1
|
Rizzuto V, Settino M, Stroffolini G, Covello G, Vanags J, Naccarato M, Montanari R, de Lossada CR, Mazzotta C, Forestiero A, Adornetto C, Rechichi M, Ricca F, Greco G, Laganovska G, Borroni D. Ocular surface microbiome: Influences of physiological, environmental, and lifestyle factors. Comput Biol Med 2025; 190:110046. [PMID: 40174504 DOI: 10.1016/j.compbiomed.2025.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/22/2025] [Accepted: 03/16/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE The ocular surface (OS) microbiome is influenced by various factors and impacts on ocular health. Understanding its composition and dynamics is crucial for developing targeted interventions for ocular diseases. This study aims to identify host variables, including physiological, environmental, and lifestyle (PEL) factors, that influence the ocular microbiome composition and establish valid associations between the ocular microbiome and health outcomes. METHODS The 16S rRNA gene sequencing was performed on OS samples collected from 135 healthy individuals using eSwab. DNA was extracted, libraries prepared, and PCR products purified and analyzed. PEL confounding factors were identified, and a cross-validation strategy using various bioinformatics methods including Machine learning was used to identify features that classify microbial profiles. RESULTS Nationality, allergy, sport practice, and eyeglasses usage are significant PEL confounding factors influencing the eye microbiome. Alpha-diversity analysis revealed significant differences between Spanish and Italian subjects (p-value < 0.001), with a median Shannon index of 1.05 for Spanish subjects and 0.59 for Italian subjects. Additionally, 8 microbial genera were significantly associated with eyeglass usage. Beta-diversity analysis indicated significant differences in microbial community composition based on nationality, age, sport, and eyeglasses usage. Differential abundance analysis identified several microbial genera associated with these PEL factors. The Support Vector Machine (SVM) model for Nationality achieved an accuracy of 100%, with an AUC-ROC score of 1.0, indicating excellent performance in classifying microbial profiles. CONCLUSION This study underscores the importance of considering PEL factors when studying the ocular microbiome. Our findings highlight the complex interplay between environmental, lifestyle, and demographic factors in shaping the OS microbiome. Future research should further explore these interactions to develop personalized approaches for managing ocular health.
Collapse
Affiliation(s)
- Vincenzo Rizzuto
- Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia; School of Advanced Studies, Center for Neuroscience, University of Camerino, Camerino, Italy; Latvian American Eye Center (LAAC), Riga, Latvia
| | - Marzia Settino
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy; Institute of High Performance Computing and Networks-National Research Council (ICAR-CNR), Rende, Italy.
| | - Giacomo Stroffolini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Giuseppe Covello
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Juris Vanags
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia; Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia
| | - Marta Naccarato
- Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia; Iris Medical Center, Cosenza, Italy
| | - Roberto Montanari
- Pharmacology Institute, Heidelberg University Hospital, Heidelberg, Germany
| | - Carlos Rocha de Lossada
- Eyemetagenomics Ltd., London, United Kingdom; Ophthalmology Department, QVision, Almeria, Spain; Ophthalmology Department, Hospital Regional Universitario of Malaga, Malaga, Spain; Department of Surgery, Ophthalmology Area, University of Seville, Seville, Spain
| | - Cosimo Mazzotta
- Siena Crosslinking Center, Siena, Italy; Departmental Ophthalmology Unit, USL Toscana Sud Est, Siena, Italy; Postgraduate Ophthalmology School, University of Siena, Siena, Italy
| | - Agostino Forestiero
- Institute of High Performance Computing and Networks-National Research Council (ICAR-CNR), Rende, Italy
| | | | | | - Francesco Ricca
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
| | - Guna Laganovska
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia; Clinic of Ophthalmology, P. Stradins Clinical University Hospital, Riga, Latvia
| | - Davide Borroni
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia; Eyemetagenomics Ltd., London, United Kingdom; Centro Oculistico Borroni, Gallarate, Italy
| |
Collapse
|
2
|
Paradzik Simunovic M, Degoricija M, Korac-Prlic J, Lesin M, Stanic R, Puljak L, Olujic I, Marin Lovric J, Vucinovic A, Ljubic Z, Thissen J, Reen Kok C, Jaing C, Bucan K, Terzic J. Potential Role of Malassezia restricta in Pterygium Development. Int J Mol Sci 2025; 26:2976. [PMID: 40243577 PMCID: PMC11989039 DOI: 10.3390/ijms26072976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Pterygium is a condition affecting the ocular surface, marked by a triangular-shaped growth of fibrotic tissue extending from the nasal conjunctiva toward the corneal center, potentially causing visual impairment. While ultraviolet (UV )light exposure is the primary risk factor for pterygium, its underlying cause remains unclear. In order to better understand the true genesis of pterygium development, we investigated pterygium tissue and compared it with healthy conjunctiva controls. Given the eye's direct environmental exposure, we analyzed the microbiota composition using metagenomic sequencing of pterygium tissue to identify microbes potentially associated with this condition. Metagenomic sequencing revealed a higher prevalence of the fungus Malassezia restricta in five pterygium samples, confirmed by in situ hybridization. The CHIT1 gene, which plays a role in antifungal defenses, displayed the highest expression in five pterygium tissue samples compared to healthy conjunctiva controls, suggesting the potential involvement of Malassezia restricta in pterygium development. Gene expression profiling of pterygium highlighted an IL-33 and IL-4 gene expression signature, along with an increased presence of M2 macrophages, emphasizing their role in promoting fibrosis-a hallmark feature of pterygium. The detection of Malassezia restricta in the pterygium samples and associated molecular changes provides novel insights into the ocular microbiome and raises the possibility of Malassezia's involvement in pterygium pathology.
Collapse
Affiliation(s)
| | - Marina Degoricija
- Laboratory for Cancer Research, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| | - Mladen Lesin
- Department of Ophthalmology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.P.S.)
| | - Robert Stanic
- Department of Ophthalmology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.P.S.)
| | - Livia Puljak
- Center for Evidence-Based Medicine and Healthcare, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Ivana Olujic
- Department of Ophthalmology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.P.S.)
| | - Josipa Marin Lovric
- Department of Ophthalmology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.P.S.)
| | - Ana Vucinovic
- Department of Ophthalmology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.P.S.)
| | - Zana Ljubic
- Department of Ophthalmology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.P.S.)
| | - James Thissen
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Car Reen Kok
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Crystal Jaing
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Kajo Bucan
- Department of Ophthalmology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.P.S.)
| | - Janos Terzic
- Laboratory for Cancer Research, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
3
|
Jiao X, Li Y, Hu Y, Yan R, Fu T, Liu J, Li Z. Antibiotic-Induced dysbiosis of the ocular microbiome affects corneal circadian rhythmic activity in mice. Mucosal Immunol 2025:S1933-0219(25)00010-8. [PMID: 39920996 DOI: 10.1016/j.mucimm.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
The ocular surface microbiota plays a critical role in maintaining corneal homeostasis, but its disruption and subsequent effects on corneal functions remain poorly understood. This study investigates how antibiotic-induced microbial depletion affects the corneal circadian transcriptome in C57BL/6J mice. Dysbiosis was induced using a topical antibiotic cocktail, and RNA sequencing was employed to analyze gene expression across eight time points over 24 h. Antibiotic treatment disrupted corneal circadian rhythms, eliminating rhythmicity in 1,812 genes and introducing rhythmicity in 1,928 previously arrhythmic genes. Furthermore, epithelial adhesion was impaired, inflammation was elevated, and neural sensitivity was reduced. More than 50 % of ocular microbial genera exhibited daily oscillations, with six genera showing significant correlations with corneal rhythmic transcripts. Additionally, the administration of TLR agonists restored circadian gene expression patterns, with partial recovery of corneal barrier function and immune homeostasis, further highlighting the potential of microbiota-targeted therapies in treating ocular surface disorders. These findings underscore the critical role of the ocular microbiota in regulating corneal health and suggest that restoring microbial balance via TLR activation may offer new therapeutic avenues for eye diseases.
Collapse
Affiliation(s)
- Xinwei Jiao
- Department of Pathology, Medical School, Jinan University, Guangzhou, China; International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu Hu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Desai K, Sankaran S, del Campo A, Trujillo S. A screening setup to streamline in vitro engineered living material cultures with the host. Mater Today Bio 2025; 30:101437. [PMID: 39850240 PMCID: PMC11755081 DOI: 10.1016/j.mtbio.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Engineered living materials (ELMs), which usually comprise bacteria, fungi, or animal cells entrapped in polymeric matrices, offer limitless possibilities in fields like drug delivery or biosensing. Determining the conditions that sustain ELM performance while ensuring compatibility with ELM hosts is essential before testing them in vivo. This is critical to reduce animal experimentation and can be achieved through in vitro investigations. Currently, there are no standards that ensure ELM compatibility with host tissues. Towards this goal, we designed a 96-well plate-based screening method to streamline ELM growth across culture conditions and determine their compatibility potential in vitro. We showed proliferation of three bacterial species encapsulated in hydrogels over time and screened six different cell culture media. We fabricated ELMs in bilayer and monolayer formats and tracked bacterial leakage as a measure of ELM biocontainment. After screening, an appropriate medium was selected that sustained growth of an ELM, and it was used to study cytocompatibility in vitro. ELM cytotoxicity on murine fibroblasts and human monocytes was studied by adding ELM supernatants and measuring cell membrane integrity and live/dead staining, respectively, proving ELM cytocompatibility. Our work illustrates a simple setup to streamline the screening of compatible environmental conditions of ELMs with the host.
