1
|
Olivier N, Harvey BH, Gobec S, Shahid M, Košak U, Žakelj S, Brink CB. A novel butyrylcholinesterase inhibitor induces antidepressant, pro-cognitive, and anti-anhedonic effects in Flinders Sensitive Line rats: The role of the ghrelin-dopamine cascade. Biomed Pharmacother 2025; 187:118093. [PMID: 40318448 DOI: 10.1016/j.biopha.2025.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND AND PURPOSE Major depressive disorder (MDD) is often treatment resistant, particularly in addressing anhedonia and cognitive deficits. Novel pharmacological strategies are needed. While butyrylcholinesterase, ghrelin, and dopamine (DA) have been well studied in the context of stress and MDD, their interaction remains unclear. EXPERIMENTAL APPROACH The dose-dependent antidepressant effects of a novel butyrylcholinesterase inhibitor (BChEI) were evaluated in the Flinders Sensitive Line (FSL) rat model of MDD. Behavioural assessments included the forced swim test (despair), sucrose preference test (reward-related), and novel object recognition test (cognition). Brain-derived neurotrophic factor (BDNF), acetylcholine (ACh), and brain monoamines were analysed, as well as serum growth hormone and acyl- and desacyl-ghrelin. To confirm the role of ghrelin, pharmacological exploration was undertaken using the ghrelin receptor antagonist, D-Lys-3-GHRP-6. KEY RESULTS FSL rats had significantly lower ghrelin ratios, BDNF, ACh, DA and growth hormone levels. In FSL rats, both BChEI and escitalopram significantly reduced despair. BChEI significantly outperformed escitalopram in enhancing reward-related and cognitive behaviours. Biochemically, BChEI treatment significantly increased ghrelin ratios and brain DA levels without altering brain 5-HT, ACh or BDNF. D-Lys-3-GHRP-6 significantly reversed the antidepressant-like, rewarding, and pro-cognitive effects of BChEI, accompanied by significant reductions in BDNF and DA. CONCLUSIONS AND IMPLICATIONS FSL rats display impaired ghrelin, DA, serotonin, growth hormone, and BDNF signalling, akin to MDD. BChEI exerts antidepressant-like effects across despair, reward, and cognitive domains, most likely via the BChE-ghrelin-DA cascade. Reversal of these effects by ghrelin antagonism underscores the critical role of ghrelin, specifically via growth hormone secretagogue receptor-ghrelin interaction. These findings suggest a potentially novel multimodal neurobiological target for the treatment of MDD.
Collapse
Affiliation(s)
- Nadia Olivier
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town 7505, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia.
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | | | - Urban Košak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Simon Žakelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Christiaan B Brink
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
2
|
Bernardus Saayman JL, Harvey BH, Wegener G, Brink CB. Sildenafil, alone and in combination with imipramine or escitalopram, display antidepressant-like effects in an adrenocorticotropic hormone-induced (ACTH) rodent model of treatment-resistant depression. Eur J Pharmacol 2024; 969:176434. [PMID: 38458412 DOI: 10.1016/j.ejphar.2024.176434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) represents a challenge with high prevalence and limited effectiveness of existing treatments, particularly in cases of treatment-resistant depression (TRD). Innovative strategies and alternative drug targets are therefore necessary. Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, is known to exert neuroplastic, anti-inflammatory, and antioxidant properties, and is a promising antidepressant drug candidate. AIM To investigate whether sildenafil monotherapy or in combination with a known antidepressant, can elicit antidepressant-like effects in an adrenocorticotropic hormone (ACTH)-induced rodent model of TRD. METHODS ACTH-naïve and ACTH-treated male Sprague-Dawley (SD) rats received various sub-acute drug treatments, followed by behavioural tests and biochemical analyses conversant with antidepressant actions. RESULTS Sub-chronic ACTH treatment induced significant depressive-like behaviour in rats, evidenced by increased immobility during the forced swim test (FST). Sub-acute sildenafil (10 mg/kg) (SIL-10) (but not SIL-3), and combinations of imipramine (15 mg/kg) (IMI-15) and sildenafil (3 mg/kg) (SIL-3) or escitalopram (15 mg/kg) (ESC-15) and SIL-3, exhibited significant antidepressant-like effects. ACTH treatment significantly elevated hippocampal levels of brain-derived neurotrophic factor (BDNF), serotonin, norepinephrine, kynurenic acid (KYNUA), quinolinic acid (QUINA), and glutathione. The various mono- and combined treatments significantly reversed some of these changes, whereas IMI-15 + SIL-10 significantly increased glutathione disulfide levels. ESC-15 + SIL-3 significantly reduced plasma corticosterone levels. CONCLUSION This study suggests that sildenafil shows promise as a treatment for TRD, either as a stand-alone therapy or in combination with a traditional antidepressant. The neurobiological mechanism underlying the antidepressant-like effects of the different sildenafil mono- and combination therapies reflects a multimodal action and cannot be explained in full by changes in the individually measured biomarker levels.
Collapse
Affiliation(s)
- Juandré Lambertus Bernardus Saayman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian Herbert Harvey
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; South African Medical Research Council Unit on Risk and Resilience on Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch, 7700, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Gregers Wegener
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Christiaan Beyers Brink
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
3
|
Sabra MS, Mohammed AA, Hassanein KMA, Ahmed AAN, Hassan D, Abdel-Lah ES. Novel drug therapy of acute hepatic failure induced in rats by a combination of tadalafil and Lepidium sativum. BMC Complement Med Ther 2024; 24:104. [PMID: 38413963 PMCID: PMC10900715 DOI: 10.1186/s12906-024-04406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Hepatocyte death and a systemic inflammatory response are the outcome of a complex chain of events mediated by numerous inflammatory cells and chemical mediators. The point of this study was to find out if tadalafil and/or Lepidium sativum (L. sativum) could help people who have been exposed to carbon tetrachloride (CCL4) and are experiencing acute moderate liver failure. This was especially true when the two were used together. METHOD AND MATERIALS To cause mild liver failure 24 h before sacrifice, a single oral dosage of CCL4 (2.5 mL/kg b.w.) (50% in olive oil) was utilized. Furthermore, immunohistochemical expression of nuclear factor kappa B (NF-κB) as well as histological abnormalities were performed on liver tissue. RESULTS The results showed that tadalafil and/or L. sativum, especially in combination, performed well to cure acute mild liver failure caused by CCL4. This was demonstrated by a decrease in NF-κB expression in the liver tissue and an improvement in organ damage markers observed in the blood and liver tissues. Furthermore, such therapy reduced interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels in the liver tissue. It's worth noting that the tested combination resulted in greater liver improvement. CONCLUSIONS According to the findings, tadalafil and L. sativum, particularly in combination, have the ability to protect the liver from the negative effects of CCL4 exposure. Because of its capacity to improve liver function, restore redox equilibrium, and decrease inflammatory mediators, it is a prospective option for mitigating the negative effects of common environmental pollutants such as CCL4.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ahmed A Mohammed
- Department of animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Khaled M Ahmed Hassanein
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ahmed A N Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Assiut branch, Assiut, 71526, Egypt
| | - Dalia Hassan
- Department of animal and poultry hygiene and environmental sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ebtsam S Abdel-Lah
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
4
|
Turan Yücel N, Evren AE, Kandemir Ü, Can ÖD. Antidepressant-like effect of tofisopam in mice: A behavioural, molecular docking and MD simulation study. J Psychopharmacol 2022; 36:819-835. [PMID: 35638175 DOI: 10.1177/02698811221095528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Depression is a disease that affects millions of people worldwide, and the discovery and development of effective and safe antidepressant drugs is one of the important topics of psychopharmacology. OBJECTIVES In this study, it was aimed to investigate the antidepressant-like activity potential of tofisopam, an anxiolytic drug with 2,3-benzodiazepine structure, and to elucidate the pharmacological mechanisms mediating this effect. METHODS The antidepressant-like activity of tofisopam was investigated using tail suspension and modified forced swimming tests. Possible interactions of tofisopam with µ- and δ-opioid receptor subtypes were clarified by pharmacological antagonism, molecular docking and molecular dynamics simulation studies. RESULTS Tofisopam (50 and 100 mg/kg) significantly shortened the immobility time of mice in both the tail suspension and the modified forced swimming tests. The drug, at the same doses, prolonged the duration of swimming and climbing behaviours measured in modified forced swimming tests. A dosage of 25 mg/kg was ineffective. Mechanistic studies showed that the pretreatment with p-chlorophenylalanine methyl ester (serotonin synthesis inhibitor; 4 consecutive days, 100 mg/kg), α-methyl-para-tyrosine methyl ester (catecholamine synthesis inhibitor; 100 mg/kg), naloxonazine (selective µ-opioid receptor blocker, 7 mg/kg) and naltrindole (a selective δ-opioid receptor blocker, 0.99 mg/kg) abolished the anti-immobility effect induced by the 50 mg/kg dose of tofisopam in the tail suspension tests. Our in silico studies supported the behavioural findings that the antidepressant-like effect of tofisopam is mediated by μ- and δ-opioid receptors. CONCLUSION This study is the first to show that tofisopam has antidepressant-like activity mediated by the serotonergic, catecholaminergic and opioidergic systems.
