1
|
Yang Y, Liu J, Wang L, Wu W, Wang Q, Zhao Y, Qian X, Wang Z, Fu N, Wang Y, Qian J. Oxytocin attenuates cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis. Peptides 2024; 182:171323. [PMID: 39613260 DOI: 10.1016/j.peptides.2024.171323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The progress of cardiac hypertrophy is modulated by JAK2/STAT3 signaling pathway. Cardiac glucose metabolism derangement exacerbates the progression of cardiac hypertrophy. Oxytocin (OT) has emerged as a significant hormone involved in cardiovascular homeostasis, especially in protecting against cardiac hypertrophy. The present study aims to explore whether the anti-hypertrophy effect of oxytocin is related to the JAK2/STAT3 signaling pathway and cardiac glucose metablism. METHODS Cardiac hypertrophy model was induced by angiotensin II (Ang II) in H9c2 cells and in mice with or without oxytocin treatment. Changes in cardiac histopathology were evaluated by hematoxylin and eosin (H&E), Masson staining, and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes and JAK2/STAT3 pathway signaling molecules were analyzed by qRT-PCR and western blotting. The levels of glucose, pyruvic acid, lactic acid, and lactate dehydrogenase activity in H9c2 cells using the corresponding assay kits. RESULTS The results showed that OT inhibited hypertrophic and fibrotic changes. Furthermore, OT increased intracellular levels of glucose and pyruvic acid, and decreased lactate dehydrogenase activity and lactic acid levels. Mechanistically, Ang II decreased oxytocin receptors (OXTR) expression and facilitated JAK2 and STAT3 phosphorylation. OT treatment increased OXTR expression and blocked JAK2 and STAT3 phosphorylation The OXTR-specific siRNA-mediated depleted expression could abrogate OT-induced anti-hypertrophic effects in H9c2 cells following angiotensin II insult. However, the JAK2/STAT3 inhibitor AG490 rescued the protective effects of OT against cardiac hypertrophy under OXTR downregulation. CONCLUSION OT exerts its protective effects against cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jin Liu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen Wu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Fu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanqiong Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Tsukamoto H, Olesen ND, Petersen LG, Suga T, Sørensen H, Nielsen HB, Ogoh S, Secher NH, Hashimoto T. Circulating Plasma Oxytocin Level Is Elevated by High-Intensity Interval Exercise in Men. Med Sci Sports Exerc 2024; 56:927-932. [PMID: 38115226 DOI: 10.1249/mss.0000000000003360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
PURPOSE We evaluated whether repeated high-intensity interval exercise (HIIE) influences plasma oxytocin (OT) concentration in healthy men, and, given that OT is mainly synthesized in the hypothalamus, we assessed the concentration difference between the arterial (OT ART ) versus the internal jugular venous OT concentration (OT IJV ). Additionally, we hypothesized that an increase in cerebral OT release and the circulating concentration would be augmented by repeated HIIE. METHODS Fourteen healthy men (age = 24 ± 2 yr; mean ± SD) performed two identical bouts of HIIE. These HIIE bouts included a warm-up at 50%-60% maximal workload ( Wmax ) for 5 min followed by four bouts of exercise at 80%-90% Wmax for 4 min interspersed by exercise at 50%-60% Wmax for 3 min. The HIIE bouts were separated by 60 min of rest. OT was evaluated in blood through radial artery and internal jugular vein catheterization. RESULTS Both HIIE bouts increased both OT ART (median [IQR], from 3.9 [3.4-5.4] to 5.3 [4.4-6.3] ng·mL -1 in the first HIIE, P < 0.01) and OT IJV (from 4.6 [3.4-4.8] to 5.9 [4.3-8.2] ng·mL -1 , P < 0.01), but OT ART-IJV was unaffected (from -0.24 [-1.16 to 1.08] to 0.04 [-0.88 to 0.78] ng·mL -1 , P = 1.00). The increased OT levels were similar in the first and second HIIE bouts (OT ARTP = 0.25, OT IJVP = 0.36). CONCLUSIONS Despite no change in the cerebral OT release via the internal jugular vein, circulating OT increases during HIIE regardless of the accumulated exercise volume, indicating that OT may play role as one of the exerkines.
Collapse
Affiliation(s)
| | | | | | - Tadashi Suga
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Shiga, JAPAN
| | - Henrik Sørensen
- Department of Anesthesia, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, DENMARK
| | | | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Saitama, JAPAN
| | - Niels H Secher
- Department of Anesthesia, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, DENMARK
| | | |
Collapse
|
3
|
Tsingotjidou AS. Oxytocin: A Multi-Functional Biomolecule with Potential Actions in Dysfunctional Conditions; From Animal Studies and Beyond. Biomolecules 2022; 12:1603. [PMID: 36358953 PMCID: PMC9687803 DOI: 10.3390/biom12111603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 10/13/2023] Open
Abstract
Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.
Collapse
Affiliation(s)
- Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
4
|
Buemann B. Oxytocin Release: A Remedy for Cerebral Inflammaging. Curr Aging Sci 2022; 15:218-228. [PMID: 35431008 DOI: 10.2174/1874609815666220414104832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Oxytocin facilitates reproduction both by physiological and behavioral mechanisms. Oxytocinergic neurons emerging from the hypothalamus release oxytocin from the pituitary gland to the blood by axonal discharge to regulate reproductive organs. However, at the same time, oxytocin is secreted into neighboring areas of the hypothalamus from the dendrites of these neurons. Here, the peptide acts by autocrine and paracrine mechanisms to influence other neuroendocrine systems. Furthermore, oxytocinergic neurons project to many different locations in the brain, where they affect sensory processing, affective functions, and reward. Additional to its regulatory role, significant anti-inflammatory and restoring effects of oxytocin have been reported from many invivo and in-vitro studies. The pervasive property of the oxytocin system may enable it generally to dampen stress reactions both peripherally and centrally, and protect neurons and supportive cells from inadequate inflammation and malfunctioning. Animal experiments have documented the importance of preserving immune- and stem cell functions in the hypothalamus to impede age-related destructive processes of the body. Sexual reward has a profound stimulating impact on the oxytocinergic activity, and the present article therefore presents the hypothesis that frequent sexual activity and gratigying social experiance may postpone the onset of frailty and age-associated diseases by neural protection from the bursts of oxytocin. Furthermore, suggestions are given how the neuroplastic properties of oxytocin may be utilized to enhance sexual reward by learning processes in order to further reinforce the release of this peptide.
Collapse
Affiliation(s)
- Benjamin Buemann
- Retired. Copenhagen, Denmark. Previous Affiliation: Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| |
Collapse
|
5
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
6
|
Abstract
Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract. In the cardiovascular system, a local oxytocinergic system appears to play an important cardio-protective role. This role is likely associated with emerging evidence that peripheral oxytocin is an important hormone in the endocrinology of glucose homeostasis due to its actions in adipose, the pancreas, and the largely ignored oxytocinergic systems of the adrenal glands and liver. Gene polymorphisms are shown to be associated with a number of reported traits, not least factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Mehdi SF, Pusapati S, Khenhrani RR, Farooqi MS, Sarwar S, Alnasarat A, Mathur N, Metz CN, LeRoith D, Tracey KJ, Yang H, Brownstein MJ, Roth J. Oxytocin and Related Peptide Hormones: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 2022; 13:864007. [PMID: 35572539 PMCID: PMC9102389 DOI: 10.3389/fimmu.2022.864007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a potentially life-threatening systemic inflammatory syndrome characterized by dysregulated host immunological responses to infection. Uncontrolled immune cell activation and exponential elevation in circulating cytokines can lead to sepsis, septic shock, multiple organ dysfunction syndrome, and death. Sepsis is associated with high re-hospitalization and recovery may be incomplete, with long term sequelae including post-sepsis syndrome. Consequently, sepsis continues to be a leading cause of morbidity and mortality across the world. In our recent review of human chorionic gonadotropin (hCG), we noted that its major properties including promotion of fertility, parturition, and lactation were described over a century ago. By contrast, the anti-inflammatory properties of this hormone have been recognized only more recently. Vasopressin, a hormone best known for its anti-diuretic effect, also has anti-inflammatory actions. Surprisingly, vasopressin's close cousin, oxytocin, has broader and more potent anti-inflammatory effects than vasopressin and a larger number of pre-clinical studies supporting its potential role in limiting sepsis-associated organ damage. This review explores possible links between oxytocin and related octapeptide hormones and sepsis-related modulation of pro-inflammatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Raja Ram Khenhrani
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Farooqi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Sobia Sarwar
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Ahmad Alnasarat
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Nimisha Mathur
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Christine Noel Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
- *Correspondence: Jesse Roth,
| |
Collapse
|
8
|
Yang Y, Wang Z, Yao M, Xiong W, Wang J, Fang Y, Yang W, Jiang H, Song N, Liu L, Qian J. Oxytocin Protects Against Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting PI3K/AKT Pathway via a lncRNA GAS5/miR-375-3p/KLF4-Dependent Mechanism. Front Pharmacol 2021; 12:766024. [PMID: 34925023 PMCID: PMC8678504 DOI: 10.3389/fphar.2021.766024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023] Open
Abstract
Cardiac hypertrophy is caused by cardiac volume or pressure overload conditions and ultimately leads to contractile dysfunction and heart failure. Oxytocin (OT), an endocrine nonapeptide, has been identified as a cardiovascular homeostatic hormone with anti-hypertrophic effects. However, the underlying mechanism remains elusive. In this study, we aimed to investigate the role and mechanism of OT in cardiac hypertrophy. The rats with cardiac hypertrophy induced by isoproterenol (ISO) were treated with or without oxytocin. Cardiac functional parameters were analyzed by echocardiography. The changes in cell surface area were observed using wheat germ agglutinin (WGA) or immunofluorescence staining. The expressions of cardiac hypertrophy markers (B-Natriuretic Peptide, BNP and β-myosin heavy chain, β-MHC), long non-coding RNA Growth (LcRNA) Arrest-Specific transcript 5 (lncRNA GAS5), miR-375-3p, and Kruppel-like factor 4 (Klf4) were detected by qRT-PCR. KLF4 protein and PI3K/AKT pathway related proteins were detected by Western blot. The interactions among lncRNA GAS5, miR-375-3p, and Klf4 were verified by dual-luciferase reporter assays. The findings showed that OT significantly attenuated cardiac hypertrophy, increased expressions of lncRNA GAS5 and KLF4, and decreased miR-375-3p expression. In vitro studies demonstrated that either knock-down of lncRNA GAS5 or Klf4, or over-expression of miR-375-3p blunted the anti-hypertrophic effects of OT. Moreover, down-regulation of lncRNA GAS5 promoted the expression of miR-375-3p and inhibited KLF4 expression. Similarly, over-expression of miR-375-3p decreased the expression of KLF4. Dual-luciferase reporter assays validated that lncRNA GAS5 could sponge miR-375-3p and Klf4 was a direct target gene of miR-375-3p. In addition, OT could inactivate PI3K/AKT pathway. The functional rescue experiments further identified OT regulated PI3K/AKT pathway through lncRNA GAS5/miR-375-3p/KLF4 axis. In summary, our study demonstrates that OT ameliorates cardiac hypertrophy by inhibiting PI3K/AKT pathway via lncRNA GAS5/miR-375-3p/KLF4 axis.