Collapse
Affiliation(s)
- Krupansh Desai
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
- Chemistry Department, Saarland University, Saarbrücken, 66123, Germany
| | | | - Aránzazu del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
- Chemistry Department, Saarland University, Saarbrücken, 66123, Germany
| | - Sara Trujillo
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
- Saarland University, Pharma Science Hub (PSH), 66123 Saarbrucken, Germany
| |
Collapse
|
5
|
Kumar NR, Khamar P, Kannan R, Padmanabhan A, Shetty R, D'Souza S, Vaidya T, Sethu S, Ghosh A. Distinct Ocular Surface Microbiome in Keratoconus Patients Correlate With Local Immune Dysregulation. Invest Ophthalmol Vis Sci 2025; 66:60. [PMID: 39869087 PMCID: PMC11771523 DOI: 10.1167/iovs.66.1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/14/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles. Methods Sixty-two patients with KC and 21 healthy controls underwent corneal topography analysis and eye examination followed by a collection of Schirmer's strip, ocular surface wash, and ocular surface swabs. Microbiomes were analyzed by extracting DNA from the swabs followed by 16S rRNA gene V3-V4 amplicon sequencing and analyzed using QIIME. Fifty-two molecular factors from Schirmer's strip tear extracts and 11 immune cells from ocular wash were measured using multiplex ELISA and flow cytometry. Alpha diversity, linear discriminant analysis effect size (LEfSe), relative abundance and receiver operating characteristic - area under the curve (ROC-AUC) analysis were performed. Unsupervised clustering at the genus level with clinical parameters, soluble factors, and immune cells was performed. Results Fifty-two phyla/class, 132 order, 283 family, and 718 genera were identified in our cohort. Alpha diversity indices were comparable between patients with KC and the healthy controls. Dominant phyla across groups were Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. Alphaproteobacteria increased in KC eyes whereas Actinobacteria, Firmicutes_Bacilli reduced compared with the healthy controls. We found a significant positive correlation of Microbacterium, Cutibacterium, and Brevundimonas genera abundance with keratometry and corneal thickness. Levels of IL-21, IL-9, Fractalkine, and VEGF positively correlated with Tetrasphaera (P < 0.05). β2-microglobulin and CD66bhigh cells correlated with Bacteroides (P < 0.05). CD45+ cells correlated with Escherichia_Shigella (P < 0.02). Conclusions We discovered a unique microbiome signature of KC which correlated to disease grades and secreted molecular factors and immune cells. Therefore, the altered microbiome on the ocular surface may drive immune dysregulation in KC and provide scope for potential interventions in the future.
Collapse
Affiliation(s)
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Ramaraj Kannan
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| | | | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| |
Collapse
|
6
|
Scharf SA, Friedrichs L, Bock R, Borrelli M, MacKenzie C, Pfeffer K, Henrich B. Oxford Nanopore Technology-Based Identification of an Acanthamoeba castellanii Endosymbiosis in Microbial Keratitis. Microorganisms 2024; 12:2292. [PMID: 39597681 PMCID: PMC11596929 DOI: 10.3390/microorganisms12112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: Microbial keratitis is a serious eye infection that carries a significant risk of vision loss. Acanthamoeba spp. are known to cause keratitis and their bacterial endosymbionts can increase virulence and/or treatment resistance and thus significantly worsen the course of the disease. (2) Methods and Results: In a suspected case of Acanthamoeba keratitis, in addition to Acanthamoeba spp., an endosymbiont of acanthamoebae belonging to the taxonomic order of Holosporales was detected by chance in a bacterial 16S rDNA-based pan-PCR and subsequently classified as Candidatus Paracaedibacter symbiosus through an analysis of an enlarged 16S rDNA region. We used Oxford Nanopore Technology to evaluate the usefulness of whole-genome sequencing (WGS) as a one-step diagnostics method. Here, Acanthamoeba castellanii and the endosymbiont Candidatus Paracaedibacter symbiosus could be directly detected at the species level. No other microbes were identified in the specimen. (3) Conclusions: We recommend the introduction of WGS as a diagnostic approach for keratitis to replace the need for multiple species-specific qPCRs in future routine diagnostics and to enable an all-encompassing characterisation of the polymicrobial community in one step.
Collapse
Affiliation(s)
- Sebastian Alexander Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (L.F.); (C.M.); (K.P.)
| | - Lennart Friedrichs
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (L.F.); (C.M.); (K.P.)
| | - Robert Bock
- Department of Ophthalmology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (R.B.); (M.B.)
| | - Maria Borrelli
- Department of Ophthalmology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (R.B.); (M.B.)
| | - Colin MacKenzie
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (L.F.); (C.M.); (K.P.)
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (L.F.); (C.M.); (K.P.)
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; (L.F.); (C.M.); (K.P.)
| |
Collapse
|
7
|
Trojacka E, Izdebska J, Szaflik J, Przybek-Skrzypecka J. The Ocular Microbiome: Micro-Steps Towards Macro-Shift in Targeted Treatment? A Comprehensive Review. Microorganisms 2024; 12:2232. [PMID: 39597621 PMCID: PMC11596073 DOI: 10.3390/microorganisms12112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
A healthy ocular surface is inhabited by microorganisms that constitute the ocular microbiome. The core of the ocular microbiome is still a subject of debate. Numerous culture-dependent and gene sequencing studies have revealed the composition of the ocular microbiome. There was a confirmed correlation between the ocular microbiome and ocular surface homeostasis as well as between ocular dysbiosis and pathologies such as blepharitis, microbial keratitis, and conjunctivitis. However, the role of the ocular microbiome in the pathogenesis and treatment of ocular surface diseases remains unclear. This article reviews available data on the ocular microbiome and microbiota, their role in maintaining ocular homeostasis, and the impact of dysbiosis on several ophthalmic disorders. Moreover, we aimed to discuss potential treatment targets within the ocular microbiota.
Collapse
Affiliation(s)
- Ewelina Trojacka
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
| | - Justyna Izdebska
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
- Department of Ophthalmology, Medical University of Warsaw, 03-709 Warsaw, Poland
| | - Jacek Szaflik
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
- Department of Ophthalmology, Medical University of Warsaw, 03-709 Warsaw, Poland
| | - J. Przybek-Skrzypecka
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
- Department of Ophthalmology, Medical University of Warsaw, 03-709 Warsaw, Poland
| |
Collapse
|
8
|
Gagliano C, Salvetat ML, Musa M, D'Esposito F, Rusciano D, Maniaci A, Pellegrini F, Scibilia G, Zeppieri M. Bacterial Insights: Unraveling the Ocular Microbiome in Glaucoma Pathogenesis. FRONT BIOSCI-LANDMRK 2024; 29:310. [PMID: 39206909 DOI: 10.31083/j.fbl2908310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
This review explores the connection between the ocular surface microbiome and glaucoma, highlighting its impact on disease progression. Beginning with an overview of global glaucoma significance, it emphasizes the importance of understanding the cellular characteristics and microbiology of the ocular microbiome. A search was conducted on the PubMed and Cochrane Library databases using the phrase "ocular microbiome glaucoma". 0 records were returned from the Cochrane Library while 21 were returned from PubMed. A total of 21 results were retrieved from 2017 to 2024. This comprised one opinion paper, four original research articles, and 16 reviews. This review covered the anatomy of the ocular surface, advanced analysis methods, and the ocular microbiome. It also delved into dysbiosis in glaucoma, addressing altered microbial communities and their potential role in disease progression. The intricate interplay between the ocular microbiome and the host's immune system is explored, emphasizing crosstalk and inflammatory responses. The review concludes by discussing therapeutic implications, including modulating ocular microbiota and potential future treatment strategies. Understanding the microbiome in healthy and glaucomatous eyes can help researchers and clinicians in innovative approaches to ocular health.
Collapse
Affiliation(s)
- Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, 95121 Catania, Italy
| | - Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, 300238 Benin, Edo, Nigeria
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, NW15QH London, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Napoli, Italy
| | | | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Giuseppe Scibilia
- Department of Obstetrics and Gynecology, "Giovanni Paolo II" Hospital, 97100 Ragusa, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
9
|
Lin J, Wang J, Feng J, Zhu R, Guo Y, Dong Y, Zhang H, Jin X. Changes in the ocular surface microbiome of patients with coronavirus disease 2019 (COVID-19). Front Microbiol 2024; 15:1389139. [PMID: 39040901 PMCID: PMC11262004 DOI: 10.3389/fmicb.2024.1389139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose To elucidate the reasons behind the increased incidence of ocular disease in patients with coronavirus disease 2019 (COVID-19), this study delved deeper into the specific effects of COVID-19 on patients' ocular surface microbiome (OSM) and investigated its relationship with the increased incidence of ocular disease. Methods In this study, conjunctival sac swabs were collected from 43 participants for 16S rRNA amplicon sequencing. The participants were categorized into three groups based on their COVID-19 status: the control group (C group) consisted of 15 participants who showed no evidence of COVID-19, the experimental group (E group) included 15 participants who tested positive for COVID-19, and the COVID-19 recovery period group (R group) comprised 13 participants. Results In the comparison of alpha diversity, group E had a higher Shannon, Chao1 and Goods coverage index. When comparing beta diversity, groups E and R were more similar to each other. At the phylum level, although the OSM of the three groups was dominated by Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes, the compositional proportions were significantly different. At the genus level, the dominant species in the three OSM groups were significantly different, with Pseudomonas becoming the dominant genus in groups E and R compared to group C, and the abundance of Ralstonia decreasing significantly. Conclusion This study provides additional evidence supporting the association between the OSM and COVID-19, which contributes to our understanding of the potential mechanisms underlying ocular symptoms and complications associated with COVID-19 in the future.