Collapse
Affiliation(s)
- Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ümmühan Kandemir
- Department of Pharmacology, Institute of Health Sciences, Anadolu University, Eskişehir, Turkey
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
5
|
Honeywell KM, Doren EV, Szumlinski KK. Selective Inhibition of PDE4B Reduces Methamphetamine Reinforcement in Two C57BL/6 Substrains. Int J Mol Sci 2022; 23:4872. [PMID: 35563262 PMCID: PMC9099926 DOI: 10.3390/ijms23094872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant drug, and the number of MA-related overdose deaths has reached epidemic proportions. Repeated MA exposure induces a robust and persistent neuroinflammatory response, and the evidence supports the potential utility of targeting neuroimmune function using non-selective phosphodiesterase 4 (PDE4) inhibitors as a therapeutic strategy for attenuating addiction-related behavior. Off-target, emetic effects associated with non-selective PDE4 blockade led to the development of isozyme-selective inhibitors, of which the PDE4B-selective inhibitor A33 was demonstrated recently to reduce binge drinking in two genetically related C57BL/6 (B6) substrains (C57BL/6NJ (B6NJ) and C57BL/6J (B6J)) that differ in their innate neuroimmune response. Herein, we determined the efficacy of A33 for reducing MA self-administration and MA-seeking behavior in these two B6 substrains. Female and male mice of both substrains were first trained to nose poke for a 100 mg/L MA solution followed by a characterization of the dose-response function for oral MA reinforcement (20 mg/L-3.2 g/L), the demand-response function for 400 mg/L MA, and cue-elicited MA seeking following a period of forced abstinence. During this substrain comparison of MA self-administration, we also determined the dose-response function for A33 pretreatment (0-1 mg/kg) on the maintenance of MA self-administration and cue-elicited MA seeking. Relative to B6NJ mice, B6J mice earned fewer reinforcers, consumed less MA, and took longer to reach acquisition criterion with males of both substrains exhibiting some signs of lower MA reinforcement than their female counterparts during the acquisition phase of the study. A33 pretreatment reduced MA reinforcement at all doses tested. These findings provide the first evidence that pretreatment with a selective PDE4B inhibitor effectively reduces MA self-administration in both male and female mice of two genetically distinct substrains but does not impact cue-elicited MA seeking following abstinence. If relevant to humans, these results posit the potential clinical utility of A33 or other selective PDE4B inhibitors for curbing active drug-taking in MA use disorder.
Collapse
Affiliation(s)
- Kevin M. Honeywell
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Eliyana Van Doren
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| |
Collapse
|
6
|
The long-term bio-behavioural effects of juvenile sildenafil treatment in Sprague-Dawley versus flinders sensitive line rats. Acta Neuropsychiatr 2021; 33:200-205. [PMID: 33593460 DOI: 10.1017/neu.2021.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the long-term effects of juvenile sub-chronic sildenafil (SIL) treatment on the depressive-like behaviour and hippocampal brain-derived neurotrophic factor (BDNF) levels of adult Sprague-Dawley (SD) versus Flinders Sensitive Line (FSL) rats. METHODS SD and FSL rats were divided into pre-pubertal and pubertal groups, whereafter 14-day saline or SIL treatment was initiated. Pre-pubertal and pubertal rats were treated from postnatal day 21 (PND21) and PND35, respectively. The open field and forced swim tests (FST) were performed on PND60, followed by hippocampal BDNF level analysis 1 day later. RESULTS FSL rats displayed greater immobility in the FST compared to SD rats (p < 0.0001), which was reduced by SIL (p < 0.0001), regardless of treatment period. Hippocampal BDNF levels were unaltered by SIL in all treatment groups (p > 0.05). CONCLUSION Juvenile sub-chronic SIL treatment reduces the risk of depressive-like behaviour manifesting during young adulthood in genetically susceptible rats.
Collapse
|
7
|
Jimenez Chavez CL, Bryant CD, Munn-Chernoff MA, Szumlinski KK. Selective Inhibition of PDE4B Reduces Binge Drinking in Two C57BL/6 Substrains. Int J Mol Sci 2021; 22:ijms22115443. [PMID: 34064099 PMCID: PMC8196757 DOI: 10.3390/ijms22115443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/15/2023] Open
Abstract
Cyclic AMP (cAMP)-dependent signaling is highly implicated in the pathophysiology of alcohol use disorder (AUD), with evidence supporting the efficacy of inhibiting the cAMP hydrolyzing enzyme phosphodiesterase 4 (PDE4) as a therapeutic strategy for drinking reduction. Off-target emetic effects associated with non-selective PDE4 inhibitors has prompted the development of selective PDE4 isozyme inhibitors for treating neuropsychiatric conditions. Herein, we examined the effect of a selective PDE4B inhibitor A33 (0–1.0 mg/kg) on alcohol drinking in both female and male mice from two genetically distinct C57BL/6 substrains. Under two different binge-drinking procedures, A33 pretreatment reduced alcohol intake in male and female mice of both substrains. In both drinking studies, there was no evidence for carry-over effects the next day; however, we did observe some sign of tolerance to A33’s effect on alcohol intake upon repeated, intermittent, treatment (5 injections of 1.0 mg/kg, every other day). Pretreatment with 1.0 mg/kg of A33 augmented sucrose intake by C57BL/6NJ, but not C57BL/6J, mice. In mice with a prior history of A33 pretreatment during alcohol-drinking, A33 (1.0 mg/kg) did not alter spontaneous locomotor activity or basal motor coordination, nor did it alter alcohol’s effects on motor activity, coordination or sedation. In a distinct cohort of alcohol-naïve mice, acute pretreatment with 1.0 mg/kg of A33 did not alter motor performance on a rotarod and reduced sensitivity to the acute intoxicating effects of alcohol. These data provide the first evidence that selective PDE4B inhibition is an effective strategy for reducing excessive alcohol intake in murine models of binge drinking, with minimal off-target effects. Despite reducing sensitivity to acute alcohol intoxication, PDE4B inhibition reduces binge alcohol drinking, without influencing behavioral sensitivity to alcohol in alcohol-experienced mice. Furthermore, A33 is equally effective in males and females and exerts a quantitatively similar reduction in alcohol intake in mice with a genetic predisposition for high versus moderate alcohol preference. Such findings further support the safety and potential clinical utility of targeting PDE4 for treating AUD.
Collapse
Affiliation(s)
- C. Leonardo Jimenez Chavez
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA;
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Melissa A. Munn-Chernoff
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA;
- Correspondence:
| |
Collapse
|
8
|
Tadalafil versus linaclotide in gastrointestinal dysfunction and depressive behavior in constipation-predominant irritable bowel syndrome. Life Sci 2020; 256:117960. [PMID: 32534033 DOI: 10.1016/j.lfs.2020.117960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intestinal GC-C/cGMP pathway may be involved in visceral hypersensitivity and fluid secretion in irritable bowel syndrome (IBS). The guanylcyclase C agonist linaclotide, approved for IBS- constipation, is contraindicated in children as it may cause severe diarrhea. In contrast, drugs increasing cGMP by inhibiting phosphodiesterase 5 (PDE-5) are well tolerated in children with pulmonary hypertension. Accordingly, we investigated whether beneficial effects of linaclotide in IBS might be shared by PDE-5inhibitor tadalafil without the severe diarrhea reported for linaclotide. Since depression is commonly comorbid with IBS and is implicated in its pathophysiology; and since tadalafil is absorbed systemically and crosses blood brain barrier, whereas linaclotide does not, impact of both drugs on behavioral changes in IBS was also investigated. METHODS 72 rats were divided into 6groups (control naive, control tadalafil, control linaclotide, untreated IBS, IBS tadalafil, and IBS linaclotide-treated). IBS was induced by 0 to 4 °C intragastric saline for 14 days. RESULTS Both drugs reduced visceral hypersensitivity and colonic C fos. Tadalafil, and to a greater extent, linaclotide increased colonic cGMP, fecal pellets (8.66 ± 4.6 (IBS),versus14.8 ± 3.3(tadalafil), 20 ± 1.2(linaclotide), fecal water content (29.8 ± 5.5 (IBS), versus 47.83 ± 12.6 (tadalafil), 63.58 ± 11.6 (linaclotide) and reduced intestinal transit time (% distance travelled: 29 ± 6.1(IBS), versus 40.58 + 7.5(tadalafil), 51.83 ± 8.3(linaclotide). Tadalafil, but not linaclotide, increased hippocampal cGMP, and improved behavioral tests scores compared to linaclotide (immobility time: 97.3 ± 12.5 s (IBS) versus 68 ± 12.8(tadalafil), 80 ± 17.06 (linaclotide). CONCLUSION Systemic PDE-5 inhibitors might be alternatives to locally acting guanyl cyclase agonists in IBS, inducing less severe diarrhea and more beneficial effects on the associated behavioral changes.