Collapse
Affiliation(s)
- Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengran Yao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Fang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haixia Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ning Song
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lan Liu
- Department of Pathology, Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Jinqiao Qian,
| |
Collapse
|
9
|
McCook O, Denoix N, Radermacher P, Waller C, Merz T. H 2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med 2021; 10:jcm10163484. [PMID: 34441780 PMCID: PMC8397059 DOI: 10.3390/jcm10163484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Today it is well established that early life stress leads to cardiovascular programming that manifests in cardiovascular disease, but the mechanisms by which this occurs, are not fully understood. This perspective review examines the relevant literature that implicates the dysregulation of the gasomediator hydrogen sulfide and the neuroendocrine oxytocin systems in heart disease and their putative mechanistic role in the early life stress developmental origins of cardiovascular disease. Furthermore, interesting hints towards the mutual interaction of the hydrogen sulfide and OT systems are identified, especially with regards to the connection between the central nervous and the cardiovascular system, which support the role of the vagus nerve as a communication link between the brain and the heart in stress-mediated cardiovascular disease.
Collapse
Affiliation(s)
- Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
- Correspondence: ; Tel.: +49-731-500-60185; Fax: +49-731-500-60162
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
| |
Collapse
|
10
|
Costa DM, Cruz-Filho JD, Vasconcelos ABS, Gomes-Santos JV, Reis LC, de Lucca W, Camargo EA, Lauton-Santos S, Zanon NM, Kettelhut ÍDC, Navegantes LC, Mecawi ADS, Badauê-Passos D, Lustrino D. Oxytocin induces anti-catabolic and anabolic effects on protein metabolism in the female rat oxidative skeletal muscle. Life Sci 2021; 279:119665. [PMID: 34087281 DOI: 10.1016/j.lfs.2021.119665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Although it is well established that skeletal muscle contains oxytocin (OT) receptors and OT-knockout mice show premature development of sarcopenia, the role of OT in controlling skeletal muscle mass is still unknown. Therefore, the present work aimed to determine OT's effects on skeletal muscle protein metabolism. MAIN METHODS Total proteolysis, proteolytic system activities and protein synthesis were assessed in isolated soleus muscle from prepubertal female rats. Through in vivo experiments, rats received 3-day OT treatment (3UI.kg-1.day-1, i.p.) or saline, and muscles were harvested for mass-gain assessment. KEY FINDINGS In vitro OT receptor stimulation reduced total proteolysis, specifically through attenuation of the lysosomal and proteasomal proteolytic systems, and in parallel activated the Akt/FoxO1 signaling and suppressed atrogenes (e.g., MuRF-1 and atrogin-1) expression induced by motor denervation. On the other hand, the protein synthesis was not altered by in vitro treatment with the OT receptor-selective agonist. Although short-term OT treatment did not change the atrogene mRNA levels, the protein synthesis was stimulated, resulting in soleus mass gain, probably through an indirect effect. SIGNIFICANCE Taken together, these data show for the first time that OT directly inhibits the proteolytic activities of the lysosomal and proteasomal systems in rat oxidative skeletal muscle by suppressing atrogene expression via stimulation of Akt/FoxO signaling. Moreover, the data obtained from in vivo experiments suggest OT's ability to control rat oxidative skeletal muscle mass.
Collapse
Affiliation(s)
- Daniely Messias Costa
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João da Cruz-Filho
- Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Alan Bruno Silva Vasconcelos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João Victor Gomes-Santos
- Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luis Carlos Reis
- Department of Physiological Sciences, Center for Biological and Health Sciences, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Waldecy de Lucca
- Department of Morphology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Enilton Aparecido Camargo
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Sandra Lauton-Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Neusa Maria Zanon
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, SP, Brazil
| | - Ísis do Carmo Kettelhut
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos Navegantes
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, SP, Brazil
| | - André de Souza Mecawi
- Department of Biophysics, São Paulo Medical School, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Daniel Badauê-Passos
- Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Danilo Lustrino
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
11
|
Buemann B, Marazziti D, Uvnäs-Moberg K. Can intravenous oxytocin infusion counteract hyperinflammation in COVID-19 infected patients? World J Biol Psychiatry 2021; 22:387-398. [PMID: 32914674 DOI: 10.1080/15622975.2020.1814408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Based on its well-documented anti-inflammatory and restorative properties we propose trials with the natural hormone oxytocin for treatment of hospitalised Covid-19 patients. METHODS We searched for, retrieved, and commented on specific literature regarding multiple functions of oxytocin with a special focus on its modulation of inflammatory, immune, and restorative functions. RESULTS Available data gathered in animals and humans support the anti-inflammatory properties of oxytocin. The multiple anti-inflammatory effects of oxytocin have been demonstrated in vitro and in vivo in various animal models and also in humans in response to intravenous infusion of oxytocin. Furthermore, oxytocin has been documented to activate several types of protective and restorative mechanisms and to exert positive effects on the immune system. CONCLUSIONS In addition, to being anti-inflammatory, it may be hypothesised, that oxytocin may be less suppressive on adaptive immune systems, as compared with glucocorticoids. Finally, by its restorative effects coupled with its anti-stress and healing properties, oxytocin may shorten the recovery period of the Covid-19 patients.
Collapse
Affiliation(s)
| | - Donatella Marazziti
- Department of Experimental and Clinical Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| |
Collapse
|
12
|
Wang SC, Wang YF. Cardiovascular protective properties of oxytocin against COVID-19. Life Sci 2021; 270:119130. [PMID: 33513400 PMCID: PMC7837104 DOI: 10.1016/j.lfs.2021.119130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection or COVID-19 has become a worldwide pandemic; however, effective treatment for COVID-19 remains to be established. Along with acute respiratory distress syndrome (ARDS), new and old cardiovascular injuries are important causes of significant morbidity and mortality in COVID-19. Exploring new approaches managing cardiovascular complications is essential in controlling the disease progression and preventing long-term complications. Oxytocin (OXT), an immune-regulating neuropeptide, has recently emerged as a strong candidate for treatment and prevention of COVID-19 pandemic. OXT carries special functions in immunologic defense, homeostasis and surveillance. It suppresses neutrophil infiltration and inflammatory cytokine release, activates T-lymphocytes, and antagonizes negative effects of angiotensin II and other key pathological events of COVID-19. Additionally, OXT can promote γ-interferon expression to inhibit cathepsin L and increases superoxide dismutase expression to reduce heparin and heparan sulphate fragmentation. Through these mechanisms, OXT can block viral invasion, suppress cytokine storm, reverse lymphocytopenia, and prevent progression to ARDS and multiple organ failures. Importantly, besides prevention of metabolic disorders associated with atherosclerosis and diabetes mellitus, OXT can protect the heart and vasculature through suppressing hypertension and brain-heart syndrome, and promoting regeneration of injured cardiomyocytes. Unlike other therapeutic agents, exogenous OXT can be used safely without the side-effects seen in remdesivir and corticosteroid. Importantly, OXT can be mobilized endogenously to prevent pathogenesis of COVID-19. This article summarizes our current understandings of cardiovascular pathogenesis caused by COVID-19, explores the protective potentials of OXT against COVID-19-associated cardiovascular diseases, and discusses challenges in applying OXT in treatment and prevention of COVID-19. Chemical compounds Angiotensin-converting enzyme 2 (ACE2); atrial natriuretic peptide (ANP); cathepsin L; heparan sulphate proteoglycans (HSPGs); interferon; interleukin; oxytocin; superoxide dismutase; transmembrane serine protease isoform 2 (TMPRSS2).
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA.
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
13
|
McKay EC, Counts SE. Oxytocin Receptor Signaling in Vascular Function and Stroke. Front Neurosci 2020; 14:574499. [PMID: 33071746 PMCID: PMC7544744 DOI: 10.3389/fnins.2020.574499] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
The oxytocin receptor (OXTR) is a G protein-coupled receptor with a diverse repertoire of intracellular signaling pathways, which are activated in response to binding oxytocin (OXT) and a similar nonapeptide, vasopressin. This review summarizes the cell and molecular biology of the OXTR and its downstream signaling cascades, particularly focusing on the vasoactive functions of OXTR signaling in humans and animal models, as well as the clinical applications of OXTR targeting cerebrovascular accidents.
Collapse
Affiliation(s)
- Erin C McKay
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Department of Family Medicine, Michigan State University, Grand Rapids, MI, United States.,Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States.,Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Jankowski M, Broderick TL, Gutkowska J. The Role of Oxytocin in Cardiovascular Protection. Front Psychol 2020; 11:2139. [PMID: 32982875 PMCID: PMC7477297 DOI: 10.3389/fpsyg.2020.02139] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of oxytocin on infarct size and functional recovery of the ischemic reperfused heart are well documented. The mechanisms for this cardioprotection are not well defined. Evidence indicates that oxytocin treatment improves cardiac work, reduces apoptosis and inflammation, and increases scar vascularization. Oxytocin-mediated cytoprotection involves the production of cGMP stimulated by local release of atrial natriuretic peptide and synthesis of nitric oxide. Treatment with oxytocin reduces the expression of proinflammatory cytokines and reduces immune cell infiltration. Oxytocin also stimulates differentiation stem cells to cardiomyocyte lineages as well as generation of endothelial and smooth muscle cells, promoting angiogenesis. The beneficial actions of oxytocin may include the increase in glucose uptake by cardiomyocytes, reduction in cardiomyocyte hypertrophy, decrease in oxidative stress, and mitochondrial protection of several cell types. In cardiac and cellular models of ischemia and reperfusion, acute administration of oxytocin at the onset of reperfusion enhances cardiomyocyte viability and function by activating Pi3K and Akt phosphorylation and downstream cellular signaling. Reperfusion injury salvage kinase and signal transducer and activator of transcription proteins cardioprotective pathways are involved. Oxytocin is cardioprotective by reducing the inflammatory response and improving cardiovascular and metabolic function. Because of its pleiotropic nature, this peptide demonstrates a clear potential for the treatment of cardiovascular pathologies. In this review, we discuss the possible cellular mechanisms of action of oxytocin involved in cardioprotection.