Collapse
|
10
|
Kezic JM, Buckland L, Wiffen S. Microbiological screening of corneas stored in organ culture medium at Lions Eye Bank of Western Australia from 2011 to 2022. Int Ophthalmol 2024; 44:280. [PMID: 38922477 DOI: 10.1007/s10792-024-03223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE The purpose of this study was to analyse the contamination rate of corneal samples stored in OCM at Lions Eye Bank of Western Australia over a 12-year period. METHODS All OCM samples used to preserve corneas from 2011 to 2022 (inclusive) underwent microbiological testing. Samples were collected into aerobic and anaerobic culture bottles on day 3-5 of corneal preservation and 24 h after transfer to thinning medium. Samples were tested for 7 days using the BACTEC FX system. Corneas remained in quarantine until clearance was obtained. RESULTS From 2011 to 2022, 3009 corneas were retrieved and 2756 corneas were stored in OCM. Thirty one (1.1%) positive samples were reported, with 20 growths of bacterial origin and 11 fungal. Microbial contamination was mostly identified on day 1 of culture (77.5%). Donors of contaminated samples had a mean age of 55 years, with 17 male and 14 female donors. The highest incidence of contamination came from donors whose cause of death was cancer. Death to enucleation times of contaminated samples ranged from 3.5 to 25.5 h (mean = 13.5 ± 7.3) and death to preservation time ranged from 4.1 to 27.5 h (mean = 14.8 ± 7.2). These did not significantly differ from the average time from death to enucleation (mean = 13.9 ± 3) and death to preservation (mean = 16.3 ± 4.2) of non-contaminated samples. CONCLUSION Microbiological screening of corneas stored in OCM at LEBWA showed a very low rate of positive cultures with no predictive donor characteristics.
Collapse
Affiliation(s)
- Jelena M Kezic
- Lions Eye Bank of Western Australia, Lions Eye Institute, Nedlands, WA, 6009, Australia.
| | - Lisa Buckland
- Lions Eye Bank of Western Australia, Lions Eye Institute, Nedlands, WA, 6009, Australia
| | - Steven Wiffen
- Lions Eye Bank of Western Australia, Lions Eye Institute, Nedlands, WA, 6009, Australia
| |
Collapse
|
11
|
Spörri L, Uldry AC, Kreuzer M, Herzog EL, Zinkernagel MS, Unterlauft JD, Zysset-Burri DC. Exploring the Ocular Surface Microbiome and Tear Proteome in Glaucoma. Int J Mol Sci 2024; 25:6257. [PMID: 38892444 PMCID: PMC11172891 DOI: 10.3390/ijms25116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Although glaucoma is a leading cause of irreversible blindness worldwide, its pathogenesis is incompletely understood, and intraocular pressure (IOP) is the only modifiable risk factor to target the disease. Several associations between the gut microbiome and glaucoma, including the IOP, have been suggested. There is growing evidence that interactions between microbes on the ocular surface, termed the ocular surface microbiome (OSM), and tear proteins, collectively called the tear proteome, may also play a role in ocular diseases such as glaucoma. This study aimed to find characteristic features of the OSM and tear proteins in patients with glaucoma. The whole-metagenome shotgun sequencing of 32 conjunctival swabs identified Actinobacteria, Firmicutes, and Proteobacteria as the dominant phyla in the cohort. The species Corynebacterium mastitidis was only found in healthy controls, and their conjunctival microbiomes may be enriched in genes of the phospholipase pathway compared to glaucoma patients. Despite these minor differences in the OSM, patients showed an enrichment of many tear proteins associated with the immune system compared to controls. In contrast to the OSM, this emphasizes the role of the proteome, with a potential involvement of immunological processes in glaucoma. These findings may contribute to the design of new therapeutic approaches targeting glaucoma and other associated diseases.
Collapse
Affiliation(s)
- Livia Spörri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (E.L.H.); (M.S.Z.); (J.D.U.); (D.C.Z.-B.)
| | | | - Marco Kreuzer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland;
| | - Elio L. Herzog
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (E.L.H.); (M.S.Z.); (J.D.U.); (D.C.Z.-B.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (E.L.H.); (M.S.Z.); (J.D.U.); (D.C.Z.-B.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Jan D. Unterlauft
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (E.L.H.); (M.S.Z.); (J.D.U.); (D.C.Z.-B.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Denise C. Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (E.L.H.); (M.S.Z.); (J.D.U.); (D.C.Z.-B.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| |
Collapse
|
12
|
Zhang W, Gu X, Zhao Q, Wang C, Liu X, Chen Y, Zhao X. Causal effects of gut microbiota on chalazion: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1411271. [PMID: 38895185 PMCID: PMC11183106 DOI: 10.3389/fmed.2024.1411271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose To investigate the causal relationship between gut microbiota (GM) and chalazion through Mendelian randomization (MR) analysis. Methods GM-related genome-wide association studies (GWAS) were obtained from the International Consortium MiBioGen. Genetic data for chalazion were sourced from the MRC Integrative Epidemiology Unit (IEU) Open GWAS database. Five MR methods, including inverse variance weighted (IVW), were employed to estimate causal relationships. Cochran's Q test was used to detect heterogeneity, the MR-Egger intercept test and MR-PRESSO regression were utilized to detect horizontal pleiotropy, and the leave-one-out method was employed to validate data stability. Results We identified 1,509 single nucleotide polymorphisms (SNPs) across 119 genera as instrumental variables (IVs) (p < 1 × 10-5). According to the inverse variance weighted (IVW) estimate, the Family XIII AD3011 group (OR = 1.0018, 95% CI 1.0002-1.0035, p = 0.030) and Catenibacterium (OR = 1.0013, 95% CI 1.0002-1.0025, p = 0.022) were potentially associated with increased risk of chalazion. Conversely, Veillonella (OR = 0.9986, 95% CI 0.9974-0.9999, p = 0.036) appeared to provide protection against chalazion. There was no evidence of heterogeneity or pleiotropy. Conclusion This study uncovered the causal relationship between GM and chalazion, pinpointing Catenibacterium and Family XIII AD3011 group as potential risk contributors, while highlighting Veillonella as a protective factor. In-depth investigation into the potential mechanisms of specific bacteria in chalazion was essential for providing novel therapeutic and preventive strategies in the future.
Collapse
Affiliation(s)
- Wenfei Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingwang Gu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuting Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Liu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Liang C, Wang L, Wang X, Jia Y, Xie Q, Zhao L, Yuan H. Altered ocular surface microbiota in obesity: a case-control study. Front Cell Infect Microbiol 2024; 14:1356197. [PMID: 38533385 PMCID: PMC10963539 DOI: 10.3389/fcimb.2024.1356197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Purpose This study aimed to investigate the composition of ocular surface microbiota in patients with obesity. Methods This case-control study, spanning from November 2020 to March 2021 at Henan Provincial People's Hospital, involved 35 patients with obesity and an equivalent number of age and gender-matched healthy controls. By employing 16S rRNA sequencing, this study analyzed the differences in ocular surface microbiota between the two groups. The functional prediction analysis of the ocular surface microbiota was conducted using PICRUSt2. Results The alpha diversity showed no notable differences in the richness or evenness of the ocular surface microbiota when comparing patients with obesity to healthy controls (Shannon index, P=0.1003). However, beta diversity highlighted significant variances in the microbiota composition of these two groups (ANOSIM, P=0.005). LEfSe analysis revealed that the relative abundances of Delftia, Cutibacterium, Aquabacterium, Acidovorax, Caulobacteraceae unclassified, Comamonas and Porphyromonas in patients with obesity were significantly increased (P<0.05). Predictive analysis using PICRUSt2 highlighted a significant enhancement in certain metabolic pathways in patients with obesity, notably xenobiotics metabolism via cytochrome P450 (CYP450), lipid metabolism, and the oligomerization domain (NOD)-like receptor signaling pathway (P<0.05). Conclusions Patients with obesity exhibit a distinct ocular surface core microbiome. The observed variations in this microbiome may correlate with increased activity in CYP450, changes in lipid metabolism, and alterations in NOD-like receptor signaling pathways.
Collapse
Affiliation(s)
- Chenghong Liang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Limin Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiudan Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yifan Jia
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qinyuan Xie
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lingyun Zhao
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Lai J, Rigas Y, Kantor N, Cohen N, Tomlinson A, St. Leger AJ, Galor A. Living with your biome: how the bacterial microbiome impacts ocular surface health and disease. EXPERT REVIEW OF OPHTHALMOLOGY 2024; 19:89-103. [PMID: 38764699 PMCID: PMC11101146 DOI: 10.1080/17469899.2024.2306582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/14/2024] [Indexed: 05/21/2024]
Abstract
Introduction Microbiome research has grown exponentially but the ocular surface microbiome (OSM) remains an area in need of further study. This review aims to explore its complexity, disease-related microbial changes, and immune interactions, and highlights the potential for its manipulation as a therapeutic for ocular surface diseases. Areas Covered We introduce the OSM by location and describe what constitutes a normal OSM. Second, we highlight aspects of the ocular immune system and discuss potential immune microbiome interactions in health and disease. Finally, we highlight how microbiome manipulation may have therapeutic potential for ocular surface diseases. Expert Opinion The ocular surface microbiome varies across its different regions, with a core phyla identified, but with genus variability. A few studies have linked microbiome composition to diseases like dry eye but more research is needed, including examining microbiome interactions with the host. Studies have noted that manipulating the microbiome may impact disease presentation. As such, microbiome manipulation via diet, oral and topical pre and probiotics, and hygienic measures may provide new therapeutic algorithms in ocular surface diseases.
Collapse
Affiliation(s)
- James Lai
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Yannis Rigas
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicole Kantor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Noah Cohen
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Ana Tomlinson
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Anthony J. St. Leger
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
- Miami Veterans Affairs Hospital, Miami, Florida, USA
| |
Collapse
|
15
|
Rodina ES, Fettser EI, Novikov IA. [Methods for assessing the microbiological diversity of the ocular surface]. Vestn Oftalmol 2024; 140:96-108. [PMID: 38962985 DOI: 10.17116/oftalma202414003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
This review compares data from scientific studies on the microbial community of the ocular surface (OS) in conditionally healthy individuals using cultural methods (including culture-dependent diagnostic tests), microscopic and molecular genetic methods, and assesses the influence of research methods and sample preparation on the results. Concordance and discordance of the sets of identified microorganisms were analyzed using overlapping and non-overlapping methods of studying the microbial community of a healthy OS. The article presents tables showing the names of microorganisms that were identified in different sources. Cross-verification in taxa of different ranks helped confirm the following most frequently found microorganisms on healthy OS: coccomorphic microorganisms of the genera Staphylococcus, Micrococcus, Kocuria, Streptococcus, Enterococcus; gram-positive spore-forming bacilli of the genera Bacillus and Paenibacillus; gram-positive non-spore-forming rod-shaped bacteria, including Corynebacterium, but excluding Propionibacterium and Microbacterium; gram-negative non-spore-forming rod-shaped microorganisms of the genera Moraxella and Serratia. The study also assessed the effect of wearing soft contact lenses on the composition of the microbial community of the OS.