Collapse
|
9
|
Lotter J, Möller M, Dean O, Berk M, Harvey BH. Studies on Haloperidol and Adjunctive α-Mangostin or Raw Garcinia mangostana Linn Pericarp on Bio-Behavioral Markers in an Immune-Inflammatory Model of Schizophrenia in Male Rats. Front Psychiatry 2020; 11:121. [PMID: 32296347 PMCID: PMC7136492 DOI: 10.3389/fpsyt.2020.00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a severe brain disorder that is associated with neurodevelopmental insults, such as prenatal inflammation, that introduce redox-immune-inflammatory alterations and risk for psychotic symptoms later in life. Nutraceuticals may offer useful adjunctive benefits. The aim of this study was to examine the therapeutic effects of Garcinia mangostana Linn (GML) and one of its active constituents, α-mangostin (AM), alone and as adjunctive treatment with haloperidol (HAL) on schizophrenia related bio-behavioral alterations in a maternal immune-activation (MIA) model. Sprague-Dawley dams were exposed to lipopolysaccharide (LPS) (n = 18) or vehicle (n = 3) on gestational days 15 and 16. Male offspring (n = 72) were treated from PND 52-66 with either vehicle, HAL (2 mg/kg), GML (50 mg/kg), HAL + GML, AM (20 mg/kg), or HAL + AM. Control dams and control offspring were treated with vehicle. In order to cover the mood-psychosis continuum, prepulse inhibition (PPI) of startle, open field test (locomotor activity), and the forced swim test (depressive-like behavior) were assessed on PND's 64-65, followed by assay of frontal-cortical lipid peroxidation and plasma pro-inflammatory cytokines, viz. interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α). MIA-induced deficits in sensorimotor gating were reversed by HAL and HAL + GML, but not GML and AM alone. MIA-induced depressive-like behavior was reversed by AM and GML alone and both in combination with HAL, with the combinations more effective than HAL. MIA-induced cortical lipid peroxidation was reversed by HAL and AM, with elevated IL-6 levels restored by GML, AM, HAL, and HAL + GML. Elevated TNF-α was only reversed by GML and HAL + GML. Concluding, prenatal LPS-induced psychotic- and depressive-like bio-behavioral alterations in offspring are variably responsive to HAL, GML, and AM, with depressive (but not psychosis-like) manifestations responding to GML, AM, and combinations with HAL. AM may be a more effective antioxidant than GML in vivo, although this does not imply an improved therapeutic response, for which trials are required.
Collapse
Affiliation(s)
- Jana Lotter
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Olivia Dean
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Department of Psychiatry, The Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Brian H. Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Duarte-Silva E, Filho AJMC, Barichello T, Quevedo J, Macedo D, Peixoto C. Phosphodiesterase-5 inhibitors: Shedding new light on the darkness of depression? J Affect Disord 2020; 264:138-149. [PMID: 32056743 DOI: 10.1016/j.jad.2019.11.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Phosphodiesterase-5 inhibitors (PDE5Is) are used to treat erectile dysfunction (ED). Recently, the antidepressant-like effect of PDE5Is was demonstrated in animal models of depression. In clinical settings, PDE5Is were studied only for ED associated depression. Hence, there are no studies evaluating the effects of PDE5Is for the treatment of major depressive disorder (MDD) without ED. In this review article, we aimed to discuss the use of PDE5Is in the context of MDD, highlighting the roles of PDE genes in the development of MDD, the potential mechanisms by which PDE5Is can be beneficial for MDD and the potentials and limitations of PDE5Is repurposing to treat MDD. METHODS We used PubMed (MEDLINE) database to collect the studies cited in this review. Papers written in English language regardless the year of publication were selected. RESULTS A few preclinical studies support the antidepressant-like activity of PDE5Is. Clinical studies in men with ED and depression suggest that PDE5Is improve depressive symptoms. No clinical studies were conducted in subjects suffering from depression without ED. Antidepressant effect of PDE5Is may be explained by multiple mechanisms including inhibition of brain inflammation and modulation of neuroplasticity. LIMITATIONS The low number of preclinical and absence of clinical studies to support the antidepressant effect of PDE5Is. CONCLUSIONS No clinical trial was conducted to date evaluating PDE5Is in depressed patients without ED. PDE5Is' anti-inflammatory and neuroplasticity mechanisms may justify the potential antidepressant effect of these drugs. Despite this, clinical trials evaluating their efficacy in depressed patients need to be conducted.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; Graduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - João Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Ahmed NS. Tadalafil: 15 years' journey in male erectile dysfunction and beyond. Drug Dev Res 2018; 80:683-701. [PMID: 30548639 DOI: 10.1002/ddr.21493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Hit, Lead & Candidate Discovery Tadalafil, Cialis, Eli Lilly & Co./ICOS, (6R,12aR)-6-(1,3-benzodioxol-5-yl)-2-methyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6] pyrido[3,4-b]indole-1,4-dione, was first discovered in 2003. It was reported to have high diastereospecificity for phosphodiesterase 5 (PDE5) inhibitions. The cis-(6R, 12aR) enantiomer is the most active enantiomer. Tadalafil showed PDE5 inhibition with IC50 = 5 nM. It possesses high selectivity for PDE5 versus PDE1-4 and PDE6. Tadalafil is more selective to PDE5 against PDE6 whereas sildenafil, another commercially available PDE5 inhibitor shows similar potencies to inhibit PDE5 and PDE6. Tadalafil is used for the treatment of male erectile dysfunction (MED), prostatic benign hyperplasia (PBH) signs and symptoms, and pulmonary arterial hypertension (PAH). Adcirca, another name for tadalafil, is used to treat PAH and improve exercise capacity. Recent clinical studies suggest the use of tadalafil for nonurological applications, including circulatory disorders (ischemia injury, myocardial infarction, cardiac hypertrophy, cardiomyopathy, heart failure, and stroke), neurodegenerative disorders, and cognitive impairment conditions. This review discusses tadalafil and its analogues reported in the past 15 years. It discusses synthetic pathways, structural activity relationships, existing and future pharmacological indications of tadalafil and its analogues. This work can help medicinal chemists developing novel PDE5 inhibitors with wider therapeutic indications.
Collapse
Affiliation(s)
- Nermin S Ahmed
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| |
Collapse
|
12
|
Wen RT, Zhang FF, Zhang HT. Cyclic nucleotide phosphodiesterases: potential therapeutic targets for alcohol use disorder. Psychopharmacology (Berl) 2018; 235:1793-1805. [PMID: 29663017 PMCID: PMC5949271 DOI: 10.1007/s00213-018-4895-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD), which combines the criteria of both alcohol abuse and dependence, contributes as an important causal factor to multiple health and social problems. Given the limitation of current treatments, novel medications for AUD are needed to better control alcohol consumption and maintain abstinence. It has been well established that the intracellular signal transduction mediated by the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) crucially underlies the genetic predisposition, rewarding properties, relapsing features, and systemic toxicity of compulsive alcohol consumption. On this basis, the upstream modulators phosphodiesterases (PDEs), which critically control intracellular levels of cyclic nucleotides by catalyzing their degradation, are proposed to play a role in modulating alcohol abuse and dependent process. Here, we highlight existing evidence that correlates cAMP and cGMP signal cascades with the regulation of alcohol-drinking behavior and discuss the possibility that PDEs may become a novel class of therapeutic targets for AUD.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China.