Collapse
Affiliation(s)
- Marek Jankowski
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
15
|
Roy RK, Augustine RA, Brown CH, Schwenke DO. Acute myocardial infarction activates magnocellular vasopressin and oxytocin neurones. J Neuroendocrinol 2019; 31:e12808. [PMID: 31715034 DOI: 10.1111/jne.12808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide. For those who survive the acute insult, the progressive dilation of the ventricle associated with chronic heart failure is driven by an adverse increase in circulating levels of the antidiuretic hormone, vasopressin, which is secreted from hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) nerve terminals. Although increased vasopressin neuronal activity has been demonstrated in the latter stages of chronic heart failure, we hypothesised that vasopressin neurones become activated immediately following an acute MI. Male Sprague-Dawley rats were anaesthetised and an acute MI was induced by ligation of the left anterior descending coronary artery. After 90 minutes of myocardial ischaemia, brains were collected. Dual-label immunohistochemistry was used to quantify the expression of Fos protein, a marker of neuronal activation, within vasopressin- or oxytocin-labelled neurones of the hypothalamic PVN and SON. Fos protein and tyrosine hydroxylase within the brainstem were also quantified. The results obtained show that the expression of Fos in both vasopressin and oxytocin neurones of the PVN and SON was significantly elevated as soon as 90 minutes post-MI compared to sham rats. Moreover, Fos protein was also elevated in tyrosine hydroxylase neurones in the nucleus tractus solitarius and rostral ventrolateral medulla of MI rats than sham rats. We conclude that magnocellular vasopressin and oxytocin neuronal activation occurs immediately following acute MI, rather than in the later stages of chronic heart failure. Therefore, prompt vasopressin antagonist therapy as an adjunct treatment for acute MI may impede the progression of ventricular dilatation, which remains a key adverse hallmark of chronic heart failure.
Collapse
Affiliation(s)
- Ranjan K Roy
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rachael A Augustine
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Daryl O Schwenke
- Department of Physiology, University of Otago, Dunedin, New Zealand
- HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Yu CG, Fu Y, Fang Y, Zhang N, Sun RX, Zhao D, Feng YM, Zhang BY. Fighting Type-2 Diabetes: Present and Future Perspectives. Curr Med Chem 2019; 26:1891-1907. [PMID: 28990512 DOI: 10.2174/0929867324666171009115356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/01/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Type-2 diabetes mellitus accounts for 80-90% of diabetic patients. So far, the treatment of diabetes mainly aims at elevating insulin level and lowering glucose level in the peripheral blood and mitigating insulin resistance. Physiologically, insulin secretion from pancreatic β cells is delicately regulated. Thus, how insulin-related therapies could titrate blood glucose appropriately and avoid the occurrence of hypoglycemia remains an important issue for decades. Similar question is addressed on how to attenuate vascular complication in diabetic subjects. METHODS We overviewed the evolution of each class of anti-diabetic drugs that have been used in clinical practice, focusing on their mechanisms, clinical results and cautions. RESULTS Glucagon-like peptide-1 receptor agonists stimulate β cells for insulin secretion in response to diet but not in fasting stage, which make them superior than conventional insulinsecretion stimulators. DPP-4 inhibitors suppress glucagon-like peptide-1 degradation. Sodium/ glucose co-transporter 2 inhibitors enhance glucose clearance through urine excretion. The appearance of these new drugs provides new information about glycemic control. We update the clinical findings of Glucagon-like peptide-1 receptor agonists, DPP-4 inhibitors and Sodium/glucose cotransporter 2 inhibitors in glycemic control and the risk or progression of cardiovascular disease in diabetic patients. Stem cell therapy might be an alternative tool for diabetic patients to improve β cell regeneration and peripheral ischemia. We summarize the clinical results of mesenchymal stem cells transplanted into patients with diabetic limb and foot. CONCLUSION A stepwise intensification of dual and triple therapy for individual diabetic patient is required to achieve therapeutic target.
Collapse
Affiliation(s)
- Cai-Guo Yu
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Ying Fu
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Yuan Fang
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Ning Zhang
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Rong-Xin Sun
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Bao-Yu Zhang
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| |
Collapse
|
17
|
Snider B, Geiser A, Yu XP, Beebe EC, Willency JA, Qing K, Guo L, Lu J, Wang X, Yang Q, Efanov A, Adams AC, Coskun T, Emmerson PJ, Alsina-Fernandez J, Ai M. Long-Acting and Selective Oxytocin Peptide Analogs Show Antidiabetic and Antiobesity Effects in Male Mice. J Endocr Soc 2019; 3:1423-1444. [PMID: 31286109 PMCID: PMC6608564 DOI: 10.1210/js.2019-00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Abstract
Oxytocin (OXT) has been shown to suppress appetite, induce weight loss, and improve glycemic control and lipid metabolism in several species, including humans, monkeys, and rodents. However, OXT's short half-life in circulation and lack of receptor selectivity limit its application and efficacy. In this study, we report an OXT peptide analog (OXTGly) that is potent and selective for the OXT receptor (OXTR). OXT, but not OXTGly, activated vasopressin receptors in vitro and acutely increased blood pressure in vivo when administered IP. OXT suppressed food intake in mice, whereas OXTGly had a moderate effect on food intake when administered IP or intracerebroventricularly. Both OXT (IP) and OXTGly (IP) improved glycemic control in glucose tolerance tests. Additionally, both OXT (IP) and OXTGly (IP) stimulated insulin, glucagon-like peptide 1, and glucagon secretion in mice. We generated lipid-conjugated OXT (acylated-OXT) and OXTGly (acylated-OXTGly) and demonstrated that these molecules have significantly extended half-lives in vivo. Compared with OXT, 2-week treatment of diet-induced obese mice with acylated-OXT [subcutaneous(ly) (SC)] resulted in enhanced body weight reduction, an improved lipid profile, and gene expression changes consistent with increased lipolysis and decreased gluconeogenesis. Treatment with acylated-OXTGly (SC) also resulted in a statistically significant weight loss, albeit to a lesser degree compared with acylated-OXT treatment. In conclusion, we demonstrate that selective activation of the OXTR pathway results in both acute and chronic metabolic benefits, whereas potential activation of vasopressin receptors by nonselective OXT analogs causes physiological stress that contributes to additional weight loss.
Collapse
Affiliation(s)
- Brandy Snider
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrea Geiser
- Biotechnology Peptide Group, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Xiao-peng Yu
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Emily Cathleen Beebe
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jill Amanda Willency
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Keyun Qing
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Lili Guo
- Biotechnology Peptide Group, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jianliang Lu
- Medicinal Chemistry, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Xiaojun Wang
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Qian Yang
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Alexander Efanov
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrew Charles Adams
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Tamer Coskun
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Paul Joseph Emmerson
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jorge Alsina-Fernandez
- Biotechnology Peptide Group, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Minrong Ai
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
18
|
Reiss AB, Glass DS, Lam E, Glass AD, De Leon J, Kasselman LJ. Oxytocin: Potential to mitigate cardiovascular risk. Peptides 2019; 117:170089. [PMID: 31112739 DOI: 10.1016/j.peptides.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, despite multiple treatment options. In addition to elevated lipid levels, oxidative stress and inflammation are key factors driving atherogenesis and CVD. New strategies are required to mitigate risk and most urgently for statin-intolerant patients. The neuropeptide hormone oxytocin, synthesized in the brain hypothalamus, is worthy of consideration as a CVD ancillary treatment because it moderates factors directly linked to atherosclerotic CVD such as inflammation, weight gain, food intake and insulin resistance. Though initially studied for its contribution to parturition and lactation, oxytocin participates in social attachment and bonding, associative learning, memory and stress responses. Oxytocin has shown promise in animal models of atherosclerosis and in some human studies as well. A number of properties of oxytocin make it a candidate CVD treatment. Oxytocin not only lowers fat mass and cytokine levels, but also improves glucose tolerance, lowers blood pressure and relieves anxiety. Further, it has an important role in communication in the gut-brain axis that makes it a promising treatment for obesity and type 2 diabetes. Oxytocin acts through its receptor which is a class I G-protein-coupled receptor present in cells of the vascular system including the heart and arteries. While oxytocin is not used for heart disease at present, residual CVD risk remains in a substantial portion of patients despite multidrug regimens, leaving open the possibility of using the endogenous nonapeptide as an adjunct therapy. This review discusses the possible role for oxytocin in human CVD prevention and treatment.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA.
| | - Daniel S Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Eric Lam
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Amy D Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Lora J Kasselman
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| |
Collapse
|
19
|
Wang P, Wang SC, Yang H, Lv C, Jia S, Liu X, Wang X, Meng D, Qin D, Zhu H, Wang YF. Therapeutic Potential of Oxytocin in Atherosclerotic Cardiovascular Disease: Mechanisms and Signaling Pathways. Front Neurosci 2019; 13:454. [PMID: 31178679 PMCID: PMC6537480 DOI: 10.3389/fnins.2019.00454] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is a major cardiovascular disease responsible for high morbidity and mortality worldwide. The major pathophysiological basis of CAD is atherosclerosis in association with varieties of immunometabolic disorders that can suppress oxytocin (OT) receptor (OTR) signaling in the cardiovascular system (CVS). By contrast, OT not only maintains cardiovascular integrity but also has the potential to suppress and even reverse atherosclerotic alterations and CAD. These protective effects of OT are associated with its protection of the heart and blood vessels from immunometabolic injuries and the resultant inflammation and apoptosis through both peripheral and central approaches. As a result, OT can decelerate the progression of atherosclerosis and facilitate the recovery of CVS from these injuries. At the cellular level, the protective effect of OT on CVS involves a broad array of OTR signaling events. These signals mainly belong to the reperfusion injury salvage kinase pathway that is composed of phosphatidylinositol 3-kinase-Akt-endothelial nitric oxide synthase cascades and extracellular signal-regulated protein kinase 1/2. Additionally, AMP-activated protein kinase, Ca2+/calmodulin-dependent protein kinase signaling and many others are also implicated in OTR signaling in the CVS protection. These signaling events interact coordinately at many levels to suppress the production of inflammatory cytokines and the activation of apoptotic pathways. A particular target of these signaling events is endoplasmic reticulum (ER) stress and mitochondrial oxidative stress that interact through mitochondria-associated ER membrane. In contrast to these protective effects and machineries, rare but serious cardiovascular disturbances were also reported in labor induction and animal studies including hypotension, reflexive tachycardia, coronary spasm or thrombosis and allergy. Here, we review our current understanding of the protective effect of OT against varieties of atherosclerotic etiologies as well as the approaches and underlying mechanisms of these effects. Moreover, potential cardiovascular disturbances following OT application are also discussed to avoid unwanted effects in clinical trials of OT usages.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Medicine, Albany Medical Center, Albany, NY, United States
| | - Haipeng Yang
- Department of Pediatrics, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dexin Meng
- Department of Physiology, Jiamusi University, Jiamusi, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
McKay EC, Beck JS, Khoo SK, Dykema KJ, Cottingham SL, Winn ME, Paulson HL, Lieberman AP, Counts SE. Peri-Infarct Upregulation of the Oxytocin Receptor in Vascular Dementia. J Neuropathol Exp Neurol 2019; 78:436-452. [PMID: 30990880 PMCID: PMC6467199 DOI: 10.1093/jnen/nlz023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular dementia (VaD) is cognitive decline linked to reduced cerebral blood perfusion, yet there are few therapeutic options to protect cognitive function following cerebrovascular accidents. The purpose of this study was to profile gene expression changes unique to VaD to identify and characterize disease relevant changes that could offer clues for future therapeutic direction. Microarray-based profiling and validation studies of postmortem frontal cortex samples from VaD, Alzheimer disease, and age-matched control subjects revealed that the oxytocin receptor (OXTR) was strongly and differentially upregulated in VaD. Further characterization in fixed tissue from the same cases showed that OXTR upregulation occurs de novo around and within microinfarcts in peri-infarct reactive astrocytes as well as within vascular profiles, likely on microvascular endothelial cells. These results indicate that increased OXTR expression in peri-infarct regions may be a specific response to microvascular insults. Given the established OXTR signaling cascades that elicit antioxidant, anti-inflammatory, and pro-angiogenic responses, the present findings suggest that de novo OXTR expression in the peri-infarct space is a tissue-protective response by astroglial and vascular cells in the wake of ischemic damage that could be exploited as a therapeutic option for the preservation of cognition following cerebrovascular insults.
