1
|
Huang J, Lu W, Zhao S, Cai Z, Li L, Hu Z, Jiang Y, Deng J, Tang Y, Shi C, Wang C, Liu G, Li S. Folate alleviated skin inflammation and fibrosis resulting from impaired homocysteine metabolism. Redox Biol 2025; 80:103501. [PMID: 39919369 PMCID: PMC11847734 DOI: 10.1016/j.redox.2025.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Skin fibrosis, characterized by uncontrolled secretion of extracellular matrix (ECM) proteins such as collagen, can lead to excessive scarring and compromised tissue function. Despite the widespread occurrence of fibrotic diseases, effective therapies are lacking. Recent clinical studies have demonstrated a positive correlation between serum homocysteine (Hcy) levels and the severity of systemic sclerosis. However, it remains unclear whether Hcy accumulation plays a pathogenic role in skin fibrosis. Here, we report that Hcy metabolism in fibroblasts plays a crucial role in regulating the pathogenesis of skin fibrosis. Fibrotic skin fibroblasts exhibited elevated levels of Hcy due to the downregulation of catabolism genes CBS and MTR. Experimental skin fibrosis was induced and exacerbated in mouse skin fibroblasts and tissues through adenoviral knockdown of Cbs or Mtr, whereas overexpression of these catabolic genes mitigated the pathogenesis. Furthermore, exogenous Hcy supplementation induced and aggravated the expression of inflammatory and fibrotic genes, promoting both spontaneous and BLM-induced skin fibrosis. Notably, folate administration enhanced Hcy catabolism and ameliorated skin inflammation and fibrosis by inhibiting JAK2/STAT3 signaling pathway. Collectively, these results indicate that skin fibrosis is associated with Hcy metabolic disorders and suggest that targeting Hcy metabolism or supplementing folate may provide a novel strategy for skin fibrosis.
Collapse
Affiliation(s)
- Jiefeng Huang
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wuyan Lu
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shenli Zhao
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Anhui, 241001, China
| | - Zixin Cai
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Linxiao Li
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zihao Hu
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Jiang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinyi Deng
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yiming Tang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chenzhang Shi
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chen Wang
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Guangpeng Liu
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shuaijun Li
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
2
|
Kwon SH, Lee J, Yoo J, Jung Y. Artificial keloid skin models: understanding the pathophysiological mechanisms and application in therapeutic studies. Biomater Sci 2024; 12:3321-3334. [PMID: 38812375 DOI: 10.1039/d4bm00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Keloid is a type of scar formed by the overexpression of extracellular matrix substances from fibroblasts following inflammation after trauma. The existing keloid treatment methods include drug injection, surgical intervention, light exposure, cryotherapy, etc. However, these methods have limitations such as recurrence, low treatment efficacy, and side effects. Consequently, studies are being conducted on the treatment of keloids from the perspective of inflammatory mechanisms. In this study, keloid models are created to understand inflammatory mechanisms and explore treatment methods to address them. While previous studies have used animal models with gene mutations, chemical treatments, and keloid tissue transplantation, there are limitations in fully reproducing the characteristics of keloids unique to humans, and ethical issues related to animal welfare pose additional challenges. Consequently, studies are underway to create in vitro artificial skin models to simulate keloid disease and apply them to the development of treatments for skin diseases. In particular, herein, scaffold technologies that implement three-dimensional (3D) full-thickness keloid models are introduced to enhance mechanical properties as well as biological properties of tissues, such as cell proliferation, differentiation, and cellular interactions. It is anticipated that applying these technologies to the production of artificial skin for keloid simulation could contribute to the development of inflammatory keloid treatment techniques in the future.
Collapse
Affiliation(s)
- Soo Hyun Kwon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jongmin Lee
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Mismetti V, Si-Mohamed S, Cottin V. Interstitial Lung Disease Associated with Systemic Sclerosis. Semin Respir Crit Care Med 2024; 45:342-364. [PMID: 38714203 DOI: 10.1055/s-0044-1786698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disease characterized by a tripod combining vasculopathy, fibrosis, and immune-mediated inflammatory processes. The prevalence of interstitial lung disease (ILD) in SSc varies according to the methods used to detect it, ranging from 25 to 95%. The fibrotic and vascular pulmonary manifestations of SSc, particularly ILD, are the main causes of morbidity and mortality, contributing to 35% of deaths. Although early trials were conducted with cyclophosphamide, more recent randomized controlled trials have been performed to assess the efficacy and tolerability of several medications, mostly mycophenolate, rituximab, tocilizumab, and nintedanib. Although many uncertainties remain, expert consensus is emerging to optimize the therapeutic management and to provide clinicians with evidence-based clinical practice guidelines for patients with SSc-ILD. This article provides an overview, in the light of the latest advances, of the available evidence for the diagnosis and management of SSc-ILD.
Collapse
Affiliation(s)
- Valentine Mismetti
- Department of Respiratory Medicine, National Coordinating Reference Centre for Rare Pulmonary Diseases, ERN-LUNG, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | - Salim Si-Mohamed
- INSA-Lyon, University of Lyon, University Claude-Bernard Lyon 1, Lyon, France
- Radiology Department, Hospices Civils de Lyon, Lyon, France
| | - Vincent Cottin
- Department of Respiratory Medicine, National Coordinating Reference Centre for Rare Pulmonary Diseases, ERN-LUNG, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
- UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|
4
|
You F, Nicco C, Harakawa Y, Yoshikawa T, Inufusa H. The Potential of Twendee X ® as a Safe Antioxidant Treatment for Systemic Sclerosis. Int J Mol Sci 2024; 25:3064. [PMID: 38474309 DOI: 10.3390/ijms25053064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by systemic skin hardening, which combines Raynaud's phenomenon and other vascular disorders, skin and internal organ fibrosis, immune disorders, and a variety of other abnormalities. Symptoms vary widely among individuals, and personalized treatment is sought for each patient. Since there is no fundamental cure for SSc, it is designated as an intractable disease with patients receiving government subsidies for medical expenses in Japan. Oxidative stress (OS) has been reported to play an important role in the cause and symptoms of SSc. HOCl-induced SSc mouse models are known to exhibit skin and visceral fibrosis, vascular damage, and autoimmune-like symptoms observed in human SSc. The antioxidant combination Twendee X® (TwX) is a dietary supplement consisting of vitamins, amino acids, and CoQ10. TwX has been proven to prevent dementia in humans with mild cognitive impairment and significantly improve cognitive impairment in an Alzheimer's disease mouse model by regulating OS through a strong antioxidant capacity that cannot be achieved with a single antioxidant ingredient. We evaluated the effectiveness of TwX on various symptoms of HOCl-induced SSc mice. TwX-treated HOCl-induced SSc mice showed significantly reduced lung and skin fibrosis compared to untreated HOCl-induced SSc mice. TwX also significantly reduced highly oxidized protein products (AOPP) in serum and suppressed Col-1 gene expression and activation of B cells involved in autoimmunity. These findings suggest that TwX has the potential to be a new antioxidant treatment for SSc without side effects.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| | - Carole Nicco
- Université Paris Cité, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
- School of Medicine, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
5
|
Doskaliuk B, Zaiats L. Structural and functional characteristics of the pulmonary hemomicrocirculatory bed in induced systemic sclerosis: an experimental study. Rheumatol Int 2023; 43:1341-1347. [PMID: 37071178 DOI: 10.1007/s00296-023-05328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
The objective of this study was to investigate the effects of prolonged exposure to the oxidative agent NaClO on histopathological changes in the lung tissues of laboratory animals. Specifically, the study aimed to examine morphological changes in the pulmonary microcirculation and the level of vascular cell adhesion molecule-1 (VCAM-1) as a functional activity indicator of endothelial cells in animals with induced systemic sclerosis (SSc). A laboratory animal model was used to assess the impact of long-term exposure to NaClO on lung tissues. The animals were divided into three groups: the experimental group (25 rats) was exposed to NaClO, while the control group (20 rats) received an isotonic solution, and the intact group (15 animals) was without any exposure. The concentration of VCAM-1 in the serum of the animals was measured using an enzyme-linked immunosorbent assay. Histopathological analysis of lung tissue specimens was performed using both light and electron microscopy. The concentration of VCAM-1 in the serum of the animals in the experimental group was significantly higher than that of the control group (91.25 [85.63-143.75] vs 19.50 [13.53-22.20], p < 0.05). The histopathological analysis revealed significant abnormalities in the lung tissue specimens from the experimental group, including disruption in the structure of the hemocapillaries of the lungs, narrowing of the microvessel lumen, and perivascular infiltration by polymorphonuclear cells. The electron microscopic analysis showed several ultrastructural changes in the endotheliocytes of the hemocapillaries, including uneven expansion of the perinuclear space, swollen mitochondria, and fragmentation of the membranes of the granular endoplasmic reticulum. Additionally, the basement membrane of hemocapillaries showed uneven thickening with indistinct contours, and the peripheral parts of endotheliocytes were marked by numerous micropinocytotic vesicles and vacuoles. Erythrocyte aggregates and leukocyte adhesion were identified in the lumen of many hemocapillaries, while adhesion and aggregation of platelets were also observed in several hemocapillaries. Long-term exposure to NaClO can cause significant histopathological changes in lung tissues, including damage to the hemocapillaries and disruption in the structure of endotheliocytes.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Department of Patophysiology, Ivano-Frankivsk National Medical University, Halytska str. 2, Ivano-Frankivsk, 76000, Ukraine.
