 2016; 11:e0157614. [PMID: 27333275 PMCID: PMC4917104 DOI: 10.1371/journal.pone.0157614] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05). Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy. Understanding the propagation of fetal signals and their mechanisms in normal term pregnancies can provide insights into pathologic activation of such signals associated with spontaneous preterm parturitions.
Collapse
Affiliation(s)
- Samantha Sheller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - George Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Faculty of Health Sciences, University of Queensland, Herston, Queensland, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
37
|
Menon R. Human fetal membranes at term: Dead tissue or signalers of parturition? Placenta 2016; 44:1-5. [PMID: 27452431 DOI: 10.1016/j.placenta.2016.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/21/2016] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
Various endocrine, immune, and mechanical factors produced by feto-maternal compartments at term increase intrauterine inflammatory loads to induce labor. The role of fetal (placental) membranes (amniochorion) as providers of parturition signals has not been well investigated. Fetal membranes line the intrauterine cavity and grow with and protect the fetus. Fetal membranes exist as an entity between the mother and fetus and perform unique functions during pregnancy. Membranes undergo a telomere-dependent p38 MAPK-induced senescence and demonstrate a decline in functional and mechanical abilities at term, showing signs of aging. Fetal membrane senescence is also allied with completion of fetal maturation at term as the fetus readies for delivery, which may also indicate the end of independent life and longevity of fetal membranes as their functional role concludes. Fetal membrane senescence is accelerated at term because of oxidative stress and increased stretching. Senescent fetal membranes cells produce senescence-associated secretory phenotype (SASP-inflammation) and also release proinflammatory damage-associated molecular patterns (DAMPs), namely HMGB1 and cell-free fetal telomere fragments. In a feedback loop, SASP and DAMPs increase senescence and enhance the inflammatory load to promote labor. Membranes increase the inflammatory load to disrupt homeostatic balance to transition quiescent uterine tissues toward a labor phenotype. Therefore, along with other well-described labor-promoting signals, senescent fetal membranes may also contribute to human term parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, United States.
| |
Collapse
|
38
|
Dutta EH, Behnia F, Boldogh I, Saade GR, Taylor BD, Kacerovský M, Menon R. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod 2016; 22:143-57. [PMID: 26690900 DOI: 10.1093/molehr/gav074] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
STUDY HYPOTHESIS In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. STUDY FINDING We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. WHAT IS KNOWN ALREADY Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. MAIN RESULTS AND THE ROLE OF CHANCE Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. LIMITATIONS, REASONS FOR CAUTION Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. WIDER IMPLICATIONS OF THE FINDINGS Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. STUDY FUNDING AND COMPETING INTERESTS This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of Texas Medical Branch at Galveston and funds to Dr M. Kacerovský from the Ministry of Health Czech Republic (UHHK, 001799906). The authors report no conflict of interest.
Collapse
Affiliation(s)
- Eryn H Dutta
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA Medical Corps GME Programs (FTOS/OFI), Navy Medicine Professional Development Center, Bethesda, MD, USA
| | - Faranak Behnia
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George R Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA
| | - Brandie D Taylor
- Department of Epidemiology & Biostatistics, Texas A&M University System Health Science Center, College Station, TX, USA
| | - Marian Kacerovský
- Department of Obstetrics & Gynecology, Charles University of Prague, Faculty of Medicine, University Hospital in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA
| |
Collapse
|
39
|