- Departments of Behavioral Medicine and Psychiatry and Physiology, Pharmacology and Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Oberholzer I, Möller M, Holland B, Dean OM, Berk M, Harvey BH. Garcinia mangostana Linn displays antidepressant-like and pro-cognitive effects in a genetic animal model of depression: a bio-behavioral study in the Flinders Sensitive Line rat. Metab Brain Dis 2018; 33:467-480. [PMID: 29101602 DOI: 10.1007/s11011-017-0144-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
There is abundant evidence for both disorganized redox balance and cognitive deficits in major depressive disorder (MDD). Garcinia mangostana Linn (GM) has anti-oxidant activity. We studied the antidepressant-like and pro-cognitive effects of raw GM rind in Flinders Sensitive Line (FSL) rats, a genetic model of depression, following acute and chronic treatment compared to a reference antidepressant, imipramine (IMI). The chemical composition of the GM extract was analysed for levels of α- and γ-mangostin. The acute dose-dependent effects of GM (50, 150 and 200 mg/kg po), IMI (20 mg/kg po) and vehicle were determined in the forced swim test (FST) in FSL rats, versus Flinders Resistant Line (FRL) control rats. Locomotor testing was conducted using the open field test (OFT). Using the most effective dose above coupled with behavioral testing in the FST and cognitive assessment in the novel object recognition test (nORT), a fixed dose 14-day treatment study of GM was performed and compared to IMI- (20 mg/kg/day) and vehicle-treated animals. Chronic treated animals were also assessed with respect to frontal cortex and hippocampal monoamine levels and accumulation of malondialdehyde. FSL rats showed significant cognitive deficits and depressive-like behavior, with disordered cortico-hippocampal 5-hydroxyindole acetic acid (5-HIAA) and noradrenaline (NA), as well as elevated hippocampal lipid peroxidation. Acute and chronic IMI treatment evoked pronounced antidepressant-like effects. Raw GM extract contained 117 mg/g and 11 mg/g α- and γ-mangostin, respectively, with acute GM demonstrating antidepressant-like effects at 50 mg/kg/day. Chronic GM (50 mg/kg/d) displayed significant antidepressant- and pro-cognitive effects, while demonstrating parity with IMI. Both behavioral and monoamine assessments suggest a more prominent serotonergic action for GM as opposed to a noradrenergic action for IMI, while both IMI and GM reversed hippocampal lipid peroxidation in FSL animals. Concluding, FSL rats present with cognitive deficits and depressive-like behaviors that are reversed by acute and chronic GM treatment, similar to that of IMI.
Collapse
Affiliation(s)
- Inge Oberholzer
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Marisa Möller
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Brendan Holland
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, 3220, Australia
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, 3052, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, 3052, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa.
| |
Collapse
|
14
|
Cardinale A, Fusco FR. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease. CNS Neurosci Ther 2018; 24:319-328. [PMID: 29500937 DOI: 10.1111/cns.12834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative condition, due to a mutation in the IT15 gene encoding for huntingtin. Currently, disease-modifying therapy is not available for HD, and only symptomatic drugs are administered for the management of symptoms. In the last few years, preclinical and clinical studies have indicated that pharmacological strategies aimed at inhibiting cyclic nucleotide phosphodiesterase (PDEs) may develop into a novel therapeutic approach in neurodegenerative disorders. PDEs are a family of enzymes that hydrolyze cyclic nucleotides into monophosphate isoforms. Cyclic nucleotides are second messengers that transduce the signal of hormones and neurotransmitters in many physiological processes, such as protein kinase cascades and synaptic transmission. An alteration in their balance results in the dysregulation of different biological mechanisms (transcriptional dysregulation, immune cell activation, inflammatory mechanisms, and regeneration) that are involved in neurological diseases. In this review, we discuss the action of phosphodiesterase inhibitors and their role as therapeutic agents in HD.
Collapse
Affiliation(s)
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
15
|
Liebenberg N, Jensen E, Larsen ER, Kousholt BS, Pereira VS, Fischer CW, Wegener G. A Preclinical Study of Casein Glycomacropeptide as a Dietary Intervention for Acute Mania. Int J Neuropsychopharmacol 2018; 21:473-484. [PMID: 29726996 PMCID: PMC5932479 DOI: 10.1093/ijnp/pyy012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 02/06/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Casein glycomacropeptide is a peptide that lacks phenylalanine, tyrosine, and tryptophan. This profile may enable it to deplete phenylalanine, tyrosine, and tryptophan, and subsequently the synthesis of dopamine and serotonin in the brain. Dopamine- and serotonin-depleting amino acid mixtures have shown promise as acute antimanic treatments. In this study, we explore the depleting effects on amino acids, dopamine and serotonin as well as its actions on manic-like and other behavior in rats. METHODS Casein glycomacropeptide and a selection of amino acid mixtures were administered orally at 2, 4, or 8 h or for 1 week chronically. Amino acid and monoamine levels were measured in plasma and brain and behavior was assessed in the amphetamine-hyperlocomotion, forced swim, prepulse inhibition, and elevated plus maze tests. RESULTS Casein glycomacropeptide induced a time-dependent reduction in tyrosine, tryptophan, and phenylalanine in brain and plasma which was augmented by supplementing with leucine. Casein glycomacropeptide +leucine reduced dopamine in the frontal cortex and serotonin in the hippocampus, frontal cortex, and striatum after 2 and 4 h. Casein glycomacropeptide+leucine also had antimanic activity in the amphetamine-induced hyperlocomotion test at 2 h after a single acute treatment and after 1 week of chronic treatment. CONCLUSIONS Casein glycomacropeptide-based treatments and a branched-chain amino acid mixture affected total tissue levels of dopamine in the frontal cortex and striatum and serotonin in the frontal cortex, striatum, and hippocampus of rats in a time-dependent fashion and displayed antimanic efficacy in a behavioral assay of mania.
Collapse
Affiliation(s)
- Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Erik Roj Larsen
- Department Psychiatry Odense, Psychiatry in the Region of Southern Denmark, Denmark,Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Denmark
| | - Birgitte Saima Kousholt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark
| | - Vitor Silva Pereira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Christina Weide Fischer
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark,Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark,Centre for Pharmaceutical Excellence, School of Pharmacy, North-West University, South Africa,Correspondence: Gregers Wegener, Translational Neuropsychiatry Unit, Aarhus University Hospital, Skovagervej 2, 8240 Risskov, Denmark ()
| |
Collapse
|
16
|
Regenass W, Möller M, Harvey BH. Studies into the anxiolytic actions of agomelatine in social isolation reared rats: Role of corticosterone and sex. J Psychopharmacol 2018; 32:134-145. [PMID: 29082818 DOI: 10.1177/0269881117735769] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are severely disabling, while current pharmacological treatments are complicated by delayed onset, low remission rates and side-effects. Sex is also noted to contribute towards illness severity and treatment response. Agomelatine is a melatonin (MT1/MT2) agonist and serotonin (5-HT2C) antagonist purported to be anxiolytic in clinical and some pre-clinical studies. We undertook a detailed analysis of agomelatine's anxiolytic activity in a neurodevelopmental model of anxiety, the social isolation reared rat. Rats received sub-chronic treatment with vehicle or agomelatine (40 mg/kg per day intraperitoneally at 16:00 h for 16 days), with behaviour analysed in the open field test, social interaction test and elevated plus maze. The contribution of corticosterone and sex was also studied. Social isolation rearing increased locomotor activity and reduced social interaction in the social interaction test, and was anxiogenic in the elevated plus maze in males and females. Agomelatine reversed these behaviours. Male and female social isolation reared rats developed anxiety-like behaviours to a similar degree, although response to agomelatine was superior in male rats. Social isolation rearing decreased plasma corticosterone in both sexes and tended to higher levels in females, although agomelatine did not affect corticosterone in either sex. Concluding, agomelatine is anxiolytic in SIR rats, although correcting altered corticosterone could not be implicated. Sex-related differences in the response to agomelatine are evident.
Collapse
Affiliation(s)
- Wilmie Regenass
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Brian H Harvey
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
17
|
Wen RT, Liang JH, Zhang HT. Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence. ADVANCES IN NEUROBIOLOGY 2018; 17:413-444. [PMID: 28956341 DOI: 10.1007/978-3-319-58811-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substance dependence is a chronic relapsing brain disorder associated with adaptational changes in synaptic plasticity and neuronal functions. The high levels of substance consumption and relapse rate suggest more reliable medications are in need to better address the underlying causes of this disease. It has been well established that the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) and their signaling systems play an important role in the molecular mechanisms of substance taking behaviors. On this basis, the phosphodiesterase (PDE) superfamily, which crucially controls cyclic nucleotide levels by catalyzing their hydrolysis, has been proposed as a novel class of therapeutic targets for substance use disorders. This chapter reviews the expression patterns of PDEs in the brain with regard to neural structures underlying the dependent process and highlights available evidence for a modulatory role of PDEs in substance dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
18
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32:1357-1382. [PMID: 28762173 DOI: 10.1007/s11011-017-0081-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer's disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer's and Parkinson's disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.
