1
|
Nchang LC, Magha C, Fonong PA, Gandjui NVT, Tchatat NM, Nkimbeng DA, Nietcho FN, Foyet JV, Fombad FF, Katcho TD, Cho JF, Hoerauf A, Ritter M, Wanji S. Parasitic infection prevalence in tuberculosis patients and their household contacts in the Littoral Region of Cameroon. Parasite Epidemiol Control 2025; 28:e00409. [PMID: 39867582 PMCID: PMC7617333 DOI: 10.1016/j.parepi.2025.e00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
Background Parasitic infections are known to suppress the cell mediated immunity that protects against tuberculosis. The status of parasitic infections among bacteriologically confirmed tuberculosis patients and their household contacts in Cameroon is not well established. This study aimed at reporting the status of parasitic infections in TB patients and their household contacts with keen interest in associated risk factors to disease exposure. Methodology This was a hospital based cross-sectional descriptive study carried out with newly diagnosed active tuberculosis (TB) patients and their household contacts in the Littoral Region of Cameroon. Socio-demographic data and associated factors were collected using structured questionnaires. Blood, stool, urine and skin snip samples were collected following standard guidelines for investigation of parasitic infections. Descriptive analysis was performed, bivariate analysis was computed and a multivariable analysis was done to provide adjusted odds ratios (AOR). Results A total of 712 TB patients and 472 household contacts were recruited. The overall prevalence of parasitic infections in TB patients was 25.84 % (184/712) and household contacts was 31.36 % (148/472). Blood protozoan (Plasmodium falciparum) infection among active TB patients (20.22 %) and their household contacts (26.27 %) was the most frequently detected parasitic infection. Loa loa was the predominant helminth species seen among active TB patients while Schistosoma mansoni was the predominant helminth infection detected in household contacts. TB patients and household contacts living in urban areas had lower odds of being associated with helminth infections (AOR 0.2, 95 % CI: 0.10-0.40; p < 0.0001 and AOR 0.11, 95 % CI: 0.04-0.27; p < 0.0001 respectively) as compared to those residing in rural areas. Conclusion We observed that 31 % of the TB patients and household contacts are infected with parasites including P. falciparum, Loa loa and Since helminths can downregulate immune responses against bacterial infections and thus affect treatment efficacy, we recommend that diagnosis of parasitic infections should be included during TB diagnosis and treatment programmes, especially in rural areas.
Collapse
Affiliation(s)
- Lucy Cho Nchang
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chefor Magha
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Patience Agwa Fonong
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Narcisse Victor Tchamatchoua Gandjui
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Nancielle Mbiatong Tchatat
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Desmond Akumtoh Nkimbeng
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Frank Noel Nietcho
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Juluis Visnel Foyet
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Tatiana Djikeussi Katcho
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Jerome Fru Cho
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Germany
| | - Samuel Wanji
- Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| |
Collapse
|
2
|
Li X, Huang M, Bi K, Zou Y, Wang F, Zheng X, Wang L. Clinical and epidemiological features of imported loiasis in Beijing: a report from patients returned from Africa. BMC Infect Dis 2024; 24:714. [PMID: 39033158 PMCID: PMC11265026 DOI: 10.1186/s12879-024-09620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Loiasis is one of the significant filarial diseases for people living in West and Central Africa with wide endemic area but is not seen in China. As economy booms and international traveling increase, China faces more and more imported parasitic diseases that are not endemic locally. Loiasis is one of the parasitic diseases that enter China by travelers infected in Africa. The better understanding of the clinical and laboratory features of loa loa infection will facilitate the diagnosis and treatment of loiasis in China. METHODS The study targeted travelers who were infected with L. loa in endemic Africa regions and returned to Beijing between 2014 and 2023. Epidemiological, clinical, and biological data as well as treatment of these patients were collected. RESULTS Total 21 cases were identified as L. loa infection based on their typical clinical manifestations and parasite finding. All cases had a history of travel to Africa for more than 6 months, most of them are the construction workers dispatched to West Africa with outdoor activities. Calabar swelling (n = 19; 90.5%) and pruritus (n = 11; 52.4%) were among the most common clinical symptoms followed by muscle pain (n = 7; 33.3%) and skin rash (n = 2; 9.5%). The adult worms were observed in the eyelid or subconjunctiva (n = 2; 9.5%) and subcutaneous tissues (n = 2; 9.5%). Although all patients presented with a high eosinophil count (> 0.52 × 109/L), only two cases displayed microfilariae in fresh venous blood and positive for filarial antigen. A cut section of adult worm was observed through biopsy on a skin nodule surrounded by lymphocytes, plasma cells and eosinophils. All subjects were positive in PCR targeting L. loa ITS-1. The constructed phylogenetic tree based on the amplified ITS-1 sequences identified their genetical relation to the L. Loa from Africa. All patients treated with albendazole and diethylcarbamazine were recovered without relapse. CONCLUSION This study provides useful information and guideline for physicians and researchers in non-endemic countries to diagnose and treat loiasis and L. loa infections acquired from endemic regions.
Collapse
Affiliation(s)
- Xiaoli Li
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, 100050, China
| | - Minjun Huang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, 100050, China
| | - Kuo Bi
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Zou
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, 100050, China
| | - Fei Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, 100050, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, 100050, China
| | - Lei Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, 100050, China.
| |
Collapse
|
3
|
Dahmer KJ, Palma-Cuero M, Ciuoderis K, Patiño C, Roitman S, Li Z, Sinha A, Hite JL, Bellido Cuellar O, Hernandez-Ortiz JP, Osorio JE, Christensen BM, Carlow CKS, Zamanian M. Molecular surveillance detects high prevalence of the neglected parasite Mansonella ozzardi in the Colombian Amazon. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.10.23289806. [PMID: 37215049 PMCID: PMC10197819 DOI: 10.1101/2023.05.10.23289806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mansonellosis is an undermapped insect-transmitted disease caused by filarial nematodes that are estimated to infect hundreds of millions of people globally. Despite their prevalence, there are many outstanding questions regarding the general biology and health impacts of the responsible parasites. Historical reports suggest that the Colombian Amazon is endemic for mansonellosis and may serve as an ideal location to pursue these questions in the backdrop of other endemic and emerging pathogens. We deployed molecular and classical diagnostic approaches to survey Mansonella prevalence among adults belonging to indigenous communities along the Amazon River and its tributaries near Leticia, Colombia. Deployment of a loop-mediated isothermal amplification (LAMP) assay on blood samples revealed an infection prevalence of ∼40% for Mansonella ozzardi . This assay identified significantly more infections than blood smear microscopy or LAMP assays performed using plasma, likely reflecting greater sensitivity and the ability to detect low microfilaremias or occult infections. Mansonella infection rates increased with age and were higher among males compared to females. Genomic analysis confirmed the presence of M. ozzardi that clusters closely with strains sequenced in neighboring countries. We successfully cryopreserved and revitalized M. ozzardi microfilariae, advancing the prospects of rearing infective larvae in controlled settings. These data suggest an underestimation of true mansonellosis prevalence, and we expect that these methods will help facilitate the study of mansonellosis in endemic and laboratory settings.
Collapse
Affiliation(s)
- KJ Dahmer
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - M Palma-Cuero
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| | - K Ciuoderis
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
- Universidad Nacional de Colombia - UW-GHI One Health Colombia, Medellín, Colombia
| | - C Patiño
- Universidad Nacional de Colombia - UW-GHI One Health Colombia, Medellín, Colombia
| | - S Roitman
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - Z Li
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - A Sinha
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - JL Hite
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | | | - JP Hernandez-Ortiz
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
- Universidad Nacional de Colombia - UW-GHI One Health Colombia, Medellín, Colombia
| | - JE Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| | - BM Christensen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| | - CKS Carlow
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - M Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| |
Collapse
|
4
|
Amambo GN, Innocentia N, Abong RA, Fombad FF, Njouendou AJ, Nietcho F, Ekanya R, Kien CA, Ebai R, Lenz B, Ritter M, Esum ME, Deribe K, Cho JF, Beng AA, Enyong PI, Li Z, Hübner MP, Pfarr K, Hoerauf A, Carlow C, Wanji S. Application of loop mediated isothermal amplification (LAMP) assays for the detection of Onchocerca volvulus, Loa loa and Mansonella perstans in humans and vectors. FRONTIERS IN TROPICAL DISEASES 2023; 3:1016176. [PMID: 36684508 PMCID: PMC7614089 DOI: 10.3389/fitd.2022.1016176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Conventional diagnosis of filarial infections is based on morphological identification of microfilariae using light microscopy and requires considerable expertise, is time-consuming, and can be subjective. Loop-mediated isothermal amplification (LAMP) has advantages over microscopy or PCR because of its operational simplicity, rapidity and versatility of readout options. LAMP assays represent a major step forward in improved filarial diagnostic tools suitable for low resource settings and field applicability. The study goal was to retrospectively evaluate the performance and suitability of the O-150, RF4, and Mp419 LAMP assays for diagnosing Onchocerca volvulus, Loa loa and Mansonella perstans infections, respectively, in humans and vectors under experimental and natural field conditions. Surveys were conducted in four health districts of Cameroon using skin snip and thick blood film methods to detect skin (O. volvulus) and blood (L. loa and M. perstans) dwelling microfilaria in humans. Engorged vectors (Simulium spp., Chrysops spp., and Culicoides spp.) were evaluated by LAMP. Dissected, wild-caught vectors were also analyzed. LAMP showed a prevalence of 40.4% (O. volvulus), 17.8% (L. loa) and 36.6% (M. perstans) versus 20.6% (O. volvulus), 17.4% (L. loa) and 33.8% (M. perstans) with microscopy. Simulium spp. were dissected for microscopy and pooled for LAMP. The O-150 LAMP assay infection rate was 4.3% versus 4.1% by microscopy. Chrysops spp. were dissected and analyzed individually in the LAMP assay. The RF4 LAMP assay infection rate was 23.5% versus 3.3% with microscopy. The RF4 LAMP assay also detected parasites in Chrysops spp. fed on low microfilaremic volunteers. The Mp419 LAMP assay infection rate was 0.2% for C. milnei and 0.04% for C. grahamii, while three other species were LAMP-negative. The sensitivity, species specificity, rapidity and ease of its use of these filarial LAMP assays, and validation of their performance in the field support use as alternatives to microscopy as diagnostic and surveillance tools in global health programs aimed to eliminate onchocerciasis.