Park JY, Romero R, Lee J, Chaemsaithong P, Chaiyasit N, Yoon BH. An elevated amniotic fluid prostaglandin F2α concentration is associated with intra-amniotic inflammation/infection, and clinical and histologic chorioamnionitis, as well as impending preterm delivery in patients with preterm labor and intact membranes. J Matern Fetal Neonatal Med 2015; 29:2563-72. [PMID: 26669519 DOI: 10.3109/14767058.2015.1094794] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine whether an elevated amniotic fluid concentration of prostaglandin F2α (PGF2α) is associated with intra-amniotic inflammation/infection and adverse pregnancy outcomes in patients with preterm labor and intact membranes. MATERIALS AND METHODS The retrospective cohort study included 132 patients who had singleton pregnancies with preterm labor (< 35 weeks of gestation) and intact membranes. Amniotic fluid was cultured for aerobic and anaerobic bacteria as well as for genital mycoplasmas. Intra-amniotic inflammation was defined by an elevated amniotic fluid matrix metalloproteinase-8 (MMP-8) concentration (>23 ng/mL). PGF2α was measured with a sensitive and specific immunoassay. The amniotic fluid PGF2α concentration was considered elevated when it was above the 95th percentile among pregnant women at 15-36 weeks of gestation who were not in labor (≥170 pg/mL). RESULTS (1) The prevalence of an elevated amniotic fluid PGF2α concentration was 40.2% (53/132) in patients with preterm labor and intact membranes; (2) patients with an elevated amniotic fluid PGF2α concentration had a significantly higher rate of positive amniotic fluid culture [19% (10/53) versus 5% (4/79); p = 0.019], intra-amniotic inflammation/infection [49% (26/53) versus 20% (16/79); p = 0.001], spontaneous preterm delivery, clinical and histologic chorioamnionitis, and funisitis, as well as a higher median amniotic fluid MMP-8 concentration and amniotic fluid white blood cell count and a shorter amniocentesis-to-delivery interval than those without an elevated concentration of amniotic fluid PGF2α (p < 0.05 for each); and (3) an elevated amniotic fluid PGF2α concentration was associated with a shorter amniocentesis-to-delivery interval after adjustment for the presence of intra-amniotic inflammation/infection [hazard ratio 2.1, 95% confidence interval (CI) 1.4-3.1; p = 0.001]. CONCLUSION The concentration of PGF2α was elevated in the amniotic fluid of 40.2% of patients with preterm labor and intact membranes and is an independent risk factor for intra-amniotic inflammation/infection, impending preterm delivery, chorioamnionitis, and funisitis.
Collapse
Affiliation(s)
- Jee Yoon Park
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Roberto Romero
- b Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH/DHHS, Bethesda, MD , Detroit , MI , USA .,c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA .,d Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA .,e Center for Molecular Medicine and Genetics, Wayne State University , Detroit , MI , USA , and
| | - JoonHo Lee
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Piya Chaemsaithong
- b Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH/DHHS, Bethesda, MD , Detroit , MI , USA .,f Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Noppadol Chaiyasit
- b Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH/DHHS, Bethesda, MD , Detroit , MI , USA .,f Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Bo Hyun Yoon
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
40
|
Musilova I, Andrys C, Drahosova M, Hornychova H, Jacobsson B, Menon R, Laudanski P, Stepan M, Bestvina T, Kacerovsky M. Amniotic fluid prostaglandin E2 in pregnancies complicated by preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med 2015; 29:2915-23. [PMID: 26512976 DOI: 10.3109/14767058.2015.1112372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine amniotic fluid prostaglandin E2 concentrations in women preterm prelabor rupture of the membranes (PPROM) with respect to microbial invasion of the amniotic cavity (MIAC), intraamniotic inflammation (IAI), microbial-associated IAI, histological chorioamnionitis, and short-term neonatal morbidity. METHODS One hundred forty-five women with singleton pregnancies were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis and were assayed for prostaglandin E2 concentrations by ELISA. IAI was defined as amniotic fluid interleukin-6 >745 pg/mL. Microbial-associated IAI was defined as the presence of both MIAC and IAI. RESULT No differences in prostaglandin E2 concentrations were found between women with and without MIAC (p = 0.27). Women with IAI (p = 0.0008) and microbial-associated IAI (p = 0.01) had higher prostaglandin E2 concentrations than women without these complications. Women with histological chorioamnionitis had higher prostaglandin E2 concentrations only in crude analysis (p = 0.02), but not after adjustment for gestational age at sampling (p = 0.10). No associations between amniotic fluid prostaglandin E2 concentrations and the selected conditions of severe neonatal morbidity were found. CONCLUSIONS The intraamniotic inflammatory response either to infectious or to non-infectious stimulus, but not MIAC per se, seems to be a main factor associated with the elevation of the amniotic fluid PGE2 concentrations in women with PPROM.