Collapse
Affiliation(s)
- Erin C McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - John S Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, Michigan
| | - Karl J Dykema
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, Michigan
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
- Department of Family Medicine, Michigan State University, Grand Rapids, Michigan
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, Michigan
| |
Collapse
|
21
|
Polshekan M, Khori V, Alizadeh AM, Ghayour-Mobarhan M, Saeidi M, Jand Y, Rajaei M, Farnoosh G, Jamialahmadi K. The SAFE pathway is involved in the postconditioning mechanism of oxytocin in isolated rat heart. Peptides 2019; 111:142-151. [PMID: 29635063 DOI: 10.1016/j.peptides.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
Oxytocin (OT) has a postconditioning effect against the ischemia-reperfusion (I/R) injury. However, its precise cardioprotection mechanism at the early reperfusion phase remains under debate. Our previous study revealed that OT postconditioning (OTpost) is cardioprotective by activating the Reperfusion Injury Salvage Kinase (RISK) pathway. Therefore, the present study is aimed to determine the biological effects of OTpost via the OT receptor and the activation of the JAK/STAT3 signaling pathway, mitochondrial adenosine triphosphate-dependent potassium channel (mitoKATP), nitric oxide (NO) release, and its anti-apoptotic effects against I/R injury in an isolated rat heart model. Sixty-three rats were randomly allocated to one of nine groups. OT was perfused 40 min prior to the regional ischemia or 15 min at the early reperfusion phase. AG490 (a JAK/STAT3 inhibitor), 5HD (a mitoKATP blocker), atosiban (an OT receptor antagonist), L-NAME (a nonspecific nitric oxide synthase inhibitor) were applied either alone or in combination with OT during the pre-ischemia phase and/or in the early reperfusion phase. Myocardial infarct size, hemodynamic factor, ventricular arrhythmia, coronary flow, cardiac biochemical marker, and the apoptosis index were determined at the end of reperfusion. Oxytocin postconditioning reduced infarct size, lactate dehydrogenase activity, arrhythmia score, ventricular fibrillation, and apoptosis. Moreover, AG490, 5HD, atosiban, and L-NAME abrogated the cardioprotective effects of OT. Our results demonstrated that the cardioprotective effects of OT are mediated by NO release, and the activation of mitoKATP and the SAFE pathway through the JAK/STAT3 signaling cascade that finally lead to decrease in the apoptosis index during the early reperfusion phase.
Collapse
Affiliation(s)
- Mirali Polshekan
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Student Research Committee, Department of Modern Science and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Saeidi
- Stem cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yahya Jand
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Rajaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Bulut EC, Abueid L, Ercan F, Süleymanoğlu S, Ağırbaşlı M, Yeğen BÇ. Treatment with oestrogen-receptor agonists or oxytocin in conjunction with exercise protects against myocardial infarction in ovariectomized rats. Exp Physiol 2018; 101:612-27. [PMID: 26958805 DOI: 10.1113/ep085708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 01/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Could the activation of oxytocin or oestrogen receptors be protective against myocardial injury after ovariectomy? If so, would exercising have an additional ameliorating effect? What is the main finding and its importance? The results revealed that when accompanied by exercise, both oestrogen receptor agonists and oxytocin improved cardiac dysfunction, inhibited the generation of pro-inflammatory cytokines and reduced myocardial injury in ovariectomized female rats, suggesting a new approach for protecting postmenopausal women against ischaemia-induced myocardial injury. To investigate the putative protective effects of oxytocin or oestrogen receptor agonists against myocardial injury of ovariectomized sedentary or exercised rats, female Sprague-Dawley rats assigned to sham-operated control and ovariectomized (OVX) groups were kept sedentary or undertook swimming exercise for 4 weeks and were treated with saline, an oestrogen receptor (ER) β (DPN) or ERα agonist (PPT) or oxytocin. Ovariectomy increased weight gain and anxiety in sedentary rats, whereas exercise prevented weight gain. When accompanied by exercise, both ER agonists and oxytocin inhibited weight gain and anxiety; oxytocin, in the absence or presence of exercise, increased the left ventricular diastolic dimensions and ejection fraction, whereas ER agonists also increased left ventricular diameter when given to exercised rats. Upon the induction of myocardial ischaemia-reperfusion in the OVX rats, plasma creatine kinase-(muscle-brain) was depressed by PPT and oxytocin, whereas DPN, PPT and OT reduced plasminogen activator inhibitor-1 concentrations. The increased tumour necrosis factor-α concentration in OVX rats was also suppressed by exercise or DPN, PPT or oxytocin treatments, whereas the interleukin-6 concentration was diminished by all the treatments when given in conjunction with exercise. Disorganization of cardiac muscle fibres was reduced in all exercised rats. Oestrogen receptor agonists, as well as oxytocin, in conjunction with exercise may be effective new therapeutics to protect against myocardial ischaemia in postmenopausal women.
Collapse
Affiliation(s)
- Erman Caner Bulut
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Abueid
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Selami Süleymanoğlu
- Department of Pediatric Cardiology, Gulhane Military Medical Academy, Istanbul, Turkey
| | - Mehmet Ağırbaşlı
- Department of Cardiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
23
|
Zeng B, Liu L, Wang S, Dai Z. ILK regulates MSCs survival and angiogenesis partially through AKT and mTOR signaling pathways. Acta Histochem 2017; 119:400-406. [PMID: 28457660 DOI: 10.1016/j.acthis.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSCs) exert therapeutic effects on treating acute myocardial infarction (AMI). Angiogenesis in ischemic heart can promote the supply of oxygen and nutrients to both ischemic myocardium and transplanted stem cells. Focus is then given to the evolving strategies amied at angiogenesis. ILK has been reported to be an important factor regulating apoptosis and angiogenesis. This study examined the role and mechanism of ILK in MSCs survival and angiogenesis. In hypoxic condition, upregulation of ILK expression increased the phosphorylation of Akt and mTOR, resulting in markedly enchanced MSCs survival and VEGF expression; while significantly inhibited MSCs survival and VEGF expression was detected in MSCs with ILK kinase inactivation, which was associated with a reduction of phosphorylation of Akt and mTOR. In addition, it also caused an inhibitory effects of ILK on MSCs survival and VEGF expression, which was abolished by Akt or mTOR inhibitor. Furthermore, it was observed that ILK-overexpressed MSCs increased MSCs survival at 4days and angiogenesis at 3 weeks after transplantation into infracted myocardium as compared with GFP-MSCs group and ILK-SiRNA-MSCs group. This enhanced response was associated with attenuated left ventricular (LV) chamber dilation, reduced LV fibrosis, decreased infarct size and improved LV function. These findings reveal ILK play a pivotal role in regulating MSCs survival and VEGF expression partially through Akt and mTOR signaling pathway. In addition, transplantation of ILK-overexpressed MSCs into infracted myocardium resulted in reduced fibrosis, improved cardiac function and remodeling, which mainly medicated through increased MSCs survival and angiogenesis.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shaofeng Wang
- Department of Internal Medicine, Jiangxia District Hospital of Traditional Chinese Medicine, Jiangxia, Hubei, PR China
| | - Zhiguo Dai
- The First People's Hospital of Cardiology, Jinmen, Hubei, PR China
| |
Collapse
|
24
|
Yang Y, Hu W, Di S, Ma Z, Fan C, Wang D, Jiang S, Li Y, Zhou Q, Li T, Luo E. Tackling myocardial ischemic injury: the signal transducer and activator of transcription 3 (STAT3) at a good site. Expert Opin Ther Targets 2017; 21:215-228. [PMID: 28001439 DOI: 10.1080/14728222.2017.1275566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myocardial ischemia is one of the main causes of cardiac remodeling and heart failure. As a highly evolutionarily conserved pathway, the signal transducer and activator of transcription 3 (STAT3) signaling controls intercellular communication, signaling transduction and gene transcription. Interestingly, STAT3 signaling has been demonstrated to take part in myocardial ischemia. Furthermore, activation of STAT3 signaling contributes to the protective efficacy of various interventions, including pharmacological and non-pharmacological treatment of myocardial ischemic injury. Areas covered: We first introduce the protective mechanisms of STAT3. We then discuss STAT3 signaling in various cells and the roles of STAT3 in myocardial processes during myocardial ischemia. Finally, the roles of STAT3 in myocardial ischemia and the upstream regulators of STAT3 activation are summarized. Expert opinion: In various animal experiments, STAT3 has been demonstrated to take part in myocardial responses to myocardial ischemic injury and to be activated during various modes of protection against myocardial ischemia and ischemia/reperfusion (I/R) injury. However, further clinical evidence on the role of STAT3 in such protection is needed. Treatments targeting STAT3 as a means of reducing myocardial ischemic injury need to be tested in a clinical setting. Furthermore, biotechnology can be used to develop effective drugs for this purpose.