Collapse
Affiliation(s)
- Glory Ngongeh Amambo
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Ngong Innocentia
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Raphael Awah Abong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Biomedical Science, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Franck Nietcho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Relindis Ekanya
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Benjamin Lenz
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mathias Eyong Esum
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Kebede Deribe
- Global Health and Infection Department, Brighton and Sussex Medical School, Brighton, United Kingdom
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jerome Fru Cho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Amuam Andrew Beng
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Peter Ivo Enyong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Zhiru Li
- New England Biolabs, Ipswich, MA, United States
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | | | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| |
Collapse
|
5
|
Bhoj P, Togre N, Khatri V, Goswami K. Harnessing Immune Evasion Strategy of Lymphatic Filariae: A Therapeutic Approach against Inflammatory and Infective Pathology. Vaccines (Basel) 2022; 10:vaccines10081235. [PMID: 36016123 PMCID: PMC9415972 DOI: 10.3390/vaccines10081235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human lymphatic filariae have evolved numerous immune evasion strategies to secure their long-term survival in a host. These strategies include regulation of pattern recognition receptors, mimicry with host glycans and immune molecules, manipulation of innate and adaptive immune cells, induction of apoptosis in effector immune cells, and neutralization of free radicals. This creates an anti-inflammatory and immunoregulatory milieu in the host: a modified Th2 immune response. Therefore, targeting filarial immunomodulators and manipulating the filariae-driven immune system against the filariae can be a potential therapeutic and prophylactic strategy. Filariae-derived immunosuppression can also be exploited to treat other inflammatory diseases and immunopathologic states of parasitic diseases, such as cerebral malaria, and to prevent leishmaniasis. This paper reviews immunomodulatory mechanisms acquired by these filariae for their own survival and their potential application in the development of novel therapeutic approaches against parasitic and inflammatory diseases. Insight into the intricate network of host immune-parasite interactions would aid in the development of effective immune-therapeutic options for both infectious and immune-pathological diseases.
Collapse
Affiliation(s)
| | - Namdev Togre
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
- Correspondence: (N.T.); (K.G.)
| | | | - Kalyan Goswami
- All India Institute of Medical Sciences, Saguna, Kalyani 741245, India
- Correspondence: (N.T.); (K.G.)
| |
Collapse
|
6
|
Tamarozzi F, Buonfrate D, Ricaboni D, Ursini T, Foti G, Gobbi F. Spleen nodules in Loa loa infection: re-emerging knowledge and future perspectives. THE LANCET. INFECTIOUS DISEASES 2022; 22:e197-e206. [PMID: 35219405 DOI: 10.1016/s1473-3099(21)00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Loiasis, the infection with the vector-borne filarial nematode Loa loa, is widely distributed in central and west Africa. Long considered a rather benign infection, recently loiasis with high microfilarial burden was associated with increased mortality risk. Eyeworm and Calabar swelling are pathognomonic signs of the infection, but other atypical, non-specific manifestations can also occur. For instance, splenic nodules have been seldom reported. In this Grand Round, we report two cases of loiasis in migrants who presented with spleen nodules, which could be followed up over time (up to 27 months) with multiple imaging techniques until their resolution. We comment on the clinical implications of these observations, including differential diagnosis with similar imaging findings, and critically review the evidence of spleen involvement in loiasis and other filarial infections.
Collapse
Affiliation(s)
- Francesca Tamarozzi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy.
| | - Dora Buonfrate
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | | | - Tamara Ursini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Giovanni Foti
- Department of Radiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| |
Collapse
|
7
|
Yoboue CA, Hosch S, Donfack OT, Guirou EA, Nlavo BM, Ayekaba MO, Guerra C, Phiri WP, Garcia GA, Schindler T, Daubenberger CA. Characterising co-infections with Plasmodium spp., Mansonella perstans or Loa loa in asymptomatic children, adults and elderly people living on Bioko Island using nucleic acids extracted from malaria rapid diagnostic tests. PLoS Negl Trop Dis 2022; 16:e0009798. [PMID: 35100277 PMCID: PMC8830708 DOI: 10.1371/journal.pntd.0009798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/10/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Regular and comprehensive epidemiological surveys of the filarial nematodes Mansonella perstans and Loa loa in children, adolescents and adults living across Bioko Island, Equatorial Guinea are lacking. We aimed to demonstrate that blood retained on malaria rapid diagnostic tests, commonly deployed for malaria surveys, could be used as a source of nucleic acids for molecular based detection of M. perstans and L. loa. We wanted to determine the positivity rate and distribution of filarial nematodes across different age groups and geographical areas as well as to understand level of co-infections with malaria in an asymptomatic population. Methodology M. perstans, L. loa and Plasmodium spp. parasites were monitored by qPCR in a cross-sectional study using DNA extracted from a subset malaria rapid diagnostic tests (mRDTs) collected during the annual malaria indicator survey conducted on Bioko Island in 2018. Principal findings We identified DNA specific for the two filarial nematodes investigated among 8.2% (263) of the 3214 RDTs screened. Positivity rates of M. perstans and L. loa were 6.6% and 1.5%, respectively. M. perstans infection were more prominent in male (10.5%) compared to female (3.9%) survey participants. M. perstans parasite density and positivity rate was higher among older people and the population living in rural areas. The socio-economic status of participants strongly influenced the infection rate with people belonging to the lowest socio-economic quintile more than 3 and 5 times more likely to be L. loa and M. perstans infected, respectively. No increased risk of being co-infected with Plasmodium spp. parasites was observed among the different age groups. Conclusions/Significance We found otherwise asymptomatic individuals were infected with M. perstans and L. loa. Our study demonstrates that employing mRDTs probed with blood for malaria testing represents a promising, future tool to preserve and ship NAs at room temperature to laboratories for molecular, high-throughput diagnosis and genotyping of blood-dwelling nematode filarial infections. Using this approach, asymptomatic populations can be reached and surveyed for infectious diseases beyond malaria. Mansonella perstans and Loa loa are filarial nematodes that infect millions of people living in less developed areas, predominantly in sub-Saharan Africa. Both parasites are neglected among other filarial nematodes because both are regarded as causing mainly asymptomatic infections. The aim of this study was to explore the feasibility of using malaria rapid diagnostic tests (mRDTs) deployed during malaria surveys as a convenient sampling strategy for molecular surveillance of blood-dwelling filarial nematode infections. Our findings demonstrate the potential of mRDTs as a source of parasite DNA beyond malaria, providing an opportunity to expand current knowledge on the distribution and populations mostly affected by M. perstans and L. loa infections to Equatorial Guinea, located in Central-West Africa.
Collapse
Affiliation(s)
- Charlene Aya Yoboue
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Salome Hosch
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Etienne A. Guirou
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Carlos Guerra
- Medical Care Development International, Malabo, Equatorial Guinea
| | - Wonder P. Phiri
- Medical Care Development International, Malabo, Equatorial Guinea
| | | | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (TS); (CAD)
| | - Claudia A. Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (TS); (CAD)
| |
Collapse
|
8
|
Aro AO, Famuyide IM, Oyagbemi AA, Kabongo-Kayoka PN, McGaw LJ. In Vitro Potential of the Acetone Leaf Extract and Fractions of Psychotria capensis (Eckl.) Vatke (Rubiaceae) to Combat Co-Infection of Tuberculosis and Helminthiasis. Front Pharmacol 2022; 12:744137. [PMID: 35087402 PMCID: PMC8787188 DOI: 10.3389/fphar.2021.744137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
Abstract
Tuberculosis (TB) is a disease of global importance that affects millions of people. Approximately a quarter of the world’s population is currently infected with M. tuberculosis, and about 10% of those infected will develop into active disease, particularly immune compromised individuals. Helminthiasis is of global health importance, affecting over 2 billion people mostly in resource-poor countries. Co-infection with tuberculosis (TB) and helminths (worms) is an emerging global public health concern with both affecting about one-third of the global population. Chronic infection with helminths can result in impaired immune responses to TB as well as enhancing failure to TB therapy and BCG vaccination. Antimycobacterial and anthelmintic activities of the acetone extract and fractions of Psychotria capensis were evaluated, including their in vitro safety. In addition, the anti-inflammatory and immunomodulatory effect of the fractions and crude extract of P. capensis were assessed. Antimycobacterial activity of the extract and fractions was tested against four non-tuberculous mycobacteria (Mycobacterium smegmatis, M. fortuitum, M. aurum, M. bovis BCG) and pathogenic M. tuberculosis H37Rv while the Egg Hatch Assay (EHA) was used for the anthelmintic test on eggs of Haemonchus contortus. Cytotoxicity was determined against Vero kidney cells while in vitro immune modulation via cytokine production was determined on activated macrophages. The minimum inhibitory concentration (MIC) values of the Psychotria capensis acetone extract and fractions ranged from 39 to 1,250 μg/ml with the crude extract and hexane fraction having the best MIC values (both 39 μg/ml). In the EHA, the inhibitory concentration (IC50) ranged from 160 to 630 μg/ml with the hexane fraction having the best activity. The hexane and chloroform fractions were relatively non-toxic with LC50 values of 290 and 248 μg/ml respectively, while the acetone crude extract (64 μg/ml) and n-butanol fraction (71 μg/ml) were moderately toxic. The SI values (LC50/MIC) ranged from 0.1 to 7.4 with the hexane fraction having the highest value against M. smegmatis (7.4). The hexane fraction had the best dual anthelmintic and antimycobacterial activity. This fraction had the best NO inhibitory activity and was the least cytotoxic, indicating that its activity was not due to general metabolic toxicity, with 96.54% cell viability. Pro-inflammatory cytokines such as IL-12p70 were upregulated while IL-10 expression was inhibited by the extracts. Compounds were detected using GC-MS analysis, and in both the crude acetone extract and the hexane fraction was the diterpene neophytadiene, which has anti-inflammatory and antimicrobial activity. Finding alternative or complementary approaches to dealing with TB infections by, amongst other things, reducing the incidence of helminth infestations may lessen the burden of TB, contributing to slowing the spread of multi-drug resistance.
