1
|
Bardo MT, Charnigo RJ, Shaykin JD, Malone SG, Ortinski PI, Turner JR. Modeling escalation of drug intake to identify molecular targets for treating substance use disorders: A slippery slope upward. Neurosci Biobehav Rev 2025; 174:106175. [PMID: 40280289 DOI: 10.1016/j.neubiorev.2025.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Among the various checklist items used to diagnose substance use disorders (SUDs), the most recent version of the Diagnostic and Statistical Manual (DSM-5) begins with three items that imply a loss of control characterized by taking increasingly larger amounts of the drug and for longer periods. This process, often called "escalation", has been modeled in laboratory animals with the goal of identifying the mechanisms associated with SUDs. The current review first summarizes the different interpretations used to explain escalation of drug intake. Next, we examine the various ways that escalation of intake has been defined in clinical populations and how preclinical models have captured this phenomenon in the laboratory. Next, we critically discuss the key issues relevant to statistical modeling of escalation of drug intake in both humans and non-human animals, with the goal of quantifying individual differences in escalation behavior that may be useful for identifying a SUD "phenotype". Although both preclinical and clinical data rarely consider individual differences in escalation as a discrete factor, we also summarize findings indicating that common models of escalated drug intake are associated with specific genetic and cellular changes. Building on this framework of investigation is intended to offer insights in understanding the trajectory of SUDs, thus uncovering novel avenues for prevention and treatment.
Collapse
Affiliation(s)
- M T Bardo
- Department of Psychology, College of Arts and Sciences, University of Kentucky, USA.
| | - R J Charnigo
- Department of Biostatistics, College of Public Health, University of Kentucky, USA
| | - J D Shaykin
- Department of Psychology, College of Arts and Sciences, University of Kentucky, USA
| | - S G Malone
- Department of Psychology, College of Arts and Sciences, University of Kentucky, USA
| | - P I Ortinski
- Department of Neuroscience, College of Medicine, University of Kentucky, USA
| | - J R Turner
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, USA
| |
Collapse
|
2
|
Sharp BM, Leng S, Huang J, Jones C, Williams RW, Chen H. Inbred rat heredity and sex affect oral oxycodone self-administration and augmented intake in long sessions: correlations with anxiety and novelty-seeking. PLoS One 2025; 20:e0314777. [PMID: 40063602 PMCID: PMC11892884 DOI: 10.1371/journal.pone.0314777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 03/19/2025] Open
Abstract
Oxycodone abuse frequently begins with prescription oral oxycodone, yet vulnerability factors (e.g. sex, genetics) determining abuse are largely undefined. We evaluated genetic vulnerability in a rat model of oral oxycodone self-administration (SA): increasing oxycodone concentration/session (0.025-0.1mg/ml; 1-, 4-, and 16-h) followed by extinction and reinstatement. Active licks and oxycodone intake were greater in females than males during 4-h and 16-h sessions (p < 0.001). Both sexes increased intake between 4-h and 16-h sessions (p < 2e-16), but a subset of strains augmented intake at 16-h (p = 0.0005). Heritability (h2) of active licks during 4-h sessions at increasing oxycodone dose ranged from 0.30 to 0.53. Under a progressive ratio (PR) schedule, breakpoints were strain-dependent (p < 2e-16). Cued reinstatement was greater in females (p < 0.001). Naive rats were assessed using elevated plus maze (EPM), open field (OF), and novel object interaction (NOI) tests. We correlated these behaviors with 28 parameters of oxycodone SA. Anxiety-defining EPM traits were most associated with SA in both sexes, whereas OF and NOI traits were more associated with SA in males. Sex and heredity are major determinants of motivation to take and seek oxycodone; intake augments dramatically during extended access in specific strains; and anxiety correlates with multiple SA parameters across strains.
Collapse
Affiliation(s)
- Burt M. Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Shuangying Leng
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jun Huang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Caroline Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
3
|
Vu T, Godbole S, Carrette LLG, Maturin L, George O, Saba LM, Kechris K. Identification of Plasma Metabolites Responding to Oxycodone Exposure in Rats. Metabolites 2025; 15:95. [PMID: 39997720 PMCID: PMC11857688 DOI: 10.3390/metabo15020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Oxycodone has an elevated abuse liability profile compared to other prescription opioid medications. However, many human and rodent metabolomics studies have not been specifically focused on oxycodone. OBJECTIVES Investigating metabolomics changes associated with oxycodone exposure can provide insights into biochemical mechanisms of the addiction cycle and prognosis prediction. METHODS Plasma samples from 16 rats at pre-exposure and intoxication time points were profiled on the Metabolon platform. A total of 941 metabolites were characterized. We employed a k-Nearest Neighbor imputation to impute metabolites with low levels of missingness and binarized metabolites with moderate levels of missingness, respectively. RESULTS Of the 136 binarized metabolites, 6 showed differential abundance (FDR < 0.05), including 5 that were present at pre-exposure but absent at intoxication (e.g., adenine), while linoleamide (18:2n6) exhibited the opposite behavior. Among the 798 metabolites with low levels of missingness, 364 showed significant changes between pre-exposure and intoxication (FDR < 0.01), including succinate, oleamide, and sarcosine. We identified four pathways, including tryptophan metabolism, that were nominally enriched among the metabolites that change with oxycodone exposure (p < 0.05). Furthermore, we identified several metabolites that showed nominal correlations with the Addiction Index (composite of oxycodone behaviors): 17 at pre-exposure and 8 at intoxication. In addition, the changes in abundance between pre-exposure and intoxication time points of 9 metabolites were nominally correlated with the Addiction Index, including sphingomyelins, methylhistidines, and glycerols. CONCLUSIONS In summary, not only were we able to capture oxy-induced changes in metabolic pathways using easily accessible blood samples, but we also demonstrated the potential of blood metabolomics to better understand addiction liability.
Collapse
Affiliation(s)
- Thao Vu
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Suneeta Godbole
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lieselot L. G. Carrette
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lisa Maturin
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Urbanik LA, Booth JL, Acharya NK, Evans BB, Grigson PS. Effect of acute treatment with the glucagon-like peptide-1 receptor agonist, liraglutide, and estrus phase on cue- and drug-induced fentanyl seeking in female rats. Behav Pharmacol 2025; 36:16-29. [PMID: 39718042 PMCID: PMC12013456 DOI: 10.1097/fbp.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Opioid use disorder (OUD) is a crisis in the USA. Despite advances with medications for OUD, overdose deaths have continued to rise and are largely driven by fentanyl. We have previously found that male rats readily self-administer fentanyl, with evident individual differences in fentanyl taking, seeking, and reinstatement behaviors. We also have shown that acute treatment with the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, can reduce fentanyl seeking behavior in male rats. However, given that females are significantly more vulnerable to drug-related cues, drug cravings, and to the development of OUD compared to males, it is imperative that we investigate the biological risk factors on fentanyl use disorder. Further, preclinical models report that females in estrus have increased fentanyl intake, more rapid development of OUD, and enhanced relapse vulnerability compared to those in a non-estrus phase. Thus, we aimed here to understand the effect of estrus phase on our model of OUD and on the effectiveness of acute liraglutide treatment. Herein, we show that female rats readily self-administer fentanyl (1.85 μg/infusion) intravenously, with marked individual differences in fentanyl taking behavior. Additionally, rats in the estrus phase exhibited greater fentanyl intake compared with those in a non-estrus phase, greater cue-induced fentanyl seeking, and greater drug-induced reinstatement of fentanyl seeking. Finally, acute liraglutide treatment (0.3 mg/kg s.c.) reduced cue-induced fentanyl seeking and blocked drug-induced reinstatement of fentanyl seeking, particularly when tested in estrus. Overall, these data support the broad effectiveness of acute GLP-1R agonists as a promising non-opioid treatment for OUD.
Collapse
Affiliation(s)
| | - Jennifer L Booth
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | |
Collapse
|
5
|
Barattini AE, Pahng AR. Interactions of pain and opioids on conditioned place preference in rodents. Psychopharmacology (Berl) 2025; 242:1-26. [PMID: 39562334 PMCID: PMC11741919 DOI: 10.1007/s00213-024-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
RATIONALE Opioid analgesics are the most effective medications used for the treatment of pain, however there are significant risks associated with repeated opioid use including opioid misuse and opioid use disorder development. Chronic pain affects millions of adults in the United States, and opioid misuse is often comorbid with pain conditions in individuals who are repeatedly treated with opioids. In addition to providing pain relief, opioids produce rewarding effects, but in chronic pain states, reward processing can become dysregulated. The conditioned place preference task is commonly used to measure the rewarding properties of opioids in rodents. During this task, opioid administration is paired with a distinct environment through repeated conditioning and the change in an animal's preference for the paired environment indicates whether the opioid is rewarding or not. OBJECTIVES Rodent pain models can be combined with conditioned place preference to examine the effects of pain on opioid reward. The existing preclinical literature on pain effects on conditioned place preference is conflicting, where pain conditions have been reported to enhance, suppress, or have no effect on opioid reward. This review will discuss several factors that may contribute to these discordant findings including conditioning session duration and number, rodent strain differences in opioid sensitivity, analgesic properties of opioids at tested doses, locomotor effects at tested doses, and diurnal variation in pain sensitivity. Future studies should consider how these factors contribute to opioid conditioned place preference in both pain and pain-free animals to have a better understanding of the interactions between pain and opioid reward.
Collapse
Affiliation(s)
- Angela E Barattini
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Amanda R Pahng
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA.
- Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
6
|
de Guglielmo G, Carrette L, Kallupi M, Brennan M, Boomhower B, Maturin L, Conlisk D, Sedighim S, Tieu L, Fannon MJ, Martinez AR, Velarde N, Othman D, Sichel B, Ramborger J, Lau J, Kononoff J, Kimbrough A, Simpson S, Smith LC, Shankar K, Bonnet-Zahedi S, Sneddon EA, Avelar A, Plasil SL, Mosquera J, Crook C, Chun L, Vang A, Milan KK, Schweitzer P, Lin B, Peng B, Chitre AS, Polesskaya O, Solberg Woods LC, Palmer AA, George O. Large-scale characterization of cocaine addiction-like behaviors reveals that escalation of intake, aversion-resistant responding, and breaking-points are highly correlated measures of the same construct. eLife 2024; 12:RP90422. [PMID: 39484794 PMCID: PMC11530236 DOI: 10.7554/elife.90422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Addiction is commonly characterized by escalation of drug intake, compulsive drug seeking, and continued use despite harmful consequences. However, the factors contributing to the transition from moderate drug use to these problematic patterns remain unclear, particularly regarding the role of sex. Many preclinical studies have been limited by small sample sizes, low genetic diversity, and restricted drug access, making it challenging to model significant levels of intoxication or dependence and translate findings to humans. To address these limitations, we characterized addiction-like behaviors in a large sample of >500 outbred heterogeneous stock (HS) rats using an extended cocaine self-administration paradigm (6 hr/daily). We analyzed individual differences in escalation of intake, progressive ratio (PR) responding, continued use despite adverse consequences (contingent foot shocks), and irritability-like behavior during withdrawal. Principal component analysis showed that escalation of intake, progressive ratio responding, and continued use despite adverse consequences loaded onto a single factor that was distinct from irritability-like behaviors. Categorizing rats into resilient, mild, moderate, and severe addiction-like phenotypes showed that females exhibited higher addiction-like behaviors, with a lower proportion of resilient individuals compared to males. These findings suggest that, in genetically diverse rats with extended drug access, escalation of intake, continued use despite adverse consequences, and PR responding are highly correlated measures of a shared underlying construct. Furthermore, our results highlight sex differences in resilience to addiction-like behaviors.