Collapse
Affiliation(s)
- E S Rodina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E I Fettser
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - I A Novikov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
16
|
AL-Smadi K, Leite-Silva VR, Filho NA, Lopes PS, Mohammed Y. Innovative Approaches for Maintaining and Enhancing Skin Health and Managing Skin Diseases through Microbiome-Targeted Strategies. Antibiotics (Basel) 2023; 12:1698. [PMID: 38136732 PMCID: PMC10741029 DOI: 10.3390/antibiotics12121698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The skin microbiome is crucial in maintaining skin health, and its disruption is associated with various skin diseases. Prebiotics are non-digestible fibers and compounds found in certain foods that promote the activity and growth of beneficial bacteria in the gut or skin. On the other hand, live microorganisms, known as probiotics, benefit in sustaining healthy conditions when consumed in reasonable quantities. They differ from postbiotics, which are by-product compounds from bacteria that release the same effects as their parent bacteria. The human skin microbiome is vital when it comes to maintaining skin health and preventing a variety of dermatological conditions. This review explores novel strategies that use microbiome-targeted treatments to maintain and enhance overall skin health while managing various skin disorders. It is important to understand the dynamic relationship between these beneficial microorganisms and the diverse microbial communities present on the skin to create effective strategies for using probiotics on the skin. This understanding can help optimize formulations and treatment regimens for improved outcomes in skincare, particularly in developing solutions for various skin problems.
Collapse
Affiliation(s)
- Khadeejeh AL-Smadi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
| | - Vania Rodrigues Leite-Silva
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Newton Andreo Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Patricia Santos Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
17
|
Gafen HB, Liu CC, Ineck NE, Scully CM, Mironovich MA, Taylor CM, Luo M, Leis ML, Scott EM, Carter RT, Hernke DM, Paul NC, Lewin AC. Alterations to the bovine bacterial ocular surface microbiome in the context of infectious bovine keratoconjunctivitis. Anim Microbiome 2023; 5:60. [PMID: 37996960 PMCID: PMC10668498 DOI: 10.1186/s42523-023-00282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Infectious bovine keratoconjunctivitis (IBK) is a common cause of morbidity in cattle, resulting in significant economic losses. This study aimed to characterize the bovine bacterial ocular surface microbiome (OSM) through conjunctival swab samples from Normal eyes and eyes with naturally acquired, active IBK across populations of cattle using a three-part approach, including bacterial culture, relative abundance (RA, 16 S rRNA gene sequencing), and semi-quantitative random forest modeling (real-time polymerase chain reaction (RT-PCR)). RESULTS Conjunctival swab samples were obtained from eyes individually classified as Normal (n = 376) or IBK (n = 228) based on clinical signs. Cattle unaffected by IBK and the unaffected eye in cattle with contralateral IBK were used to obtain Normal eye samples. Moraxella bovis was cultured from similar proportions of IBK (7/228, 3.07%) and Normal eyes (1/159, 0.63%) (p = 0.1481). Moraxella bovoculi was cultured more frequently (p < 0.0001) in IBK (59/228, 25.88%) than Normal (7/159, 4.40%) eyes. RA (via 16 S rRNA gene sequencing) of Actinobacteriota was significantly higher in Normal eyes (p = 0.0045). Corynebacterium variabile and Corynebacterium stationis (Actinobacteriota) were detected at significantly higher RA (p = 0.0008, p = 0.0025 respectively) in Normal eyes. Rothia nasimurium (Actinobacteriota) was detected at significantly higher RA in IBK eyes (p < 0.0001). Alpha-diversity index was not significantly different between IBK and Normal eyes (p > 0.05). Alpha-diversity indices for geographic location (p < 0.001), age (p < 0.0001), sex (p < 0.05) and breed (p < 0.01) and beta-diversity indices for geographic location (p < 0.001), disease status (p < 0.01), age (p < 0.001), sex (p < 0.001) and breed (p < 0.001) were significantly different between groups. Modeling of RT-PCR values reliably categorized the microbiome of IBK and Normal eyes; primers for Moraxella bovoculi, Moraxella bovis, and Staphylococcus spp. were consistently the most significant canonical variables in these models. CONCLUSIONS The results provide further evidence that multiple elements of the bovine bacterial OSM are altered in the context of IBK, indicating the involvement of a variety of bacteria in addition to Moraxella bovis, including Moraxella bovoculi and R. nasimurium, among others. Actinobacteriota RA is altered in IBK, providing possible opportunities for novel therapeutic interventions. While RT-PCR modeling provided limited further support for the involvement of Moraxella bovis in IBK, this was not overtly reflected in culture or RA results. Results also highlight the influence of geographic location and breed type (dairy or beef) on the bovine bacterial OSM. RT-PCR modeling reliably categorized samples as IBK or Normal.
Collapse
Affiliation(s)
- Hannah B Gafen
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Nikole E Ineck
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Clare M Scully
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Melanie A Mironovich
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, 2020 Gravier St, New Orleans, LA, 70112, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, 2020 Gravier St, New Orleans, LA, 70112, USA
| | - Marina L Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - Erin M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY, 14853, USA
| | - Renee T Carter
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - David M Hernke
- Department of Ambulatory Medicine and Theriogenology, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA, 01536, USA
| | - Narayan C Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, Texas A&M University, 483 Agronomy Rd, College Station, TX, 77843, USA
| | - Andrew C Lewin
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
18
|
Jiao X, Li Z. Temporal dynamics and composition of ocular surface microbiota in C57BL/6J mice: uncovering a 12h ultradian rhythm. Front Cell Infect Microbiol 2023; 13:1244454. [PMID: 38029247 PMCID: PMC10651734 DOI: 10.3389/fcimb.2023.1244454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to investigate the presence of rhythmic fluctuations in the composition, abundance, and functions of commensal core bacteria on the ocular surface of C57BL/6J mice. Methods Male C57BL/6J mice, aged 12 weeks, were subjected to a 12-hour light/12-hour dark cycle. Ocular surface tissue samples were collected at four time points (ZT) over a 24-hour period at six-hour intervals. The core ocular surface microbiota's oscillation cycles and frequencies were assessed using 16S rRNA gene sequencing targeting the V3-V4 region, along with the JTK_CYCLE algorithm. Functional predictions of these bacteria were conducted using PICRUSt2. Results Deep sequencing of the ocular surface microbiota highlighted the high abundance of commensal bacteria, with Proteobacteria, Actinobacteriota, and Firmicutes collectively constituting over 90% of the total sample abundance. Among the 22 core bacterial genera, 11 exhibited robust 12-hour rhythms, including Halomonas, Pelagibacterium, Pseudomonas, Nesterenkonia, norank_f_Hyphomonadaceae, Stenotrophomonas, Anoxybacillus, Acinetobacter, Zoogloea, Brevibacillus, and Ralstonia. Further taxonomic analysis indicated significant intra-cluster similarities and inter-cluster differences at the order, family, and genus levels during ZT0/12 and ZT6/18. Community interaction networks and functional prediction analyses revealed synchronized 12-hour rhythmic oscillations in neural, immune, metabolic, and other pathways associated with symbiotic bacteria. Conclusion This study demonstrates the presence of ultradian rhythmic oscillations in commensal bacteria on the ocular surface of normal C57BL/6J mice, with a 12-hour cycle. These findings suggest a crucial role for ultradian rhythms in maintaining ocular surface homeostasis in the host.
Collapse
Affiliation(s)
- Xinwei Jiao
- Department of Pathology, Medical School, Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Zilliox MJ, Bouchard CS. The Microbiome, Ocular Surface, and Corneal Disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1648-1661. [PMID: 37236506 DOI: 10.1016/j.ajpath.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The ocular surface microbiome is an emerging field of study that seeks to understand how the community of microorganisms found on the ocular surface may help maintain homeostasis or can potentially lead to disease and dysbiosis. Initial questions include whether the organisms detected on the ocular surface inhabit that ecological niche and, if so, whether there exists a core microbiome found in most or all healthy eyes. Many questions have emerged around whether novel organisms and/or a redistribution of organisms play a role in disease pathogenesis, response to therapies, or convalescence. Although there is much enthusiasm about this topic, the ocular surface microbiome is a new field with many technical challenges. These challenges are discussed in this review as well as a need for standardization to adequately compare studies and advance the field. In addition, this review summarizes the current research on the microbiome of various ocular surface diseases and how these findings may impact treatments and clinical decision-making.
Collapse
Affiliation(s)
- Michael J Zilliox
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois
| | - Charles S Bouchard
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois.
| |
Collapse
|
20
|
Barrera B, Bustamante A, Marín-Cornuy M, Aguila-Torres P. Contact lenses and ocular dysbiosis, from the transitory to the pathological. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023; 98:586-594. [PMID: 37648207 DOI: 10.1016/j.oftale.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Normal ocular microbiota is composed of different Gram-negative and positive bacterial communities that act as commensals on the ocular surface. An imbalance in the homeostasis of the native species or dysbiosis triggers functional alterations that can eventually lead to ocular conditions, indicating the use of contact lenses as the most relevant predisposing factor. Through a bibliographic review that added scientific articles published between 2018 and 2022, the relationship between healthy ocular microbiota and dysbiosis associated with the use of contact lenses that trigger ocular conditions was analyzed. The ocular microbiota in healthy individuals is mainly composed of bacteria from the phyla: Proteobacteria, Actinobacteria and Firmicutes. These bacterial communities associated with the use of contact lenses develop dysbiosis, observing an increase in certain genera such as Staphylococcus spp. and Pseudomonas spp., which under normal conditions are commensals of the ocular surface, but as their abundance is increased, they condition the appearance of various ocular conditions such as corneal infiltrative events, bacterial keratitis and corneal ulcer. These pathologies tend to evolve rapidly, which, added to late detection and treatment, can lead to a poor visual prognosis. It is suggested that professionals in the ophthalmology area learn about the composition of the communities of microorganisms that make up this ocular microbiota, in order to correctly distinguish and identify the causative agent, thereby providing a adequate and effective treatment to the user.