Collapse
Affiliation(s)
- Abimbola O Aro
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida, South Africa
| | - Ibukun M Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Prudence N Kabongo-Kayoka
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Kwarteng A, Asiedu E, Koranteng KK, Asiedu SO. Highlighting the Relevance of CD8 + T Cells in Filarial Infections. Front Immunol 2021; 12:714052. [PMID: 34603287 PMCID: PMC8481813 DOI: 10.3389/fimmu.2021.714052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
The T cell immune responses in filarial infections are primarily mediated by CD4+ T cells and type 2-associated cytokines. Emerging evidence indicates that CD8+ T cell responses are important for anti-filarial immunity, however, could be suppressed in co-infections. This review summarizes what we know so far about the activities of CD8+ T cell responses in filarial infections, co-infections, and the associations with the development of filarial pathologies.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Kelvin Kwaku Koranteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Opoku Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
10
|
Kathamuthu GR, Moideen K, Thiruvengadam K, Sridhar R, Baskaran D, Babu S. Helminth Coinfection Is Associated With Enhanced Plasma Levels of Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Tuberculous Lymphadenitis. Front Cell Infect Microbiol 2021; 11:680665. [PMID: 34350132 PMCID: PMC8326810 DOI: 10.3389/fcimb.2021.680665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are crucial for tissue remodeling and repair and are expressed in diverse infections, whereas tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of MMPs. However, the interaction of MMPs and TIMPs in tuberculous lymphadenitis (TBL), an extra-pulmonary form of tuberculosis (EPTB) and helminth (Hel+) coinfection is not known. Therefore, this present study investigates the levels of circulating MMPs (1, 2, 3, 7, 8, 9, 12, 13) and TIMPs (1, 2, 3, 4) in TBL individuals with helminth (Strongyloides stercoralis [Ss], hereafter Hel+) coinfection and without helminth coinfection (hereafter, Hel-). In addition, we have also carried out the regression analysis and calculated the MMP/TIMP ratios between the two study groups. We describe that the circulating levels of MMPs (except MMP-8 and MMP-12) were elevated in TBL-Hel+ coinfected individuals compared to TBL-Hel- individuals. Similarly, the systemic levels of TIMPs (1, 2, 3, 4) were increased in TBL-Hel+ compared to TBL-Hel- groups indicating that it is a feature of helminth coinfection per se. Finally, our multivariate analysis data also revealed that the changes in MMPs and TIMPs were independent of age, sex, and culture status between TBL-Hel+ and TBL-Hel- individuals. We show that the MMP-2 ratio with all TIMPs were significantly associated with TBL-helminth coinfection. Thus, our results describe how helminth infection has a profound effect on the pathogenesis of TBL and that both MMPs and TIMPs could dampen the immunity against the TBL-Hel+ coinfected individuals.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Chetty A, Omondi MA, Butters C, Smith KA, Katawa G, Ritter M, Layland L, Horsnell W. Impact of Helminth Infections on Female Reproductive Health and Associated Diseases. Front Immunol 2020; 11:577516. [PMID: 33329545 PMCID: PMC7719634 DOI: 10.3389/fimmu.2020.577516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
A growing body of knowledge exists on the influence of helminth infections on allergies and unrelated infections in the lung and gastrointestinal (GI) mucosa. However, the bystander effects of helminth infections on the female genital mucosa and reproductive health is understudied but important considering the high prevalence of helminth exposure and sexually transmitted infections in low- and middle-income countries (LMICs). In this review, we explore current knowledge about the direct and systemic effects of helminth infections on unrelated diseases. We summarize host disease-controlling immunity of important sexually transmitted infections and introduce the limited knowledge of how helminths infections directly cause pathology to female reproductive tract (FRT), alter susceptibility to sexually transmitted infections and reproduction. We also review work by others on type 2 immunity in the FRT and hypothesize how these insights may guide future work to help understand how helminths alter FRT health.
Collapse
Affiliation(s)
- Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Ann Smith
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - William Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
13
|
Kim JY, Yi MH, Yong TS. Allergen-like Molecules from Parasites. Curr Protein Pept Sci 2020; 21:186-202. [DOI: 10.2174/1389203720666190708154300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
Parasite infections modulate immunologic responses, and the loss of parasite infections in the
last two to three decades might explain the increased prevalence of allergic diseases in developed countries.
However, parasites can enhance allergic responses. Parasites contain or release allergen-like molecules
that induce the specific immunoglobulin, IgE, and trigger type-2 immune responses. Some parasites
and their proteins, such as Anisakis and Echinococcus granulosus allergens, act as typical allergens.
A number of IgE-binding proteins of various helminthic parasites are cross-reactive to other environmental
allergens, which cause allergic symptoms or hamper accurate diagnosis of allergic diseases. The
cross-reactivity is based on the fact that parasite proteins are structurally homologous to common environmental
allergens. In addition, IgE-binding proteins of parasites might be useful for developing vaccines
to prevent host re-infection. This review discusses the functions of the IgE-biding proteins of parasites.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
14
|
McLaughlin TA, Khayumbi J, Ongalo J, Tonui J, Campbell A, Allana S, Gurrion Ouma S, Odhiambo FH, Gandhi NR, Day CL. CD4 T Cells in Mycobacterium tuberculosis and Schistosoma mansoni Co-infected Individuals Maintain Functional TH1 Responses. Front Immunol 2020; 11:127. [PMID: 32117277 PMCID: PMC7020828 DOI: 10.3389/fimmu.2020.00127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a serious public health concern, infecting a quarter of the world and leading to 10 million cases of tuberculosis (TB) disease and 1. 5 million deaths annually. An effective type 1 CD4 T cell (TH1) immune response is necessary to control Mtb infection and defining factors that modulate Mtb-specific TH1 immunity is important to better define immune correlates of protection in Mtb infection. Helminths stimulate type 2 (TH2) immune responses, which antagonize TH1 cells. As such, we sought to evaluate whether co-infection with the parasitic helminth Schistosoma mansoni (SM) modifies CD4 T cell lineage profiles in a cohort of HIV-uninfected adults in Kisumu, Kenya. Individuals were categorized into six groups by Mtb and SM infection status: healthy controls (HC), latent Mtb infection (LTBI) and active tuberculosis (TB), with or without concomitant SM infection. We utilized flow cytometry to evaluate the TH1/TH2 functional and phenotypic lineage state of total CD4 T cells, as well as CD4 T cells specific for the Mtb antigens CFP-10 and ESAT-6. Total CD4 T cell lineage profiles were similar between SM+ and SM− individuals in all Mtb infection groups. Furthermore, in both LTBI and TB groups, SM infection did not impair Mtb-specific TH1 cytokine production. In fact, SM+ LTBI individuals had higher frequencies of IFNγ+ Mtb-specific CD4 T cells than SM− LTBI individuals. Mtb-specific CD4 T cells were characterized by expression of both classical TH1 markers, CXCR3 and T-bet, and TH2 markers, CCR4, and GATA3. The expression of these markers was similar between SM+ and SM− individuals with LTBI. However, SM+ individuals with active TB had significantly higher frequencies of GATA3+ CCR4+ TH1 cytokine+ Mtb-specific CD4 T cells, compared with SM− TB individuals. Together, these data indicate that Mtb-specific TH1 cytokine production capacity is maintained in SM-infected individuals, and that Mtb-specific TH1 cytokine+ CD4 T cells can express both TH1 and TH2 markers. In high pathogen burden settings where co-infection is common and reoccurring, plasticity of antigen-specific CD4 T cell responses may be important in preserving Mtb-specific TH1 responses.
Collapse
Affiliation(s)
| | - Jeremiah Khayumbi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joshua Ongalo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joan Tonui
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Angela Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Salim Allana
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Samuel Gurrion Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Neel R Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Day
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S. Coexistent Helminth Infection-Mediated Modulation of Chemokine Responses in Latent Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1494-1500. [PMID: 30651341 DOI: 10.4049/jimmunol.1801190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/14/2018] [Indexed: 01/09/2023]
Abstract
Coexistent helminth infections are known to modulate T cell and cytokine responses in latent infection with Mycobacterium tuberculosis However, their role in modulating chemokine responses in latent tuberculosis (LTB) has not been explored. Because chemokines play a vital role in the protective immune responses in LTB, we postulated that coexistent helminth infection could modulate chemokine production in helminth-LTB coinfection. To test this, we measured the levels of a panel of CC and CXC chemokines at baseline and following mycobacterial Ag or mitogen stimulation in individuals with LTB with (Strongyloides stercoralis +LTB+) or without S. stercoralis (S. stercoralis -LTB+) infection and in individuals without both infections, healthy controls (HC). At baseline (in the absence of a stimulus), S. stercoralis +LTB+ individuals exhibited significantly diminished production of CCL1, CCL2, CCL4, CCL11, CXCL9, CXCL10, and CXCL11 in comparison with S. stercoralis -LTB+ and/or HC individuals. Upon mycobacterial Ag stimulation, S. stercoralis +LTB+ individuals exhibited significantly diminished production of CCL1, CCL2, CCL4, CCL11, CXCL2, CXCL9, and CXCL10 in comparison with S. stercoralis -LTB+ and/or HC individuals. No differences were observed upon mitogen stimulation. Finally, after anthelmintic treatment, the baseline levels of CCL1, CCL2, CCL4, CCL11, and CXCL11 and mycobacterial Ag-stimulated levels of CCL1, CCL2, CCL11, CXCL2, and CXCL10 were significantly increased in S. stercoralis +LTB+ individuals. Thus, our data demonstrate that S. stercoralis +LTB+ individuals are associated with a compromised ability to express both CC and CXC chemokines and that this defect is at least partially reversible upon treatment. Hence, coexistent helminth infection induces downmodulation of chemokine responses in LTB individuals with likely potential effects on tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India 600031
| | - Saravanan Munisankar
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India 600031
| | - Yukthi Bhootra
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India 600031
| | | | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Subash Babu
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India 600031; .,Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
Hürlimann E, Houngbedji CA, Yapi RB, N’Dri PB, Silué KD, Ouattara M, Utzinger J, N’Goran EK, Raso G. Antagonistic effects of Plasmodium-helminth co-infections on malaria pathology in different population groups in Côte d'Ivoire. PLoS Negl Trop Dis 2019; 13:e0007086. [PMID: 30629580 PMCID: PMC6343929 DOI: 10.1371/journal.pntd.0007086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/23/2019] [Accepted: 12/17/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction Plasmodium spp. and helminths are co-endemic in many parts of the tropics; hence, co-infection is a common phenomenon. Interactions between Plasmodium and helminth infections may alter the host’s immune response and susceptibility and thus impact on morbidity. There is little information on the direction and magnitude of such interactions and results are conflicting. This study aimed at shedding new light on the potential interactions of Plasmodium and helminth co-infections on anemia and splenomegaly in different population groups in Côte d’Ivoire. Methodology Parasitologic and clinical data were obtained from four cross-sectional community-based studies and a national school-based survey conducted between 2011 and 2013 in Côte d’Ivoire. Six scenarios of co-infection pairs defined as Plasmodium infection or high parasitemia, combined with one of three common helminth infections (i.e., Schistosoma mansoni, S. haematobium, and hookworm) served for analysis. Adjusted logistic regression models were built for each scenario and interaction measures on additive scale calculated according to Rothman et al., while an interaction term in the model served as multiplicative scale measure. Principal findings All identified significant interactions were of antagonistic nature but varied in magnitude and species combination. In study participants aged 5–18 years from community-based studies, Plasmodium-hookworm co-infection showed an antagonistic interaction on additive scale on splenomegaly, while Plasmodium-Schistosoma co-infection scenarios showed protective effects on multiplicative scale for anemia and splenomegaly in participants aged 5–16 years from a school-based study. Conclusions/Significance No exacerbation from co-infection with Plasmodium and helminths was observed, neither in participants aged 5–18 years nor in adults from the community-based studies. Future studies should unravel underlying mechanisms of the observed interactions, as this knowledge might help shaping control efforts against these diseases of poverty. Malaria (due to infection with Plasmodium spp.) and parasitic worms (for example soil-transmitted helminths and Schistosoma spp.) are common in the tropics. Hence, people are often co-infected, depending on various factors. Interactions between Plasmodium and helminth infections may alter immune response and susceptibility of the infected host, and thus impact on morbidity by either making it worse (synergism) or by reducing it (antagonism). Although these co-infections are common, little is known about the direction and magnitude of such interactions. To deepen the understanding of how co-infection could affect morbidity in infected people, we looked at clinical data (i.e., anemia and splenomegaly) in different population groups in Côte d’Ivoire. We did not observe any exacerbation from co-infection with Plasmodium and helminths; all identified significant interactions were of antagonistic nature but varied in magnitude and parasite combination. In the light of enhanced control efforts targeting helminthiases, a better understanding about potential effects on susceptibility to malaria in co-endemic areas should be gained and intervention strategies against the two type of diseases be planned in a more integrative manner.