| | - Liubomyr Zaiats
- Department of Patophysiology, Ivano-Frankivsk National Medical University, Halytska str. 2, Ivano-Frankivsk, 76000, Ukraine
| |
Collapse
|
6
|
Animal Models of Systemic Sclerosis: Using Nailfold Capillaroscopy as a Potential Tool to Evaluate Microcirculation and Microangiopathy: A Narrative Review. Life (Basel) 2022; 12:life12050703. [PMID: 35629370 PMCID: PMC9147447 DOI: 10.3390/life12050703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with three pathogenic hallmarks, i.e., inflammation, vasculopathy, and fibrosis. A wide plethora of animal models have been developed to address the complex pathophysiology and for the development of possible anti-fibrotic treatments. However, no current model comprises all three pathological mechanisms of the disease. To highlight the lack of a complete model, a review of some of the most widely used animal models for SSc was performed. In addition, to date, no model has accomplished the recreation of primary or secondary Raynaud’s phenomenon, a key feature in SSc. In humans, nailfold capillaroscopy (NFC) has been used to evaluate secondary Raynaud’s phenomenon and microvasculature changes in SSc. Being a non-invasive technique, it is widely used both in clinical studies and as a tool for clinical evaluation. Because of this, its potential use in animal models has been neglected. We evaluated NFC in guinea pigs to investigate the possibility of applying this technique to study microcirculation in the nailfold of animal models and in the future, development of an animal model for Raynaud’s phenomenon. The applications are not only to elucidate the pathophysiological mechanisms of vasculopathy but can also be used in the development of novel treatment options.
Collapse
|
7
|
Yamamoto A, Saito T, Hosoya T, Kawahata K, Asano Y, Sato S, Mizoguchi F, Yasuda S, Kohsaka H. Therapeutic effect of cyclin-dependent kinase 4/6 inhibitor on dermal fibrosis in murine models of systemic sclerosis. Arthritis Rheumatol 2021; 74:860-870. [PMID: 34882985 DOI: 10.1002/art.42042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Histology of systemic sclerosis (SSc) includes an increased number of myofibroblasts, where transforming growth factor-β (TGF-β) plays a crucial role to promote dermal fibrosis. The objectives of this study were to examine whether the inhibition of cell cycle with cyclin-dependent kinase (CDK) 4/6 inhibitor suppress fibroblast proliferation and the differentiation into myofibroblasts, and the therapeutic effect of a CDK4/6 inhibitor on dermal fibrosis in murine models of SSc in monotherapy or in combination with TGF-β receptor inhibitor (TGFβRI). METHODS SSc fibroblasts were cultured in the presence or absence of TGF-β. Effects of palbociclib (CDKI), a CDK4/6 inhibitor, on fibroblast proliferation and TGF-β-induced differentiation into myofibroblasts were examined with BrdU uptake, immunofluorescence, and immunoblotting. Hypochlorous acid (HOCl)- and bleomycin-induced dermal fibrosis models were used to study the effect of CDKI on dermal fibrosis in monotherapy or in combination with galunisertib, a TGFβRI. RESULTS CDKI suppressed the proliferation of SSc fibroblasts and their TGF-β-induced differentiation into myofibroblast without inhibiting canonical and non-canonical TGF-β signals. Treatment of dermal fibrosis models with CDKI decreased dermal thickness and collagen content, as well as fibroblast proliferation and myofibroblast number. The combination therapy with CDKI and TGFβRI exerted additive anti-fibrotic effects. Mechanistically, CDKI suppressed the expression of cellular communication network (CCN) 2 and cadherin-11 important for fibrosis. CONCLUSION We demonstrated the therapeutic effect of CDKI on dermal fibrosis in monotherapy or in combination with TGFβRI. CDKI should be a novel agent for the treatment of SSc, which may be used with TGFβRI to increase the efficacy.
Collapse
Affiliation(s)
- Akio Yamamoto
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kimito Kawahata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Mizoguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hitoshi Kohsaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
8
|
17,20S(OH) 2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. Int J Mol Sci 2021; 22:ijms22168926. [PMID: 34445632 PMCID: PMC8396226 DOI: 10.3390/ijms22168926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc; scleroderma) is a chronic fibrotic disease involving TGF-β1. Low serum vitamin D (vit D) correlates with the degree of fibrosis and expression of TGF-β1. This study was designed to determine whether the noncalcemic vit D analog, 17,20S(OH)2pD, suppresses fibrosis and mediators of the TGF-β1 pathway in the bleomycin (BLM) model of fibrosis. Fibrosis was induced into the skin of female C57BL/6 mice by repeated injections of BLM (50 μg/100 μL) subcutaneously. Mice received daily oral gavage with either vehicle (propylene glycol) or 17,20S(OH)2pD using 5, 15, or 30 μg/kg for 21 days. The injected skin was biopsied; analyzed histologically; examined for total collagen by Sircol; and examined for mRNA expression of MMP-13, BMP-7, MCP-1, Gli1, and Gli2 by TR-PCR. Spleen was analyzed for lymphocytes using flow cytometry. Serum was analyzed for cytokines using a multiplexed ELISA. Results showed that all three doses of 17,20S(OH)2pD suppressed net total collagen production, dermal thickness, and total collagen content in the BLM fibrosis model. 17,20S(OH)2pD also increased MMP-13 expression, decreased MCP-1 and Gli-2 expression in vivo, and suppressed serum levels of IL-13, TNF-α, IL-6, IL-10, IL-17, and IL-12p70. In summary, 17,20S(OH)2pD modulates the mediators of fibrosis in vivo and suppresses total collagen production and dermal thickness. This antifibrotic property of 17,20S(OH)2pD offers new therapeutic approaches for fibrotic disorders.