Collapse
Affiliation(s)
- B Barrera
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - A Bustamante
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - M Marín-Cornuy
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - P Aguila-Torres
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile.
| |
Collapse
|
21
|
Cavuoto KM, Galor A, Zhu AY. Role of the ocular surface microbiome in allergic eye diseases. Curr Opin Allergy Clin Immunol 2023; 23:376-382. [PMID: 37459276 DOI: 10.1097/aci.0000000000000930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on emerging literature on the role of the ocular surface microbiome (OSM) in allergic eye diseases. RECENT FINDINGS Findings in the literature suggest that the ocular surface microbiome plays a role in the pathophysiology and course of allergic disease of the ocular surface. SUMMARY Knowledge regarding the role of the ocular surface microbiome in allergic disease is important to guide development of targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Kara M Cavuoto
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine
- Miami Veterans Administration Medical Center, Miami, Florida, USA
| | - Angela Y Zhu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine
| |
Collapse
|
22
|
Xiao K, Song H, Chen Z, Long Q. Conjunctival microbiome changes in soft contact lens users and contact lens discomfort patients. Biomarkers 2023; 28:531-537. [PMID: 37352111 DOI: 10.1080/1354750x.2023.2229532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
INTRODUCTION Contact lens discomfort (CLD) acts as a challenging problem, and the associated conjunctival microbiome changes were unclear. MATERIAL AND METHODS Conjunctival sac swab samples were collected from 12 eyes of nonwearers (NW), 12 eyes of asymptomatic contact lens (ACL) wearers, and 11 eyes of CLD. The V3-V4 region of the 16S rRNA gene sequencing was used to investigate differences among three groups. RESULTS No differences in alpha diversity were observed among the three groups. The beta diversity showed a distinct microbiome composition between ACL and CLD group (P = 0.018) with principal coordinate analysis. The relative abundance of Firmicutes was significantly higher in CLD (48.18%) than in ACL (13.21%) group (P = 0.018). The abundance of Bacillus in patients with ACL (0.05%) or with CLD (0.02%) were significantly lower than that in the NW (1.27%) group (P = 0.024, 0.028, respectively). Moreover, the abundance of Firmicutes was positively correlated with the OSDI scores in CLD patients (r = 0.817, P < 0. 01, Spearman). DISCUSSIONS Patients with CLD have various degrees of bacterial microbiota imbalance in the conjunctival sac, compared with NW and ACL groups. CONCLUSION Firmicutes may serve as a potential biomarker for the CLD patients.
Collapse
Affiliation(s)
- Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengyu Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Gafen HB, Liu CC, Ineck NE, Scully CM, Mironovich MA, Guarneri L, Taylor CM, Luo M, Leis ML, Scott EM, Carter RT, Lewin AC. Relative and Quantitative Characterization of the Bovine Bacterial Ocular Surface Microbiome in the Context of Suspected Ocular Squamous Cell Carcinoma. Animals (Basel) 2023; 13:1976. [PMID: 37370486 DOI: 10.3390/ani13121976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The ocular surface microbiome is altered in certain disease states. The aim of this study was to characterize the bovine bacterial ocular surface microbiome (BBOSM) in the context of ocular squamous cell carcinoma (OSCC). The conjunctiva of normal (n = 28) and OSCC (n = 10) eyes of cows aged 2 to 13 years from two farms in Louisiana and Wyoming were sampled using individual sterile swabs. DNA extraction followed by 16S ribosomal ribonucleic acid (rRNA) gene sequencing and real-time polymerase chain reaction (RT-PCR) were performed to, respectively, assess the relative and absolute BBOSM. Discriminant analysis (DA) was performed using RT-PCR data, and relative abundance analysis was performed using 16S rRNA gene sequencing data. The 11 most abundant phyla in both normal and OSCC-affected cows were identified using 16S rRNA gene sequencing analysis. The relative abundance of Euryarchaeota was found to be significantly lower (p = 0.0372) in OSCC eyes compared to normal eyes. Relative abundance differences within and between geographic locations were also identified. Quadratic DA categorized samples as OSCC or normal with 100% sensitivity and 83.3-100% specificity. Relative abundance analysis identified relative BBOSM phylum alterations in OSCC. Quadratic DA can be used to accurately categorize BBOSM from normal and OSCC ocular surface samples.
Collapse
Affiliation(s)
- Hannah B Gafen
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nikole E Ineck
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Clare M Scully
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Melanie A Mironovich
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lauren Guarneri
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Marina L Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Erin M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Renee T Carter
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew C Lewin
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
24
|
Doularamani M, Murthy SI. Role of ocular surface microbiome in health and disease. Indian J Ophthalmol 2023; 71:2595. [PMID: 37322688 PMCID: PMC10418028 DOI: 10.4103/ijo.ijo_8_23_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
- Minal Doularamani
- Department of Cornea, Shantilal Shangvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Somasheila I Murthy
- Department of Cornea, Shantilal Shangvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
25
|
Xiao K, Chen Z, Long Q. Comparison of Conjunctival Sac Microbiome between Low and High Myopic Eyes. J Microbiol 2023:10.1007/s12275-023-00045-5. [PMID: 37084130 DOI: 10.1007/s12275-023-00045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 04/22/2023]
Abstract
Microbial communities played a vital role in maintaining homeostasis of ocular surface. However, no studies explored the myopia-associated conjunctiva microbiota changes until now. In this study, conjunctival sac swab specimens were collected from 12 eyes of low myopia (LM), and 14 eyes of high myopia (HM) patients. The V3-V4 region of the 16S rRNA gene was amplified and then sequenced. Statistical analysis was performed to investigate differences in the taxonomy and diversity between two groups. Compared to LM, higher Ocular Surface Disease Index (OSDI) scores were observed in HM group. The Shannon index of the HM was lower than that of the LM group (P = 0.017). Principle coordinate analysis and Partial Least Squares Discrimination Analysis showed distinct microbiome composition between two groups. At the phylum level, there were higher relative abundances of Proteobacteria (68.27% vs 38.51%) and lower abundances of Actinobacteria (3.71% vs 9.19%) in HM, compared to LM group (P = 0.031, 0.010, respectively). At the genus level, the abundances of Acinetobacter in HM (18.16%) were significantly higher than the LM (6.52%) group (P = 0.011). Actinobacteria levels were negatively correlated with the myopic spherical equivalent and OSDI scores. Moreover, positive correlations were found between Proteobacteria levels and OSDI scores, Acinetobacter levels were positively correlated with myopic spherical equivalent and OSDI scores. In conclusion, HM Patients have bacterial microbiota imbalance in the conjunctival sac, compared with LM patients. Proteobacteria, Actinobacteria, Acinetobacter may play roles in the HM associated ocular surface irritation.
Collapse
Affiliation(s)
- Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhengyu Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China.