Collapse
Affiliation(s)
- Eveline Hürlimann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Clarisse A. Houngbedji
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d’Ivoire
| | - Richard B. Yapi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Prisca B. N’Dri
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Kigbafori D. Silué
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Hophouët-Boigny, Abidjan, Côte d’Ivoire
| | - Mamadou Ouattara
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Hophouët-Boigny, Abidjan, Côte d’Ivoire
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Eliézer K. N’Goran
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Hophouët-Boigny, Abidjan, Côte d’Ivoire
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Abrahim CMM, Py-Daniel V, Luz SLB, Fraiji NA, Stefani MMA. Detection of Mansonella ozzardi
among blood donors from highly endemic interior cities of Amazonas state, northern Brazil. Transfusion 2018; 59:1044-1051. [DOI: 10.1111/trf.15101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Claudia M. M. Abrahim
- HEMOAM, Departamento de Pesquisa; Fundação Hospitalar de Hematologia e Hemoterapia do Estado do Amazonas; Manaus Brasil
| | - Victor Py-Daniel
- Departamento de Zoologia; Universidade de Brasília, Instituto de Ciências Biológicas; Brasilia Brasil
| | - Sergio L. B. Luz
- Fundação Oswaldo Cruz; Instituto Leônidas e Maria Deane; Manaus Brasil
| | - Nelson A. Fraiji
- HEMOAM, Departamento de Pesquisa; Fundação Hospitalar de Hematologia e Hemoterapia do Estado do Amazonas; Manaus Brasil
| | - Mariane M. A. Stefani
- Departamento de Imunologia, Microbiologia; Patologia Geral e Parasitologia, Instituto de Patologia Tropical e Saúde Pública, IPTSP, Universidade Federal de Goiás UFG; Goiânia Brasil
| |
Collapse
|
18
|
Abstract
Helminth parasites are complex metazoans that belong to different taxonomic families but that collectively share the capacity to downregulate the host immune response directed toward themselves (parasite-specific immunoregulation). During long-standing chronic infection, these helminths appear able to suppress immune responses to bystander pathogens/antigens and atopic, autoimmune, and metabolic disorders. Helminth-induced immunoregulation occurs through the induction of regulatory T cells or Th2-type cells (or both). However, secreted or excreted parasite metabolites, proteins, or extracellular vesicles (or a combination of these) may also directly induce signaling pathways in host cells. Therefore, the focus of this review will be to highlight recent advances in understanding the immune responses to helminth infection, emphasizing the strategies/molecules and some of the mechanisms used by helminth parasites to modulate the immune response of their hosts.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Building 4, Room 211, Bethesda, MD, 20892, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Building 4, Room 211, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Lima NF, Gonçalves-Lopes RM, Kruize YCM, Yazdanbakhsh M, Ferreira MU. CD39 and immune regulation in a chronic helminth infection: The puzzling case of Mansonella ozzardi. PLoS Negl Trop Dis 2018; 12:e0006327. [PMID: 29505582 PMCID: PMC5854421 DOI: 10.1371/journal.pntd.0006327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/15/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background Chronic helminth infections typically induce an immunoregulatory environment, with markedly reduced immune responses to both parasite-specific and unrelated bystander antigens. Here we tested whether these changes are also observed in human infections with Mansonella ozzardi, a neglected filarial nematode widely distributed across Latin America. Methods CD4+ T cell populations from microfilaremic (Fil+) and uninfected (Fil-) inhabitants in M. ozzardi-endemic riverine communities in Brazil were characterized by flow cytometry analysis. Plasma concentrations of a wide range of cytokines and chemokines were measured. We examined whether M. ozzardi infection is associated with suppressed in vitro lymphoproliferative and inflammatory cytokine responses upon stimulation with filarial antigen, unrelated antigens or mitogens. Principal findings/Conclusions Fil+ subjects had lower plasma levels of selected inflammatory cytokines, such as TNF-α, IL-8, and IL-6, than their Fil- counterparts. However, we found no evidence for attenuated T-cell responses to filarial antigens or co-endemic pathogens, such as malaria parasites and Toxoplasma gondii. CD4+ T cells expressing CD39, an ectonucleosidase involved in the generation of the anti-inflammatory molecule adenosine, were increased in frequency in Fil+ subjects, compared to uninfected controls. Significantly, such an expansion was directly proportional to microfilarial loads. Surprisingly, CD39 blocking with a neutralizing antibody suppressed antigen-driven lymphoproliferation in vitro, while decreasing inflammatory cytokine responses, in Fil+ and Fil- individuals. These findings suggest that circulating CD4+ CD39+ T cells comprise subsets with both regulatory and stimulatory roles that contribute to the immune homeostasis in chronic M. ozzardi infection. Helminth infections downregulate immunity and reduce host’s inflammatory responses, but the filarial nematode Mansonella ozzardi, which is widely distributed across Latin America, appears to represent an exception to this rule. We found similar lymphoproliferative responses to filarial and unrelated antigens and comparable regulatory cytokine responses in subjects harboring M. ozzardi microfilariae, compared to local uninfected controls. The proportion of CD4+ T cell subtypes expressing CD39 was significantly increased in infected subjects and correlated positively with their microfilarial density. However, antibody blocking of CD39, an ectonucleosidase involved in the synthesis of the immunosuppresive molecule adenosine, paradoxically reduced, rather than promoted, antigen-driven lymphoproliferation in vitro. We suggest that CD39+ CD4+ T cells circulating in microfilaremics comprise both regulatory and stimulatory cell subsets that are concomitantly expanded. The balance between these cell subsets with opposing regulatory functions may be crucial to maintain immune homeostasis during chronic M. ozzardi infections.
Collapse
Affiliation(s)
- Nathália F. Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raquel M. Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yvonne C. M. Kruize
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
20
|
Prevalence of Intestinal Parasites and Associated Factors among Pulmonary Tuberculosis Suspected Patients Attending University of Gondar Hospital, Gondar, Northwest Ethiopia. J Parasitol Res 2018; 2018:9372145. [PMID: 29666698 PMCID: PMC5832163 DOI: 10.1155/2018/9372145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/14/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction Intestinal parasitic infections are among the major public health problems in developing countries. Hence, it is significant to explore coinfection with intestinal parasites and pulmonary tuberculosis because coinfection increases the complexity of control and prevention of pulmonary tuberculosis and parasitic diseases. Objective To assess the prevalence of intestinal parasites among pulmonary tuberculosis suspected patients. Method Institutional based cross-sectional study was conducted at University of Gondar Hospital from March to May, 2017. Stool samples were taken from each participant and examined by direct microscopy and concentration technique. Descriptive statistics was performed and chi-square test was used to show the association between variables. P values of <0.05 were considered statistically significant. Results Intestinal parasites were detected in 50 (19.6%) among a total of 256 pulmonary tuberculosis suspected patients who were included in the study, whereas the prevalence of pulmonary tuberculosis was 16.8% (43/256). Pulmonary tuberculosis and intestinal parasite coinfection was detected in 5 (2.0%) of the participants. The most prevalent intestinal parasites infection in this study was Ascaris lumbricoides, 15 (5.85%), followed by Entamoeba histolytica/dispar, 14 (5.46%), and Hookworm, 13 (5.1%). Conclusion The prevalence of intestinal parasites and their coinfection rate with pulmonary tuberculosis among pulmonary tuberculosis suspected patients were considerable.
Collapse
|
21
|
Cedeño-Burbano AA, Cerón-Ortega RF, Pacichana-Agudelo CE, Muñoz-García DA, Galeano-Triviño GA, Cardona-Gómez DC, Manquillo-Arias WA, Plaza-Rivera RV. Parasitismo intestinal y tuberculosis. REVISTA DE LA FACULTAD DE MEDICINA 2017. [DOI: 10.15446/revfacmed.v65n4.55864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción.La tuberculosis es coendémica en áreas con alta prevalencia de parasitismo intestinal. Se ha sugerido que, en pacientes con tuberculosis latente, la parasitosis intestinal por helmintos puede desencadenar progresión hacia la forma pulmonar activa, pero esta relación es controversial.Objetivo. Realizar una revisión narrativa de la literatura respecto a la relación existente entre el parasitismo intestinal y la infección por Mycobacterium tuberculosis.Materiales y métodos. Se llevó a cabo una búsqueda de la literatura publicada en las bases de datos ProQuest, EBSCO, ScienceDirect, Pubmed, LILACS, Embase, Trip Database, SciELO y Cochrane Library, con los términos: [Tuberculosis] AND [Intestinal diseases, parasitic] AND [Helminths]; [Tuberculosis] AND [Intestinal diseases, parasitic]; [Tuberculosis] AND [Helminths] en inglés y con sus equivalentes en español. Esta búsqueda se limitó a revisiones sistemáticas con o sin metaanálisis, estudios de cohorte y casos y controles.Resultados. Se encontraron 1 revisión sistemática, 2 estudios de cohorte y 44 estudios de casos y controles con información relevante para el desarrollo de la presente revisión.Conclusiones. La evidencia disponible fue insuficiente para afirmar que el parasitismo intestinal predispone al desarrollo de la enfermedad tuberculosa. Los estudios realizados hasta ahora han encontrado resultados estadísticamente no significativos.