Collapse
Affiliation(s)
| | - Lieselot Carrette
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Molly Brennan
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Brent Boomhower
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Lisa Maturin
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Dana Conlisk
- Department of Neuroscience, The Scripps Research Institute, La JollaSan DiegoUnited States
| | - Sharona Sedighim
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Lani Tieu
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - McKenzie J Fannon
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Angelica R Martinez
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Nathan Velarde
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Dyar Othman
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Benjamin Sichel
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Jarryd Ramborger
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Justin Lau
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Jenni Kononoff
- Department of Neuroscience, The Scripps Research Institute, La JollaSan DiegoUnited States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Sierra Simpson
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Lauren C Smith
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
- Department of Neuroscience, The Scripps Research Institute, La JollaSan DiegoUnited States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
- Department of Neuroscience, The Scripps Research Institute, La JollaSan DiegoUnited States
| | - Selene Bonnet-Zahedi
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
- Institut de Neurosciences de la Timone, Aix-Marseille UniversitéMarseilleFrance
| | - Elizabeth A Sneddon
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Alicia Avelar
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
- Department of Neuroscience, The Scripps Research Institute, La JollaSan DiegoUnited States
| | - Sonja Lorean Plasil
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Joseph Mosquera
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Caitlin Crook
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Lucas Chun
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Ashley Vang
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Kristel K Milan
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Paul Schweitzer
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Bonnie Lin
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Beverly Peng
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
- Institute for Genomic Medicine, University of California, San DiegoLa JollaUnited States
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of MedicineWinston-SalemUnited States
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
- Institute for Genomic Medicine, University of California, San DiegoLa JollaUnited States
| | - Olivier George
- Department of Psychiatry, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
7
|
Vendruscolo LF, Vendruscolo JCM, Whiting KE, Acri JB, Volkow ND, Koob GF. The mGlu5 receptor negative allosteric modulator mavoglurant reduces escalated cocaine self-administration in male and female rats. Psychopharmacology (Berl) 2024; 241:2303-2313. [PMID: 38869515 PMCID: PMC11513716 DOI: 10.1007/s00213-024-06634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
RATIONALE Cocaine use disorder (CUD) is a brain disorder for which there is no Food and Drug Administration-approved pharmacological treatment. Evidence suggests that glutamate and metabotropic glutamate receptor subtype 5 (mGlu5) play critical roles in synaptic plasticity, neuronal development, and psychiatric disorders. OBJECTIVE In the present study, we tested the hypothesis that the mGlu5 receptor is functionally involved in intravenous cocaine self-administration and assessed the effects of sex and cocaine exposure history. METHODS We used a preclinical model of CUD in rats that were allowed long access (LgA; 6 h/day) or short access (ShA; 1 h/day) to intravenous cocaine (750 µg/kg/infusion [0.1 ml]) self-administration. Rats received acute intraperitoneal or oral administration of the mGlu5 receptor negative allosteric modulator mavoglurant (1, 3, and 10 mg/kg) or vehicle. RESULTS Both intraperitoneal and oral mavoglurant administration dose-dependently reduced intravenous cocaine self-administration in the first hour and in the entire 6 h session in rats in the LgA group, with no effect on locomotion. In the ShA group, mavoglurant decreased locomotion but had no effects on cocaine self-administration. We did not observe significant sex × treatment interactions. CONCLUSIONS These findings suggest that the mGlu5 receptor is involved in escalated cocaine self-administration. These findings support the development of clinical trials of mavoglurant to evaluate its potential therapeutic benefits for CUD.
Collapse
Affiliation(s)
- Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, BRC Room 08A727, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kimberly E Whiting
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jane B Acri
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
8
|
Fattahi M, Rahimpour M, Riahi E. Opioid reward and deep brain stimulation of the lateral hypothalamic area. VITAMINS AND HORMONES 2024; 127:245-281. [PMID: 39864943 DOI: 10.1016/bs.vh.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Opioid use disorder (OUD) is considered a global health issue that affects various aspects of patients' lives and poses a considerable burden on society. Due to the high prevalence of remissions and relapses, novel therapeutic approaches are required to manage OUD. Deep brain stimulation (DBS) is one of the most promising clinical breakthroughs in translational neuroscience. It involves stereotactically implanting electrodes inside the brain and transmitting electrical pulses to targeted areas. To date, the nucleus accumbens has been recognized as the most successful DBS target for treating different types of drug addiction. Nevertheless, further preclinical research is required to determine the optimal brain target and stimulation parameters. On the other hand, the lateral hypothalamic area (LHA) plays a crucial role in many motivated behaviors including food intake and drug-seeking. Additionally, it projects widely throughout the brain to reward-related areas like the ventral tegmental area. Therefore, this chapter reviews studies investigating the potential positive effects of DBS administration in the LHA in animal models of opioid dependence and other pathological conditions. Findings reveal that LHA has the potential to be targeted for DBS application to treat a wide variety of disorders such as opioid dependence, obesity, and sleep disorders without significant adverse events. However, in the context of opioid dependence, more studies are needed, based on more valid animal models of addiction, including self-administration paradigms and varying stimulation patterns, to indicate that LHA is a safe and effective target for DBS in subjects with refractory opioid dependence.
Collapse
Affiliation(s)
- Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Milad Rahimpour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Favoretto CA, Righi T, Fernandes GJD, Bertagna NB, Rodolpho BT, Janisset NDRLDL, Jovita-Farias C, Costa GVL, Anjos-Santos AD, Romualdo da Silva FB, Leão RM, Cruz FC. Animal models for studying therapeutic targets and treatments for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:355-381. [PMID: 39523060 DOI: 10.1016/bs.irn.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the decades, preclinical models have been developed and refined to investigate the rewarding effects of addictive substances and the neurobiological underpinnings of alcohol and other drug use disorders. This chapter delves into the methodological foundations, advantages, and limitations of leading animal models used to study alcohol use disorders (AUDs). Some models focus on the early stages of alcohol use and abuse. For instance, conditioned place preference assesses associative learning between a specific context and the effects of the drug, while locomotor sensitization measures increased locomotor activity following repeated drug exposure. In contrast, contingent models such as operant and non-operant alcohol self-administration protocols gauge voluntary intake, preference, motivation, and seeking behavior for alcohol solutions among experimental subjects. Additionally, we discuss the chronic intermittent alcohol vapor model, extensively utilized to induce a phenotype resembling dependence through non-contingent inhalation of alcohol vapor, resulting in elevated blood alcohol concentrations. Given the focus on pharmacological treatments for AUDs, we explore how different animal models can be employed to evaluate potential therapies and extrapolate findings to alcohol-related behaviors in humans. This chapter aims to provide readers with a comprehensive understanding of various animal models for AUDs, aiding in the interpretation of preclinical studies and the selection of suitable models for future research endeavors.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Thamires Righi
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Gustavo Juliate Damaceno Fernandes
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Ben Tagami Rodolpho
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Nilma do Rocio Lara de Lima Janisset
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Caio Jovita-Farias
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Giovanna Victória Lopes Costa
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Alexia Dos Anjos-Santos
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | | | - Rodrigo Molini Leão
- Laboratory of Pharmacology, Biomedical Sciences Institute, Department of Pharmacology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Fábio Cardoso Cruz
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Azizzadeh S, Rahimpour M, Rakhshan K, Makkiabadi B, Riahi E. Validation of drug-nondrug choice procedure to model maladaptive behavioural allocation to opioid use in rats. Addict Biol 2024; 29:e13442. [PMID: 39380306 PMCID: PMC11461753 DOI: 10.1111/adb.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Increased allocation of behaviour to substance abuse at the expense of personal and social rewards is a hallmark of addiction that is reflected in several of DSM-5 criteria for diagnosis of substance use disorder. Previous studies focused on refining the self-administration (SA) model to better emulate an addictive state in laboratory animals. Here, we employed concurrent SA of sucrose pellets and morphine as two competing natural and drug rewards, respectively, to validate the feasibility of capturing pathological behavioural allocation in rats. A custom-made three-lever operant chamber was used. With one active and one inactive lever presented, rats were trained to self-administer morphine (0.5 mg/kg/infusion; 2 h/day) under a fixed-ratio 1 (FR-1) schedule until a stable response was achieved. Next, they were trained to self-administer morphine in the presence of a third lever dispensing sucrose pellets (20 mg) under FR-1. Concurrent morphine-sucrose SA sessions (2 h/day) were continued until stable morphine taking behaviour was re-established. In another experiment, rats first established stable sucrose pellet SA (2 h/day, FR-1) and then were trained to take morphine (0.5 mg/kg/infusion; 2 h/day). Subsequently, all rats underwent extinction training, in which morphine was replaced with saline while sucrose pellets were still available upon lever pressing, followed by cue-induced reinstatement of morphine seeking behaviour. Results showed that rats retained morphine SA when sucrose pellets were also available, but they showed binge-like sucrose intake when morphine was removed during the extinction sessions. However, morphine SA did not develop in rats that had previously established sucrose pellet SA. In conclusion, morphine SA developed even in the presence of a potent competing nondrug reward in rats. Adding an effort-based contingent delivery of a natural reward to the standard SA model, this protocol may provide an improved model of drug addiction in laboratory animals.
Collapse
Affiliation(s)
- Setareh Azizzadeh
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
- Department of Physiology, School of MedicineTehran University of Medical SciencesTehranIran
| | - Milad Rahimpour
- Department of Physiology, School of MedicineTehran University of Medical SciencesTehranIran
| | - Kamran Rakhshan
- Department of Physiology, School of MedicineTehran University of Medical SciencesTehranIran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, School of MedicineTehran University of Medical SciencesTehranIran
| | - Esmail Riahi
- Department of Physiology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
12
|
Peck EG, Holleran KM, Curry AM, Holter KM, Estave PM, Sens JP, Locke JL, Ortelli OA, George BE, Dawes MH, West AM, Alexander NJ, Kiraly DD, Farris SP, Gould RW, McCool BA, Jones SR. Synaptogyrin-3 Prevents Cocaine Addiction and Dopamine Deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605436. [PMID: 39211138 PMCID: PMC11361146 DOI: 10.1101/2024.07.27.605436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synaptogyrin-3, a functionally obscure synaptic vesicle protein, interacts with vesicular monoamine and dopamine transporters, bringing together dopamine release and reuptake sites. Synaptogyrin-3 was reduced by chronic cocaine exposure in both humans and rats, and synaptogyrin-3 levels inversely correlated with motivation to take cocaine in rats. Synaptogyrin-3 overexpression in dopamine neurons reduced cocaine self-administration, decreased anxiety-like behavior, and enhanced cognitive flexibility. Overexpression also enhanced nucleus accumbens dopamine signaling and prevented cocaine-induced deficits, suggesting a putative therapeutic role for synaptogyrin-3 in cocaine use disorder.