Collapse
Affiliation(s)
- Yang Yang
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
- b Department of Thoracic and Cardiovascular Surgery , Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , Jiangsu , China
| | - Wei Hu
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Shouyin Di
- c Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Zhiqiang Ma
- c Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Chongxi Fan
- c Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Dongjin Wang
- b Department of Thoracic and Cardiovascular Surgery , Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , Jiangsu , China
| | - Shuai Jiang
- d Department of Aerospace Medicine , The Fourth Military Medical University , Xi'an , China
| | - Yue Li
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Qing Zhou
- b Department of Thoracic and Cardiovascular Surgery , Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , Jiangsu , China
| | - Tian Li
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Erping Luo
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| |
Collapse
|
25
|
Li T, Wang P, Wang SC, Wang YF. Approaches Mediating Oxytocin Regulation of the Immune System. Front Immunol 2017; 7:693. [PMID: 28119696 PMCID: PMC5223438 DOI: 10.3389/fimmu.2016.00693] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/28/2016] [Indexed: 12/02/2022] Open
Abstract
The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine–immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic–pituitary–immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic–pituitary–immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine–immune network.
Collapse
Affiliation(s)
- Tong Li
- School of Basic Medical Sciences, Harbin Medical University , Harbin , China
| | - Ping Wang
- School of Basic Medical Sciences, Harbin Medical University , Harbin , China
| | - Stephani C Wang
- Department of Internal Medicine, Albany Medical Center , Albany, NY , USA
| | - Yu-Feng Wang
- School of Basic Medical Sciences, Harbin Medical University , Harbin , China
| |
Collapse
|
26
|
Polshekan M, Jamialahmadi K, Khori V, Alizadeh AM, Saeidi M, Ghayour-Mobarhan M, Jand Y, Ghahremani MH, Yazdani Y. RISK pathway is involved in oxytocin postconditioning in isolated rat heart. Peptides 2016; 86:55-62. [PMID: 27717750 DOI: 10.1016/j.peptides.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
Abstract
The reperfusion injury salvage kinase (RISK) pathway is a fundamental signal transduction cascade in the cardioprotective mechanism of ischemic postconditioning. In the present study, we examined the cardioprotective role of oxytocin as a postconditioning agent via activation of the RISK pathway (PI3K/Akt and ERK1/2). Animals were randomly divided into 6 groups. The hearts were subjected under 30minutes (min) ischemia and 100min reperfusion. OT was perfused 15min at the early phase of reperfusion. RISK pathway inhibitors (Wortmannin; an Akt inhibitor, PD98059; an ERK1/2 inhibitor) and Atosiban (an OT receptor antagonist) were applied either alone 10min before the onset of the ischemia or in the combination with OT during early reperfusion phase. Myocardial infarct size, hemodynamic factors, ventricular arrhythmia, coronary flow and cardiac biochemical marker were measured at the end of reperfusion. OT postconditioning (OTpost), significantly decreased the infarct size, arrhythmia score, incidence of ventricular fibrillation, Lactate dehydrogenase and it increased coronary flow. The cardioprotective effect of OTpos was abrogated by PI3K/Akt, ERK1/2 inhibitors and Atosiban. Our data have shown that OTpost can activate RISK pathway mostly via the PI3K/Akt and ERK1/2 signaling cascades during the early phase of reperfusion.
Collapse
Affiliation(s)
- Mirali Polshekan
- Student Research Committee, Department of Modern Science and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kadijeh Jamialahmadi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Khori
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Mohsen Saeidi
- Stem cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Jand
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
27
|
Dong W, Xian Y, Yuan W, Huifeng Z, Tao W, Zhiqiang L, Shan F, Ya F, Hongli W, Jinghuan W, Lei Q, Li Z, Hongyi Q. Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats' stroke model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:169-179. [PMID: 27301615 DOI: 10.1016/j.jep.2016.06.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 05/25/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Catalpol is the main active component of the radix from Rehmannia glutinosa Libosch, which has pleiotropic protective effects in neurodegenerative diseases, ischemic stroke, metabolic disorders and others AIM Catalpol has been shown to have neuroprotective, neurorepair, and angiogenesis effects following ischemic brain injury. However, its molecular mechanisms are still poorly understood. In previous studies, the JAK2/STAT3 signaling pathway was found to play a role in neuroprotection and angiogenesis. This study investigated the role of catalpol in stimulating angiogenesis via the JAK2/STAT3 pathway after permanent focal cerebral ischemia (pMCAO). METHODS Rats were subjected to right middle cerebral artery occlusion through electrocoagulation and were treated with catalpol (5mg/kg), AG490 was also used to inhibit STAT3 phosphorylation (pSTAT3). RESULTS Following stroke, Catalpol improved the neuroethology deficit, increased the cerebral blood flow (CBF) of infarcted brain and upregulated EPO and EPOR. AG490 suppressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), ultimately inhibited VEGF mRNA expression, which reduced VEGF protein expression and inhibited stroke-induced angiogenesis. However, Catalpol enhanced stroke-induced STAT3 activation and subsequently restored STAT3 activity through the recovery of STAT3 binding to VEGF. Moreover, Catalpol reversed the effect of AG490 on STAT3 activation and nuclear translocation, restored the transcriptional activity of the VEGF promoter by recruiting STAT3 to the VEGF promoter, improved VEGF mRNA and protein expression, increased angiogenesis, reduced the difference in CBF between the infarcted and intact brain and ameliorated the neuroethology behaviors after stroke. CONCLUSION Catalpol affects neuroprotection and angiogenesis via the JAK2/STAT3 signaling pathway, which is mediated by STAT3 activation and VEGF expression. Catalpol may be used as a potential therapeutic drug for stroke.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Cerebral Arteries/drug effects
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebrovascular Circulation/drug effects
- Disease Models, Animal
- Erythropoietin/metabolism
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Iridoid Glucosides/pharmacology
- Janus Kinase 2/metabolism
- Male
- Neovascularization, Physiologic/drug effects
- Neuroprotective Agents/pharmacology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transcriptional Activation
- Up-Regulation
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Wan Dong
- Department of Emergency, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Xian
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu 610041, China
| | - Wang Yuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zhu Huifeng
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Wang Tao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Liu Zhiqiang
- Department of Pharmacy, The First People's Hospital of Neijiang, Neijiang 641000, China
| | - Feng Shan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Fu Ya
- College of Chemistry and Chemical Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wang Hongli
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Wang Jinghuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qin Lei
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zou Li
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qi Hongyi
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
28
|
Gonzalez-Reyes A, Menaouar A, Yip D, Danalache B, Plante E, Noiseux N, Gutkowska J, Jankowski M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Mol Cell Endocrinol 2015; 412:170-81. [PMID: 25963797 DOI: 10.1016/j.mce.2015.04.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023]
Abstract
Oxytocin (OT) stimulates cardioprotection. Here we investigated heart-derived H9c2 cells in simulated ischemia-reperfusion (I-R) experiments in order to examine the mechanism of OT protection. I-R was induced in an anoxic chamber for 2 hours and followed by 2 h of reperfusion. In comparison to normoxia, I-R resulted in decrease of formazan production by H9c2 cells to 63.5 ± 1.7% (MTT assay) and in enhanced apoptosis from 1.7 ± 0.3% to 2.8 ± 0.4% (Tunel test). Using these assays it was observed that treatment with OT (1-500 nM) exerted significant protection during I-R, especially when OT was added at the time of ischemia or reperfusion. Using the CM-H2DCFDA probe we found that OT triggers a short-lived burst in reactive oxygen species (ROS) production in cells but reduces ROS production evoked by I-R. In cells treated with OT, Western-blot revealed the phosphorylation of Akt (Thr 308, p-Akt), eNOS and ERK 1/2. Microscopy showed translocation of p-Akt and eNOS into the nuclear and perinuclear area and NO production in cells treated with OT. The OT-induced protection against I-R was abrogated by an OT antagonist, the Pi3K inhibitor Wortmannin, the cGMP-dependent protein kinase (PKG) inhibitor, KT5823, as well as soluble guanylate cyclase (GC) inhibitor, ODQ, and particulate GC antagonist, A71915. In conditions of I-R, the cells with siRNA-mediated reduction in OT receptor (OTR) expression responded to OT treatment by enhanced apoptosis. In conclusion, the OTR protected H9c2 cells against I-R, especially if activated at the onset of ischemia or reperfusion. The OTR-transduced signals include pro-survival kinases, such as Akt and PKG.
Collapse
Affiliation(s)
- Araceli Gonzalez-Reyes
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University
| | - Ahmed Menaouar
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Denis Yip
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University
| | - Bogdan Danalache
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Eric Plante
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Nicolas Noiseux
- Department of Surgery, Faculty of Medicine, University of Montreal
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University; Department of Medicine, University of Montreal
| | - Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Medicine, University of Montreal.
| |
Collapse
|
29
|
Ybarra N, Vincent P, Smith LC, Troncy E. Oxytocin improves the expression of cardiac specific markers in porcine bone marrow stem cells differentiation. Res Vet Sci 2014; 98:42-50. [PMID: 25541154 DOI: 10.1016/j.rvsc.2014.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 08/19/2014] [Accepted: 11/26/2014] [Indexed: 11/16/2022]
Abstract
Bone marrow stem cells (BMSCs) treated with 5-azacytidine possess myogenic differentiation potential. Oxytocin (OT) induces cardiomyogenesis in murine embryonic and cardiac stem cells. We attempted to isolate, characterize, and induce OT-mediated cardiomyogenic differentiation of porcine pBMSCs. Cells were treated as: control, OT, and 5-azacytidine groups. During early passages, transcripts of Oct4, GATA4, OT receptor, and phospholamban were expressed. RT-PCR showed upregulation of GATA4 in OT and 5-azacytidine-induced groups. Immunocytochemistry revealed higher expressions of cardiac troponin T and myosin heavy chain in OT than in 5-azacytidine-induced groups (p < 0.01). Western blot analysis showed upregulation of cardiac troponin I in OT-induced pBMSCs (p < 0.01). We infer pBMSCs should be induced during early passages, when expressing transcription factors related to pluripotency and cardiomyogenesis, as well as OT receptor. The more abundant expression of cardiac specific proteins in OT-treated pBMSCs suggests OT could be a more potent cardiomyogenic inducer of pBMSC.