| |
Collapse
|
26
|
Giannaccare G, Comis S, Jannuzzi V, Camposampiero D, Ponzin D, Cambria S, Santocono M, Pallozzi Lavorante N, Del Noce C, Scorcia V, Traverso CE, Vagge A. Effect of Liposomal-Lactoferrin-Based Eye Drops on the Conjunctival Microflora of Patients Undergoing Cataract Surgery. Ophthalmol Ther 2023; 12:1315-1326. [PMID: 36826753 PMCID: PMC10011268 DOI: 10.1007/s40123-023-00673-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Postoperative endophthalmitis is typically caused by the patient's conjunctival bacterial flora. Povidone iodine solution (5%) is used perioperatively to obtain periocular and ocular antisepsis. However, an adjunctive prophylaxis procedure could further help control the conjunctival microbial load. Considering the increase in antibiotic resistance, a progressive shift toward alternative methods would be desirable. Somilux® eye drops (Alfa Intes, lactoferrin-based eye drops) are medical devices containing liposomal lactoferrin (LF). This study evaluates the effects on conjunctival microflora of LF-based eye drops used in the preoperative phase in patients scheduled for cataract surgery. METHODS LF-based eye drops or a vehicle solution (water solution) were instilled 4 times a day starting 3 days before cataract surgery. Before the therapy (T0) and at the time of surgery (T1), a conjunctival swab was performed in both eyes and processed to detect microbial growth, microbiological isolation, and species identification. The outcome was the quantification and characterization of the local microbial flora before and after using LF-based or vehicle-based eye drops. Safety of the treatments was also evaluated. RESULTS 88 eyes of 44 patients (mean [± SD] age 75 [± 12.6] years) were enrolled. At baseline, 54 conjunctival swabs showed only saprophytic flora, 27 showed only potential pathogenic flora, and seven showed both of them. LF-based eye drops reduced the proportion of potentially pathogenic bacteria (36% at T0 vs. 9% at T1, p = 0.008) compared with the vehicle (41% at T0 vs. 55% at T1, p = 0.302) without altering the physiological ocular microbial composition. No adverse events have been reported. CONCLUSION Our findings provide a novel contribution to the scientific knowledge on the role of LF in the ophthalmic field, supporting the use of LF-based eye drops as a safe and selective treatment to improve the ocular surface physiological defenses and control the bacterial ocular surface contamination prior to cataract surgery.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Sofia Comis
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Nicola Pallozzi Lavorante
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Chiara Del Noce
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carlo E Traverso
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Aldo Vagge
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| |
Collapse
|
27
|
Hernández-Zulueta J, Navarro-Partida J, Sánchez-Aguilar OE, Cruz-Pavlovich HDS, Castro-Castañeda CR, González-De la Rosa A. An insight on the eye bacterial microbiota and its role on dry eye disease. APMIS 2023; 131:103-111. [PMID: 36453056 DOI: 10.1111/apm.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The human ocular surface hosts a bacterial assemblage that integrates a diverse and complex microbiome. This bacterial microbiota is part of a healthy eye and plays a protective role in it. However, this ocular bacterial assemblage may alter the ocular surface inflammation response and can influence the development and progression of dry eye disease. For this reason, the present review describes the changes generated on the ocular surface by bacterial assemblages during the development of dry eye disease. Likewise, the interaction of this microbiota with the other inflammatory factors that influence the development of this disease is analyzed, as well as the use of treatments focused on modifying the bacteria on the ocular surface.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico.,Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan, Jalisco, Mexico.,Centro de Retina Medica y Quirúrgica, S.C., Centro Medico Puerta de Hierro, Zapopan, Jalisco, Mexico
| | | | | | | | - Alejandro González-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan, Jalisco, Mexico.,Centro de Retina Medica y Quirúrgica, S.C., Centro Medico Puerta de Hierro, Zapopan, Jalisco, Mexico
| |
Collapse
|
28
|
Priluck A, Ramulu P, Dosto N, Quigley H, Abraham A. Validation of 16S rRNA Gene Sequencing of the Periocular Microbiome and Lack of Alteration by Topical Eyedrops. Transl Vis Sci Technol 2023; 12:32. [PMID: 36826842 PMCID: PMC9973530 DOI: 10.1167/tvst.12.2.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Purpose Genomic techniques for characterizing the ocular microbiome require further validation. We compared the microbiome of patients' eyelids through both conventional culture and 16S rRNA analysis and analyzed the impact of eyedrop use on microbiome diversity. Methods Ninety-eight patients followed for management of glaucoma or suspicion of glaucoma had eyelid swabs performed with Isohelix MS Mini DNA Swabs (98 participants) and ESwabs (49 participants) for 16S rRNA analysis and conventional culture, respectively. The effect of preservative-containing eyedrops on the microbiomes detected using these two techniques were analyzed and compared across techniques. Results Forty-five of the 50 (non-unique) genera (90%) identified by conventional culture were also identified by each individual's 16S rRNA analysis within the top 14 most abundant organisms present based on operational taxonomic unit. All conventional cultures performed had at least one or more genera also identified by each participant's 16S rRNA analysis. There was no difference in the conventional culture positivity rate or proportion of participants with a particular genus present on conventional culture based on whether preservative-containing eyedrops were regularly used. Similarly, in eyes using versus not using eyedrops, no differences were observed in the proportions of participants with a particular genus present or the Shannon index as determined by 16S rRNA analysis. Conclusions 16S rRNA analysis correlates well with conventional culture results for the eyelid microbiome, with results from neither technique demonstrating an association of microbiome composition and eyedrop use. The clinical relevance of the large numbers of microbes detected via 16S rRNA analysis requires further study. Translational Relevance 16S rRNA analysis of the periocular microbiome is consistent with conventional culture and enables further study of physiologic and pathologic ocular processes possibly related to microbiome diversity.
Collapse
Affiliation(s)
- Aaron Priluck
- Wilmer Eye Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pradeep Ramulu
- Wilmer Eye Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Niccolo Dosto
- Wilmer Eye Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Harry Quigley
- Wilmer Eye Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alison Abraham
- Wilmer Eye Institute, The Johns Hopkins Hospital, Baltimore, MD, USA,Department of Epidemiology, Colorado School of Public Health, Denver, CO, USA
| |
Collapse
|
29
|
Gupta N, Yadav VK, Gacem A, Al-Dossari M, Yadav KK, Abd El-Gawaad NS, Ben Khedher N, Choudhary N, Kumar P, Cavalu S. Deleterious Effect of Air Pollution on Human Microbial Community and Bacterial Flora: A Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315494. [PMID: 36497569 PMCID: PMC9738139 DOI: 10.3390/ijerph192315494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 05/10/2023]
Abstract
A balanced microbiota composition is requisite for normal physiological functions of the human body. However, several environmental factors such as air pollutants may perturb the human microbiota composition. It is noticeable that currently around 99% of the world's population is breathing polluted air. Air pollution's debilitating health impacts have been studied scrupulously, including in the human gut microbiota. Nevertheless, air pollution's impact on other microbiotas of the human body is less understood so far. In the present review, the authors have summarized and discussed recent studies' outcomes related to air pollution-driven microbiotas' dysbiosis (including oral, nasal, respiratory, gut, skin, and thyroid microbiotas) and its potential multi-organ health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Department of Medical Research & Development, River Engineering, Toy City, Ecotech-III, Greater Noida 201305, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science & Technology, Lakshmangarh, Sikar 332311, India
- Correspondence: (V.K.Y.); (S.C.)
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - M. Al-Dossari
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Nidhal Ben Khedher
- Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il 81451, Saudi Arabia
- Laboratory of Thermal and Energy Systems Studies, National School of Engineering of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Nisha Choudhary
- Department of Environmental Sciences, School of Sciences, P P Savani University, Surat 394125, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (V.K.Y.); (S.C.)
| |
Collapse
|
30
|
Ali MJ. Microbial Metagenomics of the Extubated Lacrimal Stents Following Dacryocystorhinostomy: The Lacriome Paper 4. Ophthalmic Plast Reconstr Surg 2022; 38:558-562. [PMID: 35470322 DOI: 10.1097/iop.0000000000002202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To study the metagenome of the microbes present on the extubated lacrimal stents following a dacryocystorhinostomy. METHODS A prospective study was performed on 10 consecutive extubated lacrimal stents obtained for the metagenomic analysis from the patients following an endoscopic dacryocystorhinostomy. The stents were extubated at 4 weeks postoperatively under endoscopic guidance and immediately transported on ice to the laboratory. Following DNA extraction and library preparation, a whole shotgun metagenome sequencing was performed on the Illumina platform. The downstream processing and bioinformatics of the samples were performed using multiple software packaged in SqueezeMeta pipeline or MG-RAST pipeline. RESULTS The taxonomic hit distribution across the stent samples showed that bacteria were the most common isolates (mean, 69.70%), followed by viruses (mean, 0.02%) and archaea (0.003%). The 3 major phyla identified were Firmicutes, Actinobacteria, and Proteobacteria. The prevalent organisms include Pseudomonas aeruginosa, Staphylococcus aureus, Corynebacterium accolens, Dolosigranulum pigrum, Citrobacter koserii, Staphylococcus epidermidis, E. coli, and Hemophilus influenza . The functional subsystem profiling demonstrated microbial genes associated with metabolism, cellular, and information processing. The functional subsystem categories were metabolism involving carbohydrates, amino acids, DNA and RNA, cell wall or cell capsule biogenesis, membrane transport, virulence, and defense mechanisms. CONCLUSIONS The present study is the first whole metagenome sequencing of the microbes isolated from the extubated lacrimal stents. The stents harbor diverse microbial communities with distinct ecosystem dynamics. Further studies on microbes-host interactions in the early postoperative period would provide valuable insights.
Collapse
Affiliation(s)
- Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
31
|
Kim ES, Afshin EE, Elahi E. The Lowly Chalazion. Surv Ophthalmol 2022:S0039-6257(22)00154-0. [PMID: 36395826 DOI: 10.1016/j.survophthal.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Chalazia are localized cysts of chronic lipogranulomatous inflammation arising from the obstruction of sebaceous glands of the eyelid tarsal plate, including the Meibomian gland (deep chalazion) or Zeis gland (superficial chalazion). This disease entity is differentiated from the hordeolum (stye), an acute purulent localized swelling of the eyelid often associated with an eyelash follicle, Zeis gland, or Moll gland obstruction and infection. Ambiguously, the chalazion, hordeolum, and blepharitis are commonly categorized and described on a continuum in the literature. While it is one of the most common eyelid disorders across all age demographics, the chalazion remains largely understudied and pathophysiological, epidemiological, and therapeutic findings exist fragmented in the literature. We discuss current understandings of the chalazion and provide current best practice guidelines supported by clinical anecdotal evidence.
Collapse
Affiliation(s)
- Eliott S Kim
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Fifth Avenue Eye Associates, New York, NY, USA
| | - Evan E Afshin
- Fifth Avenue Eye Associates, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ebby Elahi
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Fifth Avenue Eye Associates, New York, NY, USA; Departments of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Cavuoto KM, Zhu AY. The Role of the Ocular Surface Microbiome (OSM) in Diseases of the Anterior Segment and Ocular Surface. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Borroni D, Paytuví-Gallart A, Sanseverino W, Gómez-Huertas C, Bonci P, Romano V, Giannaccare G, Rechichi M, Meduri A, Oliverio GW, Rocha-de-Lossada C. Exploring the Healthy Eye Microbiota Niche in a Multicenter Study. Int J Mol Sci 2022; 23:ijms231810229. [PMID: 36142138 PMCID: PMC9499403 DOI: 10.3390/ijms231810229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose: This study aims to explore and characterize healthy eye microbiota. Methods: Healthy subjects older than 18 years were selected for this descriptive cross-sectional study. Samples were collected with an eSwab with 1 mL of Liquid Amies Medium (Copan Brescia, Italy). Following DNA extraction, libraries preparation, and amplification, PCR products were purified and end-repaired for barcode ligation. Libraries were pooled to a final concentration of 26 pM. Template preparation was performed with Ion Chef according to Ion 510, Ion 520, and Ion 530 Kit-Chef protocol. Sequencing of the amplicon libraries was carried out on a 520 or 530 chip using the Ion Torrent S5 system (Thermo Fisher; Waltham, MA, USA). Raw reads were analyzed with GAIA (v 2.02). Results: Healthy eye microbiota is a low-diversity microbiome. The vast majority of the 137 analyzed samples were highly enriched with Staphylococcus, whereas only in a few of them, other genera such as Bacillus, Pseudomonas, and Corynebacterium predominate. We found an average of 88 genera with an average Shannon index of 0.65. Conclusion: We identified nine different ECSTs. A better understanding of healthy eye microbiota has the potential to improve disease diagnosis and personalized regimens to promote health.