Collapse
Affiliation(s)
- Ivana Musilova
- a Department of Obstetrics and Gynecology , Faculty of Medicine Hradec Kralove, Charles University in Prague, Hradec Kralove , Czech Republic
| | - Ctirad Andrys
- b Department of Clinical Immunology and Allergy , Faculty of Medicine Hradec Kralove, University in Prague, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Marcela Drahosova
- b Department of Clinical Immunology and Allergy , Faculty of Medicine Hradec Kralove, University in Prague, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Helena Hornychova
- c Fingerland's Department of Pathology , Faculty of Medicine Hradec Kralove, University in Prague, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Bo Jacobsson
- d Department of Obstetrics and Gynecology , Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden .,e Department of Genes and Environment , Division of Epidemiology, Norwegian Institute of Public Health , Oslo , Norway
| | - Ramkumar Menon
- f Department of Obstetrics and Gynecology , Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Piotr Laudanski
- g Department of Perinatology , Medical University of Bialystok , Bialystok , Poland , and
| | - Martin Stepan
- a Department of Obstetrics and Gynecology , Faculty of Medicine Hradec Kralove, Charles University in Prague, Hradec Kralove , Czech Republic
| | - Tomas Bestvina
- a Department of Obstetrics and Gynecology , Faculty of Medicine Hradec Kralove, Charles University in Prague, Hradec Kralove , Czech Republic
| | - Marian Kacerovsky
- a Department of Obstetrics and Gynecology , Faculty of Medicine Hradec Kralove, Charles University in Prague, Hradec Kralove , Czech Republic .,h Biomedical Research Center, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
41
|
Behnia F, Taylor BD, Woodson M, Kacerovsky M, Hawkins H, Fortunato SJ, Saade GR, Menon R. Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol 2015; 213:359.e1-16. [PMID: 26025293 DOI: 10.1016/j.ajog.2015.05.041] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Senescence is an important biological phenomenon involved in both physiologic and pathologic processes. We propose that chorioamniotic membrane senescence is a mechanism associated with human parturition. The present study was conducted to explore the association between senescence and normal term parturition by examining the morphologic and biochemical evidences in chorioamniotic membranes. STUDY DESIGN Chorioamniotic membranes were collected from normal term deliveries; group 1: term labor and group 2: term, not in labor. Senescence-related morphologic changes were determined by transmission electron microscopy and biochemical changes were studied by senescence-associated (SA) β-galactosidase staining. Amniotic fluid samples collected from both term labor and term not in labor were analyzed for 14 SA secretory phenotype (SASP) markers. RESULTS Morphologic evidence of cellular senescence (enlarged cells and organelles) and a higher number of SA β-galactosidase-stained amnion and chorion cells were observed in chorioamniotic membranes obtained from women in labor at term, when compared to term not in labor. The concentration of proinflammatory SASP markers (granulocyte macrophage colony-stimulating factor, interleukin-6 and -8) was significantly higher in the amniotic fluid of women in labor at term than women not in labor. In contrast, SASP factors that protect against cell death (eotaxin-1, soluble Fas ligand, osteoprotegerin, and intercellular adhesion molecule-1) were significantly lower in the amniotic fluid samples from term labor. CONCLUSION Morphologic and biochemical features of senescence were more frequent in chorioamniotic membranes from women who experienced term labor. Senescence of chorioamniotic membranes were also associated with amniotic fluid SASP markers.