Collapse
|
9
|
Echinochrome A Treatment Alleviates Fibrosis and Inflammation in Bleomycin-Induced Scleroderma. Mar Drugs 2021; 19:md19050237. [PMID: 33922418 PMCID: PMC8146844 DOI: 10.3390/md19050237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Scleroderma is an autoimmune disease caused by the abnormal regulation of extracellular matrix synthesis and is activated by non-regulated inflammatory cells and cytokines. Echinochrome A (EchA), a natural pigment isolated from sea urchins, has been demonstrated to have antioxidant activities and beneficial effects in various disease models. The present study demonstrates for the first time that EchA treatment alleviates bleomycin-induced scleroderma by normalizing dermal thickness and suppressing collagen deposition in vivo. EchA treatment reduces the number of activated myofibroblasts expressing α-SMA, vimentin, and phosphorylated Smad3 in bleomycin-induced scleroderma. In addition, it decreased the number of macrophages, including M1 and M2 types in the affected skin, suggesting the induction of an anti-inflammatory effect. Furthermore, EchA treatment markedly attenuated serum levels of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, in a murine scleroderma model. Taken together, these results suggest that EchA is highly useful for the treatment of scleroderma, exerting anti-fibrosis and anti-inflammatory effects.
Collapse
|
10
|
Mesenchymal stromal cells for systemic sclerosis treatment. Autoimmun Rev 2021; 20:102755. [PMID: 33476823 DOI: 10.1016/j.autrev.2021.102755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a rare chronic autoimmune disease characterized by vasculopathy, dysregulation of innate and adaptive immune responses, and progressive fibrosis. SSc remains an orphan disease, with high morbity and mortality in SSc patients. The mesenchymal stromal cells (MSC) demonstrate in vitro and in vivo pro-angiogenic, immuno-suppressive, and anti-fibrotic properties and appear as a promising stem cell therapy type, that may target the key pathological features of SSc disease. This review aims to summarize acquired knowledge in the field of :1) MSC definition and in vitro and in vivo functional properties, which vary according to the donor type (allogeneic or autologous), the tissue sources (bone marrow, adipose tissue or umbilical cord) or inflammatory micro-environment in the recipient; 2) preclinical studies in various SSc animal models , which showed reduction in skin and lung fibrosis after MSC infusion; 3) first clinical trials in human, with safety and early efficacy results reported in SSc patients or currently tested in several ongoing clinical trials.
Collapse
|
11
|
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disorder with a high mortality rate. There are still many unknowns concerning the pathophysiology of this disease, due to its clinical heterogeneity. Since there is still no curative treatment, researchers focus on finding novel methods to help the patients. One of the valid options is cellular therapy, and mesenchymal stem cells (MSCs)-based therapy yields great expectations. These cells possess especially valuable attributes regarding key points of SSc. Nevertheless, the effectiveness and safety of this therapy must undergo a rigorous process of verification. In preclinical trials, animal models proved to be a valuable source of scientific knowledge regarding SSc. Because of that, it has been possible to test autologous or allogeneic MSCs from various sources in many clinical trials. A lot of aspects still have to be determined to assess their potential in the management of SSc, probably in association with other therapies.
Collapse
|
12
|
Kahl DJ, Hutchings KM, Lisabeth EM, Haak AJ, Leipprandt JR, Dexheimer T, Khanna D, Tsou PS, Campbell PL, Fox DA, Wen B, Sun D, Bailie M, Neubig RR, Larsen SD. 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents for Scleroderma. J Med Chem 2019; 62:4350-4369. [PMID: 30951312 PMCID: PMC6590913 DOI: 10.1021/acs.jmedchem.8b01772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Through a phenotypic high-throughput screen using a serum response element luciferase promoter, we identified a novel 5-aryl-1,3,4-oxadiazol-2-ylthiopropionic acid lead inhibitor of Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated gene transcription with good potency (IC50 = 180 nM). We were able to rapidly improve the cellular potency by 5 orders of magnitude guided by sharply defined and synergistic SAR. The remarkable potency and depth of the SAR, as well as the relatively low molecular weight of the series, suggests, but does not prove, that binding to the unknown molecular target may be occurring through a covalent mechanism. The series nevertheless has no observable cytotoxicity up to 100 μM. Ensuing pharmacokinetic optimization resulted in the development of two potent and orally bioavailable anti-fibrotic agents that were capable of dose-dependently reducing connective tissue growth factor gene expression in vitro as well as significantly reducing the development of bleomycin-induced dermal fibrosis in mice in vivo.
Collapse
Affiliation(s)
| | | | - Erika Mathes Lisabeth
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Andrew J Haak
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Jeffrey R Leipprandt
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Dinesh Khanna
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | - Pei-Suen Tsou
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | - Phillip L Campbell
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | - David A Fox
- Department of Internal Medicine, Division of Rheumatology and Clinical Autoimmunity Center of Excellence , University of Michigan Medical Center , Ann Arbor , Michigan 48109 , United States
| | | | | | - Marc Bailie
- Michigan State University in Vivo Facility , East Lansing , Michigan 48824 , United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | | |
Collapse
|
13
|
Thuan DTB, Zayed H, Eid AH, Abou-Saleh H, Nasrallah GK, Mangoni AA, Pintus G. A Potential Link Between Oxidative Stress and Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Front Immunol 2018; 9:1985. [PMID: 30283435 PMCID: PMC6156139 DOI: 10.3389/fimmu.2018.01985] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc), an autoimmune disease that is associated with a number of genetic and environmental risk factors, is characterized by progressive fibrosis and microvasculature damage in the skin, lungs, heart, digestive system, kidneys, muscles, joints, and nervous system. These abnormalities are associated with altered secretion of growth factor and profibrotic cytokines, such as transforming growth factor-beta (TGF-β), interleukin-4 (IL-4), platelet-derived growth factor (PDGF), and connective-tissue growth factor (CTGF). Among the cellular responses to this proinflammatory environment, the endothelial cells phenotypic conversion into activated myofibroblasts, a process known as endothelial to mesenchymal transition (EndMT), has been postulated. Reactive oxygen species (ROS) might play a key role in SSs-associated fibrosis and vascular damage by mediating and/or activating TGF-β-induced EndMT, a phenomenon that has been observed in other disease models. In this review, we identified and critically appraised published studies investigating associations ROS and EndMT and the presence of EndMT in SSc, highlighting a potential link between oxidative stress and EndMT in this condition.