Collapse
|
13
|
Sharp BM, Leng S, Huang J, Jones C, Chen H. Inbred rat heredity and sex affect oral oxycodone self-administration and augmented intake in long sessions: correlations with anxiety and novelty-seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.26.568753. [PMID: 38076806 PMCID: PMC10705287 DOI: 10.1101/2023.11.26.568753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Oxycodone abuse begins with prescription oral oxycodone, yet vulnerability factors determining abuse are largely undefined. We evaluated genetic vulnerability in a rat model of oral oxycodone self-administration (SA): increasing oxycodone concentration/session (0.025-0.1mg/ml; 1,4,16-h) followed by extinction and reinstatement. Active licks and oxycodone intake were greater in females than males during 4-h and 16-h sessions (p< 0.001). Each sex increased intake during 16-h vs 4-h sessions (p<2e-16), but a subset of strains dramatically augmented intake at 16-h (p=0.0005). Heritability (h 2) of active licks/4-h at increasing oxycodone dose ranged from 0.30-0.53. Under a progressive ratio schedule, breakpoints were strain-dependent (p<2e-16). Cued reinstatement was greater in females (p<0.001). Naive rats were assessed by elevated plus maze (EPM), open field (OF) and novel object interaction (NOI). We correlated these behaviors with 28 parameters of oxycodone SA. Anxiety-defining EPM traits were most associated with SA in both sexes, whereas more OF and NOI traits were SA-associated in males. Sex and heredity are major determinants of motivation to take and seek oxycodone; intake augments dramatically during extended access in specific strains; and pleiotropic genes affect anxiety and multiple SA parameters.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shuangying Leng
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jun Huang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Caroline Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
14
|
Cannella N, Tambalo S, Lunerti V, Scuppa G, de Vivo L, Abdulmalek S, Kinen A, Mackle J, Kuhn B, Solberg Woods LC, Chung D, Kalivas P, Soverchia L, Ubaldi M, Hardiman G, Bifone A, Ciccocioppo R. Long-access heroin self-administration induces region specific reduction of grey matter volume and microglia reactivity in the rat. Brain Behav Immun 2024; 118:210-220. [PMID: 38452987 DOI: 10.1016/j.bbi.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.
Collapse
Affiliation(s)
- Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy.
| | - Stefano Tambalo
- CIMeC, Center for Mind/Brain Science, University of Trento, Trento, Italy
| | - Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Giulia Scuppa
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Luisa de Vivo
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | | | - Analia Kinen
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy; Faculty of Medicine, Queen's University Belfast, UK
| | - James Mackle
- Faculty of Medicine, Queen's University Belfast, UK
| | - Brittany Kuhn
- Department of Neuroscience, Medical University of South Carolina (MUSC), Charleston (SC), USA
| | | | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus (OH), USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), Charleston (SC), USA
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | | | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| |
Collapse
|
15
|
Cannella N, Tambalo S, Lunerti V, Scuppa G, de Vivo L, Abdulmalek S, Kinen A, Mackle J, Kuhn B, Solberg Woods LC, Chung D, Kalivas P, Soverchia L, Ubaldi M, Hardiman G, Bifone A, Ciccocioppo R. Long-access heroin self-administration induces region specific reduction of grey matter volume and microglia reactivity in the rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582024. [PMID: 38463974 PMCID: PMC10925188 DOI: 10.1101/2024.02.26.582024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI 1 ) and after (MRI 2 ) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI 1 and MRI 2 . Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.
Collapse
|
16
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Matzeu A, Martin-Fardon R. Daily treatment with the dual orexin receptor antagonist DORA-12 during oxycodone abstinence decreases oxycodone conditioned reinstatement. Neuropharmacology 2023; 239:109685. [PMID: 37579870 PMCID: PMC10529002 DOI: 10.1016/j.neuropharm.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Chronic opioid use disturbs circadian rhythm and sleep, encouraging opioid use and relapse. The orexin (OX) system is recruited by opioids and regulates physiological processes including sleep. Dual OX receptor antagonists (DORAs), developed for insomnia treatment, may relieve withdrawal-associated sleep disturbances. This study investigated whether DORA-12, a recently developed DORA, reduces physiological activity disturbances during oxycodone abstinence and consequently prevents oxycodone-seeking behavior. Male and female Wistar rats were trained to intravenously self-administer oxycodone (0.15 mg/kg, 21 sessions; 8 h/session) in the presence of a contextual/discriminative stimulus (SD). The rats were subsequently housed individually (22 h/day) to monitor activity, food and water intake. They received DORA-12 (0-30 mg/kg, p.o.) after undergoing daily 1-h extinction training (14 days). After extinction, the rats were tested for oxycodone-seeking behavior elicited by the SD. Hypothalamus sections were processed to assess oxycodone- or DORA-12-associated changes to the OX cell number. In males, oxycodone-associated increases in activity during the light-phase, reinstatement, and decreases in the number of OX cells observed in the vehicle-treated group were not observed with DORA-12-treatment. Oxycodone-associated increases in light-phase food and water intake were not observed by day 14 of 3 mg/kg DORA-12-treatment and dark-phase water intake was increased across treatment days. In females, OX cell number was unaffected by oxycodone or DORA-12. Three and 30 mg/kg DORA-12 increased females' day 7 dark-phase activity and decreased reinstatement. Thirty mg/kg DORA-12 reduced oxycodone-associated increases in light-phase food and water intake. The results suggest that DORA-12 improves oxycodone-induced disruptions to physiological activities and reduces relapse.
Collapse
Affiliation(s)
- Jessica M Illenberger
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | | | - Glenn Pascasio
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Alessandra Matzeu
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
17
|
Beldjoud H, Avelar A, de Guglielmo G, Kallupi M, Sedighim S, Velarde N, Boomhower B, Rizo N, Carrette LLG, George O. Chronic administration of a norepinephrine antagonist prevents and partially reverses escalation of cocaine self-administration. Addict Biol 2023; 28:e13316. [PMID: 37644893 PMCID: PMC10614571 DOI: 10.1111/adb.13316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023]
Abstract
Anxiety is a critical component of the development and maintenance of drug addiction; however, anti-anxiety medications such as benzodiazepines and beta-blockers (β-adrenergic receptor antagonists) are not used for the treatment of substance use disorder, except for the management of acute withdrawal syndrome. Preclinical studies have shown that beta-blockers may reduce stress-induced relapse; however, the effect of beta blockers on the escalation and maintenance of drug intake has not been tested. To address this issue, we chronically administered the β-adrenergic receptor antagonist propranolol during the escalation or maintenance of cocaine intake in a model of extended access (6 h) to cocaine self-administration (0.5 mg/kg). The behavioural specificity of propranolol was tested using a non-drug reward (saccharin). Daily administration of propranolol (15 mg/kg) prevented the development of escalation of cocaine self-administration and partially reversed self-administration after the establishment of escalation of intake. Moreover, propranolol dose-dependently decreased the motivation for cocaine tested under a progressive ratio schedule of reinforcement during the development of escalation and after maintenance. Finally, propranolol administration had no effect on the escalation and maintenance of saccharin self-administration. These results demonstrate that chronic treatment with propranolol provides therapeutic efficacy in reducing cocaine self-administration during the development and after the establishment of escalation of cocaine self-administration in an animal model relevant to cocaine use disorder. These results suggest that beta blockers should be further investigated as a target for medication development for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Hassiba Beldjoud
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Alicia Avelar
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Marsida Kallupi
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Sharona Sedighim
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Nathan Velarde
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Brent Boomhower
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Nathan Rizo
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Lieselot L G Carrette
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| | - Olivier George
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
18
|
Barattini AE, Montanari C, Edwards KN, Edwards S, Gilpin NW, Pahng AR. Chronic inflammatory pain promotes place preference for fentanyl in male rats but does not change fentanyl self-administration in male and female rats. Neuropharmacology 2023; 231:109512. [PMID: 36948356 PMCID: PMC10786182 DOI: 10.1016/j.neuropharm.2023.109512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
The current opioid epidemic is a national health crisis marked by skyrocketing reports of opioid misuse and overdose deaths. Despite the risks involved, prescription opioid analgesics are the most powerful and effective medications for treating pain. There is a clear need to investigate the risk of opioid misuse liability in male and female adults experiencing chronic pain. In the present study, we tested the hypothesis that chronic inflammatory pain would increase fentanyl intake, motivation to acquire fentanyl, and drug seeking in the absence of fentanyl in rats. Fentanyl intake, motivation for fentanyl, and drug seeking were tested under limited and extended access conditions using intravenous fentanyl self-administration. Fos activity in ventral tegmental area (VTA) dopamine neurons following intravenous fentanyl challenge (35 μg/kg) was examined using immunohistochemistry. Finally, we tested whether low-dose fentanyl supports development of conditioned place preference under an inflammatory pain state in rats. Contrary to our hypothesis, fentanyl self-administration and VTA Fos activity were unaffected by inflammatory pain status. During acquisition, males exhibited increased fentanyl intake compared to females. Animals given extended access to fentanyl escalated fentanyl intake over time, while animals given limited access did not. Males given extended access to fentanyl demonstrated a greater increase in fentanyl intake over time compared to females. During the dose-response test, females given limited access to fentanyl demonstrated increased motivation to acquire fentanyl compared to males. Both sexes displayed significant increases in responding for fentanyl as unit fentanyl doses were lowered. Following fentanyl challenge, females exhibited higher numbers of Fos-positive non-dopaminergic VTA neurons compared to males. Using conditioned place preference, we found that chronic inflammatory pain promotes fentanyl preference in males, but not females. These findings suggest that established fentanyl self-administration is resistant to change by inflammatory pain manipulation in both sexes, but chronic inflammatory pain increases the rewarding properties of low-dose fentanyl in males.
Collapse
Affiliation(s)
- Angela E Barattini
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, United States; Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States; Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Christian Montanari
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, United States; Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States; Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Kimberly N Edwards
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, United States; Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States
| | - Scott Edwards
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, United States; Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States; Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States; Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Nicholas W Gilpin
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, United States; Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States; Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States; Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Amanda R Pahng
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, United States; Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, United States; Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States.
| |
Collapse
|
19
|
Bender BN, Torregrossa MM. Intermittent cocaine self-administration has sex-specific effects on addiction-like behaviors in rats. Neuropharmacology 2023; 230:109490. [PMID: 36889433 PMCID: PMC10040443 DOI: 10.1016/j.neuropharm.2023.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Intermittent access (IntA) models of cocaine self-administration were developed to better model in rodents how cocaine is used by human drug users. Compared to traditional continuous access (ContA) models, IntA has been shown to enhance several pharmacological and behavioral effects of cocaine, but few studies have examined sex differences in IntA. Moreover, no one has examined the efficacy of cue extinction to reduce cocaine seeking in the IntA model, which has previously shown to be ineffective in other models that promote habit-like cocaine seeking. Therefore, rats were implanted with jugular vein catheters and dorsolateral striatum (DLS) cannulae and trained to self-administer cocaine paired with an audiovisual cue with ContA or IntA. In subsets of rats, we evaluated: the ability of Pavlovian cue extinction to reduce cue-induced drug seeking; motivation for cocaine using a progressive ratio procedure; punishment-resistant cocaine taking by pairing cocaine infusions with footshocks; and dependence of drug-seeking on DLS dopamine (a measure of habit-like behavior) with the dopamine antagonist cis-flupenthixol. Overall, cue extinction reduced cue-induced drug seeking after ContA or IntA. Compared to ContA, IntA resulted in increased motivation for cocaine exclusively in females, but IntA facilitated punished cocaine self-administration exclusively in males. After 10 days of IntA training, but not fewer, drug-seeking was dependent on DLS dopamine most notably in males. Our results suggest that IntA may be valuable for identifying sex differences in the early stages of drug use and provide a foundation for the investigation of the mechanisms involved.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Stewart AF, Lepack AE, Fulton SL, Safovich P, Maze I. Histone H3 dopaminylation in nucleus accumbens, but not medial prefrontal cortex, contributes to cocaine-seeking following prolonged abstinence. Mol Cell Neurosci 2023; 125:103824. [PMID: 36842545 PMCID: PMC10247417 DOI: 10.1016/j.mcn.2023.103824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Enduring patterns of epigenomic and transcriptional plasticity within the mesolimbic dopamine system contribute importantly to persistent behavioral adaptations that characterize substance use disorders (SUD). While drug addiction has long been thought of as a disorder of dopamine (DA) neurotransmission, therapeutic interventions targeting receptor mediated DA-signaling have not yet resulted in efficacious treatments. Our laboratory recently identified a non-canonical, neurotransmission-independent signaling moiety for DA in brain, termed dopaminylation, whereby DA itself acts as a donor source for the establishment of post-translational modifications (PTM) on substrate proteins (e.g., histone H3 at glutamine 5; H3Q5dop). In our previous studies, we demonstrated that H3Q5dop plays a critical role in the regulation of neuronal transcription and, when perturbed within monoaminergic neurons of the ventral tegmental area (VTA), critically contributes to pathological states, including relapse vulnerability to both psychostimulants (e.g., cocaine) and opiates (e.g., heroin). Importantly, H3Q5dop is also observed throughout the mesolimbic DA reward pathway (e.g., in nucleus accumbens/NAc and medial prefrontal cortex/mPFC, which receive DA input from VTA). As such, we investigated whether H3Q5dop may similarly be altered in its expression in response to drugs of abuse in these non-dopamine-producing regions. In rats undergoing extended abstinence from cocaine self-administration (SA), we observed both acute and prolonged accumulation of H3Q5dop in NAc, but not mPFC. Attenuation of H3Q5dop in NAc during drug abstinence reduced cocaine-seeking and affected cocaine-induced gene expression programs associated with altered dopamine signaling and neuronal function. These findings thus establish H3Q5dop in NAc, but not mPFC, as an important mediator of cocaine-induced behavioral and transcriptional plasticity during extended cocaine abstinence.