Collapse
|
22
|
Amelio P, Portevin D, Reither K, Mhimbira F, Mpina M, Tumbo A, Nickel B, Marti H, Knopp S, Ding S, Penn-Nicholson A, Darboe F, Ohmiti K, Scriba TJ, Pantaleo G, Daubenberger C, Perreau M. Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania. PLoS Negl Trop Dis 2017; 11:e0005817. [PMID: 28759590 PMCID: PMC5552332 DOI: 10.1371/journal.pntd.0005817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection. Mycobacterium tuberculosis (Mtb) and helminth infections are co-endemic in several regions of the world and their immune responses may be mutually antagonistic. We therefore hypothesized that helminth infection would impact and potentially shape Mtb-specific T-cell responses and systemic inflammation in patients suffering from active pulmonary tuberculosis (TB) enrolled from two helminth endemic regions i.e. Tanzania (TZ) and South Africa (SA). In this study, we demonstrate for the first time that TB patients from SA and TZ harbor distinct immune responses to Mtb antigens. Indeed, we showed that Mtb-specific CD4 T-cell responses of TB patients from TZ were composed by a mixed T helper type 1 (Th1) and Th2 responses. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by Th1 cells and associated with TB-induced systemic inflammation and elevated serum levels of type I IFN. Taken together, these data indicate that Mtb-specific T-cell responses are diverse in human populations and can be strongly influenced by host and pathogen genetic background, co-infections and yet unknown environmental factors. Identification of correlates of risk and protection from TB disease will help in the rational development of protective T-cell based vaccines against TB, early monitoring TB treatment outcomes and focused follow up of high risk populations.
Collapse
Affiliation(s)
- Patrizia Amelio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Beatrice Nickel
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hanspeter Marti
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- SVRI, Lausanne, Switzerland
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Anthelmintic Therapy Modifies the Systemic and Mycobacterial Antigen-Stimulated Cytokine Profile in Helminth-Latent Mycobacterium tuberculosis Coinfection. Infect Immun 2017; 85:IAI.00973-16. [PMID: 28167672 DOI: 10.1128/iai.00973-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022] Open
Abstract
Helminth infections are known to modulate cytokine responses in latent tuberculosis (LTB). However, very few studies have examined whether this modulation is reversible upon anthelmintic therapy. We measured the systemic and mycobacterial (TB) antigen-stimulated levels of type 1, type 2, type 17, and regulatory cytokines in individuals with LTB and with or without coexistent Strongyloides stercoralis infection before and after anthelmintic therapy. Our data reveal that individuals with LTB and coexistent S. stercoralis infection have significantly lower levels of systemic and TB antigen-stimulated type 1 (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and type 17 (IL-17A and/or IL-17F) cytokines and significantly higher levels of systemic but not TB antigen-stimulated type 2 (IL-4 and IL-5) and regulatory (transforming growth factor beta [TGF-β]) cytokines. Anthelmintic therapy resulted in significantly increased systemic levels of type 1 and/or type 17 cytokines and in significantly decreased systemic levels of type 2 and regulatory (IL-10 and TGF-β) cytokines. In addition, anthelmintic therapy resulted in significantly increased TB antigen-stimulated levels of type 1 cytokines only. Our data therefore confirm that the modulation of systemic and TB antigen-stimulated cytokine responses in S. stercoralis-LTB coinfection is reversible (for the most part) by anthelmintic treatment.
Collapse
|
24
|
Chesnais CB, Takougang I, Paguélé M, Pion SD, Boussinesq M. Excess mortality associated with loiasis: a retrospective population-based cohort study. THE LANCET. INFECTIOUS DISEASES 2016; 17:108-116. [PMID: 27777031 DOI: 10.1016/s1473-3099(16)30405-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The burden of loiasis has received limited attention and loiasis is still considered a benign condition. To assess whether loiasis bears any excess mortality, we did a retrospective cohort study in Cameroon. METHODS In 2001, 3627 individuals living in 28 villages were examined for Loa loa infection. In 2016, these villages were revisited and the vital status was determined for 3301 individuals (91%). The data were analysed at community level to assess the relation between the level of L loa infection in 2001 and standardised mortality rates (SMRs), and at individual level to assess the excess mortality relative to the 2001 microfilaraemia and to calculate the population-attributable fraction of mortality associated with L loa microfilaraemia. FINDINGS 915 deaths occurred during the follow-up time (mean time of 12·5 years [IQR 10·2-14·9]) between April, 2001, and March 22, 2016. Crude mortality rate was 20·3 deaths per 1000 person-years. SMRs increased by 4·1% when the proportion of participants infected with greater than 30 000 microfilariae per mL increased by 1% (p=0·030). People aged older than 25 years with greater than 30 000 microfilariae per mL in 2001 died significantly earlier than did amicrofilaraemic people (time ratio 0·67, 95% CI 0·48-0·95, p=0·024). The population-attributable fraction of mortality associated with presence of L loa microfilaraemia was 14·5% (95% CI 6·5-21·8, p=0·001). INTERPRETATION High-grade L loa microfilaraemia is associated with an increased mortality risk, suggesting that loiasis is not a benign condition and merits more attention because of its effect on onchocerciasis and lymphatic control strategies. Loiasis should be considered for inclusion in the WHO's list of neglected tropical diseases. FUNDING Drugs for Neglected Diseases initiative.
Collapse
Affiliation(s)
- Cédric B Chesnais
- UMI 233, Institut de Recherche pour le Développement (IRD), Montpellier, France; Montpellier University, Montpellier, France; INSERM Unité 1175, Montpellier, France.
| | - Innocent Takougang
- Faculty of Medicine & Biomedical Sciences-University of Yaounde 1, Yaounde, Cameroon
| | - Marius Paguélé
- Regional Delegation of Public Health, East Region, Cameroon
| | - Sébastien D Pion
- UMI 233, Institut de Recherche pour le Développement (IRD), Montpellier, France; Montpellier University, Montpellier, France; INSERM Unité 1175, Montpellier, France
| | - Michel Boussinesq
- UMI 233, Institut de Recherche pour le Développement (IRD), Montpellier, France; Montpellier University, Montpellier, France; INSERM Unité 1175, Montpellier, France
| |
Collapse
|
25
|
Helminth-Tuberculosis Co-infection: An Immunologic Perspective. Trends Immunol 2016; 37:597-607. [PMID: 27501916 DOI: 10.1016/j.it.2016.07.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/15/2023]
Abstract
Over 2 billion people worldwide are infected with helminths (worms). Similarly, infection with Mycobacterium tuberculosis (Mtb) occurs in over a third of the world's population, often with a great degree of geographical overlap with helminth infection. Interestingly, the responses induced by the extracellular helminths and those induced by the intracellular Mtb are often mutually antagonistic and, as a consequence, can result in impaired (or cross-regulated) host responses to either of the infecting pathogens. In this review, we outline the nature of the immune responses induced by infections with helminths and tuberculosis (TB) and then provide data from both experimental models and human studies that illustrate how the immune response engendered by helminth parasites modulates Mtb-specific responses in helminth-TB coinfection.
Collapse
|
26
|
Hotez PJ, Strych U, Lustigman S, Bottazzi ME. Human anthelminthic vaccines: Rationale and challenges. Vaccine 2016; 34:3549-55. [DOI: 10.1016/j.vaccine.2016.03.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/23/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
|
27
|
Wanji S, Tayong DB, Layland LE, Datchoua Poutcheu FR, Ndongmo WPC, Kengne-Ouafo JA, Ritter M, Amvongo-Adjia N, Fombad FF, Njeshi CN, Nkwescheu AS, Enyong PA, Hoerauf A. Update on the distribution of Mansonella perstans in the southern part of Cameroon: influence of ecological factors and mass drug administration with ivermectin. Parasit Vectors 2016; 9:311. [PMID: 27245442 PMCID: PMC4886396 DOI: 10.1186/s13071-016-1595-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background Mansonellosis remains one of the most neglected of tropical diseases and its current distribution in the entire forest block of southern Cameroon is unknown. In order to address this issue, we have surveyed the distribution of Mansonella perstans in different bioecological zones and in addition, elucidated the influence of multiple rounds of ivermectin (IVM) based mass drug administration (MDA). Methods A mixed design was used. Between 2000 and 2014, both cross-sectional and longitudinal surveys were carried out in 137 communities selected from 12 health districts belonging to five main bioecological zones of the southern part of Cameroon. The zones comprised of grassland savanna (GS), mosaic forest savanna (MFS), forested savanna (FS), deciduous equatorial rainforest (DERF) and the dense humid equatorial rainforest (DHERF). The survey was carried out in some areas with no treatment history as well as those currently under IVM MDA. Individuals within the participatory communities were screened for the presence of M. perstans microfilariae (mf) in peripheral blood by the calibrated thick film method to determine both prevalence and geometric mean intensities at the community level. Results Apart from sporadic cases in savanna areas, distribution of M. perstans was strongly linked to the equatorial rainforest zones. Before CDTI, the highest mean prevalence (70.0 %) and intensity (17,382.2 mf/ml) were obtained in communities in Mamfes’ DHERF areas followed by communities in the DHERF zone of Lolodorf (53.8 % and 7,814.8 mf/ml, respectively). A longitudinal survey in Mamfe further showed that M. perstans infections had reduced by 34.5 % in DERF (P < 0.001) but not DHERF zones after ten years of IVM MDA. Further data from the cross-sectional study revealed that there was a decrease in prevalence in DHERF zones only after ten years of MDA. In DERF zones however, the infection was relatively lower after four years of MDA. Conclusions The distribution of M. perstans in the southern part of Cameroon varies with bioecological zones and IVM MDA history. The zones with high prevalence and intensities lie in forested areas while those with low endemicity are in the savanna areas. MDA with ivermectin induced significant reduction in the endemicity of mansonellosis in the decidious equatorial rainforest. In contrast, the prevalence and intensity remained relatively high and stable in the dense humid equatorial rainforest zones even after a decade of mass drug administration with ivermectin. Since it is known that M. perstans down-regulates host's immune system, the findings from this work would be useful in designing studies to understand the impact of M. perstans on host immune response to vaccination and co-infection with other pathogens such as Mycobacterium spp. and Plasmodium spp. in areas of contrasting endemicities. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1595-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon. .,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon.