Collapse
Affiliation(s)
- Duong Thi Bich Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, University of Hue, Hue, Vietnam
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Raker VK, Ook KY, Haub J, Lorenz N, Schmidt T, Stegemann A, Böhm M, Schuppan D, Steinbrink K. Myeloid cell populations and fibrogenic parameters in bleomycin- and HOCl-induced fibrosis. Exp Dermatol 2018; 25:887-894. [PMID: 27307019 DOI: 10.1111/exd.13124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Mouse models resembling systemic sclerosis can be chemically induced by application of bleomycin or hypochloric acid (HOCl). To date, little is known about inflammatory cells and their potential role in scleroderma (Scl)-related fibrosis. Therefore, we compared both Scl models to define the early immune cell subsets in relation to fibrosis-related parameters. Both agents induced a significant increase in dermal thickness and collagen deposition after 4 weeks, as hallmarks of Scl. However, clinical skin thickness, densely packed, sirius red-stained collagen bundles and collagen cross-links were more pronounced in HOCl-induced Scl. In parallel, there was a significant upregulation of procollagen α1(I), α-SMA and TGF-β transcripts in HOCl animals, whereas IL-1β and MMP-13 mRNA levels were significantly increased in bleomycin-treated mice. Flow cytometric analysis of the Scl skin demonstrated an early cellular infiltrate containing mainly CD19+ B cells, CD4+ T cells, CD11c+ DC and CD11b+ myeloid cells, the latter ones being significantly more prominent after HOCl injection. Subanalysis revealed that Scl mice exhibited a significant increase of inflammatory myeloid CD11b+ Ly6Clow-high CD64low-high cells (HOCl>bleomycin). In particular, in the HOCl model, activated dermal macrophages (CCR2low MHCIIhigh ) and monocyte-derived DC (CCR2high MHCIIhigh ) predominated over less activated CD11b+ myeloid cells. In conclusion, the two models differ in certain aspects of the murine and human scleroderma but in the HOCl model, myeloid CD11b+ MHCIIhigh cells correlate with some fibrosis-related parameters. Therefore, analysis of both models is suggested to cover a comprehensive profile of Scl symptoms but with focus on the HOCl model when the role of early myeloid immune cells will be evaluated.
Collapse
Affiliation(s)
- Verena K Raker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. .,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Kim Y Ook
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Lorenz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Talkea Schmidt
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Markus Böhm
- University Medical Center Münster, Munster, Germany
| | - Detlef Schuppan
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Ah Kioon MD, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, Gordon JK, Barrat FJ. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med 2018; 10:10/423/eaam8458. [PMID: 29321259 PMCID: PMC9865429 DOI: 10.1126/scitranslmed.aam8458] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/17/2017] [Accepted: 11/14/2017] [Indexed: 01/25/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem life-threatening fibrosing disorder that lacks effective treatment. The link between the inflammation observed in organs such as the skin and profibrotic mechanisms is not well understood. The plasmacytoid dendritic cell (pDC) is a key cell type mediating Toll-like receptor (TLR)-induced inflammation in autoimmune disease patients, including lupus and skin diseases with interface dermatitis. However, the role of pDCs in fibrosis is less clear. We show that pDCs infiltrate the skin of SSc patients and are chronically activated, leading to secretion of interferon-α (IFN-α) and CXCL4, which are both hallmarks of the disease. We demonstrate that the secretion of CXCL4 is under the control of phosphatidylinositol 3-kinase δ and is due to the aberrant presence of TLR8 on pDCs of SSc patients, which is not seen in healthy donors or in lupus pDCs, and that CXCL4 primarily acts by potentiating TLR8- but also TLR9-induced IFN production by pDCs. Depleting pDCs prevented disease in a mouse model of scleroderma and could revert fibrosis in mice with established disease. In contrast, the disease was exacerbated in mice transgenic for TLR8 with recruitment of pDCs to the fibrotic skin, whereas TLR7 only partially contributed to the inflammatory response, indicating that TLR8 is the key RNA-sensing TLR involved in the establishment of fibrosis. We conclude that the pDC is an essential cell type involved in the pathogenesis of SSc and its removal using depleting antibodies or attenuating pDC function could be a novel approach to treat SSc patients.
Collapse
Affiliation(s)
- Marie Dominique Ah Kioon
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - David Fernandez
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kyriakos A. Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert F. Spiera
- Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Mary K. Crow
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA.,Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY 10021, USA
| | - Jessica K. Gordon
- Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Franck J. Barrat
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA.,Corresponding author.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW We discuss recent advances in evaluating and optimizing animal models of systemic sclerosis (SSc). Such models could be of value for illuminating etiopathogenesis using hypothesis-testing experimental approaches, for developing effective disease-modifying therapies, and for uncovering clinically relevant biomarkers. RECENT FINDINGS We describe recent advances in previously reported and novel animal models of SSc. The limitations of each animal model and their ability to recapitulate the pathophysiology of recognized molecular subsets of SSc are discussed. We highlight attrition of dermal white adipose tissue as a consistent pathological feature of dermal fibrosis in mouse models, and its relevance to SSc-associated cutaneous fibrosis. SUMMARY Several animal models potentially useful for studying SSc pathogenesis have been described. Recent studies highlight particular strengths and weaknesses of selected models in recapitulating distinct features of the human disease. When used in the appropriate experimental setting, and in combination, these models singly and together provide a powerful set of in-vivo tools to define underlying mechanisms of disease and to develop and evaluate effective antifibrotic therapies.
Collapse
|
17
|
Choi CW, Eun SH, Choi KH, Bae JM. Increased risk of comorbid rheumatic disorders in vitiligo patients: A nationwide population-based study. J Dermatol 2017; 44:909-913. [DOI: 10.1111/1346-8138.13846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Chong Won Choi
- Department of Dermatology; Seoul National University Hospital; Seoul Korea
| | - Sung Hye Eun
- Department of Dermatology; Veterans Health Service Medical Center; Seoul Korea
| | - Kwang Hyun Choi
- Department of Dermatology; St Vincent's Hospital; College of Medicine; The Catholic University of Korea; Suwon Korea
| | - Jung Min Bae
- Department of Dermatology; Veterans Health Service Medical Center; Seoul Korea
| |
Collapse
|
18
|
Bei Y, Hua-Huy T, Nicco C, Duong-Quy S, Le-Dong NN, Tiev KP, Chéreau C, Batteux F, Dinh-Xuan AT. RhoA/Rho-kinase activation promotes lung fibrosis in an animal model of systemic sclerosis. Exp Lung Res 2016; 42:44-55. [PMID: 26873329 DOI: 10.3109/01902148.2016.1141263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective-tissue disease characterized by vascular injury, immune-system disorders, and excessive fibrosis of the skin and multiple internal organs. Recent reports found that RhoA/Rho-kinase (ROCK) pathway is implicated in various fibrogenic diseases. Intradermal injection of hypochlorous acid (HOCl)-generating solution induced inflammation, autoimmune activation, and fibrosis, mimicking the cutaneous diffuse form of SSc in humans. Our study aimed firstly to describe pulmonary inflammation and fibrosis induced by HOCl in mice, and secondly to determine whether fasudil, a selective inhibitor of ROCK, could prevent lung and skin fibroses in HOCl-injected mice. METHODS Female C57BL/6 mice received daily intradermal injection of hypochlorous acid (HOCl) for 6 weeks to induce SSc, with and without daily treatment with fasudil (30 mg·kg(-1)·day(-1)) by oral gavage. RESULTS HOCl intoxication induced significant lung inflammation (macrophages and neutrophils infiltration), and fibrosis. These modifications were prevented by fasudil treatment. Simultaneously, HOCl enhanced ROCK activity in lung and skin tissues. Inhibition of ROCK reduced skin fibrosis, expression of α-smooth-muscle actin and 3-nitrotyrosine, as well as the activity of ROCK in the fibrotic skin of HOCl-treated mice, through inhibition of phosphorylation of Smad2/3 and ERK1/2. Fasudil significantly decreased the serum levels of anti-DNA-topoisomerase-1 antibodies in mice with HOCl-induced SSc. CONCLUSIONS Our findings confirm HOCl-induced pulmonary inflammation and fibrosis in mice, and provide further evidence for a key role of RhoA/ROCK pathway in several pathological processes of experimental SSc. Fasudil could be a promising therapeutic approach for the treatment of SSc.