Collapse
Affiliation(s)
- Anzelle Delport
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
19
|
Long-term effects of pre-pubertal fluoxetine on behaviour and monoaminergic stress response in stress-sensitive rats. Acta Neuropsychiatr 2017; 29:222-235. [PMID: 27819195 DOI: 10.1017/neu.2016.53] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Although prescription rates of antidepressants for children and adolescents have increased, concerns have been raised regarding effects on neurodevelopment and long-term outcome. Using a genetic animal model of depression, this study investigated the long-term effects of pre-pubertal administration of fluoxetine (FLX) on depressive-like behaviour in early adulthood, as well as on central monoaminergic response to an acute stressor. We postulated that pre-pubertal FLX will have lasting effects on animal behaviour and monoaminergic stress responses in early adulthood. METHODS Flinders sensitive line (FSL) rats received 10 mg/kg/day FLX subcutaneously from postnatal day 21 (PnD21) to PnD34 (pre-pubertal). Thereafter, following normal housing, rats were either subjected to locomotor testing and the forced swim test (FST) on PnD60 (early adulthood), or underwent surgery for microdialysis, followed on PnD60 by exposure to acute swim stress and measurement of stressor-induced changes in plasma corticosterone and pre-frontal cortical monoamine concentrations. RESULTS Pre-pubertal FLX did not induce a late emergent effect on immobility in FSL rats on PnD60, whereas locomotor activity was significantly decreased. Acute swim stress on PnD60 significantly increased plasma corticosterone levels, and increased pre-frontal cortical norepinephrine (NE) and 5-hydroxyindole-3-acetic acid (5-HIAA) concentrations. Pre-pubertal FLX significantly blunted the pre-frontal cortical NE and 5-HIAA response following swim stress on PnD60. Baseline dopamine levels were significantly enhanced by pre-pubertal FLX, but no further changes were induced by swim stress. CONCLUSION Pre-pubertal FLX did not have lasting antidepressant-like behavioural effects in genetically susceptible, stress-sensitive FSL rats. However, such treatment reduced locomotor activity, abrogated noradrenergic and serotonergic stressor responses and elevated dopaminergic baseline levels in adulthood.
Collapse
|
20
|
Wang L, Wang Y, Chai Y, Kang Y, Sun C, Zeng S. Nickel(II)-assisted enantiomeric differentiation and quantitation of tadalafil by direct electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:411-416. [PMID: 28470986 DOI: 10.1002/jms.3939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
A facile method based on electrospray mass spectrometry was established and validated for the differentiation of enantiomeric tadalafil isomers without using chiral chromatographic separation. The enantiomers were coupled with a chiral selector to form diastereomeric complex ions. Nickel-tadalafil complexes, [NiII (tadalafil)(l-Trp)-H]+ , produced a characteristic fragment ion at m/z 524 by loss of 1-methyl-1,6-dihydropyrazine-2,5-dione via collision-induced dissociation. The relative abundance of this fragment ion to the precursor contributed to differentiate tadalafil enantiomers, and energy-resolved product-ion spectra were applied to determine the molar composition of tadalafil in the mixture (R,R and S,S) as well. In addition, the other two forms of stereomeric isomers of tadalafil (R,S and S,R) could be also distinguished and analyzed by this method. The method was validated in different types of mass spectrometers (AB quadrupole time-of-flight and Bruker ion trap) and also verified by a chiral high-performance liquid chromatography coupled with quadrupole time-of-flight. The chiral determination of tadalafil using MS method proved to be rapid (1-min run time for each sample) and to have the same accuracy and precision comparable to chiral liquid chromatography mass spectrometry methods. This method provides an alternative to commonly used chromatographic technique for chiral determination and is particularly useful in rapid screening in enantioselective synthesis and enantiomeric impurity detection in pharmaceutical industry. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- L Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, 310058, China
| | - Y Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, 310058, China
| | - Y Chai
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Y Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, 310058, China
| | - C Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - S Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
|
22
|
Schoeman JC, Steyn SF, Harvey BH, Brink CB. Long-lasting effects of fluoxetine and/or exercise augmentation on bio-behavioural markers of depression in pre-pubertal stress sensitive rats. Behav Brain Res 2017; 323:86-99. [PMID: 28143768 DOI: 10.1016/j.bbr.2017.01.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 12/25/2022]
Abstract
Juvenile depression is of great concern with only limited treatment currently approved. Delayed onset of action, low remission and high relapse rates, and potential long-lasting consequences further complicates treatment and highlights the need for new treatment options. Studies reporting on long-lasting effects of early-life treatment have reported conflicting results, with the pre-adolescent period mostly overlooked. The anti-depressive effect of exercise, as a possible treatment option or augmentation strategy, is dependent on age and exercise intensity. We investigated the immediate (i.e. postnatal day 35 (PND35)) and lasting (PND60 to PND61) effects of pre-pubertal (PND21 to PND34) fluoxetine and/or exercise on bio-behavioural markers of depression and oxidative stress in stress sensitive Flinders Sensitive Line rats. Low, but not moderate, intensity exercise or 5, but not 10, mg/kg/day fluoxetine displayed anti-depressant-like properties at PND35. Pre-pubertal treatment with 5mg/kg/day fluoxetine or low intensity exercise exerted lasting anti-depressive-like effects into adulthood, whereas the combination of these two treatments did not. Furthermore, the combination of fluoxetine plus exercise reduced hippocampal BDNF levels as compared to exercise alone, which may explain the latter findings. In all treatment groups hippocampal SOD activity was significantly increased at PND61, suggesting an increased anti-oxidant capacity in adulthood. In conclusion, the data confirm the anti-depressant-like properties of both early-life fluoxetine and exercise in a genetic animal model of depression. However, optimal lasting effects of early-life interventions may require adjustment of antidepressant dose and/or exercise intensity to developmental age, and that a combination of antidepressant and exercise may not necessarily be augmentative.
Collapse
Affiliation(s)
- Jacobus C Schoeman
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, North West, South Africa
| | - Stephanus F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, North West, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, North West, South Africa
| | - Christiaan B Brink
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, North West, South Africa.
| |
Collapse
|
23
|
Di Luigi L, Sansone M, Sansone A, Ceci R, Duranti G, Borrione P, Crescioli C, Sgrò P, Sabatini S. Phosphodiesterase Type 5 Inhibitors, Sport and Doping. Curr Sports Med Rep 2017; 16:443-447. [DOI: 10.1249/jsr.0000000000000422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Logrip ML. Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol 2015; 49:795-802. [PMID: 26095589 DOI: 10.1016/j.alcohol.2015.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/22/2022]
Abstract
Alcohol use disorders are chronically relapsing conditions characterized by persistent drinking despite the negative impact on one's life. The difficulty of achieving and maintaining sobriety suggests that current treatments fail to fully address the underlying causes of alcohol use disorders. Identifying additional pathways controlling alcohol consumption may uncover novel targets for medication development to improve treatment options. One family of proteins recently implicated in the regulation of alcohol consumption is the cyclic nucleotide phosphodiesterases (PDEs). As an integral component in the regulation of the second messengers cyclic AMP and cyclic GMP, and thus their cognate signaling pathways, PDEs present intriguing targets for pharmacotherapies to combat alcohol use disorders. As activation of cAMP/cGMP-dependent signaling cascades can dampen alcohol intake, PDE inhibitors may provide a novel target for reducing excessive alcohol consumption, as has been proposed for PDE4 and PDE10A. This review highlights preclinical literature demonstrating the involvement of cyclic nucleotide-dependent signaling in neuronal and behavioral responses to alcohol, as well as detailing the capacity of various PDE inhibitors to modulate alcohol intake. Together these data provide a framework for evaluating the potential utility of PDE inhibitors as novel treatments for alcohol use disorders.
Collapse
|
25
|
Otari KV, Upasani CD. Antidepressant-like effect of tadalafil, a phosphodiesterase type 5 inhibitor, in the forced swim test: Dose and duration of treatment dependence. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Otari KV, Upasani CD. Involvement of NO-cGMP pathway in anti-hyperalgesic effect of PDE5 inhibitor tadalafil in experimental hyperalgesia. Inflammopharmacology 2015; 23:187-194. [PMID: 26159437 DOI: 10.1007/s10787-015-0240-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022]
Abstract
The association of elevated level of cyclic guanosine monophosphate (cGMP) with inhibition of hyperalgesia and involvement of nitric oxide (NO)-cGMP pathway in the modulation of pain perception was previously reported. Phosphodiesterases 5 (PDE5) inhibitors, sildenafil and tadalafil (TAD) used in erectile dysfunction, are known to act via the NO-cGMP pathway. TAD exerts its action by increasing the levels of intracellular cGMP. Hence, the present study investigated the effect of TAD 5, 10, or 20 mg/kg, per os (p.o.) or L-NAME 20 mg/kg, intraperitoneally (i.p.) and TAD (20 mg/kg, p.o.) in carrageenan- and diabetes-induced hyperalgesia in rats using hot plate test at 55 ± 2 °C. In carrageenan- and diabetes-induced hyperalgesia, TAD (10 and 20 mg/kg, p.o.) significantly increased paw withdrawal latencies (PWLs) as compared to the control group. L-NAME significantly decreased PWLs as compared to the normal group and aggravated the hyperalgesia. Moreover, significant difference in PWLs of L-NAME and TAD 20 was evident. Co-administration of L-NAME (20 mg/kg) with TAD (20 mg/kg) showed significant difference in PWLs as compared to the TAD (20 mg/kg), indicating L-NAME reversed and antagonized TAD-induced anti-hyperalgesia. This suggested an important role of NO-cGMP pathway in TAD-induced anti-hyperalgesic effect.