Collapse
Affiliation(s)
- Faranak Behnia
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University Health Science Center, College Station, TX
| | - Michael Woodson
- Electron Microscopy Core Laboratory, University of Texas Medical Branch, Galveston, TX
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Charles University, Hradec Kralove, Czech Republic
| | - Hal Hawkins
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | | | - George R Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
42
|
Behnia F, Parets SE, Kechichian T, Yin H, Dutta EH, Saade GR, Smith AK, Menon R. Fetal DNA methylation of autism spectrum disorders candidate genes: association with spontaneous preterm birth. Am J Obstet Gynecol 2015; 212:533.e1-9. [PMID: 25687563 DOI: 10.1016/j.ajog.2015.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/24/2015] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is associated with preterm birth (PTB), although the reason underlying this relationship is still unclear. Our objective was to examine DNA methylation patterns of 4 ASD candidate genes in human fetal membranes from spontaneous PTB and uncomplicated term birth. STUDY DESIGN A literature search for genes that have been implicated in ASD yielded 14 candidate genes (OXTR, SHANK3, BCL2, RORA, EN2, RELN, MECP2, AUTS2, NLGN3, NRXN1, SLC6A4, UBE3A, GABA, AFF2) that were epigenetically modified in relation to ASD. DNA methylation in fetal leukocyte DNA in 4 of these genes (OXTR, SHANK3, BCL2, and RORA) was associated with PTB in a previous study. This study evaluated DNA methylation, transcription (reverse transcription polymerase chain reaction), and translation patterns (immunostaining and Western blot) in fetal membrane from term labor (n = 14), term not in labor (TNIL; n = 29), and spontaneous preterm birth (PTB; n = 27). Statistical analysis was performed with analysis of variance; a probability value of < .05 was significant. RESULTS Higher methylation of the OXTR promoter was seen in fetal membranes from PTB, compared with term labor or TNIL. No other gene showed any methylation differences among groups. Expression of OXTR was not different among groups, but the 70 kDa OXTR protein was seen only in PTB, and immunostaining was more intense in PTB amniocytes than term labor or TNIL. CONCLUSION Among the 4 genes that were studied, fetal membranes from PTB demonstrate differences in OXTR methylation and regulation and expression, which suggest that epigenetic alteration of this gene in fetal membrane may likely be indicating an in utero programing of this gene and serve as a surrogate in a subset of PTB. The usefulness of OXTR hypermethylation as a surrogate for a link to ASD should be further evaluated in longitudinal and in vitro studies.
Collapse
Affiliation(s)
- Fara Behnia
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Sasha E Parets
- Genetics and Molecular Biology Program, Emory University School of Medicine, Atlanta, GA
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Huaizhi Yin
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Eryn H Dutta
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - George R Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Alicia K Smith
- Genetics and Molecular Biology Program, Emory University School of Medicine, Atlanta, GA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
43
|
Hong JS, Romero R, Lee DC, Than NG, Yeo L, Chaemsaithong P, Ahn S, Kim JS, Kim CJ, Kim YM. Umbilical cord prostaglandins in term and preterm parturition. J Matern Fetal Neonatal Med 2015; 29:523-31. [PMID: 25758616 DOI: 10.3109/14767058.2015.1011120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Prostaglandins (PGs) are considered the universal mediators of parturition. Amniotic fluid PGE2 and PGF2α concentrations increase before the onset of spontaneous labor at term, as well as during labor. This study was conducted to determine if the concentrations of umbilical cord PGE2 and PGF2α change with advancing gestational age, spontaneous labor at term, and preterm labor (with and without funisitis). METHODS Umbilical cord (UC) tissue samples were obtained from women (N = 158) with singleton pregnancies in the following groups: (1) term deliveries without labor (TNL; n = 20); (2) term deliveries with labor (TIL; n = 20); (3) spontaneous preterm deliveries (sPTD) with (n = 20) and without acute funisitis (n = 20); and (4) preeclampsia without labor (n = 78). The concentrations of PGs were determined in different locations of the UC. PGE2 and