Collapse
Affiliation(s)
- Yihua Bei
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Thong Hua-Huy
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| | - Carole Nicco
- c Laboratoire d'Immunologie Clinique, Universite Paris Descartes, Sorbonne Paris Cite, Equipe Batteux, Institut Cochin, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP) , Paris , France
| | - Sy Duong-Quy
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| | - Nhat-Nam Le-Dong
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,d Department of Pneumology, St. Elisabeth Hospital , Namur , Belgium
| | - Kiet-Phong Tiev
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,e Department of Internal Medicine, Hospital of Vitry sur Seine , Site Pasteur , Vitry sur Seine , France
| | - Christiane Chéreau
- b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Frédéric Batteux
- b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Anh Tuan Dinh-Xuan
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| |
Collapse
|
19
|
Chia JJ, Zhu T, Chyou S, Dasoveanu DC, Carballo C, Tian S, Magro CM, Rodeo S, Spiera RF, Ruddle NH, McGraw TE, Browning JL, Lafyatis R, Gordon JK, Lu TT. Dendritic cells maintain dermal adipose-derived stromal cells in skin fibrosis. J Clin Invest 2016; 126:4331-4345. [PMID: 27721238 DOI: 10.1172/jci85740] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Scleroderma is a group of skin-fibrosing diseases for which there are no effective treatments. A feature of the skin fibrosis typical of scleroderma is atrophy of the dermal white adipose tissue (DWAT). Adipose tissue contains adipose-derived mesenchymal stromal cells (ADSCs) that have regenerative and reparative functions; however, whether DWAT atrophy in fibrosis is accompanied by ADSC loss is poorly understood, as are the mechanisms that might maintain ADSC survival in fibrotic skin. Here, we have shown that DWAT ADSC numbers were reduced, likely because of cell death, in 2 murine models of scleroderma skin fibrosis. The remaining ADSCs showed a partial dependence on dendritic cells (DCs) for survival. Lymphotoxin β (LTβ) expression in DCs maintained ADSC survival in fibrotic skin by activating an LTβ receptor/β1 integrin (LTβR/β1 integrin) pathway on ADSCs. Stimulation of LTβR augmented the engraftment of therapeutically injected ADSCs, which was associated with reductions in skin fibrosis and improved skin function. These findings provide insight into the effects of skin fibrosis on DWAT ADSCs, identify a DC-ADSC survival axis in fibrotic skin, and suggest an approach for improving mesenchymal stromal cell therapy in scleroderma and other diseases.
Collapse
|
20
|
Kavian N, Mehlal S, Marut W, Servettaz A, Giessner C, Bourges C, Nicco C, Chéreau C, Lemaréchal H, Dutilh MF, Cerles O, Guilpain P, Vuiblet V, Chouzenoux S, Galland F, Quere I, Weill B, Naquet P, Batteux F. Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:3326-3335. [DOI: 10.4049/jimmunol.1502511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/21/2016] [Indexed: 02/01/2023]
|
21
|
Maria ATJ, Toupet K, Bony C, Pirot N, Vozenin MC, Petit B, Roger P, Batteux F, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Antifibrotic, Antioxidant, and Immunomodulatory Effects of Mesenchymal Stem Cells in HOCl-Induced Systemic Sclerosis. Arthritis Rheumatol 2016; 68:1013-25. [PMID: 26474311 DOI: 10.1002/art.39477] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a rare intractable disease with unmet medical need and fibrosis-related mortality. Absence of efficient treatments has prompted the development of novel therapeutic strategies, among which mesenchymal stem cells/stromal cells (MSCs) or progenitor stromal cells appear to be one of the most attractive options. The purpose of this study was to use the murine model of hypochlorite-induced SSc to investigate the systemic effects of MSCs on the main features of the diffuse form of the disease: skin and lung fibrosis, autoimmunity, and oxidative status. METHODS We compared the effects of different doses of MSCs (2.5 × 10(5) , 5 × 10(5) , and 10(6) ) infused at different time points. Skin thickness was assessed during the experiment. At the time of euthanasia, biologic parameters were quantified in blood and tissues (by enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, assessment of collagen content). Assessments of histology and immunostaining were also performed. RESULTS A lower expression of markers of fibrosis (Col1, Col3, Tgfb1, and aSma) was observed in both skin and lung following MSC infusion, which was consistent with histologic improvement and was inversely proportional to the injected dose. Importantly, sera from treated mice exhibited lower levels of anti-Scl-70 autoantibodies and enhanced antioxidant capacity, confirming the systemic effect of MSCs. Of interest, MSC administration was efficient in both the preventive and the curative approach. We further provide evidence that MSCs exerted an antifibrotic role by normalizing extracellular matrix remodeling parameters as well as reducing proinflammatory cytokine levels and increasing antioxidant defenses. CONCLUSION The results of this study demonstrate the beneficial and systemic effects of MSC administration in the HOCl murine model of diffuse SSc, which is a promising finding from a clinical perspective.
Collapse
Affiliation(s)
- Alexandre T J Maria
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Karine Toupet
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Claire Bony
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Nelly Pirot
- INSERM U1194 and UMS BioCampus Montpellier, Montpellier, France
| | | | - Benoît Petit
- University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Pascal Roger
- Montpellier University Medical School, Montpellier, France, and Caremeau Hospital, Nîmes, France
| | | | - Alain Le Quellec
- St. Eloi Hospital and Montpellier University Medical School, Montpellier, France
| | - Christian Jorgensen
- INSERM U1183, St. Eloi Hospital, Montpellier University Medical School, and Lapeyronie Hospital, Montpellier, France
| | - Danièle Noël
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| |
Collapse
|
22
|
Khouri C, Blaise S, Carpentier P, Villier C, Cracowski J, Roustit M. Drug-induced Raynaud's phenomenon: beyond β-adrenoceptor blockers. Br J Clin Pharmacol 2016; 82:6-16. [PMID: 26949933 PMCID: PMC4917788 DOI: 10.1111/bcp.12912] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022] Open
Abstract
AIM Drug-induced Raynaud's phenomenon (RP) has long been associated with the use of different drugs, including cancer chemotherapy or β-adrenoceptor blockers. However, sources report extremely variable prevalence and the level of evidence for each class is heterogeneous. Moreover, new signals are emerging from case reports and small series. Our objective was therefore to review available evidence about this adverse drug effect and to propose a mechanistic approach of drug-induced RP. METHODS A systematic review of English and French language articles was performed through Medline (1946-2015) and Embase (1974-2015). Further relevant papers were identified from the reference lists of retrieved articles. RESULTS We identified 12 classes of drugs responsible for RP, with a variety of underlying mechanisms such as increased sympathetic activation, endothelial dysfunction, neurotoxicity or decreased red blood cell deformability. Cisplatin and bleomycin were associated with the highest risk, followed by β-adrenoceptor blockers. Recent data suggest a possible involvement of tyrosine kinase inhibitors (TKI), through an unknown mechanism. CONCLUSION Drug-induced RP is a probably underestimated adverse drug event, with limited available evidence regarding its prevalence. Although rare, serious complications like critical digital ischaemia have been reported. When these treatments are started in patients with a history of RP, careful monitoring must be made and, if possible, alternative therapies that do not alter peripheral blood flow should be considered.