Collapse
Affiliation(s)
- Andrew F Stewart
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley E Lepack
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Polina Safovich
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Kumaresan V, Lim Y, Juneja P, Tipton AE, de Guglielmo G, Carrette LLG, Kallupi M, Maturin L, Liu Y, George O, Zhang H. Abstinence from Escalation of Cocaine Intake Changes the microRNA Landscape in the Cortico-Accumbal Pathway. Biomedicines 2023; 11:1368. [PMID: 37239038 PMCID: PMC10216163 DOI: 10.3390/biomedicines11051368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Cocaine administration alters the microRNA (miRNA) landscape in the cortico-accumbal pathway. These changes in miRNA can play a major role in the posttranscriptional regulation of gene expression during withdrawal. This study aimed to investigate the changes in microRNA expression in the cortico-accumbal pathway during acute withdrawal and protracted abstinence following escalated cocaine intake. Small RNA sequencing (sRNA-seq) was used to profile miRNA transcriptomic changes in the cortico-accumbal pathway [infralimbic- and prelimbic-prefrontal cortex (IL and PL) and nucleus accumbens (NAc)] of rats with extended access to cocaine self-administration followed by an 18-h withdrawal or a 4-week abstinence. An 18-h withdrawal led to differential expression (fold-change > 1.5 and p < 0.05) of 21 miRNAs in the IL, 18 miRNAs in the PL, and two miRNAs in the NAc. The mRNAs potentially targeted by these miRNAs were enriched in the following pathways: gap junctions, neurotrophin signaling, MAPK signaling, and cocaine addiction. Moreover, a 4-week abstinence led to differential expression (fold-change > 1.5 and p < 0.05) of 23 miRNAs in the IL, seven in the PL, and five miRNAs in the NAc. The mRNAs potentially targeted by these miRNAs were enriched in pathways including gap junctions, cocaine addiction, MAPK signaling, glutamatergic synapse, morphine addiction, and amphetamine addiction. Additionally, the expression levels of several miRNAs differentially expressed in either the IL or the NAc were significantly correlated with addiction behaviors. Our findings highlight the impact of acute and protracted abstinence from escalated cocaine intake on miRNA expression in the cortico-accumbal pathway, a key circuit in addiction, and suggest developing novel biomarkers and therapeutic approaches to prevent relapse by targeting abstinence-associated miRNAs and their regulated mRNAs.
Collapse
Affiliation(s)
- Vidhya Kumaresan
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Yolpanhchana Lim
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (Y.L.); (P.J.); (Y.L.)
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Poorva Juneja
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (Y.L.); (P.J.); (Y.L.)
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Allison E. Tipton
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (G.d.G.); (L.L.G.C.); (M.K.); (L.M.); (O.G.)
| | - Lieselot L. G. Carrette
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (G.d.G.); (L.L.G.C.); (M.K.); (L.M.); (O.G.)
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (G.d.G.); (L.L.G.C.); (M.K.); (L.M.); (O.G.)
| | - Lisa Maturin
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (G.d.G.); (L.L.G.C.); (M.K.); (L.M.); (O.G.)
| | - Ying Liu
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (Y.L.); (P.J.); (Y.L.)
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (G.d.G.); (L.L.G.C.); (M.K.); (L.M.); (O.G.)
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (Y.L.); (P.J.); (Y.L.)
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
22
|
Rodríguez-Borillo O, Roselló-Jiménez L, Guarque-Chabrera J, Palau-Batet M, Gil-Miravet I, Pastor R, Miquel M, Font L. Neural correlates of cocaine-induced conditioned place preference in the posterior cerebellar cortex. Front Behav Neurosci 2023; 17:1174189. [PMID: 37179684 PMCID: PMC10169591 DOI: 10.3389/fnbeh.2023.1174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Addictive drugs are potent neuropharmacological agents capable of inducing long-lasting changes in learning and memory neurocircuitry. With repeated use, contexts and cues associated with consumption can acquire motivational and reinforcing properties of abused drugs, triggering drug craving and relapse. Neuroplasticity underlying drug-induced memories takes place in prefrontal-limbic-striatal networks. Recent evidence suggests that the cerebellum is also involved in the circuitry responsible for drug-induced conditioning. In rodents, preference for cocaine-associated olfactory cues has been shown to correlate with increased activity at the apical part of the granular cell layer in the posterior vermis (lobules VIII and IX). It is important to determine if the cerebellum's role in drug conditioning is a general phenomenon or is limited to a particular sensory modality. Methods The present study evaluated the role of the posterior cerebellum (lobules VIII and IX), together with the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc) using a cocaine-induced conditioned place preference procedure with tactile cues. Cocaine CPP was tested using ascending (3, 6, 12, and 24 mg/kg) doses of cocaine in mice. Results Compared to control groups (Unpaired and Saline animals), Paired mice were able to show a preference for the cues associated with cocaine. Increased activation (cFos expression) of the posterior cerebellum was found in cocaine CPP groups and showed a positive correlation with CPP levels. Such increases in cFos activity in the posterior cerebellum significantly correlated with cFos expression in the mPFC. Discussion Our data suggest that the dorsal region of the cerebellum could be an important part of the network that mediates cocaine-conditioned behavior.
Collapse
Affiliation(s)
| | | | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - María Palau-Batet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raúl Pastor
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Laura Font
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
23
|
Ceceli AO, Huang Y, Kronberg G, Malaker P, Miller P, King SG, Gaudreault PO, McClain N, Gabay L, Vasa D, Newcorn JH, Ekin D, Alia-Klein N, Goldstein RZ. Common and distinct fronto-striatal volumetric changes in heroin and cocaine use disorders. Brain 2023; 146:1662-1671. [PMID: 36200376 PMCID: PMC10319776 DOI: 10.1093/brain/awac366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022] Open
Abstract
Different drugs of abuse impact the morphology of fronto-striatal dopaminergic targets in both common and unique ways. While dorsal striatal volume tracks with addiction severity across drug classes, opiates impact ventromedial prefrontal cortex (vmPFC) and nucleus accumbens (NAcc) neuroplasticity in preclinical models, and psychostimulants alter inhibitory control, rooted in cortical regions such as the inferior frontal gyrus (IFG). We hypothesized parallel grey matter volume changes associated with human heroin or cocaine use disorder: lower grey matter volume of vmPFC/NAcc in heroin use disorder and IFG in cocaine use disorder, and putamen grey matter volume to be associated with addiction severity measures (including craving) across both. In this cross-sectional study, we quantified grey matter volume (P < 0.05-corrected) in age/sex/IQ-matched individuals with heroin use disorder (n = 32, seven females), cocaine use disorder (n = 32, six females) and healthy controls (n = 32, six females) and compared fronto-striatal volume between groups using voxel-wise general linear models and non-parametric permutation-based tests. Overall, individuals with heroin use disorder had smaller vmPFC and NAcc/putamen volumes than healthy controls. Bilateral lower IFG grey matter volume patterns were specifically evident in cocaine versus heroin use disorders. Correlations between addiction severity measures and putamen grey matter volume did not reach nominal significance level in this sample. These results indicate alterations in dopamine-innervated regions (in the vmPFC and NAcc) in heroin addiction. For the first time we demonstrate lower IFG grey matter volume specifically in cocaine compared with heroin use disorder, suggesting a signature of reduced inhibitory control, which remains to be tested directly using select behavioural measures. Overall, results suggest substance-specific volumetric changes in human psychostimulant or opiate addiction, with implications for fine-tuning biomarker and treatment identification by primary drug of abuse.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Greg Kronberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pazia Miller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah G King
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Natalie McClain
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lily Gabay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Devarshi Vasa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Defne Ekin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
24
|
Beasley MM, Tunstall BJ, Kearns DN. Intermittent access cocaine self-administration produces context-specific escalation and increased motivation. Drug Alcohol Depend 2023; 245:109797. [PMID: 36801708 PMCID: PMC10033440 DOI: 10.1016/j.drugalcdep.2023.109797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The intermittent-access (IntA) self-administration procedure has been reported to produce intensified addiction-like behavior compared to continuous-access (ContA) procedures. In a common variation of the IntA procedure, cocaine is available for 5 min at the beginning of each half hour of a 6-h session. In contrast, during ContA procedures, cocaine is available continuously throughout a session, typically lasting one or more hours. Previous studies comparing procedures have used between-subjects designs, where separate groups of rats self-administer cocaine on either IntA or ContA procedures. The present study used a within-subjects design where subjects self-administered cocaine on the IntA procedure in one context and self-administered cocaine on the continuous short-access (ShA) procedure in another context during separate sessions. Across sessions, rats escalated cocaine intake in the IntA, but not ShA, context. Following sessions eight and 11, rats were administered a progressive ratio test in each context to monitor the change in cocaine motivation. Rats obtained more cocaine infusions on the progressive ratio test in the IntA context than in the ShA context following 11 sessions. These results suggest that addiction-like behaviors following IntA self-administration may be influenced by context-specific learning factors.
Collapse
Affiliation(s)
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - David N Kearns
- Psychology Department, American University, Washington, DC, USA
| |
Collapse
|
25
|
Hornburg KJ, Slosky LM, Cofer G, Cook J, Qi Y, Porkka F, Clark NB, Pires A, Petrella JR, White LE, Wetsel WC, Barak L, Caron MG, Johnson GA. Prenatal heroin exposure alters brain morphology and connectivity in adolescent mice. NMR IN BIOMEDICINE 2023; 36:e4842. [PMID: 36259728 PMCID: PMC10483958 DOI: 10.1002/nbm.4842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The United States is experiencing a dramatic increase in maternal opioid misuse and, consequently, the number of individuals exposed to opioids in utero. Prenatal opioid exposure has both acute and long-lasting effects on health and wellbeing. Effects on the brain, often identified at school age, manifest as cognitive impairment, attention deficit, and reduced scholastic achievement. The neurobiological basis for these effects is poorly understood. Here, we examine how in utero exposure to heroin affects brain development into early adolescence in a mouse model. Pregnant C57BL/6J mice received escalating doses of heroin twice daily on gestational days 4-18. The brains of offspring were assessed on postnatal day 28 using 9.4 T diffusion MRI of postmortem specimens at 36 μm resolution. Whole-brain volumes and the volumes of 166 bilateral regions were compared between heroin-exposed and control offspring. We identified a reduction in whole-brain volume in heroin-exposed offspring and heroin-associated volume changes in 29 regions after standardizing for whole-brain volume. Regions with bilaterally reduced standardized volumes in heroin-exposed offspring relative to controls include the ectorhinal and insular cortices. Regions with bilaterally increased standardized volumes in heroin-exposed offspring relative to controls include the periaqueductal gray, septal region, striatum, and hypothalamus. Leveraging microscopic resolution diffusion tensor imaging and precise regional parcellation, we generated whole-brain structural MRI diffusion connectomes. Using a dimension reduction approach with multivariate analysis of variance to assess group differences in the connectome, we found that in utero heroin exposure altered structure-based connectivity of the left septal region and the region that acts as a hub for limbic regulatory actions. Consistent with clinical evidence, our findings suggest that prenatal opioid exposure may have effects on brain morphology, connectivity, and, consequently, function that persist into adolescence. This work expands our understanding of the risks associated with opioid misuse during pregnancy and identifies biomarkers that may facilitate diagnosis and treatment.