PGF2α were measured by specific immunoassays. Non-parametric statistics were used for analysis. RESULTS (1) In spontaneous preterm deliveries, the median UC PGE2 concentration was higher in cases with funisitis than in those without funisitis (233.7 pg/µg versus 87.4 pg/µg of total protein, p = 0.001); (2) the median UC PGE2 concentration in sPTD with funisitis was also higher than that obtained from samples who had undergone labor at term (233.7 pg/µg versus 116.1 pg/µg of total protein, p = 0.03); (3) the UC PGE2 and PGF2α concentration increased as a function of advancing gestational age before 36 weeks (PGE2: ρ = 0.59, p < 0.001; PGF2α: ρ = 0.39, p = 0.01), but not after 36 weeks (PGE2: ρ = -0.1, p = 0.5; PGF2α: ρ = -0.2, p = 0.2); (4) the median UC concentrations of PGE2 and PGF2α at term was similar in samples obtained from women with and without labor (PGE2: TNL 133.7 pg/µg versus TIL 116.1 pg/µg of total protein, p = 0.9; PGF2α: TNL 8.4 pg/µg versus TIL 8.1 pg/µg of total protein, p = 0.7); and (5) there was no correlation between UC PG concentration and gestational age at term pregnancy (PGE2: ρ = 0.01, p = 0.9; PGF2α: ρ = 0.07, p = 0.7). CONCLUSIONS (1) PGE2 concentrations in the UC are higher in the presence of acute funisitis than in the absence of this lesion; (2) spontaneous labor at term was not associated with a change in the UC concentration of PGE2 and PGF2α; and (3) the UC concentrations of PGE2 and PGF2α increased as a function of gestational age. We propose that UC PGs act as inflammatory mediators generated in the context of fetal systemic inflammation.
Collapse
Affiliation(s)
- Joon-Seok Hong
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Gyeonggi-do , Republic of Korea
| | - Roberto Romero
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA .,d Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA
| | - Deug-Chan Lee
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,e College of Biomedical Science, Kangwon National University , Chuncheon , Republic of Korea
| | - Nandor Gabor Than
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,f Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Lami Yeo
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,f Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Piya Chaemsaithong
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,f Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Soyeon Ahn
- g Medical Research Collaborating Center, Seoul National University Bundang Hospital , Gyeonggi-do , Republic of Korea
| | - Jung-Sun Kim
- h Department of Pathology , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Republic of Korea
| | - Chong Jai Kim
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,i Department of Pathology , Asan Medical, Center University of Ulsan College of Medicine , Seoul , Republic of Korea , and
| | - Yeon Mee Kim
- a Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit , MI , USA .,j Department of Pathology , Haeundae Paik Hospital, Inje University College of Medicine , Busan , Republic of Korea
| |
Collapse
|
44
|
Menon R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front Immunol 2014; 5:567. [PMID: 25429290 PMCID: PMC4228920 DOI: 10.3389/fimmu.2014.00567] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 11/13/2022] Open
Abstract
Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, School of Medicine, The University of Texas Medical Branch , Galveston, TX , USA
| |
Collapse
|
45
|
Abstract
Premature birth is a significant global problem and the leading cause of newborn deaths. Tobacco smoking has been associated with premature birth for over 50 years. The mechanisms through which smoking exerts its effects on pregnancy outcomes remain unclear. In this review, we discuss rates of prematurity and smoking in pregnancy, the evidence of a causal relationship between tobacco and preterm birth, and proposed biochemical pathways through which the interaction is mediated. The suggested mechanisms include nicotine-induced vasoconstriction, carbon monoxide-induced fetal hypoxia, cadmium disruption of calcium signaling, altered steroid hormone production, disruption of prostaglandin synthesis, and changed responses to oxytocin. The relative importance of each of these pathways is yet to be ascertained. Further research is necessary to explore the mechanisms through which smoking exerts its effect on gestational length and the process of parturition. Moreover, the risks of nicotine replacement in pregnancy should be investigated further.