Collapse
Affiliation(s)
- Charles Khouri
- Pôle Santé Publique, PharmacovigilanceCHU Grenoble‐AlpesF‐38000Grenoble
| | - Sophie Blaise
- HP2Univ. Grenoble AlpesF‐38000Grenoble
- HP2INSERMF‐38000Grenoble
- CHU Grenoble‐Alpes, Clinique de Médecine VasculaireF‐38000Grenoble
| | | | - Céline Villier
- Pôle Santé Publique, PharmacovigilanceCHU Grenoble‐AlpesF‐38000Grenoble
| | - Jean‐Luc Cracowski
- HP2Univ. Grenoble AlpesF‐38000Grenoble
- HP2INSERMF‐38000Grenoble
- Pôle Recherche, Pharmacologie Clinique Inserm CIC1406CHU Grenoble‐AlpesF‐38000GrenobleFrance
| | - Matthieu Roustit
- HP2Univ. Grenoble AlpesF‐38000Grenoble
- HP2INSERMF‐38000Grenoble
- Pôle Recherche, Pharmacologie Clinique Inserm CIC1406CHU Grenoble‐AlpesF‐38000GrenobleFrance
| |
Collapse
|
23
|
Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, Yanagisawa M, Emoto N, Morinobu A. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther 2016; 18:113. [PMID: 27209208 PMCID: PMC4875589 DOI: 10.1186/s13075-016-1011-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
Background Endothelin-1 (ET-1) is important in the pathogenesis of systemic sclerosis (SSc). ET-1 binds two receptors, endothelin type A (ETA) and endothelin type B (ETB). Dual ETA/ETB receptor antagonists and a selective ETA receptor antagonist are used clinically to treat SSc, and the effect of these antagonists on fibroblast activation has been described. However, the role of ETB receptor signaling in fibrogenesis is less clear. This study was conducted to evaluate the profibrotic function of ETB receptor signaling in a murine model of bleomycin (BLM)-induced scleroderma. Methods We used ETB receptor–knockout (ETBKO) mice, which are genetically rescued from lethal intestinal aganglionosis by an ETB receptor transgene driven by the human dopamine β-hydroxylase (DβH)-gene promoter, and wild-type mice with DβH-ETB (WT). BLM or phosphate-buffered saline (PBS) was administered subcutaneously by osmotic minipump, and skin fibrosis was assessed by dermal thickness, subcutaneous fat atrophy, and myofibroblast count in the dermis. Dermal fibroblasts isolated from ETBKO and WT mice were cultured in vitro, stimulated with BLM or ET-1, and the expression of profibrotic genes was compared by quantitative PCR. Results Dermal thickness, subcutaneous fat atrophy, and myofibroblast counts in the dermis were significantly reduced in ETBKO mice compared to WT mice, after BLM treatment. Compared with wild-type, dermal fibroblasts isolated from ETBKO mice showed lower gene expressions of α-smooth muscle actin and collagen 1α1 in response to BLM or ET-1 stimulation in vitro. Conclusions ET-1–ETB receptor signaling is involved in skin sclerosis and in collagen synthesis by dermal fibroblasts. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1011-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kengo Akashi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Keisuke Nishimura
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuya Okano
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keiko Yagi
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Noriaki Emoto
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
24
|
Maria ATJ, Maumus M, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis. Clin Rev Allergy Immunol 2016; 52:234-259. [DOI: 10.1007/s12016-016-8552-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Miguel V, Busnadiego O, Fierro-Fernández M, Lamas S. Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts. FIBROGENESIS & TISSUE REPAIR 2016; 9:7. [PMID: 27274768 PMCID: PMC4891847 DOI: 10.1186/s13069-016-0044-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
Background Excessive accumulation of extracellular matrix (ECM) proteins is the hallmark of fibrotic diseases, including skin fibrosis. This response relies on the activation of dermal fibroblasts that evolve into a pro-fibrogenic phenotype. One of the major players in this process is the cytokine transforming growth factor-β (TGF-β). MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression affecting a wide range of pathophysiological events including fibrogenesis. MicroRNA-9-5p (miR-9-5p) has been shown to exert a protective role in lung and peritoneal fibrosis. This study aimed to evaluate the role of miR-9-5p in skin fibrosis. Results miR-9-5p is up-regulated in TGF-β1-treated human dermal fibroblasts (HDFs). In silico identification of miR-9-5p targets spotted the type II TGF-β receptor (TGFBR2) as a potential TGF-β signaling-related effector for this miRNA. Consistently, over-expression of miR-9-5p in HDFs down-regulated TGFBR2 at both the mRNA and protein levels and reduced the phosphorylation of Smad2 and the translocation of Smad2/3 to the nucleus. In keeping, over-expression of miR-9-5p significantly delayed TGF-β1-dependent transformation of dermal fibroblasts, decreasing the expression of ECM protein collagen, type I, alpha 1 (Col1α1), and fibronectin (FN), the amount of secreted collagen proteins, and the expression of the archetypal myofibroblast marker alpha-smooth muscle actin (α-SMA). By contrast, specific inhibition of miR-9-5p resulted in enhanced presence of fibrosis markers. The expression of miR-9-5p was also detected in the skin and plasma in the mouse model of bleomycin-induced dermal fibrosis. Using lentiviral constructs, we demonstrated that miR-9-5p over-expression was also capable of deterring fibrogenesis in this same model. Conclusions miR-9-5p significantly prevents fibrogenesis in skin fibrosis. This is mediated by an abrogation of TGF-β-mediated signaling through the down-regulation of TGFBR2 expression in HDFs. These results may pave the way for future diagnostic or therapeutic developments for skin fibrosis based on miR-9-5p. Electronic supplementary material The online version of this article (doi:10.1186/s13069-016-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Oscar Busnadiego
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
26
|
Marttala J, Andrews JP, Rosenbloom J, Uitto J. Keloids: Animal models and pathologic equivalents to study tissue fibrosis. Matrix Biol 2016; 51:47-54. [PMID: 26827712 PMCID: PMC4842112 DOI: 10.1016/j.matbio.2016.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Animal models are crucial for the study of fibrosis. Keloids represent a unique type of fibrotic scarring that occurs only in humans, thus presenting a challenge for those studying the pathogenesis of this disease and its therapeutic options. Here, several animal models of fibrosis currently in use are described, emphasizing recent progress and highlighting encouraging challenges.
Collapse
Affiliation(s)
- Jaana Marttala
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jonathan P Andrews
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Ladak K, Pope JE. A review of the effects of statins in systemic sclerosis. Semin Arthritis Rheum 2015; 45:698-705. [PMID: 26639033 DOI: 10.1016/j.semarthrit.2015.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/10/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVES We performed a literature review assessing possible benefits of statins in systemic sclerosis (SSc). METHODS PubMed, Embase, Cochrane Databases, and Medline were searched. Full-text English publications were identified in which the effects of statins in SSc were examined. Letters, review articles, and studies on morphea were excluded. RESULTS In all, 18 of 404 studies were relevant. In vitro, statins decreased transcription and translation of IL-6 and collagen, with reversal via mevalonate. Animal studies demonstrated reduced production of Ras (a protein superfamily of GTPases), Rho (part of the Ras superfamily), and extracellular signal-regulated kinases (ERK), less fibrosis and myofibroblast transdifferentiation, and improved macrovasculature. In human studies, IL-6, an inflammatory cytokine, was reduced. Usually endothelial progenitor cell concentrations increased, and flow-mediated dilatation improved. Raynaud's phenomenon, digital ulcers, and physician global assessments improved in the majority of studies of statin treatment in SSc. None of the 256 patients receiving statins experienced transaminitis or myopathy. CONCLUSIONS Not all findings were consistent. However, in general, in vitro, animal, and human studies demonstrated benefit in SSc pathophysiology, likely mediated through inhibition of lipid intermediate synthesis. Clinical improvement in SSc circulatory complications was observed. Statins seemed safe and well tolerated in SSc. Larger longer-term multi-site randomized trials are needed to further determine the role of statins as adjunctive treatment of this complex, heterogeneous connective tissue disease.