Collapse
Affiliation(s)
- Kathryn J. Hornburg
- Department of Radiology, School of Medicine, Duke University; 311 Research Drive; Campus Box 3302; Durham, NC 27710 United States
| | - Lauren M. Slosky
- Department of Cell Biology, School of Medicine, Duke University; Campus Box 3709; Durham, NC 27710 United States
- Department of Pharmacology, University of Minnesota; 312 Church Street SE; 3-104 Nils Hasselmo Hall; Minneapolis, MN 55455 United States
| | - Gary Cofer
- Department of Radiology, School of Medicine, Duke University; 311 Research Drive; Campus Box 3302; Durham, NC 27710 United States
| | - James Cook
- Department of Radiology, School of Medicine, Duke University; 311 Research Drive; Campus Box 3302; Durham, NC 27710 United States
| | - Yi Qi
- Department of Radiology, School of Medicine, Duke University; 311 Research Drive; Campus Box 3302; Durham, NC 27710 United States
| | - Fiona Porkka
- Department of Cell Biology, School of Medicine, Duke University; Campus Box 3709; Durham, NC 27710 United States
| | - Nicholas B. Clark
- Department of Cell Biology, School of Medicine, Duke University; Campus Box 3709; Durham, NC 27710 United States
| | - Andrea Pires
- Department of Cell Biology, School of Medicine, Duke University; Campus Box 3709; Durham, NC 27710 United States
| | - Jeffrey R Petrella
- Department of Radiology, School of Medicine, Duke University; 311 Research Drive; Campus Box 3302; Durham, NC 27710 United States
| | - Leonard E. White
- Department of Neurology, School of Medicine, Duke University; Campus Box 2900; Durham, NC 27710 United States
| | - William C. Wetsel
- Department of Cell Biology, School of Medicine, Duke University; Campus Box 3709; Durham, NC 27710 United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University; Campus Box 102508; Durham, NC 27710 United States
- Department of Neurology, School of Medicine, Duke University; Campus Box 2900; Durham, NC 27710 United States
| | - Lawrence Barak
- Department of Cell Biology, School of Medicine, Duke University; Campus Box 3709; Durham, NC 27710 United States
| | - Marc G. Caron
- Department of Cell Biology, School of Medicine, Duke University; Campus Box 3709; Durham, NC 27710 United States
- Department of Neurology, School of Medicine, Duke University; Campus Box 2900; Durham, NC 27710 United States
| | - G. Allan Johnson
- Department of Radiology, School of Medicine, Duke University; 311 Research Drive; Campus Box 3302; Durham, NC 27710 United States
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University; Campus Box 90281; Durham, NC 27708-0281 United States
| |
Collapse
|
26
|
Beasley MM, Gunawan T, Tunstall BJ, Kearns DN. Intermittent access training produces greater motivation for a non-drug reinforcer than long access training. Learn Behav 2022; 50:509-523. [PMID: 35132517 PMCID: PMC10237344 DOI: 10.3758/s13420-022-00512-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
It has recently been proposed that the intermittent access (IntA) drug self-administration procedure better produces behavioral changes relevant to addiction than the long access (LgA) procedure. In this version of the IntA procedure, the drug is made available for a 5-min period during each half hour of a 6-h session. In contrast, on the LgA procedure, the drug is available continuously for 6 h. Previous studies have found that IntA drug self-administration produces greater drug motivation, measured by increased progressive ratio breakpoints, than LgA self-administration. It has been hypothesized that this effect is due to the rapid, "spiking" brain levels of the drug, and consequent neuroadaptations, experienced by rats during IntA sessions. However, no study has compared the effects of IntA versus LgA training on reinforcer motivation when using a non-drug reinforcer. The present study compared motivation for a saccharin reinforcer after IntA or LgA training. In Experiment 1, separate groups of rats lever-pressed for saccharin on the IntA or LgA procedures. In Experiment 2, a within-subjects design was used where rats pressed one lever on the IntA procedure and another lever on the LgA procedure for saccharin. In both experiments, IntA training produced greater breakpoints than LgA training. As no drug was used here, spiking drug levels could not have been responsible for the increased saccharin motivation observed after IntA training. Instead, it is proposed that differences in stimulus-reinforcer associations learned during IntA versus LgA training may be responsible for the effect. Future research is needed to determine the extent to which such learning factors may contribute to the increased motivation observed after IntA training with drug reinforcers.
Collapse
Affiliation(s)
- Madeline M Beasley
- Psychology Department, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| | - Tommy Gunawan
- Human Psychopharmacology Laboratory, NIH/NIAAA, Bethesda, MD, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - David N Kearns
- Psychology Department, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA
| |
Collapse
|
27
|
Samson KR, Xu W, Kortagere S, España RA. Intermittent access to oxycodone decreases dopamine uptake in the nucleus accumbens core during abstinence. Addict Biol 2022; 27:e13241. [PMID: 36301217 PMCID: PMC10262085 DOI: 10.1111/adb.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
A major obstacle in treating opioid use disorder is the persistence of drug seeking or craving during periods of abstinence, which is believed to contribute to relapse. Dopamine transmission in the mesolimbic pathway is posited to contribute to opioid reinforcement, but the processes by which dopamine influences drug seeking have not been completely elucidated. To examine whether opioid seeking during abstinence is associated with alterations in dopamine transmission, female and male rats self-administered oxycodone under an intermittent access schedule of reinforcement. Following self-administration, rats underwent a forced abstinence period, and cue-induced seeking tests were conducted to assess oxycodone seeking. One day following the final seeking test, rats were sacrificed to perform ex vivo fast scan cyclic voltammetry and western blotting in the nucleus accumbens. Rats displayed reduced dopamine uptake rate on abstinence day 2 and abstinence day 15, compared to oxycodone-naïve rats. Further, on abstinence day 15, rats had reduced phosphorylation of the dopamine transporter. Additionally, local application of oxycodone to the nucleus accumbens reduced dopamine uptake in oxycodone-naïve rats and in rats during oxycodone abstinence, on abstinence day 2 and abstinence day 15. These observations suggest that abstinence from oxycodone results in dysfunctional dopamine transmission, which may contribute to sustained oxycodone seeking during abstinence.
Collapse
Affiliation(s)
- Kyle R. Samson
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| | - Wei Xu
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Sandhya Kortagere
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Rodrigo A. España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| |
Collapse
|
28
|
McLaurin KA, Li H, Mactutus CF, Harrod SB, Booze RM. Disrupted Decision-Making: EcoHIV Inoculation in Cocaine Dependent Rats. Int J Mol Sci 2022; 23:9100. [PMID: 36012364 PMCID: PMC9409394 DOI: 10.3390/ijms23169100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
Independently, chronic cocaine use and HIV-1 viral protein exposure induce neuroadaptations in the frontal-striatal circuit as evidenced by both clinical and preclinical studies; how the frontal-striatal circuit responds to HIV-1 infection following chronic drug use, however, has remained elusive. After establishing experience with both sucrose and cocaine self-administration, a pretest-posttest experimental design was utilized to evaluate preference judgment, a simple form of decision-making dependent upon the integrity of frontal-striatal circuit function. During the pretest assessment, male rats exhibited a clear preference for cocaine, whereas female animals preferred sucrose. Two posttest evaluations (3 days and 6 weeks post inoculation) revealed that, independent of biological sex, inoculation with chimeric HIV (EcoHIV), but not saline, disrupted decision-making. Prominent structural alterations in the frontal-striatal circuit were evidenced by synaptodendritic alterations in pyramidal neurons in the medial prefrontal cortex. Thus, the EcoHIV rat affords a valid animal model to critically investigate how the frontal-striatal circuit responds to HIV-1 infection following chronic drug use.
Collapse
Affiliation(s)
| | | | | | | | - Rosemarie M. Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
29
|
McKendrick G, McDevitt DS, Shafeek P, Cottrill A, Graziane NM. Anterior cingulate cortex and its projections to the ventral tegmental area regulate opioid withdrawal, the formation of opioid context associations and context-induced drug seeking. Front Neurosci 2022; 16:972658. [PMID: 35992922 PMCID: PMC9388764 DOI: 10.3389/fnins.2022.972658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical evidence suggests that there are correlations between activity within the anterior cingulate cortex (ACC) following re-exposure to drug-associated contexts and drug craving. However, there are limited data contributing to our understanding of ACC function at the cellular level during re-exposure to drug-context associations as well as whether the ACC is directly related to context-induced drug seeking. Here, we addressed this issue by employing our novel behavioral procedure capable of measuring the formation of drug-context associations as well as context-induced drug-seeking behavior in male mice (8-12 weeks of age) that orally self-administered oxycodone. We found that mice escalated oxycodone intake during the long-access training sessions and that conditioning with oxycodone was sufficient to evoke conditioned place preference (CPP) and drug-seeking behaviors. Additionally, we found that thick-tufted, but not thin-tufted pyramidal neurons (PyNs) in the ACC as well as ventral tegmental area (VTA)-projecting ACC neurons had increased intrinsic membrane excitability in mice that self-administered oxycodone compared to controls. Moreover, we found that global inhibition of the ACC or inhibition of VTA-projecting ACC neurons was sufficient to significantly reduce oxycodone-induced CPP, drug seeking, and spontaneous opioid withdrawal. These results demonstrate a direct role of ACC activity in mediating context-induced opioid seeking among other behaviors, including withdrawal, that are associated with the DSM-V criteria of opioid use disorder.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S. McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Peter Shafeek
- Medicine Program, Penn State College of Medicine, Hershey, PA, United States
| | - Adam Cottrill
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M. Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
30
|
Custodio RJP, Kim M, Sayson LV, Ortiz DM, Buctot D, Lee HJ, Cheong JH, Kim HJ. Regulation of clock and clock-controlled genes during morphine reward and reinforcement: Involvement of the period 2 circadian clock. J Psychopharmacol 2022; 36:875-891. [PMID: 35486444 DOI: 10.1177/02698811221089040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Morphine abuse is a devastating disorder that affects millions of people worldwide, and literature evidence indicates a relationship between opioid abuse and the circadian clock. AIM We explored morphine reward and reinforcement using mouse models with Per2 gene modifications (knockout (KO); overexpression (OE)). METHODS Mice were exposed to various behavioral, electroencephalographic, pharmacological, and molecular tests to assess the effects of morphine and identify the underlying mechanisms with a focus on reward and reinforcement and the corresponding involvement of circadian and clock-controlled gene regulation. RESULTS Per2 deletion enhances morphine-induced analgesia, locomotor sensitization, conditioned place preference (CPP), and self-administration (SA) in mice, whereas its overexpression attenuated these effects. In addition, reduced withdrawal was observed in Per2 KO mice, whereas an augmented withdrawal response was observed in Per2 OE mice. Moreover, naloxone and SCH 23390 blocked morphine CPP in Per2 KO and wild-type (WT) mice. The rewarding (CPP) and reinforcing effects (SA) observed in morphine-conditioned and morphine self-administered Per2 KO and WT mice were accompanied by activated μ-opioid and dopamine D1 receptors and TH in the mesolimbic (VTA/NAcc) system. Furthermore, genetic modifications of Per2 in mice innately altered some clock genes in response to morphine. CONCLUSION These findings improve our understanding of the role of Per2 in morphine-induced psychoactive effects. Our data and those obtained in previous studies indicate that targeting Per2 may have applicability in the treatment of substance abuse.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Danilo Buctot
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Strickland JC, Stoops WW, Banks ML, Gipson CD. Logical fallacies and misinterpretations that hinder progress in translational addiction neuroscience. J Exp Anal Behav 2022; 117:384-403. [PMID: 35362559 PMCID: PMC9090969 DOI: 10.1002/jeab.757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/11/2022]
Abstract
Substance use disorders (SUDs) are heterogeneous and complex, making the development of translationally predictive rodent and nonhuman primate models to uncover their neurobehavioral underpinnings difficult. Neuroscience-focused outcomes have become highly prevalent, and with this, the notion that SUDs are disorders of the brain embraced as a dominant theoretical orientation to understand SUD etiology and treatment. These efforts, however, have led to few efficacious pharmacotherapies, and in some cases (as with cocaine or methamphetamine), no pharmacotherapies have translated from preclinical models for clinical use. In this theoretical commentary, we first describe the development of animal models of substance use behaviors from a historical perspective. We then define and discuss three logical fallacies including 1) circular explanation, 2) affirming the consequent, and 3) reification that can apply to developed models. We then provide three case examples in which conceptual or logical issues exist in common methods (i.e., behavioral economic demand, escalation, and reinstatement). Alternative strategies to refocus behavioral models are suggested for the field to better bridge the translational divide between animal models, the clinical condition of SUDs, and current and future regulatory pathways for intervention development.