Collapse
Affiliation(s)
- Rachel Ion
- Obstetrics & Gynaecology, St Michael's Hospital, Bristol, United Kingdom
| | - Andrés López Bernal
- Obstetrics & Gynaecology, St Michael's Hospital, Bristol, United Kingdom School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
46
|
Leung KS, Galano JM, Durand T, Lee JCY. Current development in non-enzymatic lipid peroxidation products, isoprostanoids and isofuranoids, in novel biological samples. Free Radic Res 2014; 49:816-26. [PMID: 25184341 DOI: 10.3109/10715762.2014.960867] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Isoprostanoids and isofuranoids are lipid mediators that can be formed from omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). F2-isoprostanes formed from arachidonic acid, especially 15-F2t-isoprostane, are commonly measured in biological tissues for decades as the biomarker for oxidative stress and diseases. Recently, other forms of isoprostanoids derived from adrenic, eicosapentaenoic, and docosahexaenoic acids namely F2-dihomo-isoprostanes, F3-isoprostanes, and F4-neuroprostanes respectively, and isofuranoids including isofurans, dihomo-isofurans, and neurofurans are reported as oxidative damage markers for different metabolisms. The most widely used samples in measuring lipid peroxidation products include but not limited to the blood and urine; other biological fluids, specialized tissues, and cells can also be determined. In this review, measurement of isoprostanoids and isofuranoids in novel biological samples by gas chromatography (GC)-mass spectrometry (MS), GC-MS/MS, liquid chromatography (LC)-MS, and LC-MS/MS will be discussed.
Collapse
Affiliation(s)
- K S Leung
- School of Biological Sciences, The University of Hong Kong , Hong Kong
| | | | | | | |
Collapse
|
47
|
Kacerovsky M, Tothova L, Menon R, Vlkova B, Musilova I, Hornychova H, Prochazka M, Celec P. Amniotic fluid markers of oxidative stress in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2014; 28:1250-1259. [DOI: 10.3109/14767058.2014.951628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic,
- Department of Obstetrics and Gynecology, Faculty of Medicine Hradec Kralove, Charles University in Prague, Prague, Czech Republic,
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovak Republic,
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, USA,
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovak Republic,
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, Faculty of Medicine Hradec Kralove, Charles University in Prague, Prague, Czech Republic,
| | - Helena Hornychova
- Fingerland’s Department of Pathology, Faculty of Medicine Hradec Kralove, Charles University in Prague, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic, and
| | - Martin Prochazka
- Department of Obstetrics and Gynecology, Palacky University Olomouc, University Hospital Olomouc, Olomouc, Czech Republic
| | - Peter Celec
- Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovak Republic,
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia,
| |
Collapse
|
48
|
Maddipati KR, Romero R, Chaiworapongsa T, Zhou SL, Xu Z, Tarca AL, Kusanovic JP, Munoz H, Honn KV. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. FASEB J 2014; 28:4835-46. [PMID: 25059230 DOI: 10.1096/fj.14-254383] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipid mediators play an important role in reproductive biology, especially, in parturition. Enhanced biosynthesis of eicosanoids, such as prostaglandin E2 (PGE2) and PGF2α, precedes the onset of labor as a result of increased expression of inducible cyclooxygenase 2 (COX-2) in placental tissues. Metabolism of arachidonic acid results in bioactive lipid mediators beyond prostaglandins that could significantly influence myometrial activity. Therefore, an unbiased lipidomic approach was used to profile the arachidonic acid metabolome of amniotic fluid. In this study, liquid chromatography-mass spectrometry was used for the first time to quantitate these metabolites in human amniotic fluid by comparing patients at midtrimester, at term but not in labor, and at term and in spontaneous labor. In addition to exposing novel aspects of COX pathway metabolism, this lipidomic study revealed a dramatic increase in epoxygenase- and lipoxygenase-pathway-derived lipid mediators in spontaneous labor with remarkable product selectivity. Despite their recognition as anti-inflammatory lipid mediators and regulators of ion channels, little is known about the epoxygenase pathway in labor. Epoxygenase pathway metabolites are established regulators of vascular homeostasis in cardiovascular and renal physiology. Their presence as the dominant lipid mediators in spontaneous labor at term portends a yet undiscovered physiological function in parturition.