Collapse
Affiliation(s)
- Karim Ladak
- De Groote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Janet E Pope
- Schulich School of Medicine, Western University, London, Ontario, Canada; St. Joseph's Health Care, 268 Grosvenor St., London, Ontario, Canada N6A 4V2.
| |
Collapse
|
28
|
Abstract
Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune disease. In this review, the focus is on models of systemic sclerosis and how they have progressed our understanding of fibrosis and vasculopathy, and whether they are relevant to the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
29
|
Roustit M, Khouri C, Blaise S, Villier C, Carpentier P, Cracowski JL. Pharmacologie du phénomène de Raynaud. Therapie 2014; 69:115-28. [DOI: 10.2515/therapie/2013068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/20/2022]
|
30
|
Wei J, Zhu H, Komura K, Lord G, Tomcik M, Wang W, Doniparthi S, Tamaki Z, Hinchcliff M, Distler JHW, Varga J. A synthetic PPAR-γ agonist triterpenoid ameliorates experimental fibrosis: PPAR-γ-independent suppression of fibrotic responses. Ann Rheum Dis 2014; 73:446-54. [PMID: 23515440 PMCID: PMC4028127 DOI: 10.1136/annrheumdis-2012-202716] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Persistent fibroblast activation initiated by transforming growth factor β (TGF-β) is a fundamental event in the pathogenesis of systemic sclerosis, and its pharmacological inhibition represents a potential therapeutic strategy. The nuclear receptor, peroxisome proliferator-activated receptor γ (PPAR-γ), exerts potent fibrotic activity. The synthetic oleanane triterpenoid, 2-cyano-3,12-dioxo-olean-1,9-dien-28-oic acid (CDDO), is a PPAR-γ agonist with potential effects on TGF-β signalling and dermal fibrosis. OBJECTIVE To examine the modulation of fibrogenesis by CDDO in explanted fibroblasts, skin organ cultures and murine models of scleroderma. MATERIAL AND METHODS The effects of CDDO on experimental fibrosis induced by bleomycin injection or by overexpression of constitutively active type I TGF-β receptor (TgfbR1ca) were evaluated. Modulation of fibrotic gene expression was examined in human skin organ cultures. To delineate the mechanisms underlying the antifibrotic effects of CDDO, explanted skin fibroblasts cultured in two-dimensional monolayers or in three-dimensional full-thickness human skin equivalents were studied. RESULTS CDDO significantly ameliorated dermal fibrosis in two complementary mouse models of scleroderma, as well as in human skin organ cultures and in three-dimensional human skin equivalents. In two-dimensional monolayer cultures of explanted normal fibroblasts, CDDO abrogated fibrogenic responses induced by TGF-β. These CDDO effects occurred via disruption of Smad-dependent transcription and were associated with inhibition of Akt activation. In scleroderma fibroblasts, CDDO attenuated the elevated synthesis of collagen. Remarkably, the in vitro antifibrotic effects of CDDO were independent of PPAR-γ. CONCLUSIONS The PPAR-γ agonist triterpenoid CDDO attenuates fibrogenesis by antagonistically targeting canonical TGF-β/Smad and Akt signalling in a PPAR-γ-independent manner. These findings identify this synthetic triterpenoid as a potential new therapy for the control of fibrosis.
Collapse
Affiliation(s)
- Jun Wei
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Hongyan Zhu
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Kazuhiro Komura
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Gabriel Lord
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Michal Tomcik
- Institute of Rheumatology, Department of Clinical and Experimental Rheumatology, Charles University, Prague, Czech Republic
| | - Wenxia Wang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Sruthi Doniparthi
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Zenshiro Tamaki
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Monique Hinchcliff
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Joerg H. W. Distler
- Department of Internal Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - John Varga
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
31
|
Matsushita T, Fujimoto M. Scleroderma: recent lessons from murine models and implications for future therapeutics. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2013.835924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents. Arch Dermatol Res 2013; 306:313-330. [PMID: 24155025 DOI: 10.1007/s00403-013-1416-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists.
Collapse
Affiliation(s)
- Olubukola Babalola
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA
| | - Andrew Mamalis
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA
| | - Hadar Lev-Tov
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA
| | - Jared Jagdeo
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA.,Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
33
|
Kotzki S, Roustit M, Arnaud C, Boutonnat J, Blaise S, Godin-Ribuot D, Cracowski JL. Anodal iontophoresis of a soluble guanylate cyclase stimulator induces a sustained increase in skin blood flow in rats. J Pharmacol Exp Ther 2013; 346:424-31. [PMID: 23838678 DOI: 10.1124/jpet.113.205484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The treatment of systemic sclerosis-related digital ulcers is challenging. Although the only effective drugs are prostacyclin analogs, their use is limited by vasodilation-related adverse reactions. In this study, we assessed the local iontophoresis administration of three soluble guanylate cyclase (A-350619 [3-[2-[(4-chlorophenyl)thiophenyl]-N-[4-(dimethylamino)butyl]-2-propenamide hydrochloride], SIN-1 [amino-3-morpholinyl-1,2,3-oxadiazolium chloride], and CFM 1571 [3-[3-(dimethylamino)propoxy]-N-(4-methoxyphenyl)-1-(phenylmethyl)-1H-pyrazole-5-carboxamide hydrochloride]) and two nonprostanoid prostaglandin I2 (prostacyclin) receptor agonists (MRE-269 [[4-[(5,6-diphenylpyrazinyl)(1-methylethyl)amino]butoxy]-acetic acid] and BMY 45778 [[3-(4,5-diphenyl[2,4'-bioxazol]-5'-yl)phenoxy]acetic acid]) to induce vasodilation onto the hindquarters of anesthetized rats. Skin blood flow was quantified using laser Doppler imaging during the whole experience, and safety was assessed by continuous recording of blood pressure and histopathological examination. Anodal iontophoresis of A-350619 (7.54 mM) induced a sustained increase in cutaneous blood flow (P = 0.008 vs. control). All other drugs exhibited poor or no effect on skin blood flow. Vasodilation with A-350619 iontophoresis was concentration-dependent (7.5, 0.75, and 0.075 mM; P < 0.001, Jonckheere-Terpstra trend test), and repeated administrations do not suggest any risk of tolerance. This study also compared continuous versus intermittent iontophoresis protocols. Continuous anodal iontophoresis of A-350619 at 7.5 mM increases cutaneous blood flow with good local tolerance. Iontophoresis of soluble guanylate cyclase stimulators should be investigated as potential local therapy for digital ulceration in patients with scleroderma.
Collapse
|
34
|
Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Adv Wound Care (New Rochelle) 2013; 2:195-214. [PMID: 24527343 PMCID: PMC3857355 DOI: 10.1089/wound.2013.0429] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 12/12/2022] Open
Abstract
SIGNIFICANCE Wound healing is an intricate biological process in which the skin, or any other tissue, repairs itself after injury. Normal wound healing relies on the appropriate levels of cytokines and growth factors to ensure that cellular responses are mediated in a coordinated manner. Among the many growth factors studied in the context of wound healing, transforming growth factor beta (TGF-β) is thought to have the broadest spectrum of effects. RECENT ADVANCES Many of the molecular mechanisms underlying the TGF-β/Smad signaling pathway have been elucidated, and the role of TGF-β in wound healing has been well characterized. Targeting the TGF-β signaling pathway using therapeutic agents to improve wound healing and/or reduce scarring has been successful in pre-clinical studies. CRITICAL ISSUES Although TGF-β isoforms (β1, β2, β3) signal through the same cell surface receptors, they display distinct functions during wound healing in vivo through mechanisms that have not been fully elucidated. The challenge of translating preclinical studies targeting the TGF-β signaling pathway to a clinical setting may require more extensive preclinical research using animal models that more closely mimic wound healing and scarring in humans, and taking into account the spatial, temporal, and cell-type-specific aspects of TGF-β isoform expression and function. FUTURE DIRECTIONS Understanding the differences in TGF-β isoform signaling at the molecular level and identification of novel components of the TGF-β signaling pathway that critically regulate wound healing may lead to the discovery of potential therapeutic targets for treatment of impaired wound healing and pathological scarring.