Collapse
Affiliation(s)
- Justin C. Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | | | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
| | - Cassandra D. Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington
| |
Collapse
|
32
|
Douton JE, Horvath N, Mills-Huffnagle S, Nyland JE, Hajnal A, Grigson PS. Glucagon-like peptide-1 receptor agonist, liraglutide, reduces heroin self-administration and drug-induced reinstatement of heroin-seeking behaviour in rats. Addict Biol 2022; 27:e13117. [PMID: 34802173 PMCID: PMC10825889 DOI: 10.1111/adb.13117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/05/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023]
Abstract
Drug addiction is a chronic brain disease characterized by the uncontrolled use of a substance. Due to its relapsing nature, addiction is difficult to treat, as individuals can relapse following even long periods of abstinence and, it is during this time, that they are most vulnerable to overdose. In America, opioid overdose has been increasing for decades, making finding new treatments to help patients remain abstinent and prevent overdose deaths imperative. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have shown promise in reducing motivated behaviours for drugs of abuse. In this study, we test the effectiveness of the GLP-1 analogue, liraglutide (LIR), in reducing heroin addiction-like behaviour, and the potential side effects associated with the treatment. We show that daily treatment with LIR (0.1 mg/kg sc) increases the latency to take heroin, reduces heroin self-administration, prevents escalation of heroin self-administration and reduces drug-induced reinstatement of heroin-seeking behaviour in rats. A 1-h pretreatment time, however, was too short to reduce cue-induced seeking in our study. Moreover, we showed that, while LIR (0.1, 0.3, 0.6 and 1.0 mg/kg sc) supported conditioned taste avoidance of a LIR-paired saccharin cue, it did not elicit intake of the antiemetic kaolin in heroin-naïve or heroin-experienced rats. Further, 0.1 mg/kg LIR did not produce great disruptions in food intake or body weight. Overall, the data show that LIR is effective in reducing heroin taking and heroin seeking at doses that do not cause malaise and have a modest effect on food intake and body weight gain.
Collapse
Affiliation(s)
- Joaquin E Douton
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nelli Horvath
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sara Mills-Huffnagle
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jennifer E Nyland
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
33
|
Scarlata MJ, Keeley RJ, Carmack SA, Tsai PJ, Vendruscolo JCM, Lu H, Koob GF, Vendruscolo LF, Stein EA. Cingulate circuits are associated with escalation of heroin use and naloxone-induced increases in heroin self-administration. ADDICTION NEUROSCIENCE 2022; 1:100002. [PMID: 37323812 PMCID: PMC10270679 DOI: 10.1016/j.addicn.2021.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Opioid use disorder (OUD) is defined as a compulsion to seek and take opioids, loss of control over intake and the development of a negative emotional state when access to opioids is denied. Using functional magnetic resonance imaging (fMRI) data in a rat model of OUD, we demonstrate that the escalation of heroin self-administration (SA) and the increased heroin SA following an injection of an opioid receptor antagonist (naloxone) are associated with changes in distinct brain circuits, centered on the cingulate cortex (Cg). Here, SA escalation score was negatively associated with changes in resting state functional connectivity (rsFC) between the Cg and the dorsal striatum. Conversely, increased heroin SA following naloxone injection, was associated with increased connectivity between the Cg and the extended amygdala and hypothalamus. Naloxone-induced increased SA was also positively associated with changes in the amplitude of low frequency fluctuations within the Cg, a measure of spontaneous neuronal activity. Characterizing the distinct brain circuit and behavior changes associated with different facets of addiction increases our understanding of OUD and may provide insight into addiction prevention and treatment.
Collapse
Affiliation(s)
- MJ Scarlata
- Neuroimaging Research Branch, National Institute on Drug Abuse, United States of America
| | - RJ Keeley
- Neuroimaging Research Branch, National Institute on Drug Abuse, United States of America
| | - SA Carmack
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - P-J Tsai
- Neuroimaging Research Branch, National Institute on Drug Abuse, United States of America
| | - JCM Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - H Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, United States of America
| | - GF Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - LF Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program, NIH, Baltimore, MD, United States of America
| | - EA Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, United States of America
| |
Collapse
|
34
|
Butelman ER, Chen CY, Lake KJ, Brown KG, Kreek MJ. Bidirectional influence of heroin and cocaine escalation in persons with dual opioid and cocaine dependence diagnoses. Exp Clin Psychopharmacol 2022; 30:31-38. [PMID: 33119382 PMCID: PMC8388238 DOI: 10.1037/pha0000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Persons with dual severe opioid and cocaine use disorders are at risk of considerable morbidity, and the bidirectional relationship of escalation of mu-opioid agonists and cocaine use is not well understood. The aim of this study was to examine the bidirectional relationship between escalation of heroin and cocaine use in volunteers dually diagnosed with opioid and cocaine dependence (OD + CD). Volunteers from New York with OD + CD (total n = 295; male = 182, female = 113; age ≥ 18 years) were interviewed with the Structured Clinical Interview for the DSM-IV Axis I Disorders and Kreek-McHugh-Schluger-Kellogg scales for dimensional measures of drug exposure, which also collect ages of 1st use and onset of heaviest use. Time of escalation was defined as age of onset of heaviest use minus age of 1st use in whole years. Times of escalation of heroin and cocaine were positively correlated in both men (Spearman r = .34, 95% confidence interval [CI: .17, .48], p < .0001) and women (Spearman r = .51, [.27, .50], p < .0001) volunteers. After we adjusted for demographic variables, a Cox regression showed that time of cocaine escalation was a predictor of time of heroin escalation (hazard ratio [HR] = 0.97, 95% CI [0.95, 0.99], p = .003). Another Cox regression showed that this relationship is bidirectional, because time of heroin escalation was also a predictor of time of cocaine escalation (HR = 0.98, [0.96-0.99], p = .016). In these adjusted models, gender was not a significant predictor of time of escalation of either heroin or cocaine. Therefore, escalation did not differ robustly by gender when adjusting for demographics and other major variables. Overall, rapid escalation of cocaine use was a predictor of rapid escalation of heroin use, and vice versa, in persons with dual severe opioid and cocaine use disorders. These findings suggest a shared vulnerability to rapid escalation of these 2 drugs in persons with dual severe opioid and cocaine use disorders. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
35
|
Kearns AM, Siemsen BM, Hopkins JL, Weber RA, Scofield MD, Peters J, Reichel CM. Chemogenetic inhibition of corticostriatal circuits reduces cued reinstatement of methamphetamine seeking. Addict Biol 2022; 27:e13097. [PMID: 34431593 PMCID: PMC8809357 DOI: 10.1111/adb.13097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Methamphetamine (meth) causes enduring changes within the medial prefrontal cortex (mPFC) and the nucleus accumbens (NA). Projections from the mPFC to the NA have a distinct dorsal-ventral distribution, with the prelimbic (PL) mPFC projecting to the NAcore, and the infralimbic (IL) mPFC projecting to the NAshell. Inhibition of these circuits has opposing effects on cocaine relapse. Inhibition of PL-NAcore reduces cued reinstatement of cocaine seeking and IL-NAshell inhibition reinstates cocaine seeking. Meth, however, exhibits a different profile, as pharmacological inhibition of either the PL or IL decrease cued reinstatement of meth-seeking. The potentially opposing roles of the PL-NAcore and IL-NAshell projections remain to be explored in the context of cued meth seeking. Here we used an intersectional viral vector approach that employs a retrograde delivery of Cre from the NA and Cre-dependent expression of DREADD in the mPFC, in both male and female rats to inhibit or activate these parallel pathways. Inhibition of the PL-NAcore circuit reduced cued reinstatement of meth seeking under short and long-access meth self-administration and after withdrawal with and without extinction. Inhibition of the IL-NAshell also decreased meth cued reinstatement. Activation of the parallel circuits was without an effect. These studies show that inhibition of the PL-NAcore or the IL-NAshell circuits can inhibit reinstated meth seeking. Thus, the neural circuitry mediating cued reinstatement of meth seeking is similar to cocaine in the dorsal, but not ventral, mPFC-NA circuit.