Collapse
Affiliation(s)
- K V Otari
- Department of Pharmacology, SNJB's SSJ College of Pharmacy, Neminagar, Chandwad, Dist. Nashik, India, 423101,
| | | |
Collapse
|
27
|
Brand SJ, Moller M, Harvey BH. A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Curr Neuropharmacol 2015; 13:324-68. [PMID: 26411964 PMCID: PMC4812797 DOI: 10.2174/1570159x13666150307004545] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/23/2022] Open
Abstract
Despite significant research efforts aimed at understanding the neurobiological underpinnings of mood (depression, bipolar disorder) and psychotic disorders, the diagnosis and evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms as well as psychometric evaluations. Therefore, biological markers aimed at improving the current classification of psychotic and mood-related disorders, and that will enable patients to be stratified on a biological basis into more homogeneous clinically distinct subgroups, are urgently needed. The attainment of this goal can be facilitated by identifying biomarkers that accurately reflect pathophysiologic processes in these disorders. This review postulates that the field of psychotic and mood disorder research has advanced sufficiently to develop biochemical hypotheses of the etiopathology of the particular illness and to target the same for more effective disease modifying therapy. This implies that a "one-size fits all" paradigm in the treatment of psychotic and mood disorders is not a viable approach, but that a customized regime based on individual biological abnormalities would pave the way forward to more effective treatment. In reviewing the clinical and preclinical literature, this paper discusses the most highly regarded pathophysiologic processes in mood and psychotic disorders, thereby providing a scaffold for the selection of suitable biomarkers for future studies in this field, to develope biomarker panels, as well as to improve diagnosis and to customize treatment regimens for better therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
28
|
Wang C, Zhang J, Lu Y, Lin P, Pan T, Zhao X, Liu A, Wang Q, Zhou W, Zhang HT. Antidepressant-like effects of the phosphodiesterase-4 inhibitor etazolate and phosphodiesterase-5 inhibitor sildenafil via cyclic AMP or cyclic GMP signaling in mice. Metab Brain Dis 2014; 29:673-82. [PMID: 24705918 DOI: 10.1007/s11011-014-9533-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 12/25/2022]
Abstract
Inhibition of phosphodiesterase-4 or 5 (PDE4 or PDE5) increases cyclic adenosine monophosphate (cAMP)- or cyclic guanosine monophosphate (cGMP), respectively, which activates cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/neuropeptide VGF (non-acryonimic) signaling and produces antidepressant-like effects on behavior. However, causal links among these actions have not been established. In the present study, mice were evaluated for the effects of etazolate and sildenafil, the inhibitor of PDE4 or PDE5, respectively, on depressive-like behavior induced by chronic unpredictable mild stress (CUMS) in the forced-swimming test (FST) and tail suspension test (TST), in the presence or absence of the inhibitor of protein kinase A (PKA) or protein kinase G (PKG) via intracerebroventricular (i.c.v.) infusions. The levels of cAMP, cGMP and expression of pCREB, CREB, BDNF and VGF in both the hippocampus and prefrontal cortex were determined. The results showed that etazolate at 5.0 mg/kg or sildenafil at 30 mg/kg significantly reversed CUMS-induced depressive-like behavior; the effects were paralleled with the increased levels of cAMP/pCREB/BDNF/VGF or cGMP/pCREB/BDNF/VGF signaling, respectively. These effects were completely abolished following inhibition of PKA or PKG, respectively. The results suggest that inhibition of PDE4 by etazolate or PDE5 by sildenafil produced antidepressant-like effects in CUMS-treated animals via cAMP or cGMP signaling, which shares the common downstream signal pathway of CREB/BDNF/VGF.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Colvin SM, Kwan KY. Dysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders. Front Genet 2014; 5:239. [PMID: 25101118 PMCID: PMC4105824 DOI: 10.3389/fgene.2014.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
A mechanistic understanding of the pathophysiology underpinning psychiatric disorders is essential for the development of targeted molecular therapies. For fragile X syndrome (FXS), recent mechanistic studies have been focused on the metabotropic glutamate receptor (mGluR) signaling pathway. This line of research has led to the discovery of promising candidate drugs currently undergoing various phases of clinical trial, and represents a model of how biological insights can inform therapeutic strategies in neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the disorder is expected to inform additional therapeutic strategies. Alterations in the assembly of neural circuits in the neocortex have been recently implicated in genetic studies of autism and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated nitric oxide signaling in the developing neocortex as a novel candidate mechanism of FXS. This possibility stems from our previous work demonstrating that neuronal nitric oxide synthase 1 (NOS1 or nNOS) is regulated by the FXS protein FMRP in the mid-fetal human neocortex. Remarkably, in the mid-late fetal and early postnatal neocortex of human FXS patients, NOS1 expression is severely diminished. Given the role of nitric oxide in diverse neural processes, including synaptic development and plasticity, the loss of NOS1 in FXS may contribute to the etiology of the disorder. Here, we outline the genetic and neurobiological data that implicate neocortical dysfunction in FXS, review the evidence supporting dysregulated nitric oxide signaling in the developing FXS neocortex and its contribution to the disorder, and discuss the implications for targeting nitric oxide signaling in the treatment of FXS and other psychiatric illnesses.
Collapse
Affiliation(s)
- Steven M Colvin
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kenneth Y Kwan
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
30
|
Mahmoodi M, Shahidi S, Hashemi-Firouzi N, Komaki A. Morphological Effects of Combined Systemic Administration of Fluoxetine and Sildenafil in the Murine Hippocampus. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Evaluation of functional relationship between mouse hippocampal cholinergic and nitrergic systems in anxiogenic-like behavior. Behav Pharmacol 2013; 24:229-36. [DOI: 10.1097/fbp.0b013e3283618b16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Shahidi S, Hashemi-Firouzi N, Mahmoodi M. Co-administration of fluoxetine and Sildenafil has benefits in anxiety behavior in mice. NEUROCHEM J+ 2013. [DOI: 10.1134/s181971241301008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Overstreet DH, Wegener G. The flinders sensitive line rat model of depression--25 years and still producing. Pharmacol Rev 2013; 65:143-55. [PMID: 23319547 DOI: 10.1124/pr.111.005397] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Approximately 25 years have passed since the first publication suggesting the Flinders sensitive line (FSL) rat as an animal model of depression. At least 6 years of research on these rats was completed before that seminal paper, and there has been a steady stream of publications (130+) over the years. The present review will focus on several issues not previously covered in earlier reviews, summarize the several lines of ongoing investigations, and propose a novel mechanism that accounts for a number of previously unexplained observations. A key observation in the FSL rat relates to the antidepressant (AD)-like effects of known and putative antidepressants. The FSL rat typically exhibits an AD-like effect in behavioral tests for AD-like activity following chronic (14 days) treatment, although some studies have found AD-like effects after fewer days of treatment. In other observations, exaggerated swim test immobility in the FSL rat has been found to have a maternal influence, as shown by cross-fostering studies and observations of maternal behavior; the implications of this finding are still to be determined. Ongoing or recently completed studies have been performed in the laboratories of Marko Diksic of Canada, Aleksander Mathé of Sweden, Gregers Wegener of Denmark, Brian Harvey of South Africa, Paul Pilowsky and Rod Irvine of Australia, and Gal Yadid of Israel. Jennifer Loftis of Portland, Oregon, and Lynette Daws of San Antonio, Texas, have been working with the FSL rats in the United States. A puzzling feature of the FSL rat is its sensitivity to multiple chemicals, and its greater sensitivity to a variety of drugs with different mechanisms of action. It has been recently shown that each of these drugs feeds through G protein-coupled receptors to potassium-gated channels. Thus, an abnormality in the potassium channel could underlie the depressed-like behavior of the FSL rats.