| | - Dizzle Bita Tayong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), partner site, Bonn-Cologne, Bonn, Germany
| | - Fabrice R Datchoua Poutcheu
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Winston Patrick Chounna Ndongmo
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Jonas Arnaud Kengne-Ouafo
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), partner site, Bonn-Cologne, Bonn, Germany
| | | | - Fanny Fri Fombad
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Charity Nya Njeshi
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Armand Seraphin Nkwescheu
- Scientific Networks and Ethics Promotion, Division of Health Operations Research, Ministry of Public Health, Yaoundé, Republic of Cameroon
| | - Peter A Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), partner site, Bonn-Cologne, Bonn, Germany
| |
Collapse
|
28
|
Lima NF, Veggiani Aybar CA, Dantur Juri MJ, Ferreira MU. Mansonella ozzardi: a neglected New World filarial nematode. Pathog Glob Health 2016; 110:97-107. [PMID: 27376501 PMCID: PMC4984955 DOI: 10.1080/20477724.2016.1190544] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mansonella ozzardi (Nematoda: Onchocercidae) is an understudied filarial nematode, originally described by Patrick Manson in 1897, that can be transmitted by two families of dipteran vectors, biting midges (most of them members of the genus Culicoides) and black flies (genus Simulium). With a patchy geographic distribution from southern Mexico to northwestern Argentina, human infection with M. ozzardi is highly prevalent in some of the Caribbean islands, along riverine communities in the Amazon Basin, and on both sides of the border between Bolivia and Argentina. There is no clinical entity unequivocally associated with M. ozzardi infection, although fever, arthralgia, headache, cold lower extremities, and itchy cutaneous rashes are occasionally mentioned in case report series. More recently, ocular manifestations (especially keratitis) have been associated with mansonelliasis, opening an important area of investigation. Here, we briefly review the biology, epidemiology, pathogenesis, and clinical aspects of M. ozzardi infection and point to some existing knowledge gaps, aiming to stimulate a research agenda to help filling them.
Collapse
Affiliation(s)
- Nathália F. Lima
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Marcelo U. Ferreira
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Abdel-Latif M, Sakran T. Detection for cross-reactive proteins in filarial worm Setaria equina, MCF-7 human breast cancer, and Huh-7 hepatoma cells. J Immunoassay Immunochem 2016; 37:572-84. [PMID: 27093573 DOI: 10.1080/15321819.2016.1179644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to detect the cross-reactive proteins in filarial parasite adult worm Setaria equina and two different tumor cell lines (MCF-7 human breast cancer and Huh-7 hepatoma cells). This was performed using rabbit anti-S. equina extract (SeqE) or DEC (Diethylcarbamazine citrate) polyclonal IgG antibodies by indirect ELISA and western blotting. The results indicated cross-reactive bands at 70 and 75 kDa in all extracts by anti-DEC and SeqE antibodies, respectively. In addition, the expression of 70 kDa protein was only reduced in filarial worms and Huh-7 after in vitro DEC treatment compared to the control.
Collapse
Affiliation(s)
- Mahmoud Abdel-Latif
- a Immunology Division, Zoology Department , Beni-Suef University , Beni-Suef , Egypt
| | - Thabet Sakran
- b Parasitology Division, Zoology Department , Beni-Suef University , Beni-Suef , Egypt
| |
Collapse
|
30
|
Drame PM, Montavon C, Pion SD, Kubofcik J, Fay MP, Nutman TB. Molecular Epidemiology of Blood-Borne Human Parasites in a Loa loa-, Mansonella perstans-, and Plasmodium falciparum-Endemic Region of Cameroon. Am J Trop Med Hyg 2016; 94:1301-1308. [PMID: 27044568 PMCID: PMC4889748 DOI: 10.4269/ajtmh.15-0746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
The study of the interactions among parasites within their hosts is crucial to the understanding of epidemiology of disease and for the design of effective control strategies. We have conducted an assessment of infections with Loa loa, Mansonella perstans, Wuchereria bancrofti, and Plasmodium falciparum in eastern Cameroon using a highly sensitive and specific quantitative polymerase chain reaction assay using archived dried whole blood spots. The resident population (N = 1,085) was parasitized with M. perstans (76%), L. loa (39%), and P. falciparum (33%), but not with W. bancrofti Compared with single infections (40.1%), coinfection was more common (48.8%): 21.0% had L. loa-M. perstans (Ll(+)/Mp(+)/Pf(-)), 2.7% had L. loa-P. falciparum (Ll(+)/Pf(+)/Mp(-)), 15.1% had M. perstans-P. falciparum (Mp(+)/Pf(+)/Ll(-)), and 10.0% had L. loa-M. perstans-P. falciparum (Ll(+)/Mp(+)/Pf(+)). Interestingly, those with all three infections (Ll(+)/Mp(+)/Pf(+)) had significantly higher L. loa microfilaria (mf) counts than either single Ll(+) (P = 0.004) or double Ll(+)/Mp(+) (P = 0.024) infected individuals. Of those infected with L. loa, the mean estimated counts of L. loa mf varied based on location and were positively correlated with estimated intensities of M. perstans mf. Finally, at a community level, heavy L. loa infections were concentrated in a few individuals whereby they were likely the major reservoir for infection.
Collapse
Affiliation(s)
- Papa M. Drame
- *Address correspondence to Papa M. Drame, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Bethesda, MD 20892. E-mail:
| | | | | | | | | | | |
Collapse
|
31
|
Modulation of pro- and anti-inflammatory cytokines in active and latent tuberculosis by coexistent Strongyloides stercoralis infection. Tuberculosis (Edinb) 2015; 95:822-828. [PMID: 26542223 DOI: 10.1016/j.tube.2015.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022]
Abstract
Helminth infections are known to induce modulation of both innate and adaptive immune responses in active and latent tuberculosis (TB). However, the role of helminth infections in modulating systemic cytokine responses in active and latent tuberculosis (LTB) is not known. To define the systemic cytokine levels in helminth-TB coinfection, we measured the circulating plasma levels of Type 1, Type 2, Type 17, other pro-inflammatory and regulatory cytokines in individuals with active TB (ATB) with or without coexistent Strongyloides stercoralis (Ss) infection by multiplex ELISA. Similarly, we also measured the same cytokine levels in individuals with LTB with or without concomitant Ss infection in a cross-sectional study. Our data reveal that individuals with ATB or LTB and coexistent Ss infection have significantly lower levels of Type 1 (IFNγ, TNFα and IL-2) and Type 17 (IL-17A and IL-17F) cytokines compared to those without Ss infection. In contrast, those with ATB and LTB with Ss infection have significantly higher levels of the regulatory cytokines (IL-10 and TGFβ), and those with LTB and Ss infection also have significantly higher levels of Type 2 cytokines (IL-4, IL-5 and IL-13) as well. Finally, those with LTB (but not ATB) exhibit significantly lower levels of other pro-inflammatory cytokines (IFNα, IFNβ, IL-6, IL-12 and GM-CSF). Our data therefore reveal a profound effect of Ss infection on the systemic cytokine responses in ATB and LTB and indicate that coincident helminth infections might influence pathogenesis of TB infection and disease.
Collapse
|
32
|
Prevalence and risk factors of intestinal protozoan and helminth infections among pulmonary tuberculosis patients without HIV infection in a rural county in P. R. China. Acta Trop 2015; 149:19-26. [PMID: 25976412 DOI: 10.1016/j.actatropica.2015.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 03/22/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022]
Abstract
Although co-infection of tuberculosis (TB) and intestinal parasites, including protozoa and helminths, in humans has been widely studied globally, very little of this phenomenon is known in China. Therefore, a cross-sectional study was conducted in a rural county of China to investigate such co-infections. Patients with pulmonary TB (PTB) undergoing anti-Mycobacterium tuberculosis (anti-MTB) treatment were surveyed by questionnaires, and their feces and blood specimens were collected for detection of intestinal protozoa and helminths, routine blood examination and HIV detection. The χ(2) test and multivariate logistic regression model were used to identify risk factors. A total of 369 patients with PTB were included and all of them were HIV negative. Overall, only 7.3% of participants were infected with intestinal protozoa, among which prevalence of Blastocystis hominis, Entamoeba spp. and Trichomonas hominis were 6.0%, 1.1% and 0.3%, respectively; 7.0% were infected with intestinal helminths, among which prevalence of hookworm, Trichuris trichiura, Ascaris lumbricoides and Clonorchis sinensis were 4.3%, 1.9%, 0.5% and 0.3%, respectively; and 0.5% were simultaneously infected with intestinal protozoa and helminths. Among patients with PTB, body mass index (BMI)≤18 (OR=3.30, 95% CI=1.44-7.54) and raised poultry or livestock (e.g., chicken, duck, pig) (OR=3.96, 95% CI=1.32-11.89) were significantly associated with harboring intestinal protozoan infection, while BMI≤18 (OR=3.32, 95% CI=1.39-7.91), anemia (OR=3.40, 95% CI=1.44-8.02) and laboring barefoot in farmlands (OR=4.54, 95% CI=1.88-10.92) were significantly associated with having intestinal helminth infection. Additionally, there was no significant relationship between duration of anti-MTB treatment and infection rates of intestinal parasites including protozoa and helminths. Therefore, preventing malnutrition, avoiding unprotected contact with reservoirs of protozoa, and improving health education for good hygiene habits, particularly wearing shoes while outdoors, are beneficial in the prevention of intestinal protozoan and helminth infection among patients with PTB.
Collapse
|
33
|
The relationship between microfilaraemic and amicrofilaraemic loiasis involving co-infection with Mansonella perstans and clinical symptoms in an exposed population from Gabon. J Helminthol 2015; 90:469-75. [DOI: 10.1017/s0022149x15000607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe relationship between the frequency of loiasis objective symptoms and microfilaraemic or amicrofilaraemic infection was assessed in 1148 exposed patients also infected, or not, with Mansonella perstans. Filarial infections were detected by direct microscopy, leucoconcentration and serology, with prevalence values of 39.5% Loa loa, 5.6% M. perstans and 3.4% co-infection with both filarial species. Amicrofilaraemic or occult loiasis (OL) predominated among L. loa-infected individuals, with a prevalence of 58.2%. Hypermicrofilaraemia (>8000 microfilariae (mf)/ml) was found in 18.4% of L. loa microfilaraemic patients, with 25.7% of them harbouring more than 30,000 mf/ml. Up to 34% of patients with OL showed evidence of Calabar swelling, compared with 26.3% of microfilaraemic patients (P= 0.03). Overall 5.3% of patients presented with adult worm migration across the eye, representing 16.3% of microfilaraemic individuals and 11.4% of amicrofilaraemic patients (P= 0.13). This symptom was similarly found in patients with more than 30,000 mf/ml (22%), those with microfilaraemia between 8 and 30,000 mf/ml (15.4%) and also in individuals with low or without microfilaraemia (16.1%) (P= 0.7). Five (14.3%) hypermicrofilaraemic patients did not present any L. loa-specific objective symptoms, as well as all the patients with single M. perstans infection. The presence of adult eye worm migration as a strong predictor of high microfilaraemia density would obscure the real burden of L. loa hypermicrofilaraemia in exposed individuals. For epidemiological purposes and control strategies, the mapping of L. loa in endemic areas should also take into account the group of patients with occult loiasis.