Collapse
Affiliation(s)
- Angela M. Kearns
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Benjamin M. Siemsen
- Department of Anesthesiology Medical University of South Carolina Charleston South Carolina USA
| | - Jordan L. Hopkins
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Rachel A. Weber
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Michael D. Scofield
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
- Department of Anesthesiology Medical University of South Carolina Charleston South Carolina USA
| | - Jamie Peters
- Department of Anesthesiology University of Colorado Denver Aurora Colorado USA
- Department of Pharmacology University of Colorado Denver Aurora Colorado USA
| | - Carmela M. Reichel
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
36
|
Sharp BM, Fan X, Redei EE, Mulligan MK, Chen H. Sex and heredity are determinants of drug intake in a novel model of rat oral oxycodone self-administration. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12770. [PMID: 34459088 PMCID: PMC8815756 DOI: 10.1111/gbb.12770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
The steady rise in prescription opioids such as oxycodone has led to a virulent epidemic of widespread abuse and deaths in the United States; approximately 80% of affected individuals initiate the habitual use of oxycodone by using prescription oral oxycodone. Given the importance of drug pharmacokinetics in determining abuse potential, we designed an oral operant oxycodone self-administration (SA) procedure in rats to model drug intake by most human users/abusers of oxycodone. Key aspects of the model include limited initial drug intake followed by increasing drug concentrations during extended 4-h sessions on alternating days. Sex and genetic predisposition are major determinants of human opiate abuse. Therefore, we studied females in seven inbred strains (WLI, WMI, LEW, DSS, F344, BN and SHR) and both sexes in three of these strains. All strains increased intake across serially increasing doses (0.025-0.2 mg/ml; p < 0.001): the range of intakes at the final concentration of oxycodone was 0.72 ± 0.17-4.84 ± 1.42 mg/kg (mean ± SEM) - a 6.7-fold difference across strains. In LEW, WLI and WMI strains, oxycodone intake increased significantly across all sessions in both sexes. However, in LEW and WMI male rats but not WLI, daily oxycodone intake was significantly lower across all 4-h sessions than females (p < 0.005). The estimated heritability in oxycodone intake was in the range of 0.21-0.41. In summary, our novel operant oral oxycodone SA model captures the strong abuse potential of oral oxycodone and shows dose, sex and strain-specific drug intake that is significantly dependent on heredity.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xinyu Fan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, and Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
37
|
Negus SS, Banks ML. Confronting the challenge of failed translation in medications development for substance use disorders. Pharmacol Biochem Behav 2021; 210:173264. [PMID: 34461148 PMCID: PMC8418188 DOI: 10.1016/j.pbb.2021.173264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Affiliation(s)
- S S Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America.
| | - M L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
38
|
George BE, Barth SH, Kuiper LB, Holleran KM, Lacy RT, Raab-Graham KF, Jones SR. Enhanced heroin self-administration and distinct dopamine adaptations in female rats. Neuropsychopharmacology 2021; 46:1724-1733. [PMID: 34040157 PMCID: PMC8358024 DOI: 10.1038/s41386-021-01035-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence suggests that females are more vulnerable to the harmful effects of drugs of abuse, including opioids. Additionally, rates of heroin-related deaths substantially increased in females from 1999 to 2017 [1], underscoring the need to evaluate sex differences in heroin vulnerability. Moreover, the neurobiological substrates underlying sexually dimorphic responding to heroin are not fully defined. Thus, we evaluated male and female Long Evans rats on acquisition, dose-responsiveness, and seeking for heroin self-administration (SA) as well as using a long access model to assess escalation of intake at low and high doses of heroin, 0.025 and 0.1 mg/kg/inf, respectively. We paired this with ex vivo fast-scan cyclic voltammetry (FSCV) in the medial nucleus accumbens (NAc) shell and quantification of mu-opioid receptor (MOR) protein in the ventral tegmental area (VTA) and NAc. While males and females had similar heroin SA acquisition rates, females displayed increased responding and intake across doses, seeking for heroin, and escalation on long access. However, we found that males and females had similar expression levels of MORs in the VTA and NAc, regardless of heroin exposure. FSCV results revealed that heroin exposure did not change single-pulse elicited dopamine release, but caused an increase in dopamine transporter activity in both males and females compared to their naïve counterparts. Phasic-like stimulations elicited robust increases in dopamine release in heroin-exposed females compared to heroin-naïve females, with no differences seen in males. Together, our results suggest that differential adaptations of dopamine terminals may underlie the increased heroin SA behaviors seen in females.
Collapse
Affiliation(s)
- Brianna E. George
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Samuel H. Barth
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Lindsey B. Kuiper
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Katherine M. Holleran
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Ryan T. Lacy
- grid.256069.eDepartment of Psychology, Franklin and Marshall College, Lancaster, PA USA
| | - Kimberly F. Raab-Graham
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Sara R. Jones
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| |
Collapse
|
39
|
López AJ, Johnson AR, Kunnath AJ, Morris AD, Zachry JE, Thibeault KC, Kutlu MG, Siciliano CA, Calipari ES. An optimized procedure for robust volitional cocaine intake in mice. Exp Clin Psychopharmacol 2021; 29:319-333. [PMID: 32658535 PMCID: PMC7890946 DOI: 10.1037/pha0000399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Substance use disorder (SUD) is a behavioral disorder characterized by volitional drug consumption. Mouse models of SUD allow for the use of molecular, genetic, and circuit-level tools, providing enormous potential for defining the underlying mechanisms of this disorder. However, the relevance of results depends on the validity of the mouse models used. Self-administration models have long been the preferred preclinical model for SUD as they allow for volitional drug consumption, thus providing strong face validity. While previous work has defined the parameters that influence intravenous cocaine self-administration in other species-such as rats and primates-many of these parameters have not been explicitly assessed in mice. In a series of experiments, we showed that commonly used mouse models of self-administration, where behavior is maintained on a fixed-ratio schedule of reinforcement, show similar levels of responding in the presence and absence of drug delivery-demonstrating that it is impossible to determine when drug consumption is and is not volitional. To address these issues, we have developed a novel mouse self-administration procedure where animals do not need to be pretrained on sucrose and behavior is maintained on a variable-ratio schedule of reinforcement. This procedure increases rates of reinforcement behavior, increases levels of drug intake, and results in clearer delineation between drug-reinforced and saline conditions. Together, these data highlight a major issue with fixed-ratio models in mice that complicates subsequent analysis and provide a simple approach to minimize these confounds with variable-ratio schedules of reinforcement. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University/Vanderbilt University School of Medicine
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University/Vanderbilt University School of Medicine
| | - Ansley J Kunnath
- Vanderbilt University Medical Scientists Training Program, Vanderbilt University/Vanderbilt University School of Medicine
| | - Allison D Morris
- Department of Pharmacology, Vanderbilt University/Vanderbilt University School of Medicine
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University/Vanderbilt University School of Medicine
| | - Kimberly C Thibeault
- Department of Pharmacology, Vanderbilt University/Vanderbilt University School of Medicine
| | - Munir G Kutlu
- Department of Pharmacology, Vanderbilt University/Vanderbilt University School of Medicine
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University/Vanderbilt University School of Medicine
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University/Vanderbilt University School of Medicine
| |
Collapse
|
40
|
Yoon JH, Suchting R, Cassidy RN, Bolin PK, Omar Y, Brown GS, De La Garza R. Assessment of demand for methamphetamine and cigarettes among individuals with methamphetamine use disorder. Exp Clin Psychopharmacol 2021; 29:334-344. [PMID: 32202813 PMCID: PMC7508771 DOI: 10.1037/pha0000367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methamphetamine (MA) is a highly addictive stimulant with recent upward trends in prevalence and associated public health problems. Drug demand, as assessed by hypothetical purchasing tasks, has been useful in addictions research and may help our understanding of the factors influencing MA use. However, no studies have assessed MA demand using current models of demand. The purpose of the current study was to assess demand for MA using a hypothetical drug purchasing task. Given high rates of cigarette smoking among MA users, it was of interest also to assess and compare demand for MA relative to cigarettes. Participants consisted of non-treatment-seeking volunteers with MA use disorder (N = 18), of whom 17 reported daily smoking. Results showed the exponentiated demand model provided a good fit to consumption data. Results from Bayesian generalized linear modeling demonstrated multiple positive relationships (posterior probability ≥75%) between self-reported drug use (days MA used in the past 30 days, cigarettes smoked per day) and indices of demand for each drug (Qo, Omax, Pmax, and break point). Comparing MA to cigarettes, results from Bayesian generalized linear mixed modeling revealed greater abuse liability for MA compared to cigarettes (posterior probability ≥99%) based on α and essential value. Overall, the findings of the current study support the feasibility and validity of the exponentiated demand model for assessing demand for drugs among individuals with MA use disorder. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
41
|
Zlebnik NE, Holtz NA, Lepak VC, Saykao AT, Zhang Y, Carroll ME. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend 2021; 224:108719. [PMID: 33940327 PMCID: PMC8180489 DOI: 10.1016/j.drugalcdep.2021.108719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Worldwide methamphetamine (METH) use has increased significantly over the last 10 years, and in the US, METH dependence has sky-rocketed among individuals with opioid use disorder. Of significant concern, METH use is gaining popularity among groups with susceptibility to developing severe substance use disorders, such as women and adolescents. Nevertheless, there is no established pharmacotherapy for METH addiction. Emerging evidence has identified the orexin/hypocretin system as an important modulator of reward-driven behavior and a potential target for the treatment of drug addiction and relapse. However, to date, there have been no investigations into the therapeutic efficacy of orexin/hypocretin receptor antagonists for METH-motivated behavior in adolescents or adults. In the present study, we examined the effects of selective antagonists of the orexin-1 (SB-334867, 20 mg/kg) and orexin-2 (TCS-OX2-29, 20 mg/kg) receptors on the reinstatement of METH seeking in both adolescent and adult male and female rats. METHODS Rats were trained to self-administer METH (0.05 mg/kg/inf, iv) during two 2-h sessions/day for 5 days. Following 20 sessions of extinction over 10 days, a within-subjects design was used to test for METH seeking precipitated by METH (1 mg/kg, ip) or METH cues after systemic pretreatment with SB-334867 or TCS-OX2-29. RESULTS SB-334867 reduced cue-induced reinstatement in males and females, regardless of age. Additionally, METH-induced METH seeking was attenuated by SB-334867 in adolescents and by TCS-OX2-29 in adults. CONCLUSION Selective orexin/hypocretin receptor antagonists have significant therapeutic potential for diminishing METH-seeking behavior, although their treatment efficacy may be influenced by age.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Nathan A Holtz
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Victoria C Lepak
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Amy T Saykao
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Marilyn E Carroll
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| |
Collapse
|
42
|
The Cocaine and Oxycodone Biobanks, Two Repositories from Genetically Diverse and Behaviorally Characterized Rats for the Study of Addiction. eNeuro 2021; 8:ENEURO.0033-21.2021. [PMID: 33875455 PMCID: PMC8213442 DOI: 10.1523/eneuro.0033-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
The rat oxycodone and cocaine biobanks contain samples that vary by genotypes (by using genetically diverse genotyped HS rats), phenotypes (by measuring addiction-like behaviors in an advanced SA model), timepoints (samples are collected longitudinally before, during, and after SA, and terminally at three different timepoints in the addiction cycle: intoxication, withdrawal, and abstinence or without exposure to drugs through age-matched naive rats), samples collected (organs, cells, biofluids, feces), preservation (paraformaldehyde-fixed, snap-frozen, or cryopreserved) and application (proteomics, transcriptomics, microbiomics, metabolomics, epigenetics, anatomy, circuitry analysis, biomarker discovery, etc.Substance use disorders (SUDs) are pervasive in our society and have substantial personal and socioeconomical costs. A critical hurdle in identifying biomarkers and novel targets for medication development is the lack of resources for obtaining biological samples with a detailed behavioral characterization of SUD. Moreover, it is nearly impossible to find longitudinal samples. As part of two ongoing large-scale behavioral genetic studies in heterogeneous stock (HS) rats, we have created two preclinical biobanks using well-validated long access (LgA) models of intravenous cocaine and oxycodone self-administration (SA) and comprehensive characterization of addiction-related behaviors. The genetic diversity in HS rats mimics diversity in the human population and includes individuals that are vulnerable or resilient to compulsive-like responding for cocaine or oxycodone. Longitudinal samples are collected throughout the experiment, before exposure to the drug, during intoxication, acute withdrawal, and protracted abstinence, and include naive, age-matched controls. Samples include, but are not limited to, blood plasma, feces and urine, whole brains, brain slices and punches, kidney, liver, spleen, ovary, testis, and adrenal glands. Three preservation methods (fixed in formaldehyde, snap-frozen, or cryopreserved) are used to facilitate diverse downstream applications such as proteomics, metabolomics, transcriptomics, epigenomics, microbiomics, neuroanatomy, biomarker discovery, and other cellular and molecular approaches. To date, >20,000 samples have been collected from over 1000 unique animals and made available free of charge to non-profit institutions through https://www.cocainebiobank.org/ and https://www.oxycodonebiobank.org/.