Collapse
Affiliation(s)
- David H Overstreet
- Center for Alcohol Studies & Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
34
|
Liebenberg N, Harvey BH, Brand L, Wegener G, Brink CB. Chronic treatment with the phosphodiesterase type 5 inhibitors sildenafil and tadalafil display anxiolytic effects in Flinders Sensitive Line rats. Metab Brain Dis 2012; 27:337-40. [PMID: 22359075 DOI: 10.1007/s11011-012-9284-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
There are conflicting results from behavioural studies regarding whether the activation or inhibition of the cGMP-nitric oxide (NO) pathway induces anxiolytic-like behaviour. Sildenafil, an inhibitor of cGMP-selective phosphodiesterase-5, increases anxiety acutely, but previous evidence suggests that its chronic administration may be anxiolytic, and could involve a cholinergic interaction. We used the Flinders Sensitive Line (FSL) rat, a genetic model of depression that presents with increased anxiety- and depression-like behaviour, to investigate the action of chronic treatment with the PDE5 inhibitors sildenafil or tadalafil, with/without atropine on social interaction behaviour, a correlate for anxiety. Fluoxetine was used as positive control, with validation performed using Flinders Resistant Line (FRL) rats. In order to relate behavioural changes to brain penetration, we determined the concentration of sildenafil in cortex and hippocampus of rats following the schedule above using LC-MS/MS. FSL rats displayed significantly reduced social interactive behaviour than FRL rats, while sildenafil, tadalafil, and fluoxetine significantly reversed these deficits. Atropine did not exert effects on social interactive behaviour, nor did it modulate the effects of sildenafil or tadalafil. Sildenafil was present in cortex and hippocampus regions in lower nanomolar concentrations after chronic treatment, in agreement with the binding to PDE5 required for pharmacological effects. This study emphasizes the complicated regulation of anxiety by the cGMP-NO system, and provides supporting evidence for an anxiolytic action after the chronic activation of this pathway. As far as we know this is also the first report to formally demonstrate that sildenafil effectively crosses the blood-brain barrier to elicit central effects.
Collapse
Affiliation(s)
- Nico Liebenberg
- Unit for Drug Research and Development, School of Pharmacy, Division of Pharmacology, North-West University, Internal Box 16, Potchefstroom 2520, South Africa
| | | | | | | | | |
Collapse
|
35
|
Brand L, van Zyl J, Minnaar EL, Viljoen F, du Preez JL, Wegener G, Harvey BH. Corticolimbic changes in acetylcholine and cyclic guanosine monophosphate in the Flinders Sensitive Line rat: a genetic model of depression. Acta Neuropsychiatr 2012; 24:215-25. [PMID: 25286814 DOI: 10.1111/j.1601-5215.2011.00622.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective: Depression is suggested to involve disturbances in cholinergic as well as glutamatergic pathways, particularly the N-methyl-d-aspartate receptor-mediated release of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP). The aim of this study was to determine whether the Flinders Sensitive Line (FSL) rat, a genetic model of depression, presents with corticolimbic changes in basal acetylcholine (ACh) levels and NO/cGMP signalling.Methods: Basal levels of nitrogen oxides (NOx) and both basal and l-arginine-stimulated nitric oxide synthase (NOS) formation of l-citrulline were analysed in hippocampus and frontal cortex in FSL and control Flinders resistant line (FRL) rats by fluorometric and electrochemical high-performance liquid chromatography, respectively. In addition, ACh and cGMP levels were analysed by liquid chromatography tandem mass spectrometry and radioimmunoassay, respectively.Results: Significantly elevated frontal cortical but reduced hippocampal ACh levels were observed in FSL versus FRL rats. Basal cGMP levels were significantly reduced in the frontal cortex, but not hippocampus, of FSL rats without changes in NOx and l-citrulline, suggesting that the reduction of cGMP follows through an NOS-independent mechanism.Conclusions: These data confirm a bidirectional change in ACh in the frontal cortex and hippocampus of the FSL rat, as well as provide evidence for a frontal cortical ACh-cGMP interaction in the depressive-like behaviour of the FSL rat.
Collapse
Affiliation(s)
- Linda Brand
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Jurgens van Zyl
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Estella L Minnaar
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Francois Viljoen
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Jan L du Preez
- Analytical Technology Laboratory, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Gregers Wegener
- Centre for Psychiatric Research, University of Aarhus, Denmark
| | - Brian H Harvey
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
36
|
Sierksma ASR, Rutten K, Sydlik S, Rostamian S, Steinbusch HWM, van den Hove DLA, Prickaerts J. Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Neuropharmacology 2012; 64:124-36. [PMID: 22771768 DOI: 10.1016/j.neuropharm.2012.06.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive deficits and synaptic dysfunction. Over the last decade phosphodiesterase inhibitors (PDEIs) have received increasing attention as putative cognition enhancers and have been suggested as a novel treatment strategy for AD. Given their ability to prevent hydrolysis of cAMP and/or cGMP, they can stimulate the cAMP/protein kinase A (PKA)/cAMP element-binding protein (CREB) and cGMP/PKG/CREB pathway to enhance synaptic transmission by increasing CREB phosphorylation (pCREB) and brain-derived neurotrophic factor (BDNF) transcription. Based on previous research, we hypothesized that chronic PDE2I treatment would improve AD-related cognitive deficits, by decreasing amyloid-β (Aβ) plaque load, enhancing pCREB and BDNF levels and increasing synaptic density in the hippocampus of 8-month-old APPswe/PS1dE9 mice. Results indicated that chronic PDE2I treatment could indeed improve memory performance in APPswe/PS1dE9 mice, without affecting anxiety, depressive-like behavior or hypothalamus-pituitary-adrenal axis regulation. However, no treatment effects were observed on Aβ plaque load, pCREB or BDNF concentrations, or presynaptic density in the hippocampus, suggesting that other signaling pathways and/or effector molecules might be responsible for its cognition-enhancing effects. Presynaptic density in the stratum lucidum of the CA3 subregion was significantly higher in APPswe/PS1dE9 mice compared to WT controls, possibly reflecting a compensatory mechanism. In conclusion, PDEs in general, and PDE2 specifically, could be considered as promising therapeutic targets for cognition enhancement in AD, although the underlying mechanism of action remains to be elucidated. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Annerieke S R Sierksma
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Science, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Unceta N, Echeazarra L, Montaña M, Sallés J, Gómez-Caballero A, Goicolea MA, Barrio RJ. Validation of an LC-ESI-MS/MS method for the quantitation of phosphodiesterase-5 inhibitors and their main metabolites in rat serum and brain tissue samples. J Pharm Biomed Anal 2012; 70:529-33. [PMID: 22647499 DOI: 10.1016/j.jpba.2012.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
This work proposes a liquid chromatography-electrospray ionization ion trap mass spectrometry (LC-ESI-ITMS) method, for the quantification of sildenafil (SDF), tadalafil (TDF) and vardenafil (VDF) and their metabolites N-desmethylSDF, O-desethylSDF and N-desethylVDF, preceded by a sample preparation step based on protein and phospholipid elimination. A C8 column (150 mm × 4.6 mm, 5 μm) with ammonium formate (20mM) and acetonitrile as the mobile phase components have been used. This method has been validated, obtaining limits of quantification ranged from 1 to 2.5 ng/mL and 2 to 5 ng/g in serum and brain tissue respectively, while limits of detection ranged from 0.3 to 0.9 ng/mL in serum and 0.6 to 1.9 ng/g in brain tissue. Assay recoveries for low level QC samples were higher than 83% and the matrix effect ranged between 91% and 108% in serum and between 98% and 107% in brain tissue. The method has been applied to the quantification of these compounds in the serum and brain tissue of rats treated intraperitoneally with 10 mg/kg of SDF, TDF or VDF.