Collapse
Affiliation(s)
- Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
- Eyemetagenomics Ltd., 71–75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
- Correspondence:
| | | | - Walter Sanseverino
- Sequentia Biotech SL, Carrer del Dr. Trueta, 179, 08005 Barcelona, Spain
| | - Carmen Gómez-Huertas
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Paola Bonci
- Ospedale Civile di Ravenna, Banca Delle Cornee Della Regione Emilia-Romagna, 48121 Ravenna, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Specialties and Public Health, 9297 University of Brescia, ASST Spedali Civili, 25100 Brescia, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Miguel Rechichi
- Centro Polispecialistico Mediterraneo, 88050 Sellia Marina, Italy
| | - Alessandro Meduri
- Biomedical Science Department, Institute of Ophthalmology, University of Messina, Via Consolare Valeria, 98146 Messina, Italy
| | - Giovanni William Oliverio
- Biomedical Science Department, Institute of Ophthalmology, University of Messina, Via Consolare Valeria, 98146 Messina, Italy
| | - Carlos Rocha-de-Lossada
- Eyemetagenomics Ltd., 71–75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
- Department of Ophthalmology, Qvision (Vithas Almeria), 04120 Almería, Spain
- Hospital Regional Universitario de Malaga, 29010 Malaga, Spain
- Departamento de Cirugía, Área de Oftalmología, Universidad de Sevilla, 41004 Sevilla, Spain
| | | |
Collapse
|
34
|
Rodríguez-Fernández CA, Iglesias MB, de Domingo B, Conde-Pérez K, Vallejo JA, Rodríguez-Martínez L, González-Barcia M, Llorenç V, Mondelo-Garcia C, Poza M, Fernández-Ferreiro A. Microbiome in Immune-Mediated Uveitis. Int J Mol Sci 2022; 23:ijms23137020. [PMID: 35806031 PMCID: PMC9266430 DOI: 10.3390/ijms23137020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decades, personalized medicine has been increasing its presence in different fields of medicine, including ophthalmology. A new factor that can help us direct medicine towards the challenge of personalized treatments is the microbiome. The gut microbiome plays an important role in controlling immune response, and dysbiosis has been associated with immune-mediated diseases such as non-infectious uveitis (NIU). In this review, we gather the published evidence, both in the pre-clinical and clinical studies, that support the possible role of intestinal dysbiosis in the pathogenesis of NIU, as well as the modulation of the gut microbiota as a new possible therapeutic target. We describe the different mechanisms that have been proposed to involve dysbiosis in the causality of NIU, as well as the potential pharmacological tools that could be used to modify the microbiome (dietary supplementation, antibiotics, fecal microbiota transplantation, immunomodulators, or biologic drugs) and, consequently, in the control of the NIU. Furthermore, there is increasing scientific evidence suggesting that the treatment with anti-TNF not only restores the composition of the gut microbiota but also that the study of the composition of the gut microbiome will help predict the response of each patient to anti-TNF treatment.
Collapse
Affiliation(s)
| | - Manuel Busto Iglesias
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Begoña de Domingo
- Ophthalmology Department, University Clinical Hospital of Santiago Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Kelly Conde-Pérez
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Juan A. Vallejo
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Lorena Rodríguez-Martínez
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Victor Llorenç
- Clínic Institute of Ophthalmology (ICOF), Clinic Hospital of Barcelona, 08028 Barcelona, Spain;
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Clínic Hospital of Barcelona, 08036 Barcelona, Spain
| | - Cristina Mondelo-Garcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Margarita Poza
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
- Correspondence: (M.P.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: (M.P.); (A.F.-F.)
| |
Collapse
|
35
|
Huang R, Su C, Fang L, Lu J, Chen J, Ding Y. Dry eye syndrome: comprehensive etiologies and recent clinical trials. Int Ophthalmol 2022; 42:3253-3272. [PMID: 35678897 PMCID: PMC9178318 DOI: 10.1007/s10792-022-02320-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/18/2022] [Indexed: 12/07/2023]
Abstract
Dry eye syndrome (DES) is multifactorial and likely to be a cause of concern more so than ever given the rapid pace of modernization, which is directly associated with many of the extrinsic causative factors. Additionally, recent studies have also postulated novel etiologies that may provide the basis for alternative treatment methods clinically. Such insights are especially important given that current approaches to tackle DES remains suboptimal. This review will primarily cover a comprehensive list of causes that lead to DES, summarize all the upcoming and ongoing clinical trials that focuses on treating this disease as well as discuss future potential treatments that can improve inclusivity.
Collapse
Affiliation(s)
- Ruojing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Caiying Su
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Lvjie Fang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiaqi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Huangpu Avenue West 601, Tianhe District, Guangzhou, 510632, China.
| | - Yong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
36
|
Lee HJ, Yoon CH, Kim HJ, Ko JH, Ryu JS, Jo DH, Kim JH, Kim D, Oh JY. Ocular microbiota promotes pathological angiogenesis and inflammation in sterile injury-driven corneal neovascularization. Mucosal Immunol 2022; 15:1350-1362. [PMID: 35986099 DOI: 10.1038/s41385-022-00555-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Microbiota promotes or inhibits the pathogenesis of a range of immune-mediated disorders. Although recent studies have elucidated the role of gut microbiota in ocular disease, the effect of ocular microbiota remains unclear. Herein, we explored the role of ocular commensal bacteria in non-infectious corneal inflammation and angiogenesis in a mouse model of suture-induced corneal neovascularization. Results revealed that the ocular surface harbored a microbial community consisting mainly of Actinobacteria, Firmicutes and Proteobacteria. Elimination of the ocular commensal bacteria by oral broad-spectrum antibiotics or topical fluoroquinolone significantly suppressed corneal inflammation and neovascularization. Disease amelioration was associated with reduced numbers of CD11b+Ly6C+ and CD11b+Ly6G+ myeloid cells, not Foxp3+ regulatory T cells, in the spleen, blood, and draining lymph nodes. Therapeutic concentrations of fluoroquinolone, however, did not directly affect immune cells or vascular endothelial cells. In addition, data from a clinical study showed that antibiotic treatment in combination with corticosteroids, as compared with corticosteroid monotherapy, induced faster remission of corneal inflammation and new vessels in pediatric patients with non-infectious marginal keratitis. Altogether, our findings demonstrate a pathogenic role of ocular microbiota in non-infectious inflammatory disorders leading to sight-threatening corneal neovascularization, and suggest a therapeutic potential of targeting commensal microbes in treating ocular inflammation.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyeon Ji Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Hun Kim
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Donghyun Kim
- Department of Biological Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
37
|
Santibáñez R, Lara F, Barros TM, Mardones E, Cuadra F, Thomson P. Ocular Microbiome in a Group of Clinically Healthy Horses. Animals (Basel) 2022; 12:ani12080943. [PMID: 35454190 PMCID: PMC9028004 DOI: 10.3390/ani12080943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
The ocular microbiome in horses is poorly described compared to other species, and most of the information available in the literature is based on traditional techniques, which has limited the depth of the knowledge on the subject. The objective of this study was to characterize and predict the metabolic pathways of the ocular microbiome of a group of healthy horses. Conjunctival swabs were obtained from both eyes of 14 horses, and DNA extraction was performed from the swabs, followed by next generation sequencing and bioinformatics analyses employing DADA2 and PICRUSt2. A total of 17 phyla were identified, of which Pseudomonadota (Proteobacteria) was the most abundant (59.88%), followed by Actinomycetota (Actinobacteria) (22.44%) and Bacteroidota (Bacteroidetes) (16.39%), totaling an average of 98.72% of the communities. Similarly, of the 278 genera identified, Massilia, Pedobacter, Pseudomonas, Sphingomonas, Suttonella and Verticia were present in more than 5% of the samples analyzed. Both Actinobacteria and Bacteroides showed great heterogeneity within the samples. The most abundant inferred metabolic functions were related to vital functions for bacteria such as aerobic respiration, amino acid, and lipid biosynthesis.
Collapse
Affiliation(s)
- Rodrigo Santibáñez
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica, Santiago 8940000, Chile;
| | - Felipe Lara
- Unidad de Cirugía y Medicina Equina, Hospital Clínico Veterinario, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile;
| | - Teresa M. Barros
- Department of Clinical Science, College of Veterinary Medicine Specialty Ophthalmology Intern, Vaughan Large Animal Teaching Hospital, Auburn, AL 36832, USA;
| | - Elizabeth Mardones
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile; (E.M.); (F.C.)
| | - Françoise Cuadra
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile; (E.M.); (F.C.)
| | - Pamela Thomson
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile; (E.M.); (F.C.)