Collapse
Affiliation(s)
- Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| | - Sarah McLean
- Department of Physiology and Pharmacology, Western University, London, Canada
| | | | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| |
Collapse
|
35
|
Ju M, Chen K, Chang B, Gu H. UVA1 irradiation inhibits fibroblast proliferation and alleviates pathological changes of scleroderma in a mouse model. J Biomed Res 2013; 26:135-42. [PMID: 23554742 PMCID: PMC3597330 DOI: 10.1016/s1674-8301(12)60023-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/07/2011] [Accepted: 12/18/2011] [Indexed: 01/13/2023] Open
Abstract
The purpose of the present study was to compare the effects of different doses of ultraviolet radiation A1 (UVA1) on human fibroblast proliferation and collagen level in a mouse model of scleroderma, so as to identify appropriate irradiation doses for clinical treatment of scleroderma. Monolayer from human fibroblasts was cultured in vitro, and a mouse model of scleroderma was established by subcutaneous injection of 100 µL of 400 µg/mL bleomycin into the back of BALB/c mice for 4 weeks. The mouse models and human fibroblasts were divided into UVA1-exposed (100, 60 and 20 J/cm2) and UVA-unexposed groups. At 0, 24 and 48 h after exposure, cell proliferation and levels of hydroxyproline and collagen were detected. UVA1 irradiation was performed 3 times weekly for 10 weeks, and the pathological changes of skin tissues, skin thickness and collagen level were observed after phototherapy. Cell proliferation and the levels of hydroxyproline and collagen were inhibited after phototherapy, and there was a significant difference between the UVA1-exposed cells and UVA1-unexposed cells (P < 0.001). In addition, UVA1 phototherapy improved dermal sclerosis and softened the skin, and there were significant differences between the high-dose UVA1 group and the model group, and the negative group (P < 0.05). It is concluded that UVA1 radiation can reduce cell proliferation, and decrease hydroxyproline and collagen levels in a dose-dependent manner in vitro. High-dose UVA1 phototherapy has marked therapeutic effect on scleroderma in the mouse model. Decreased collagen level may be related to the reduced number and activity of cells, as well as inhibition of collagen synthesis.
Collapse
Affiliation(s)
| | | | | | - Heng Gu
- Corresponding author: Heng Gu, M.D., Institute of Dermatology, Chinese Academy of Medical Sciences, 12 Jiangwangmiao Street Nanjing 210042, China. Tel/Fax: +86-2585478969/+86-2585478969, E-mail:
| |
Collapse
|
36
|
Current World Literature. Curr Opin Rheumatol 2013; 25:275-83. [DOI: 10.1097/bor.0b013e32835eb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Experimental models of dermal fibrosis and systemic sclerosis. Joint Bone Spine 2013; 80:23-8. [DOI: 10.1016/j.jbspin.2012.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/15/2012] [Indexed: 11/23/2022]
|
38
|
Stawski L, Han R, Bujor AM, Trojanowska M. Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. Arthritis Res Ther 2012; 14:R194. [PMID: 22913887 PMCID: PMC3580592 DOI: 10.1186/ar4028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/20/2012] [Indexed: 02/08/2023] Open
Abstract
Introduction Systemic sclerosis (SSc) is an autoimmune inflammatory disorder of unknown etiology characterized by fibrosis of the skin and internal organs. Ang II (angiotensin II), a vasoconstrictive peptide, is a well-known inducer of kidney, heart, and liver fibrosis. The goal of this study was to investigate the profibrotic potential of Ang II in the mouse skin. Methods Ang II was administered by subcutaneous osmotic mini pumps to C57BL/6 male mice. Collagen-content measurements were performed with Gomori Trichrome staining and hydroxyproline assay. The mRNA expression level of collagens, TGF-β1, TGF-β2, TGF-β3, CTGF, αSMA, CD3, Emr1, CD45/B220, MCP1, and FSP1 were quantified with real-time polymerase chain reaction (PCR). Immunostaining was performed for markers of inflammation and fibrosis, including, phospho-Smad2, αSMA, CD3, Mac3, CD45/B220, and CD163B. Fibrocytes were identified by double staining with CD45/FSP1 and CD45/PH4. Endothelial cells undergoing endothelial-to-mesenchymal transition (EndoMT) were identified by double staining with VE-cadherin/FSP1. Results Ang II-infused mice develop prominent dermal fibrosis in the area proximal to the pump, as shown by increased collagen and CTGF mRNA levels, increased hydroxyproline content, and more tightly packed collagen fibers. In addition, elevated mRNA levels of TGF-β2 and TGF-β3 along with increased expression of pSmad2 were observed in the skin of Ang II-treated mice. Dermal fibrosis was accompanied by an increased number of infiltrating fibrocytes, and an increased number of αSMA-positive cells, as well as CD163B+ macrophages in the upper dermis. This correlated with significantly increased mRNA levels of αSMA, Emr1, and MCP1. Infiltration of CD3-, CD45/B220-, and Mac3-positive cells was observed mainly in the hypodermis. Furthermore, an increased number of double-positive VE-cadherin/FSP1 cells were detected in the hypodermis only. Conclusions This work demonstrates that Ang II induces both inflammation and fibrosis in the skin via MCP1 upregulation and accumulation of activated fibroblasts. Additionally, our data suggest that populations of these fibroblasts originate from circulating blood cells. Ang II infusion via osmotic minipumps could serve as a useful mouse model of skin fibrosis to gain new insights into pathogenic mechanisms and to test new antifibrotic therapies.
Collapse
|
39
|
Streuli I, de Ziegler D, Borghese B, Santulli P, Batteux F, Chapron C. New treatment strategies and emerging drugs in endometriosis. Expert Opin Emerg Drugs 2012; 17:83-104. [PMID: 22439891 DOI: 10.1517/14728214.2012.668885] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Endometriosis, histologically defined as the presence of endometrium-like tissue - glands and stroma - that develops outside of the uterine cavity, is still an enigmatic disease responsible for pelvic pain and infertility. The current treatments of endometriosis are surgery and hormonal therapies that act by suppressing ovulation and/or directly on steroid receptors located in endometriotic lesions. Areas covered: New hormonal and non-hormonal therapies are being developed for the treatment of endometriosis-related pain. The authors review the state of advancement and the results of novel treatments studied in registered trials ( www.ClinicalTrials.gov ). Cellular signaling pathways activated in endometriotic cells, which constitute potential targets for future treatments, are also described. Expert opinion: Therapeutic research efforts should focus on identifying and testing substances capable of acting locally on the lesions themselves, without interfering with ovulation, in order to be efficacious on both pain symptoms and infertility.
Collapse
Affiliation(s)
- Isabelle Streuli
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine - Assistance Publique des Hôpitaux de Paris, CHU Cochin, Department of Obstetrics Gynaecology and Reproductive Medicine , Paris , France
| | | | | | | | | | | |
Collapse
|