Collapse
|
34
|
Ateba-Ngoa U, Adegnika AA, Zinsou JF, Kassa Kassa RF, Smits H, Massinga-Loembe M, Mordmüller B, Kremsner PG, Yazdanbakhsh M. Cytokine and chemokine profile of the innate and adaptive immune response of Schistosoma haematobium and Plasmodium falciparum single and co-infected school-aged children from an endemic area of Lambaréné, Gabon. Malar J 2015; 14:94. [PMID: 25890010 PMCID: PMC4365807 DOI: 10.1186/s12936-015-0608-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Helminths and malaria are among the most prevalent infectious diseases in the world. They both occur in tropical area where they often affect the same populations. There are studies suggesting an effect of helminths on malariometric indices. For example, malaria attacks as well as disease severity has been shown to be influenced by a concurrent chronic helminth infection. However, there are also studies that show no effect of concurrent helminth infections on malarial outcomes. To start addressing this issue, the effect of chronic Schistosoma haematobium infection on both the innate and adaptive immune response of Plasmodium falciparum-infected subjects was assessed in an area endemic for both these infections in Gabon. METHOD Subjects infected with S. haematobium and or P. falciparum, as well as a control group with neither of these infections, were recruited. For innate immune response, heparinized blood was obtained and cultured for 24 hours with a panel of TLR ligands. For adaptive immune response, PBMC was isolated and stimulated with SEB for 72 hours. Cytokines and chemokines were measured in supernatants using a multiplex beads array immunoassay. Principal Component analysis was used to assess pattern of cytokine and chemokine responses representing the innate and adaptive components of the immune system. RESULTS Overall it was observed that the presence of P. falciparum infection was marked by an increase in innate and adaptive immune responsiveness while S. haematobium infection was characterized by an increased chemokine profile, with at the same time, lower pro inflammatory markers. When the study subjects were split into single infected and co-infected groups no effect of S. haematobium on the immune response of P. falciparum infected subjects was observed, neither for the innate nor for the adaptive component of the immune response. CONCLUSION This study provides original information on the cellular immune response of S. haematobium and/or P. falciparum in infected subjects. It rules out an effect of S. haematobium on the cytokine profile of subjects co-infected with P. falciparum.
Collapse
Affiliation(s)
- Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Jeannot F Zinsou
- Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | | | - Hermelijn Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands.
| | - Marguerite Massinga-Loembe
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| |
Collapse
|
35
|
Babu S, Nutman TB. Immunology of lymphatic filariasis. Parasite Immunol 2014; 36:338-46. [PMID: 24134686 DOI: 10.1111/pim.12081] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022]
Abstract
The immune responses to filarial parasites encompass a complex network of innate and adaptive cells whose interaction with the parasite underlies a spectrum of clinical manifestations. The predominant immunological feature of lymphatic filariasis is an antigen-specific Th2 response and an expansion of IL-10 producing CD4(+) T cells that is accompanied by a muted Th1 response. This antigen-specific T-cell hyporesponsiveness appears to be crucial for the maintenance of the sustained, long-standing infection often with high parasite densities. While the correlates of protective immunity to lymphatic filariasis are still incompletely understood, primarily due to the lack of suitable animal models to study susceptibility, it is clear that T cells and to a certain extent B cells are required for protective immunity. Host immune responses, especially CD4(+) T-cell responses clearly play a role in mediating pathological manifestations of LF, including lymphedema, hydrocele and elephantiasis. The main underlying defect in the development of clinical pathology appears to be a failure to induce T-cell hyporesponsiveness in the face of antigenic stimulation. Finally, another intriguing feature of filarial infections is their propensity to induce bystander effects on a variety of immune responses, including responses to vaccinations, allergens and to other infectious agents. The complexity of the immune response to filarial infection therefore provides an important gateway to understanding the regulation of immune responses to chronic infections, in general.
Collapse
Affiliation(s)
- S Babu
- NIAID-NIRT-ICER, Chennai, India
| | | |
Collapse
|
36
|
Santiago HDC, Ribeiro-Gomes FL, Bennuru S, Nutman TB. Helminth infection alters IgE responses to allergens structurally related to parasite proteins. THE JOURNAL OF IMMUNOLOGY 2014; 194:93-100. [PMID: 25404363 DOI: 10.4049/jimmunol.1401638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, although the clinically related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in a helminth-infected population, we performed ImmunoCAP tests in filarial-infected and noninfected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins as well as IgE against representative recombinant allergens with and without helminth homologs. The impact of helminth infection on the levels and function of the IgE to these specific homologous and nonhomologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of ImmunoCAP-identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologs in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologs in helminths. Mice infected with the helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologs in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications, altering serologic approaches to allergen testing and bringing a new perspective to the "hygiene hypothesis."
Collapse
Affiliation(s)
- Helton da Costa Santiago
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Flávia L Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis. PLoS Negl Trop Dis 2014; 8:e3289. [PMID: 25375117 PMCID: PMC4222842 DOI: 10.1371/journal.pntd.0003289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB). However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity) in TB is not known. METHODOLOGY We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB) with co-incidental Strongyloides stercoralis (Ss) infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB) with or without Ss infection. PRINCIPAL FINDINGS Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection. CONCLUSIONS Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease.
Collapse
|
38
|
George PJ, Anuradha R, Kumar NP, Sridhar R, Banurekha VV, Nutman TB, Babu S. Helminth infections coincident with active pulmonary tuberculosis inhibit mono- and multifunctional CD4+ and CD8+ T cell responses in a process dependent on IL-10. PLoS Pathog 2014; 10:e1004375. [PMID: 25211342 PMCID: PMC4161445 DOI: 10.1371/journal.ppat.1004375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023] Open
Abstract
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB. While it has long been recognized that helminth infections alter the pathophysiology of allergic and autoimmune disease, data suggest that helminth infections also exert an important immunological effect on concomitant infections and vaccine responses. In particular, helminth coinfection can modulate the severity, pathogenesis and transmission of other infectious diseases. In this study, we examine the mechanism by which helminth infections modulate the immunological responses to tuberculosis antigens in individuals with active pulmonary tuberculosis. Our data suggest that two different helminth infections, with different life cycles, tissue localization and modes of transmission essentially exert very similar effects on the adaptive immune response to tuberculosis antigens in pulmonary tuberculosis. This includes a compromised induction of protective cytokine-expressing T cells as well as inhibitory effects on systemic cytokines that are potentially protective in tuberculosis. The strength of this study lies in the fact that this is the first study to demonstrate that two different helminth infections essentially impair cytokine responses in a similar manner in pulmonary tuberculosis.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- ICER Department, National Institutes of Health—NIRT—International Center for Excellence in Research, Chennai, India
| | - Rajamanickam Anuradha
- ICER Department, National Institutes of Health—NIRT—International Center for Excellence in Research, Chennai, India
| | - Nathella Pavan Kumar
- ICER Department, National Institutes of Health—NIRT—International Center for Excellence in Research, Chennai, India
| | - Rathinam Sridhar
- Department of Thoracic Medicine Government Stanley Medical Hospital, Chennai, India
| | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Subash Babu
- ICER Department, National Institutes of Health—NIRT—International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, Hepworth MR, Tomov VT, Kobuley D, Tran SV, Bittinger K, Bailey AG, Laughlin AL, Boucher JL, Wherry EJ, Bushman FD, Allen JE, Virgin HW, Artis D. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 2014; 345:578-82. [PMID: 25082704 DOI: 10.1126/science.1256942] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1.
Collapse
Affiliation(s)
- Lisa C Osborne
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurel A Monticelli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara E Sutherland
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark C Siracusa
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hepworth
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vesselin T Tomov
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dmytro Kobuley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara V Tran
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle Bittinger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aubrey G Bailey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice L Laughlin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, Paris, France
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Judith E Allen
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Incidence of active pulmonary tuberculosis in patients with coincident filarial and/or intestinal helminth infections followed longitudinally in South India. PLoS One 2014; 9:e94603. [PMID: 24728010 PMCID: PMC3984271 DOI: 10.1371/journal.pone.0094603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/18/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Filarial (and other helminth) infections are known to modulate mycobacteria-specific pro-inflammatory cytokine responses necessary for maintaining latency in tuberculosis (TB). We sought to address whether helminth co-infection alters progression to active pulmonary TB in a co-endemic area of South India. METHODS/PRINCIPAL FINDINGS Incidence of active pulmonary TB was assessed in 5096 subjects from five villages among helminth-infected (hel⁺) and -uninfected (hel⁻) groups. Baseline stool examinations, circulating filarial antigen, and tuberculin skin testing (PPD) were performed along with chest radiographs, sputum microscopy, and culture. During three follow-up visits each 2.5 years, patients were assessed using PPD tests and questionnaires and--for those with potential symptoms of TB--sputum microscopy and culture. Of the 5096 subjects, 1923 were found to be hel⁺ and 3173 were hel⁻. Follow up interval stool examination could not be performed. In each group, 21 developed active TB over the course of the study. After adjusting for sex, age, BCG vaccination status, and PPD positivity, no difference was seen in active TB incidence between hel⁺ and hel- groups either at baseline (relative risk (RR) 1.60; 95% confidence interval (CI): 0.69, 3.71, P = 0·27), or when followed prospectively (RR 1.24; 95% CI: 0.48, 3.18, P = 0·66). CONCLUSIONS/SIGNIFICANCE Our findings suggest that, despite the immunomodulatory effects of helminth infection, baseline co-morbid infection with these parasites had little effect on the clinical progression from latent to active pulmonary TB.