Collapse
Affiliation(s)
- Norma Ybarra
- GREPAQ - Department of Veterinary Biomedicine, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Patrick Vincent
- CRRA - Department of Veterinary Biomedicine, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Lawrence C Smith
- CRRA - Department of Veterinary Biomedicine, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Eric Troncy
- GREPAQ - Department of Veterinary Biomedicine, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada.
| |
Collapse
|
30
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
31
|
Oxytocin improves follicular reserve in a cisplatin-induced gonadotoxicity model in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:703691. [PMID: 24959584 PMCID: PMC4053297 DOI: 10.1155/2014/703691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Cisplatin (CP), an antitumor agent, has been shown to cause ovarian injury and dysfunction in both animal and human studies. The present study was conducted to investigate the protective effect of oxytocin (OT) on CP-induced ovarian toxicity in rats. Twenty-one adult female rats were included in the study. Fourteen rats were administered intraperitoneally CP (2 mg/kg/day) twice a week for 5 weeks. Control group (n = 7) did not receive any treatment. Following treatment, CP-received rats were randomly divided into two groups and treated with either saline (1 mL/kg/day, n = 7) or OT (160 μg/kg/day, n = 7) for 5 weeks. Then, ovarian toxicity and effects of OT were evaluated by histomorphological and biochemical analysis. Our findings revealed a significant reduction in the number of follicles at each grade in saline-treated group. AMH level was significantly lower in saline group compared to control (P < 0.0005). OT treatment significantly attenuated CP toxicity in ovaries and increased AMH levels compared to saline group (P < 0.005). Also, administration of OT lessened lipid peroxidation and prevented glutathione depletion in CP-treated rats (P < 0.05). These results indicated that OT could lessen the CP-induced ovarian damage and improve follicular reserve by preventing oxidative damage.
Collapse
|
32
|
Akdemir A, Erbas O, Gode F, Ergenoglu M, Yeniel O, Oltulu F, Yavasoglu A, Taskiran D. Protective effect of oxytocin on ovarian ischemia-reperfusion injury in rats. Peptides 2014; 55:126-30. [PMID: 24630974 DOI: 10.1016/j.peptides.2014.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/14/2023]
Abstract
Oxytocin (OT), a neurohypophysial nonapeptide, plays dual role as a neurotransmitter/neuromodulator and a hormone. It has also well known protective properties against ischemia/reperfusion organ damage. This study investigated the effect of OT on experimentally induced ovarian torsion/de-torsion ischemia/reperfusion (I/R) injury in rats. Sprague-Dawley rats were assigned to five treatment groups (n=7/group): Group 1, sham-operated; Group 2, torsion; Group 3, 80 IU/kg of OT administration 30 min prior to torsion; Group 4, torsion/de-torsion; and Group 5, torsion followed by 80 IU/kg of OT administration 30 min prior to de-torsion. OT administration significantly decreased the tissue malondialdehyde (MDA) levels in both the torsion and OT group (Group 3), and torsion/de-torsion OT group (Group 5) in comparison with the torsion-only group (Group 2) and torsion/de-torsion group (Group 4). Histopathological finding scores including follicular degeneration, edema, hemorrhage, vascular congestion, and infiltration by inflammatory cells were found to be significantly decreased in the torsion and OT group (Group 3), and torsion/de-torsion OT group (Group 5) when compared with the torsion-only group (Group 2) and torsion/de-torsion group (Group 4). In conclusion, these results, verified with histopathologic evaluation and biochemical assays, suggest a probable protective role for OT in ischemia and I/R injury in rat ovaries.
Collapse
Affiliation(s)
- Ali Akdemir
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Ege University School of Medicine, Izmir, Turkey
| | - Funda Gode
- Department of Obstetrics and Gynecology, Kent Hospital, Izmir, Turkey.
| | - Mete Ergenoglu
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Ozgur Yeniel
- Department of Obstetrics and Gynecology, Ege University School of Medicine, Izmir, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| | - Altug Yavasoglu
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| | - Dilek Taskiran
- Department of Physiology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
33
|
Manolescu DC, Jankowski M, Danalache BA, Wang D, Broderick TL, Chiasson JL, Gutkowska J. All-trans retinoic acid stimulates gene expression of the cardioprotective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice. Appl Physiol Nutr Metab 2014; 39:1127-36. [PMID: 25017112 DOI: 10.1139/apnm-2014-0005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In hypertensive rodents, retinoic acid (RA) prevents adverse cardiac remodelling and improves myocardial infarction outcome, but its role in obesity-related changes of cardiac tissue are unclear. We hypothesized that all-trans RA (ATRA) treatment will improve the cardioprotective oxytocin-natriuretic peptides (OT-NP) system, preventing apoptosis and collagen accumulation in hearts of ob/ob mice, a mouse model of obesity and insulin resistance. Female 9-week-old B6.V-Lep/J ob/ob mice (n = 16) were divided into 2 groups: 1 group (n = 8) treated with 100 μg of ATRA dissolved in 100 μL of corn oil (vehicle) delivered daily (∼2 μg·g body weight(-1)·day(-1)) by stomach intubation for 16 days, and 1 group (n = 8) that received the vehicle alone. A group of nonobese littermate mice (n = 9) served as controls. Ob/ob mice exhibited obesity, hyperglycaemia, and downregulation of the cardiac OT-NP system, including the mRNA for the transcription factor GATA4, OT receptor and brain NP, and the protein expression for endothelial nitric oxide synthase. Hearts from ob/ob mice also demonstrated increased apoptosis and collagen accumulation. ATRA treatment induced weight loss and decreased adipocytes diameter in the visceral fat, thus reducing visceral obesity, which is associated with a high risk for cardiovascular disease. RA treatment was associated with a reduction in hyperglycemia and a normalization of the OT-NP system's expression in the hearts of ob/ob mice. Furthermore, ATRA treatment prevented apoptosis and collagen accumulation in hearts of ob/ob mice. The present study indicates that ATRA treatment was effective in restoring the cardioprotective OT-NP system and in preventing abnormal cardiac remodelling in the ob/ob mice.
Collapse
Affiliation(s)
- Daniel-Constantin Manolescu
- a Laboratory of Nutrition and Cancer, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Menaouar A, Florian M, Wang D, Danalache B, Jankowski M, Gutkowska J. Anti-hypertrophic effects of oxytocin in rat ventricular myocytes. Int J Cardiol 2014; 175:38-49. [PMID: 24852833 DOI: 10.1016/j.ijcard.2014.04.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/11/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Oxytocin (OT) and functional OT receptor (OTR) are expressed in the heart and are involved in blood pressure regulation and cardioprotection. Cardiac OTR signaling is associated with atrial natriuretic peptide (ANP) and nitric oxide (NO) release. During the synthesis of OT, its precursor, termed OT-Gly-Lys-Arg (OT-GKR), is accumulated in the developing rat heart. Consequently, we hypothesized that an OT-related mechanism of ANP controls cardiomyocyte (CM) hypertrophy. METHODS The experiments were carried out in newborn and adult rat CM cultures. The enhanced protein synthesis and increased CM volume were mediated by a 24-h treatment with endothelin-1 or angiotensin II. RESULTS The treatment of CM with OT or its abundant cardiac precursor, OT-GKR, revealed ANP accumulation in the cell peri-nuclear region and increased intracellular cGMP. Consequently, the CM hypertrophy was abolished by the treatment of 10nM OT or 10nM OT-GKR. The ANP receptor antagonist (anantin) and NO synthases inhibitor (l-NAME) inhibited cGMP production in CMs exposed to OT. STO-609 and compound C inhibition of anti-hypertrophic OT effects in CMs indicated the contribution of calcium-calmodulin kinase kinase and AMP-activated protein kinase pathways. Moreover, in ET-1 stimulated cells, OT treatment normalized the reduced Akt phosphorylation, prevented abundant accumulation of ANP and blocked ET-1-mediated translocation of nuclear factor of activated T-cells (NFAT) into the cell nuclei. CONCLUSION cGMP/protein kinase G mediates OT-induced anti-hypertrophic response with the contribution of ANP and NO. OT treatment represents a novel approach in attenuation of cardiac hypertrophy during development and cardiac pathology.
Collapse
Affiliation(s)
- Ahmed Menaouar
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Maria Florian
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Donghao Wang
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Bogdan Danalache
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| |
Collapse
|
35
|
Abstract
Studies of body volume expansion have indicated that lesions of the anteroventral third ventricle and median eminence block the release of atrial natriuretic peptide (ANP) into the circulation. Detailed analysis of the lesions showed that activation of oxytocin (OT)-ergic neurons is responsible for ANP release, and it has become clear that activation of neuronal circuitry elicits OT secretion into the circulation, activating atrial OT receptors and ANP release from the heart. Subsequently, we have uncovered the entire functional OT system in the rat and the human heart. An abundance of OT has been observed in the early development of the fetal heart, and the capacity of OT to generate cardiomyocytes (CMs) has been demonstrated in various types of stem cells. OT treatment of mesenchymal stem cells stimulates paracrine factors beneficial for cardioprotection. Cardiovascular actions of OT include: i) lowering blood pressure, ii) negative inotropic and chronotropic effects, iii) parasympathetic neuromodulation, iv) vasodilatation, v) anti-inflammatory activity, vi) antioxidant activity, and vii) metabolic effects. OT actions are mediated by nitric oxide and ANP. The beneficial actions of OT may include the increase in glucose uptake by CMs and stem cells, reduction in CM hypertrophy, oxidative stress, and mitochondrial protection of several cell types. In experimentally induced myocardial infarction in rats, continuous in vivo OT delivery improves cardiac healing and cardiac work, reduces inflammation, and stimulates angiogenesis. Because OT plays anti-inflammatory and cardioprotective roles and improves vascular and metabolic functions, it demonstrates potential for therapeutic use in various pathologic conditions.
Collapse
Affiliation(s)
- J Gutkowska
- Laboratory of Cardiovascular Biochemistry, Department of Medicine, Faculty of Medicine, University of Montreal, CHUM Research Centre, Montreal, Quebec, Canada
| | - M Jankowski
- Laboratory of Cardiovascular Biochemistry, Department of Medicine, Faculty of Medicine, University of Montreal, CHUM Research Centre, Montreal, Quebec, Canada
| | - J Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, Brasil
| |
Collapse
|
36
|
Danalache BA, Yu C, Gutkowska J, Jankowski M. Oxytocin-Gly-Lys-Arg stimulates cardiomyogenesis by targeting cardiac side population cells. J Endocrinol 2014; 220:277-89. [PMID: 24403294 DOI: 10.1530/joe-13-0305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The functional oxytocin (OT) system is expressed in the human and rodent hearts. OT stimulates differentiation of cardiac stem cells into contracting cardiomyocytes (CM). In this study, we investigated OT receptors (OTR) expressed in the cells of cardiac side population (SP) and the abilities of these cells to differentiate into CM in response to the treatment with OT-Gly-Lys-Arg (OT-GKR), a dominant and biologically active form of OT, in the fetal rodent heart. Immunocytochemistry of whole rat embryo at mid gestation (E11) revealed parallel staining in the heart of OTR and the ATP-binding cassette sub-family G member 2 (brcp1) antigen the marker of the SP phenotype. Using flow cytometry, the SP cells were selected from the newborn CM stained with Höechst 33342: 5.32%±0.06% of SP and 15.2%±1.10 of main population expressed OTR on the cell surface. The OTR was detected in CD29 (6.6%) and then in CD31 (4.7%) but less frequently in CD45 (0.7%) positive SP cell subpopulations. Specifically, the phenotype of SP CD31- cell, but not SP CD31+ cells, proliferates in the presence of OT-GKR and develops large cell aggregates. Then, OT-GKR treatment induced the apparition of beating cell colonies after 11 days (10±2.78%), which increased until day 16 (52±1.21%). The cells in contractile colonies expressed the markers of a CM phenotype, such as troponin, cardiac myosin light chain-2, and actinin. Finally, SP cells stimulated by OT-GKR induced endothelial phenotype. These results suggest that the C-terminally extended OT molecule stimulates cardiac differentiation of SP CD31- cells and is involved in heart growth.