Collapse
|
43
|
S-Equol mitigates motivational deficits and dysregulation associated with HIV-1. Sci Rep 2021; 11:11870. [PMID: 34088932 PMCID: PMC8178385 DOI: 10.1038/s41598-021-91240-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Motivational deficits (e.g., apathy) and dysregulation (e.g., addiction) in HIV-1 seropositive individuals, despite treatment with combination antiretroviral therapy, necessitates the development of innovative adjunctive therapeutics. S-Equol (SE), a selective estrogen receptor β agonist, has been implicated as a neuroprotective and/or neurorestorative therapeutic for HIV-1 associated neurocognitive disorders (HAND); its therapeutic utility for motivational alterations, however, has yet to be systematically evaluated. Thus, HIV-1 transgenic (Tg) and control animals were treated with either a daily oral dose of SE (0.2 mg) or vehicle and assessed in a series of tasks to evaluate goal-directed and drug-seeking behavior. First, at the genotypic level, motivational deficits in HIV-1 Tg rats treated with vehicle were characterized by a diminished reinforcing efficacy of, and sensitivity to, sucrose. Motivational dysregulation was evidenced by enhanced drug-seeking for cocaine relative to control animals treated with vehicle. Second, treatment with SE ameliorated both motivational deficits and dysregulation in HIV-1 Tg rats. Following a history of cocaine self-administration, HIV-1 Tg animals treated with vehicle exhibited lower levels of dendritic branching and a shift towards longer dendritic spines with decreased head diameter. Treatment with SE, however, led to long-term enhancements in dendritic spine morphology in HIV-1 Tg animals supporting a potential underlying basis by which SE exerts its therapeutic effects. Taken together, SE restored motivated behavior in the HIV-1 Tg rat, expanding the potential clinical utility of SE to include both neurocognitive and affective alterations.
Collapse
|
44
|
Douton JE, Augusto C, Stoltzfus B, Carkaci-Salli N, Vrana KE, Grigson PS. Glucagon-like peptide-1 receptor agonist, exendin-4, reduces reinstatement of heroin-seeking behavior in rats. Behav Pharmacol 2021; 32:265-277. [PMID: 33229892 PMCID: PMC8119287 DOI: 10.1097/fbp.0000000000000609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Opioid use disorder (OUD) causes the death of nearly 130 Americans daily. It is evident that new avenues for treatment are needed. To this end, studies have reported that 'satiety' agents such as the glucagon-like peptide-1 receptor (GLP-1R) agonist, exendin-4 (Ex-4), decreases responding for addictive drugs such as cocaine, nicotine, alcohol, and oxycodone, but no work has been done with heroin. In this study, we used a reward devaluation model in which rats avoid ingesting a saccharin solution that predicts drug availability to test the effects of 2.4 μg/kg Ex-4 on responding for a natural reward cue (i.e., saccharin) and on cue- and drug-induced heroin seeking. The results showed that treatment with Ex-4 during the 16-day abstinence period and on the test day decreased cue-induced heroin seeking. Drug-induced heroin seeking also was reduced by Ex-4, but only when using a 1 h, but not a 6 h, pretreatment time. Treatment with Ex-4 did not alter intake of the saccharin cue when the drug was on board, but a history of treatment with Ex-4 increased acceptance of the saccharin cue in later extinction trials. Finally, treatment with Ex-4 did not alter body weight, but was associated with increased Orexin 1 receptor (OX1) mRNA expression in the nucleus accumbens shell. Taken together, these findings are the first to show that treatment with a GLP-1R agonist can reduce both cue-induced seeking and drug-induced reinstatement of heroin seeking. As such, a GLP-1R agonist may serve as an effective treatment for OUD in humans.
Collapse
|
45
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
46
|
Parkin regulates drug-taking behavior in rat model of methamphetamine use disorder. Transl Psychiatry 2021; 11:293. [PMID: 34001858 PMCID: PMC8129108 DOI: 10.1038/s41398-021-01387-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023] Open
Abstract
There is no FDA-approved medication for methamphetamine (METH) use disorder. New therapeutic approaches are needed, especially for people who use METH heavily and are at high risk for overdose. This study used genetically engineered rats to evaluate PARKIN as a potential target for METH use disorder. PARKIN knockout, PARKIN-overexpressing, and wild-type young adult male Long Evans rats were trained to self-administer high doses of METH using an extended-access METH self-administration paradigm. Reinforcing/rewarding properties of METH were assessed by quantifying drug-taking behavior and time spent in a METH-paired environment. PARKIN knockout rats self-administered more METH and spent more time in the METH-paired environment than wild-type rats. Wild-type rats overexpressing PARKIN self-administered less METH and spent less time in the METH-paired environment. PARKIN knockout rats overexpressing PARKIN self-administered less METH during the first half of drug self-administration days than PARKIN-deficient rats. The results indicate that rats with PARKIN excess or PARKIN deficit are useful models for studying neural substrates underlying "resilience" or vulnerability to METH use disorder and identify PARKIN as a novel potential drug target to treat heavy use of METH.
Collapse
|
47
|
Fragale JE, James MH, Aston‐Jones G. Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addict Biol 2021; 26:e12946. [PMID: 32798290 DOI: 10.1111/adb.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/10/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022]
Abstract
The orexin (hypocretin) system plays a critical role in motivated drug taking. Cocaine self-administration with the intermittent access (IntA) procedure produces a robust addiction-like state that is orexin-dependent. Here, we sought to determine the role of the orexin system in opioid addiction using IntA self-administration of fentanyl. Different groups of male rats were either given continuous access in 1-h period (short access [ShA]), 6-h period (long access [LgA]), or IntA (5 min of access separated by 25 min of no access for 6 h) to fentanyl for 14 days. IntA produced a greater escalation of fentanyl intake, increased motivation for fentanyl on a behavioral economics task, persistent drug seeking during abstinence, and stronger cue-induced reinstatement compared with rats given ShA or LgA. We found that addiction behaviors induced by IntA to fentanyl were reversed by the orexin-1 receptor antagonist SB-334867. IntA to fentanyl was also associated with a persistent increase in the number of orexin neurons. Together, these results indicate that the IntA model is a useful tool in the study of opioid addiction and that the orexin system is critical for the maintenance of addiction behaviors induced by IntA self-administration of fentanyl.
Collapse
Affiliation(s)
- Jennifer E. Fragale
- Brain Health Institute Rutgers University and Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| | - Morgan H. James
- Brain Health Institute Rutgers University and Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne Victoria Australia
| | - Gary Aston‐Jones
- Brain Health Institute Rutgers University and Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| |
Collapse
|
48
|
Swain Y, Gewirtz JC, Harris AC. Behavioral predictors of individual differences in opioid addiction vulnerability as measured using i.v. self-administration in rats. Drug Alcohol Depend 2021; 221:108561. [PMID: 33588371 PMCID: PMC8048102 DOI: 10.1016/j.drugalcdep.2021.108561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Like other forms of psychopathology, vulnerability to opioid addiction is subject to wide individual differences. Animal behavioral models are valuable in advancing our understanding of mechanisms underlying vulnerability to the disorder's development and amenability to treatment. METHODS This review provides an overview of preclinical work on behavioral predictors of opioid addiction vulnerability as measured using the intravenous (i.v.) self-administration (SA) model in rats. We also highlight several new approaches to studying individual differences in opioid addiction vulnerability in preclinical models that could have greater sensitivity and lead to more clinically relevant findings. RESULTS AND CONCLUSIONS Evidence for the relationship between various behavioral traits and opioid SA in the preclinical literature is limited. With the possible exceptions of sensitivity to opioid agonist/withdrawal effects and stress reactivity, predictors of individual differences in SA of other drugs of abuse (e.g. sensation-seeking, impulsivity) do not predict vulnerability to opioid SA in rats. Refinement of SA measures and the use of multivariate designs and statistics could help identify predictors of opioid SA and lead to more clinically relevant studies on opioid addiction vulnerability.
Collapse
Affiliation(s)
- Yayi Swain
- Departments of Psychology, University of Minnesota, United States; Hennepin Healthcare Research Institute, United States
| | | | - Andrew C Harris
- Departments of Psychology, University of Minnesota, United States; Hennepin Healthcare Research Institute, United States; Departments of Medicine, University of Minnesota, United States.
| |
Collapse
|
49
|
Amphetamine maintenance therapy during intermittent cocaine self-administration in rats attenuates psychomotor and dopamine sensitization and reduces addiction-like behavior. Neuropsychopharmacology 2021; 46:305-315. [PMID: 32682325 PMCID: PMC7853073 DOI: 10.1038/s41386-020-0773-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
D-amphetamine maintenance therapy shows promise as a treatment for people with cocaine addiction. Preclinical studies using Long Access (LgA) cocaine self-administration procedures suggest D-amphetamine may act by preventing tolerance to cocaine's effects at the dopamine transporter (DAT). However, Intermittent Access (IntA) cocaine self-administration better reflects human patterns of use, is especially effective in promoting addiction-relevant behaviors, and instead of tolerance, produces psychomotor, incentive, and neural sensitization. We asked, therefore, how D-amphetamine maintenance during IntA influences cocaine use and cocaine's potency at the DAT. Male rats self-administered cocaine intermittently (5 min ON, 25 min OFF x10; 5-h/session) for 14 sessions, with or without concomitant D-amphetamine maintenance therapy during these 14 sessions (5 mg/kg/day via s.c. osmotic minipump). We then assessed responding for cocaine under a progressive ratio schedule, responding under extinction and cocaine-primed reinstatement of drug seeking. We also assessed the ability of cocaine to inhibit dopamine uptake in the nucleus accumbens core using fast scan cyclic voltammetry ex vivo. IntA cocaine self-administration produced psychomotor (locomotor) sensitization, strong motivation to take and seek cocaine, and it increased cocaine's potency at the DAT. D-amphetamine co-administration suppressed the psychomotor sensitization produced by IntA cocaine experience. After cessation of D-amphetamine treatment, the motivation to take and seek cocaine was also reduced, and sensitization of cocaine's actions at the DAT was reversed. Thus, treatment with D-amphetamine might reduce cocaine use by preventing sensitization-related changes in cocaine potency at the DAT, consistent with an incentive-sensitization view of addiction.
Collapse
|
50
|
Luo YX, Huang D, Guo C, Ma YY. Limited versus extended cocaine intravenous self-administration: Behavioral effects and electrophysiological changes in insular cortex. CNS Neurosci Ther 2020; 27:196-205. [PMID: 33118700 PMCID: PMC7816201 DOI: 10.1111/cns.13469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Aims Limited vs extended drug exposure has been proposed as one of the key factors in determining the risk of relapse, which is the primary characteristic of addiction behaviors. The current studies were designed to explore the related behavioral effects and neuronal alterations in the insular cortex (IC), an important brain region involved in addiction. Methods Experiments started with rats at the age of 35 days, a typical adolescent stage when initial drug exposure occurs often in humans. The drug‐seeking/taking behaviors, and membrane properties and intrinsic excitability of IC pyramidal neurons were measured on withdrawal day (WD) 1 and WD 45‐48 after limited vs extended cocaine intravenous self‐administration (IVSA). Results We found higher cocaine‐taking behaviors at the late withdrawal period after limited vs extended cocaine IVSA. We also found minor but significant effects of limited but not extended cocaine exposure on the kinetics and amplitude of action potentials on WD 45, in IC pyramidal neurons. Conclusion Our results indicate potential high risks of relapse in young rats with limited but not extended drug exposure, although the adaptations detected in the IC may not be sufficient to explain the neural changes of higher drug‐taking behaviors induced by limited cocaine IVSA.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Donald Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|