- Correspondence: ; Tel.: +56-227-703-688
| |
Collapse
|
38
|
Characterising the tear bacterial microbiome in young adults. Exp Eye Res 2022; 219:109080. [DOI: 10.1016/j.exer.2022.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
|
39
|
Abstract
PURPOSE To study the metagenomics of the microbes isolated from the canaliculus of patients with infective canaliculitis. METHODS A prospective study was performed on five consecutive canalicular samples obtained for the metagenomic analysis from the patients with infective canaliculitis who underwent non-incisional canalicular curettage at a tertiary care Dacryology service. The canalicular concretions were collected intraoperatively soon after a canalicular curettage and immediately transported on ice to the laboratory. Following DNA extraction and library preparation, a whole shotgun metagenome sequencing was performed on the Illumina™ platform. The downstream processing and bioinformatics of the samples were performed using multiple software packaged in SqueezeMeta™ pipeline or MG-RAST™ pipeline. RESULTS The taxonomic hit distribution across the samples showed that bacteria were the most common isolates (mean-80.5%), followed by viruses (mean-0.74%), and archaea (0.01%). The five major phyla identified across the samples of infective canaliculitis were, Fusobacteria, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes. The prevalent organisms include Fusobacterium nucelatum, Fusobacterium periodonticum, Parvimonas micra, Prevotella oris, Selonomonas noxia, Pseudopropionobacterium propoinicum, Campylobacter showae, and Streptococcus anginosus, amongst few others. Actinomycetes israelii was noted in all the samples, though it was not the most abundant. The microbial gene mapping and protein prediction demonstrated proteins with known functions to range from 69.91% to 87.09% across the samples. The functional subsystem profiling demonstrated genes associated with carbohydrate, amino acid, and co-enzyme transport and metabolism, cell wall or cell membrane biogenesis, energy production and conversion, transcription, translation, and cellular communications. CONCLUSION This is the first whole metagenome sequencing of infective canaliculitis. Infected canaliculi harbor diverse microbial communities, including bacteria, viruses, and archaea. Functional analysis has provided newer insights into the ecosystem dynamics and strategies of microbial communities.
Collapse
Affiliation(s)
- Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, 28592L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
40
|
Yang S, Wu BC, Cheng Z, Li L, Zhang YP, Zhao H, Zeng HM, Qi DF, Ma ZY, Li JG, Han R, Qu FZ, Luo Y, Liu Y, Chen XL, Dai HM. The Microbiome of Meibomian Gland Secretions from Patients with Internal Hordeolum Treated with Hypochlorous Acid Eyelid Wipes. DISEASE MARKERS 2022; 2022:7550090. [PMID: 35251376 PMCID: PMC8894068 DOI: 10.1155/2022/7550090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aims of our experiment were to compare the microorganisms in meibomian gland secretions from patients with internal hordeolum before and after treatment using hypochlorous acid eyelid wipes, to elucidate the mechanism underlying hypochlorous acid eyelid wipe treatment of internal hordeolum. METHODS This was a prospective, matched-pair study. A total of eight patients with internal hordeolum who attended the ophthalmology clinic of our hospital from April to August 2020 were included. Meibomian gland secretions were collected from subjects before treatment (Group A) and from patients cured after eyelid cleaning with hypochlorous acid eyelid wipes for 7 days (Group B). Samples were submitted to 16S rRNA high-throughput sequencing, and the resulting data were analyzed to compare the differences in the structure and composition of meibomian gland secretion microbial flora before and after treatment of internal hordeolum. RESULTS A total of 2127 operational taxonomic units were obtained from the two groups of samples, and there was no significant difference in alpha diversity before and after eyelid cleaning. At the phylum level, there was no significant difference between the two groups. The predominant phyla in Group A included the following: Firmicutes (32.78% ± 20.16%), Proteobacteria (26.73% ± 7.49%), Acidobacteria (10.58% ± 11.45%), Bacteroidetes (9.05% ± 6.63%), Actinobacteria (8.48% ±1.77%), and Chloroflexi (3.15% ± 3.12%), while those in Group B were the following: Proteobacteria (31.86% ± 9.69%), Firmicutes (29.07% ± 24.20%), Acidobacteria (11.33% ± 7.53%), Actinobacteria (7.10% ± 1.98%), Bacteroidetes (5.39% ± 5.17%), and Chloroflexi (3.89% ± 3.67%). Starting from the class level, significant differences in microbial communities were detected before and after eyelid cleaning (P < 0.05). Linear discriminant analysis effect size analysis showed the core flora in Group A microbiome comprising Actinobacteria, Staphylococcus, Staphylococcaceae, Staphylococcus aureus, Ruminococcacea UCg-014, Ruminococcacea-UCG-014, Halomonadaceae, Neisseria, Methylobacterium, Frankiales, and Neisseria sicca, while those in Group B microbial were Streptococcus sp., Blautia, Bifidobacterium pseudocatenulatum, Subdoligranulum, Subdoligranulum variabile, Faecalibacterium, and Faecalibacterium prausnitzii. CONCLUSION Eyelid cleaning with hypochlorous acid eyelid wipes does not change the biodiversity in the meibomian gland secretions of patients with internal hordeolum. Hypochlorous acid eyelid wipes may affect the internal hordeolum through broad-spectrum antibacterial action to effectively reduce the relative abundance of symbiotic pathogens, such as Staphylococcus, Neisseria, Actinomycetes, and Ruminococcus and increase that of Faecalibacterium prausnitzii and other symbiotic probiotics with anti-inflammatory effects.
Collapse
Affiliation(s)
- Shu Yang
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Bing-Cheng Wu
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Zhe Cheng
- Eye institute of Xiamen University, Xiamen, Fujian, China
| | - Lan Li
- Department of Ophthalmology, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan-Ping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hui Zhao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Han-Mei Zeng
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Dong-Fang Qi
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Zi-Yao Ma
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Jian-Guo Li
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Rui Han
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Fang-Zhou Qu
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Yan Luo
- Department of Pediatrics, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Yi Liu
- Department of Otorhinolaryngology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Xiao-Lei Chen
- Department of Endocrinology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| | - Hong-Mei Dai
- Department of Ophthalmology, The First Hospital of Kunming, Kunming, 650011 Yunnan Province, China
| |
Collapse
|
41
|
Characterization of Conjunctival Sac Microbiome from Patients with Allergic Conjunctivitis. J Clin Med 2022; 11:jcm11041130. [PMID: 35207407 PMCID: PMC8875969 DOI: 10.3390/jcm11041130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Conjunctival sac microbiome alterations have been reported to be closely associated with many ocular diseases. However, the characteristic of conjunctival sac microbiome in allergic conjunctivitis (AC) was scarcely described. In this study, we aimed to identify the differences of the conjunctival sac microbiome composition in AC patients compared with normal controls (NCs) using high-throughput 16S rDNA sequencing metagenomic analysis. The conjunctival sac microbiome samples from 28 AC patients and 39 NC patients were collected. The V3-V4 region of 16S rRNA gene high-throughput sequencing was performed on the illumina MiSeq platform. Alpha diversity, beta diversity and the relative abundance at the phylum and genus levels were analyzed using QIIME. Alpha diversity demonstrated by Chao1, Observed_species and PD_whole_tree indexes did not show significant difference between the AC and NC groups, while the Shannon index was higher in the AC group. Beta diversity showed divergent microbiome composition in different groups (p < 0.005). The top five abundant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota and Cyanobacteria in both groups. The top five abundant genera were Bacillus, Staphylococcus, Corynebacterium, Acinetobacter and Ralstonia in the AC group and Acinetobacter, Staphylococcus, Bacillus, Clostridium_sensu_stricto_1, Corynebacterium and Geobacillus in the NC group. The Firmicutes/Bacteroidetes (F/B) ratio at the phylum level was similar between groups (p = 0.144). The Bacillus/Acinetobacter (B/A) ratio at the genus level was higher in the AC group (p = 0.021). The dysbiosis detected in this study might provide further evidence to investigate the mechanism and treatment methods for allergic conjunctivitis.
Collapse
|
42
|
Delbeke H, Casteels I, Joossens M. Concerning the Paper "Ocular Surface Microbiome in Health and Disease". Asia Pac J Ophthalmol (Phila) 2022; 11:89-90. [PMID: 35044342 DOI: 10.1097/apo.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Heleen Delbeke
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Ingele Casteels
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Marie Joossens
- Department of Molecular Bacteriology, REGA Institute, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Liang Q, Li J, Zou Y, Hu X, Deng X, Zou B, Liu Y, Wei L, Liang L, Wen X. Metagenomic Analysis Reveals the Heterogeneity of Conjunctival Microbiota Dysbiosis in Dry Eye Disease. Front Cell Dev Biol 2021; 9:731867. [PMID: 34900990 PMCID: PMC8657412 DOI: 10.3389/fcell.2021.731867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Dry eye disease (DED) is a multifactorial inflammatory disease of the ocular surface. It is hypothesized that dysbiosis of the conjunctival microbiota contributes to the development of DED. However, species-level compositions of the conjunctival microbiota in DED and the potential dysbiosis involving microorganisms other than bacteria remain largely uncharacterized. Methods: We collected conjunctival impression samples from a cohort of 95 individuals, including 47 patients with DED and 48 healthy subjects. We examined the conjunctival microbiota of these samples using shotgun metagenomic sequencing and analyzed microbial dysbiosis in DED at the species level. Results: The conjunctival microbiota in DED exhibited a decreased α-diversity and an increased inter-individual variation. The α-diversity of female patients with DED was higher than that of male patients. Despite a decreased prevalence in DED, 23 microbial species were identified to show abnormally high abundance in DED samples positive for the species. Among these species, a fungal species Malassezia globosa was enriched female patients. In addition, distinct patterns of associations with disease status were observed for different species of the same genus. For DED subtypes, Staphylococcus aureus and S. capitis were associated with meibomian gland dysfunction (MGD), whereas S. hominis was enriched in patients solely with aqueous tear deficiency (ATD). The microbiota of patients with a mixed type of diagnosis was more similar to MGD patients than ATD patients. Conclusion: We demonstrated that the conjunctival microbiota dysbiosis in DED is characterized by significant heterogeneity. Microbial signatures may offer novel insights into the complicated etiology of DED and potentially promote the development of personalized treatment for DED in the future.
Collapse
Affiliation(s)
- Qiaoxing Liang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Foshan Hospital Affiliated to Southern Medical University, Foshan, China
| | - Xiao Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiuli Deng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Jeng BH, Belin MW. New Consideration for Old Conditions. Asia Pac J Ophthalmol (Phila) 2020; 9:479-480. [PMID: 33323703 DOI: 10.1097/apo.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Michael W Belin
- Department of Ophthalmology and Vision Science, University of Arizona, Tuscon, AZ
| |
Collapse
|