Collapse
Affiliation(s)
- Bogdan A Danalache
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
37
|
Effect of oxytocin treatment on explant size, plasma and peritoneal levels of MCP-1, VEGF, TNF-α and histopathological parameters in a rat endometriosis model. Eur J Obstet Gynecol Reprod Biol 2014; 175:134-9. [PMID: 24447470 DOI: 10.1016/j.ejogrb.2013.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 10/11/2013] [Accepted: 12/17/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine the effects of oxytocin (OT) on surgically induced endometriosis in a rat model. STUDY DESIGN Twelve female Sprague-Dawley rats were included. After the implantation and establishment of autologous endometrium onto the abdominal wall peritoneum, the rats were randomly divided into two groups, treated with intramuscular oxytocin (OT group, 160μgkg/day, n=6) or isotonic NaCl solution (control group, 1mLkg/day, n=6) for 28 days. To evaluate the therapeutic effects of OT, the explant volumes were calculated and the levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1, and TNF-α were measured in plasma and peritoneal fluid. Endometriotic explants were examined histologically by semiquantitative analysis. RESULTS After treatment, the mean endometriotic explant volume was decreased in the OT group (p=0.016). The histopathological score and VEGF immunoexpression of endometriotic explants were significantly lower in the OT group (p=0.007) than in controls (p=0.000). Inflammatory cytokine levels in plasma and peritoneal fluid were considerably decreased in the OT group. Moreover, TUNEL immunohistochemistry clearly demonstrated more apoptotic changes in the mononuclear cells of the OT group compared with controls. CONCLUSION We suggest that oxytocin might be considered as a potential candidate therapeutic agent for endometriosis.
Collapse
|
38
|
Mitsos S, Koletsis EN, Katsanos K, Bravou V, Kolonitsiou F, Marinos E, Flordellis CS, Dougenis D. Intramyocardial thrombin promotes angiogenesis and improves cardiac function in an experimental rabbit model of acute myocardial infarction. J Thorac Cardiovasc Surg 2013; 147:1376-83. [PMID: 23856196 DOI: 10.1016/j.jtcvs.2013.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Thrombin has been reported to play a pivotal role in the initiation of angiogenesis by indirectly regulating and organizing a network of angiogenic molecules. On the basis of these reports, we investigated the angiogenic action of thrombin in a rabbit model of acute myocardial infarction. METHODS A rabbit model of acute myocardial infarction was established by ligation of the left anterior descending coronary branch. Subjects were then divided into 2 groups and treated with intramyocardial administration of thrombin (2500 IU; n = 13) or an equal volume of normal saline (n = 13). Four weeks later, animals were euthanized and histopathologic analysis, immunohistochemical staining for endothelial markers CD31 and vascular endothelial growth factor-A, and electron microscopy examination were performed on excised hearts. Electrocardiography, cardiac enzymes, and assessment of cardiac function by measuring left ventricular end-diastolic pressure and ejection fraction were recorded before and after myocardial infarction, and both left ventricular end-diastolic pressure and ejection fraction were further measured on the day of euthanasia (n = 5-8 in each case). RESULTS Increased levels of troponin, ST elevation, and histopathologically confirmed myocardial infarction were observed in all animals. A significant increase of microvessel density at the infarct border zone, as evaluated by CD31 immunohistochemistry, was observed in the thrombin-treated group compared with the control group (30.3 ± 12.8 vs 12.6 ± 4.8, P = .0065). A significantly higher number of vascular endothelial growth factor-A-positive vessels at the infarct border zone was observed in the thrombin-treated animals compared with the control group (21.8 ± 8.9 vs 5.6 ± 4.4; P = .0009). The thrombin-treated animals showed a statistically significant reduction in left ventricular end-diastolic pressure values (6.9 ± 1.8 mm Hg vs 12.7 ± 2.2 mm Hg, P = .0002) and significant improvement in left ventricular ejection fraction (59.8% ± 3.1% vs 42.2% ± 6.14%, P = .002) on the day of euthanasia compared with the post-infarct day, reflecting significantly improved cardiac function compared with control subjects that showed no significant change. CONCLUSIONS Intramyocardial administration of thrombin seems to promote angiogenesis and improve cardiac function of the ischemic myocardium, which may provide a new therapeutic approach in patients with myocardial ischemia.
Collapse
Affiliation(s)
- Sofoklis Mitsos
- Department of Cardiothoracic Surgery, Patras University Hospital, School of Medicine, Rion, Greece.
| | - Efstratios N Koletsis
- Department of Cardiothoracic Surgery, Patras University Hospital, School of Medicine, Rion, Greece
| | - Konstantinos Katsanos
- Department of Interventional Radiology, Patras University Hospital, School of Medicine, Rion, Greece
| | - Vassiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Rion, Greece
| | - Fevronia Kolonitsiou
- Department of Microbiology, Patras University Hospital, School of Medicine, Rion, Greece
| | - Evangelos Marinos
- Laboratory of Histology and Embryology, Medical School, University of Athens, Goudi, Greece
| | | | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Patras University Hospital, School of Medicine, Rion, Greece
| |
Collapse
|
39
|
Szeto A, Rossetti MA, Mendez AJ, Noller CM, Herderick EE, Gonzales JA, Schneiderman N, McCabe PM. Oxytocin administration attenuates atherosclerosis and inflammation in Watanabe Heritable Hyperlipidemic rabbits. Psychoneuroendocrinology 2013; 38:685-93. [PMID: 22998949 PMCID: PMC3543511 DOI: 10.1016/j.psyneuen.2012.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/16/2022]
Abstract
Oxytocin (OT) is a neurohypophyseal peptide traditionally associated with female reproductive functioning, and more recently with prosocial behavior. OT and its receptor are also expressed in the heart and vascular tissue and play a role in cardiovascular homeostasis. In vitro, it has been demonstrated that OT decreases NADPH-dependent superoxide production and pro-inflammatory cytokine release from vascular endothelial cells and macrophages, suggesting that OT may attenuate pathophysiological processes involved with atherosclerotic lesion formation. The present study sought to determine the effect of chronic exogenous OT administration on inflammation and atherosclerosis in an animal model of dyslipidemia and atherosclerosis, the Watanabe Heritable Hyperlipidemic (WHHL) rabbit. Twenty-two, 3-month-old WHHLs were surgically implanted with osmotic mini-pumps containing OT (n=11) or vehicle (n=11), and then were individually housed for the entire study. Blood and 24-h urine samples were taken at baseline and after 8 (midpoint) and 16 (endpoint) weeks of treatment. At endpoint, the aortas and visceral fat samples were dissected and stored for analyses. There were no group differences in body weight, serum lipids, plasma/urinary measures of oxidative stress, plasma cortisol or urinary catecholamines over the 16-week treatment. OT-treated animals exhibited significantly lower plasma C-reactive protein levels at midpoint and endpoint and developed significantly less atherosclerosis in the thoracic aorta relative to vehicle control animals at endpoint (p<0.05). Cytokine gene expression from visceral adipose tissue samples suggested that there was a decrease in adipose tissue inflammation in the OT-treated group compared to the vehicle control group, however these differences were not statistically significant. These results suggest that chronic peripheral OT administration can inhibit inflammation and atherosclerotic lesion development.
Collapse
Affiliation(s)
- Angela Szeto
- Behavioral Medicine Research Center and Department of Psychology, University of Miami, Coral Gables, FL 33124
| | - Maria A. Rossetti
- Behavioral Medicine Research Center and Department of Psychology, University of Miami, Coral Gables, FL 33124
| | - Armando J. Mendez
- Diabetes Research Institute at the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Crystal M. Noller
- Behavioral Medicine Research Center and Department of Psychology, University of Miami, Coral Gables, FL 33124
| | | | - Julie A. Gonzales
- Behavioral Medicine Research Center and Department of Psychology, University of Miami, Coral Gables, FL 33124
| | - Neil Schneiderman
- Behavioral Medicine Research Center and Department of Psychology, University of Miami, Coral Gables, FL 33124
| | - Philip M. McCabe
- Behavioral Medicine Research Center and Department of Psychology, University of Miami, Coral Gables, FL 33124
| |
Collapse
|
40
|
Gangula PR, Dong YL, Al-Hendy A, Richard-Davis G, Montgomery-Rice V, Haddad G, Millis R, Nicholas SB, Moseberry D. Protective cardiovascular and renal actions of vitamin D and estrogen. Front Biosci (Schol Ed) 2013; 5:134-48. [PMID: 23277041 PMCID: PMC3673780 DOI: 10.2741/s362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both basic science and clinical studies support the concept that vitamin D deficiency is involved in the pathogenesis of cardiovascular and renal diseases through its association with diabetes, obesity, and hypertension. Understanding the underlying mechanisms may provide a rationale for advocating adequate intake of vitamin D and calcium in all populations, thereby preventing many chronic diseases. This review explores the effect of vitamin D deficiency in the development of cardiovascular and renal diseases, and the role of vitamin D supplementation on cardiovascular outcomes. In addition, it highlights the importance of vitamin D intake for the prevention of adverse long-term health consequences, and in ways to facilitate the management of cardiovascular disease. This is particularly true for African American and postmenopausal women, who are at added risk for cardiovascular disease. We suggest that the negative cardiovascular effects of low vitamin D in postmenopausal women could be improved by a combined treatment of vitamin D and sex steroids acting through endothelium-dependent and/or -independent mechanisms, resulting in the generation of nitric oxide and calcitonin gene-related peptide (CGRP).