Collapse
|
41
|
Mukherjee S, Mukherjee N, Saini P, Gayen P, Roy P, Sinha Babu SP. Molecular evidence on the occurrence of co-infection with Pichia guilliermondii and Wuchereria bancrofti in two filarial endemic districts of India. Infect Dis Poverty 2014; 3:13. [PMID: 24708881 PMCID: PMC4021973 DOI: 10.1186/2049-9957-3-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/12/2014] [Indexed: 12/31/2022] Open
Abstract
Background Lymphatic filariasis (LF), a vector-borne parasitic disease, is endemic in several parts of India and mostly affects the poor or those with a low-income. The disease results in huge numbers of morbidities, disabilities, and deaths every year. Association of co-infection with other pathogens makes the condition more severe. Although co-infection is becoming a growing area of research, it is yet to emerge as a frontier research topic in filarial research specifically. This study reports the occurrence of a fungal infection in a large number of patients suffering from bancroftian filariasis in two districts of West Bengal, India. Methods Nocturnal blood samples from filarial patients containing parasites and fungus were initially co-cultured, and further the fungus was isolated and characterized. Molecular identification of the isolate was carried out by PCR-based selective amplification and sequencing of highly-conserved D1/D2 region of 26S rDNA, whereas pathogenicity was determined by amplification of the RPS0 gene. A phylogenetic tree was constructed to study the relationship between the isolate and common pathogenic yeasts. The isolate was studied for antibiotic sensitivity, whereas morphological characterization was performed by microscopic techniques. Results The isolate was identified as Pichia guilliermondii and this fungus was found to exist in co-infection with Wuchereria bancrofti in filarial patients. The fungus showed resistance to azole antifungals, griseofulvin, and, amphotericin B, whereas significant susceptibility was evident in cases of nystatin and cycloheximide. A total of 197 out of 222 patients showed this co-infection. Conclusion This study revealed, for the first time, that P. guilliermondii exists as a co-infection in microfilaraemic individuals living in a filarial endemic zone. The findings are important and have relevance to human health, especially for filarial patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan- 731 235, West Bengal, India.
| |
Collapse
|
42
|
Anuradha R, George PJ, Hanna LE, Kumaran P, Chandrasekaran V, Nutman TB, Babu S. Expansion of parasite-specific CD4+ and CD8+ T cells expressing IL-10 superfamily cytokine members and their regulation in human lymphatic filariasis. PLoS Negl Trop Dis 2014; 8:e2762. [PMID: 24699268 PMCID: PMC3974669 DOI: 10.1371/journal.pntd.0002762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lymphatic filariasis (LF) is known to be associated with an increased production of IL-10. The role of the other IL-10 family members in the pathogenesis of infection and/or disease is not known. METHODOLOGY/PRINCIPAL FINDINGS We examined the expression patterns of IL-10 family members--IL-19, IL-24 and IL-26 in LF. We demonstrate that both CD4+ and CD8+ T cells express IL-19, IL-24 and IL-26 and that the frequency of CD4+ T cells expressing IL-19 and IL-24 (as well as IL-10) is significantly increased at baseline and following filarial antigen stimulation in patients with LF in comparison to individuals with filarial lymphedema and uninfected individuals. This CD4+ T cell expression pattern was associated with increased production of IL-19 and IL-24 by filarial-antigen stimulated PBMC. Moreover, the frequency of CD4+ and CD8+ T cells expressing IL-26 was significantly increased following filarial antigen stimulation in filarial lymphedema individuals. Interestingly, IL-10 blockade resulted in diminished frequencies of IL-19+ and IL-24+ T cells, whereas the addition of recombinant IL-10 resulted in significantly increased frequency of IL-19+ and IL-24+ T cells as well as significantly up regulated IL-19 and IL-24 gene expression, suggesting that IL-10 regulates IL-19 and IL-24 expression in T cells. In addition, IL-1β and IL-23 blockade also induced a diminution in the frequency of IL-19+ and IL-24+ T cells, indicating a novel role for these cytokines in the induction of IL-19 and IL-24 expressing T cells. Finally, elimination of infection resulted in significantly decreased frequencies of antigen - specific CD4+ T cells expressing IL-10, IL-19 and IL-24. CONCLUSIONS Our findings, therefore, suggest that IL-19 and IL-24 are associated with the regulation of immune responses in active filarial infection and potentially with protection against development of pathology, while IL-26 is predominantly associated with pathology in LF.
Collapse
Affiliation(s)
- Rajamanickam Anuradha
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
| | - Parakkal Jovvian George
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
| | - Luke E. Hanna
- National Institute for Research in Tuberculosis, Chennai, India
| | - Paul Kumaran
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Subash Babu
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Bouyou-Akotet M, Moussavou Boussougou M, Ovono-Abessolo F, Owono-Medang M, Kombila M. Influence of Mansonella perstans microfilaraemia on total IgE levels in Gabonese patients co-infected with Loa loa. Acta Trop 2014; 131:11-5. [PMID: 24280145 DOI: 10.1016/j.actatropica.2013.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 11/25/2022]
Abstract
Mansonella (M.) perstans filariasis is widely found in Africa, including Gabon where Loa loa is also endemic. This study reports the total IgE titres according to different bioclinical forms of single or co-infection with L. loa and M. perstans in 138 patients and 20 healthy controls. The median parasite density was significantly higher in cases of loiasis. IgE titres were higher in patients with microscopic dual-infection and in the group of patients with occult loiasis plus M. perstans microfilaraemia (8425 [5292-20,679]KUI/L and 6304 [1045-10,326]KUI/L, respectively), compared to individuals with either microfilaraemic Loa loa (3368 [1414-7074]KUI/L) or Mansonella (4370 [1478-7334]KUI/L) single infections (p<0.01). IgE levels were positively correlated with M. perstans microfilaraemia (rho=0.27; p<0.01). Compared to single infections, dual M. perstans-L. loa infection induces very high total IgE titres. Studies correlating IgE titres and clinical symptoms are needed to confirm the involvement of this immunoglobulin in the pathological processes during filariasis.
Collapse
|
44
|
Helpful or a Hindrance: Co-infections with Helminths During Malaria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 828:99-129. [DOI: 10.1007/978-1-4939-1489-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Metenou S, Nutman TB. Regulatory T cell subsets in filarial infection and their function. Front Immunol 2013; 4:305. [PMID: 24137161 PMCID: PMC3786323 DOI: 10.3389/fimmu.2013.00305] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/13/2013] [Indexed: 01/11/2023] Open
Abstract
Filarial infections in humans are chronic infections that cause significant morbidity. The chronic nature of these infections with continuous antigen release is associated with a parasite-specific T cell hypo-responsiveness that may over time also affect the immune responses to bystander antigens. Previous studies have shown the filarial parasite antigen-specific T cells hypo-responsiveness is mediated by regulatory cytokines – IL-10 and TGF-β in particular. Recent studies have suggested that the modulated/regulated T cell responses associated with patent filarial infection may reflect an expansion of regulatory T cells (Tregs) that include both Tregs induced in peripheral circulation or pTregs and the thymus-derived Tregs or tTregs. Although much is known about the phenotype of these regulatory populations, the mechanisms underlying their expansion and their mode of action in filarial and other infections remain unclear. Nevertheless there are data to suggest that while many of these regulatory cells are activated in an antigen-specific manner the ensuing effectors of this activation are relatively non-specific and may affect a broad range of immune cells. This review will focus on the subsets and function of regulatory T cells in filarial infection.
Collapse
Affiliation(s)
- Simon Metenou
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Health , Bethesda, MD , USA
| | | |
Collapse
|
46
|
George PJ, Anuradha R, Kumaran PP, Chandrasekaran V, Nutman TB, Babu S. Modulation of mycobacterial-specific Th1 and Th17 cells in latent tuberculosis by coincident hookworm infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5161-8. [PMID: 23576678 PMCID: PMC3646958 DOI: 10.4049/jimmunol.1203311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hookworm infections and tuberculosis (TB) are coendemic in many parts of the world. It has been suggested that infection with helminth parasites could suppress the predominant Th1 (IFN-γ-mediated) response needed to control Mycobacterium tuberculosis infection and enhance susceptibility to infection and/or disease. To determine the role of coincident hookworm infection on responses at steady-state and on M. tuberculosis-specific immune responses in latent TB (LTB), we examined the cellular responses in individuals with LTB with or without concomitant hookworm infection. By analyzing the expression of Th1, Th2, and Th17 subsets of CD4(+) T cells, we were able to demonstrate that the presence of coincident hookworm infection significantly diminished both spontaneously expressed and M. tuberculosis-specific mono- and dual-functional Th1 and Th17 cells. Hookworm infection, in contrast, was associated with expanded frequencies of mono- and dual-functional Th2 cells at both steady-state and upon Ag stimulation. This differential induction of CD4(+) T cell subsets was abrogated upon mitogen stimulation. Additionally, coincident hookworm infection was associated with increased adaptive T regulatory cells but not natural regulatory T cells in LTB. Finally, the CD4(+) T cell cytokine expression pattern was also associated with alterations in the systemic levels of Th1 and Th2 cytokines. Thus, coincident hookworm infection exerts a profound inhibitory effect on protective Th1 and Th17 responses in LTB and may predispose toward the development of active tuberculosis in humans.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
| | - Rajamanickam Anuradha
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
| | | | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Subash Babu
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Li XX, Zhou XN. Co-infection of tuberculosis and parasitic diseases in humans: a systematic review. Parasit Vectors 2013; 6:79. [PMID: 23522098 PMCID: PMC3614457 DOI: 10.1186/1756-3305-6-79] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/18/2013] [Indexed: 11/10/2022] Open
Abstract
Co-infection of tuberculosis and parasitic diseases in humans is an important public problem in co-endemic areas in developing countries. However, there is a paucity of studies on co-infection and even fewer reviews. This review examines 44 appropriate papers by PRISMA from 289 papers searched in PubMed via the NCBI Entrez system (no grey literature) up to December 2012 in order to analyze the factors that influence epidemic and host’s immunity of co-infection. The limited evidence in this review indicates that most common parasite species are concurrent with Mycobacterium tuberculosis in multiple organs; socio-demographics such as gender and age, special populations with susceptibility such as renal transplant recipients, patients on maintenance haemodialysis, HIV positive patients and migrants, and living in or coming from co-endemic areas are all likely to have an impact on co-infection. Pulmonary tuberculosis and parasitic diseases were shown to be risk factors for each other. Co-infection may significantly inhibit the host’s immune system, increase antibacterial therapy intolerance and be detrimental to the prognosis of the disease; in addition, infection with parasitic diseases can alter the protective immune response to Bacillus Calmette-Guerin vaccination against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Xin-Xu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, PR China
| | | |
Collapse
|