Collapse
Affiliation(s)
- Nora Unceta
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Skelin I, Kovačević T, Sato H, Diksic M. The opposite effect of a 5-HT1B receptor agonist on 5-HT synthesis, as well as its resistant counterpart, in an animal model of depression. Brain Res Bull 2012; 88:477-86. [PMID: 22542420 DOI: 10.1016/j.brainresbull.2012.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/29/2023]
Abstract
Flinders Sensitive Line (FSL) rat is as an animal model of depression with altered parameters of the serotonergic (5-HT) system function (5-HT synthesis rates, tissue concentrations, release, receptor density and affinity), as well as an altered sensitivity of these parameters to different 5-HT based antidepressants. The effects of acute and chronic treatments with the 5-HT(1B) agonist, CP-94253 on 5-HT synthesis, in the FSL rats and the Flinders Resistant Line (FRL) controls were measured using α-[(14)C]methyl-L-tryptophan (α-MTrp) autoradiography. CP-94253 (5mg/kg), or an adequate volume of saline, was injected i.p. as a single dose in the acute experiment or delivered via the subcutaneously implanted osmotic minipump (5 mg/kg/day for 14 days) in the chronic experiment. The acute treatment with CP-94253 significantly decreased the 5-HT synthesis in both the FRL and FSL rats, with a more widespread effect in the FRL rats. Chronic treatment with CP-94253 significantly decreased 5-HT synthesis in the FRL rats, while 5-HT synthesis in the FSL rats was significantly increased throughout the brain. In both the acute and chronic experiment, the FRL rats had higher brain 5-HT synthesis rates, relative to the FSL rats. The shift in the direction of the treatment effect from acute to chronic, using the 5-HT(1B) agonist, CP-94253, on 5-HT synthesis in the FSL model of depression, with an opposite effect on the control FRL rats, suggests the differential adaptation of the 5-HT system in the FSL and FRL rats to chronic stimulation of 5-HT(1B) receptors.
Collapse
Affiliation(s)
- Ivan Skelin
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, and Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Que., Canada H3A 2B4
| | | | | | | |
Collapse
|
39
|
Cadirci E, Halici Z, Odabasoglu F, Albayrak A, Karakus E, Unal D, Atalay F, Ferah I, Unal B. Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: a biochemical and histopathological study. Clin Exp Immunol 2012; 166:374-84. [PMID: 22059996 DOI: 10.1111/j.1365-2249.2011.04483.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sepsis is a systemic inflammatory response to infection and a major cause of morbidity and mortality. Sildenafil (SLD) is a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase PDE5. We aimed to investigate the protective effects of sildenafil on caecal ligation and puncture (CLP)-induced sepsis in rats. Four groups of rats were used, each composed of 10 rats: (i) 10 mg/kg SLD-treated CLP group; (ii) 20 mg/kg SLD-treated CLP group; (iii) CLP group; and (iv) sham-operated control group. A CLP polymicrobial sepsis model was applied to the rats. All groups were killed 16 h later, and lung, kidney and blood samples were analysed histopathologically and biochemically. Sildenafil increased glutathione (GSH) and decreased the activation of myeloperoxidase (MPO) and of lipid peroxidase (LPO) and levels of superoxide dismutase (SOD) in the septic rats. We observed a significant decrease in LPO and MPO and a decrease in SOD activity in the sildenafil-treated CLP rats compared with the sham group. In addition, 20 mg/kg sildenafil treatment in the sham-operated rats improved the biochemical status of lungs and kidneys. Histopathological analysis revealed significant differences in inflammation scores between the sepsis group and the other groups, except the CLP + sildenafil 10 mg/kg group. The CLP + sildenafil 20 mg/kg group had the lowest inflammation score. Sildenafil treatment decreased the serum tumour necrosis factor (TNF)-α level when compared to the CLP group. Our results indicate that sildenafil is a highly protective agent in preventing lung and kidney damage caused by CLP-induced sepsis via maintenance of the oxidant-anti-oxidant status and decrease in the level of TNF-α.
Collapse
Affiliation(s)
- E Cadirci
- Department of Pharmacology, Ataturk University Faculty of Pharmacy, Erzurum, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Socała K, Nieoczym D, Wyska E, Poleszak E, Wlaź P. Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the antidepressant activity of amitriptyline but not desipramine, in the forced swim test in mice. J Neural Transm (Vienna) 2012; 119:645-52. [PMID: 22215207 PMCID: PMC3359440 DOI: 10.1007/s00702-011-0756-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/20/2011] [Indexed: 12/29/2022]
Abstract
The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25-20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | | | | | |
Collapse
|
41
|
Wegener G, Mathe AA, Neumann ID. Selectively bred rodents as models of depression and anxiety. Curr Top Behav Neurosci 2012; 12:139-187. [PMID: 22351423 DOI: 10.1007/7854_2011_192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stress related diseases such as depression and anxiety have a high degree of co morbidity, and represent one of the greatest therapeutic challenges for the twenty-first century. The present chapter will summarize existing rodent models for research in psychiatry, mimicking depression- and anxiety-related diseases. In particular we will highlight the use of selective breeding of rodents for extremes in stress-related behavior. We will summarize major behavioral, neuroendocrine and neuronal parameters, and pharmacological interventions, assessed in great detail in two rat model systems: The Flinders Sensitive and Flinders Resistant Line rats (FSL/FRL model), and rats selectively bred for high (HAB) or low (LAB) anxiety related behavior (HAB/LAB model). Selectively bred rodents also provide an excellent tool in order to study gene and environment interactions. Although it is generally accepted that genes and environmental factors determine the etiology of mental disorders, precise information is limited: How rigid is the genetic disposition? How do genetic, prenatal and postnatal influences interact to shape adult disease? Does the genetic predisposition determine the vulnerability to prenatal and postnatal or adult stressors? In combination with modern neurobiological methods, these models are important to elucidate the etiology and pathophysiology of anxiety and affective disorders, and to assist in the development of new treatment paradigms.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, Aarhus University Hospital, 8240, Risskov, Denmark,
| | | | | |
Collapse
|
42
|
Matsushita H, Matsuzaki M, Han XJ, Nishiki TI, Ohmori I, Michiue H, Matsui H, Tomizawa K. Antidepressant-like effect of sildenafil through oxytocin-dependent cyclic AMP response element-binding protein phosphorylation. Neuroscience 2011; 200:13-8. [PMID: 22088430 DOI: 10.1016/j.neuroscience.2011.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/12/2023]
Abstract
Oxytocin (OT) levels in plasma increase during sexual response and are significantly lower in patients with depression. A drug for the treatment of sexual dysfunction, sildenafil, enhances the electrically evoked release of OT from the posterior pituitary. In this study, we showed that sildenafil had an antidepressant-like effect through activation of an OT signaling pathway. Application of sildenafil reduced depression-related behavior in male mice. The antidepressant-like effect was blocked by an OT receptor (OTR) antagonist and was absent in OTR knockout (KO) mice. Sildenafil increased the phosphorylation of cAMP response element-binding protein (CREB) in the hippocampus. The OTR antagonist inhibited sildenafil-induced CREB phosphorylation and sildenafil had no effect on CREB phosphorylation in OTR KO mice. These results suggest sildenafil to have an antidepressant-like effect through the activation of OT signaling and to be a promising drug for the treatment of depression.
Collapse
Affiliation(s)
- H Matsushita
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Re: sildenafil adjunctive therapy to risperidone in the treatment of the negative symptoms of schizophrenia. Psychopharmacology (Berl) 2011; 215:401; author reply 399. [PMID: 21193982 DOI: 10.1007/s00213-010-2155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
44
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
45
|
Baek SB, Bahn G, Moon SJ, Lee J, Kim KH, Ko IG, Kim SE, Sung YH, Kim BK, Kim TS, Kim CJ, Shin MS. The phosphodiesterase type-5 inhibitor, tadalafil, improves depressive symptoms, ameliorates memory impairment, as well as suppresses apoptosis and enhances cell proliferation in the hippocampus of maternal-separated rat pups. Neurosci Lett 2011; 488:26-30. [DOI: 10.1016/j.neulet.2010.10.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/26/2010] [Accepted: 10/29/2010] [Indexed: 02/06/2023]
|
46
|
Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 2011:447-85. [PMID: 21695652 DOI: 10.1007/978-3-642-17969-3_19] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that are involved in the regulation of the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) by controlling their rates of hydrolysis. There are 11 different PDE families and each family typically has multiple isoforms and splice variants. The PDEs differ in their structures, distribution, modes of regulation, and sensitivity to inhibitors. Since PDEs have been shown to play distinct roles in processes of emotion and related learning and memory processes, selective PDE inhibitors, by preventing the breakdown of cAMP and/or cGMP, modulate mood and related cognitive activity. This review discusses the current state and future development in the burgeoning field of PDEs in the central nervous system. It is becoming increasingly clear that PDE inhibitors have therapeutic potential for the treatment of neuropsychiatric disorders involving disturbances of mood, emotion, and cognition.
Collapse
|
47
|
Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem Pharmacol 2010; 80:1580-91. [DOI: 10.1016/j.bcp.2010.07.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 02/04/2023]
|
48
|
Beaugé LA, DiPolo R. Sidedness of the ATP-Na+-K+ interactions with the Na+ pump in squid axons. Methods Mol Biol 1979; 829:125-44. [PMID: 222318 DOI: 10.1007/978-1-61779-458-2_7] [Citation(s) in RCA: 176] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 microM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/K+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.
Collapse
|