Collapse
Affiliation(s)
- Krishna Rao Maddipati
- Bioactive Lipids Research Program, Department of Pathology, Lipidomics Core Facility, and
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Epidemiology, Michigan State University, East Lansing, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sen-Lin Zhou
- Bioactive Lipids Research Program, Department of Pathology, Lipidomics Core Facility, and
| | - Zhonghui Xu
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Adi L Tarca
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Sótero del Río Hospital, Santiago, Chile; and
| | | | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology
| |
Collapse
|
49
|
Menon R, Polettini J, Syed TA, Saade GR, Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am J Reprod Immunol 2014; 72:75-84. [PMID: 24589083 DOI: 10.1111/aji.12220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/27/2014] [Indexed: 11/28/2022] Open
Abstract
PROBLEM The most common DNA lesion generated by oxidative stress (OS) is 7, 8-dihydro-8-oxoguanine (8-oxoG) whose excision repair is performed by 8-oxoguanine glycosylase (OGG1). We investigated OGG1 expression changes in fetal membranes from spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) and its changes in vitro in normal fetal membranes exposed to OS inducer water-soluble cigarette smoke extract (CSE). METHOD OF STUDY DNA damage was determined in amnion cells treated with CSE by comet and FLARE assays. OGG1 mRNA expression and localization in fetal membranes from clinical specimens and in normal term membranes exposed to CSE were examined by QRT-PCR and by immunohistochemistry. RESULTS DNA strand and base damage was seen in amnion cells exposed to CSE. OGG1 expression was 2.5-fold higher in PTB samples compared with pPROM (P = 0.045). No significant difference was seen between term and pPROM or PTB and term. CSE treatment showed a nonsignificant decrease in OGG1. OGG1 was localized to both amnion and chorion with less intense staining in pPROM and CSE-treated membranes. CONCLUSION Increased OS-induced DNA damage predominated by 8-oxoG is likely to persist in fetal cells due to reduced availability of base excision repair enzyme OGG1. This can likely lead to fetal cell senescence associated with some adverse pregnancy outcome.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
50
|
Menon R, Boldogh I, Hawkins HK, Woodson M, Polettini J, Syed TA, Fortunato SJ, Saade GR, Papaconstantinou J, Taylor RN. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1740-51. [PMID: 24832021 DOI: 10.1016/j.ajpath.2014.02.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/09/2014] [Accepted: 02/04/2014] [Indexed: 12/15/2022]
Abstract
Preterm prelabor rupture of the membranes (pPROM) may lead to preterm births (PTBs). We investigated premature senescence of fetal membranes in women with pPROM and spontaneous PTB with intact membranes (<34 weeks) and the inducibility fetal membrane senescence phenotype by oxidative stress in vitro. IHC was performed for p53, p21, and phospho (p)-p38 mitogen-activated protein kinase (MAPK) as markers of senescence phenotype in pPROM, PTBs, and term births. Term fetal membranes were exposed to cigarette smoke extract to induce oxidative stress. Western blots documented p-p53 and p-p38 MAPK. Transmission electron microscopy assessed cellular morphologic features in clinical and cigarette smoke extract-treated membranes. A total of 80% of pPROM cells and >60% of term cells were positive for all three senescence phenotype markers, and concentrations were higher than in PTBs (P < 0.05). p53 staining was comparable in membranes from PTB and term birth pregnancies, whereas only <30% and <45% of cells were positive for p21 and p38 MAPK, respectively. In vitro cigarette smoke extract exposure increased p-p38 MAPK without any detectable change in p-p53 MAPK. Enlargement of organelles consistent with senescence phenotype was evident in pPROM and term membranes in vivo and after cigarette smoke extract treatment in vitro but was less apparent in PTBs. Histologic and biochemical resemblance of pPROM and term membranes suggests premature senescence of the membranes is a mechanistic feature in pPROM, and this can be phenocopied in an in vitro model.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Hal K Hawkins
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Michael Woodson
- Electron Microscopy Core Laboratory, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Jossimara Polettini
- Division of Maternal-Fetal Medicine Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Tariq Ali Syed
- Division of Maternal-Fetal Medicine Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | | | - George R Saade
- Division of Maternal-Fetal Medicine Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|