Collapse
Affiliation(s)
- Pandu R Gangula
- Departments of Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Erbaş O, Oltulu F, Taşkiran D. Amelioration of rotenone-induced dopaminergic cell death in the striatum by oxytocin treatment. Peptides 2012; 38:312-7. [PMID: 22985856 DOI: 10.1016/j.peptides.2012.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022]
Abstract
Oxytocin (OT) is essentially associated with uterine contraction during parturition and milk ejection reflex. Although several studies implicate the role of OT in anti-inflammatory, anti-oxidative and anti-apoptotic pathways, there is a lack of data with regard to the protective effects of oxytocin in neurodegenerative models such as Parkinson's disease (PD). The present study was undertaken to investigate the neuroprotective effects of oxytocin (OT) on rotenone-induced PD in rats. Twenty adult Sprague-Dawley rats were injected with rotenone (3 μg/μl in DMSO) or vehicle (1 μl DMSO) into the left substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) under stereotaxic surgery, and PD model was assessed by rotational test ten days after drug infusion. The valid PD rats were randomly divided into two groups; Group 1 (n=7) and Group 2 (n=7) were administered saline (1 ml/kg/day, i.p.) and oxytocin (160 μg/kg/day, i.p.) through 20 days, respectively. The effects of OT treatment were evaluated by behavioral, histological and immunohistochemical parameters. Apomorphine-induced stereotypic rotations in PD rats were significantly inhibited by OT treatment (p<0.05). In addition, immunohistochemical studies clearly demonstrated the suppression of Bax, caspase-3, caspase-8 and elevation of Bcl-2 and tyrosine hydroxylase immunoexpression in OT-treated rats compared to saline group. Our findings suggest that oxytocin may have cytoprotective and restorative effects on dopaminergic neurons against rotenone-induced injury. The underlying mechanism may be associated with the inhibition of apoptotic pathways.
Collapse
Affiliation(s)
- Oytun Erbaş
- Department of Physiology, Ege University School of Medicine, 35100 Izmir, Turkey
| | | | | |
Collapse
|
42
|
Noiseux N, Borie M, Desnoyers A, Menaouar A, Stevens LM, Mansour S, Danalache BA, Roy DC, Jankowski M, Gutkowska J. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology 2012; 153:5361-72. [PMID: 23024264 DOI: 10.1210/en.2012-1402] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Principal limitation of cell therapy is cell loss after transplantation because of the interplay between ischemia, inflammation, and apoptosis. We investigated the mechanism of preconditioning of mesenchymal stem cells (MSCs) with oxytocin (OT), which has been proposed as a novel strategy for enhancing therapeutic potential of these cells in ischemic heart. In this study, we demonstrate that rat MSCs express binding sites for OT receptor and OT receptor transcript and protein as detected by RT-PCR and immunofluorescence, respectively. In response to OT (10(-10) to 10(-6) M) treatment, MSCs respond with rapid calcium mobilization and up-regulation of the protective protein kinase B (PKB or Akt) and phospho-ERK1/2 proteins. In OT-stimulated cells, phospho-Akt accumulates intracellularly close to the mitochondrial marker cytochrome c oxidase subunit 4. Functional analyses reveal the involvement of Akt/ERK1/2 pathways in cell proliferation, migration, and protection against the cytotoxic and apoptotic effects of hypoxia and serum deprivation. In addition, OT preconditioning increases MSC glucose uptake. Genes with angiogenic, antiapoptotic, and cardiac antiremodeling properties, such as heat shock proteins (hsps) HSP27, HSP32, HSP70, vascular endothelial growth factor, thrombospondin, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, TIMP-3, and matrix metalloproteinase-2, were also up-regulated upon OT exposure. Moreover, coculture with OT-preconditioned MSC reduces apoptosis, as measured using terminal transferase dUTP nick end labeling assay in newborn rat cardiomyocytes exposed to hypoxia and reoxygenation. In conclusion, these results indicate that OT treatment evokes MSC protection through both intrinsic pathways and secretion of cytoprotective factors. Ex vivo cellular treatment with OT represents an attractive strategy aimed to maximize the biological and functional properties of effector cells.
Collapse
Affiliation(s)
- Nicolas Noiseux
- Centre de Recherche, Department of Medicine, Université de Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Traditionally associated with female reproduction, oxytocin (OT) was revisited recently and was revealed to have several new roles in the cardiovascular system. Functional OT receptors have been discovered in the rat and human heart, as well as in vascular beds. The cardiovascular activities of OT include: (i) lowering blood pressure; (ii) negative cardiac inotropy and chronotropy; (iii) parasympathetic neuromodulation; (iv) vasodilatation; (v) anti-inflammatory; (vi) antioxidative; and (vii) metabolic effects. These outcomes are mediated, at least in part, by stimulating cardioprotective mediators, such as nitric oxide and atrial natriuretic peptide. OT and its extended form OT-Gly-Lys-Arg have been shown to be abundant in the foetal mouse heart. OT has the capacity to generate cardiomyocytes from various types of stem cells, including the cardiac side population. Mesenchymal cells transfected with OT-Gly-Lys-Arg, or preconditioned with OT, are resistant to apoptosis and express endothelial cell markers. OT increases glucose uptake in cultured cardiomyocytes from newborn and adult rats, in normal, hypoxic and even insulin resistance conditions. In rats with experimentally-induced myocardial infarction, continuous in vivo OT delivery improves the cardiac healing process, as well as cardiac work, reduces inflammation and stimulates angiogenesis. Therefore, in pathological conditions, OT exerts anti-inflammatory and cardioprotective properties, and improves vascular and metabolic functions. Thus, OT has potential for therapeutic use.
Collapse
Affiliation(s)
- J Gutkowska
- Laboratory of Cardiovascular Biochemistry, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Hôtel-Dieu and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
44
|
Gutnick A, Blechman J, Kaslin J, Herwig L, Belting HG, Affolter M, Bonkowsky JL, Levkowitz G. The hypothalamic neuropeptide oxytocin is required for formation of the neurovascular interface of the pituitary. Dev Cell 2011; 21:642-54. [PMID: 22014522 DOI: 10.1016/j.devcel.2011.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/02/2011] [Accepted: 09/12/2011] [Indexed: 10/16/2022]
Abstract
The hypothalamo-neurohypophyseal system (HNS) is the neurovascular structure through which the hypothalamic neuropeptides oxytocin and arginine-vasopressin exit the brain into the bloodstream, where they go on to affect peripheral physiology. Here, we investigate the molecular cues that regulate the neurovascular contact between hypothalamic axons and neurohypophyseal capillaries of the zebrafish. We developed a transgenic system in which both hypothalamic axons and neurohypophyseal vasculature can be analyzed in vivo. We identified the cellular organization of the zebrafish HNS as well as the dynamic processes that contribute to formation of the HNS neurovascular interface. We show that formation of this interface is regulated during development by local release of oxytocin, which affects endothelial morphogenesis. This cell communication process is essential for the establishment of a tight axovasal interface between the neurons and blood vessels of the HNS. We present a unique example of axons affecting endothelial morphogenesis through secretion of a neuropeptide.
Collapse
Affiliation(s)
- Amos Gutnick
- Department of Molecular Cell Biology, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Changes in cardiac structure in hypertension produced by placental ischemia in pregnant rats: effect of tumor necrosis factor blockade. J Hypertens 2011; 29:1203-12. [PMID: 21505354 DOI: 10.1097/hjh.0b013e3283468392] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Chronic reduction of uteroplacental perfusion pressure (RUPP) in pregnant rats leads to placental ischemia, maternal endothelial cell dysfunction, hypertension and elevated levels of tumor necrosis factor-alpha (TNF-α). In this study we investigated the hypothesis that placental ischemia in pregnant rat, a model of preeclampsia, stimulates cardiac hypertrophy and fibrosis via a TNF-α-dependent mechanism. METHODS Normal pregnant Sprague-Dawley rats and RUPP rats were evaluated on day 19 of gestation. To test the role of TNF-α in mediating change in the RUPP rat heart, a TNF-α inhibitor, etanercept, was administered on day 18 of gestation at a dose of 0.8 mg/kg, s.c. RESULTS In comparison to normal pregnant rats, RUPP animals display enlarged cardiomyocytes, microvascular rarefaction, fibrosis, apoptosis as well as increased expression of markers of heart hypertrophy and fibrosis. Etanercept (E) treatment prevented enlargement of cardiomyocytes, fibrosis and apoptosis and this was accompanied by significantly lowered blood pressure in RUPP rats. Etanercept treatment lowered expression of mRNA for brain natriuretic peptide, a marker of cardiac hypertrophy. It also heightened expression of endothelial nitric oxide synthase and its phosphorylation as well as oxytocin receptor identified in cardiac microvessels. TNF-α inhibition prevented microvascular rarefaction in the heart as indicated by augmented CD31, a marker of angiogenesis. CONCLUSIONS These results suggest that RUPP leads to microvascular rarefaction in the heart, exaggerated cardiomyocyte size, apoptosis, fibrosis, and the alteration of cardiac gene expression that are modulated by the inflammatory cytokine TNFα.
Collapse
|
46
|
Adluri RS, Thirunavukkarasu M, Zhan L, Akita Y, Samuel SM, Otani H, Ho YS, Maulik G, Maulik N. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. J Mol Cell Cardiol 2011; 50:239-47. [PMID: 21074540 PMCID: PMC3397477 DOI: 10.1016/j.yjmcc.2010.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/27/2010] [Accepted: 11/02/2010] [Indexed: 12/18/2022]
Abstract
Oxidative stress plays a crucial role in disruption of neovascularization by alterations in thioredoxin 1 (Trx1) expression and its interaction with other proteins after myocardial infarction (MI). We previously showed that Trx1 has angiogenic properties, but the possible therapeutic significance of overexpressing Trx1 in chronic MI has not been elucidated. Therefore, we explored the angiogenic and cardioprotective potential of Trx1 in an in vivo MI model using transgenic mice overexpressing Trx1. Wild-type (W) and Trx1 transgenic (Trx1(Tg/+)) mice were randomized into W sham (WS), Trx1(Tg/+) sham (TS), WMI, and TMI. MI was induced by permanent occlusion of LAD coronary artery. Hearts from mice overexpressing Trx1 exhibited reduced fibrosis and oxidative stress and attenuated cardiomyocyte apoptosis along with increased vessel formation compared to WMI. We found significant inhibition of Trx1 regulating proteins, TXNIP and AKAP 12, and increased p-Akt, p-eNOS, p-GSK-3β, HIF-1α, β-catenin, VEGF, Bcl-2, and survivin expression in TMI compared to WMI. Echocardiography performed 30days after MI revealed significant improvement in myocardial functions in TMI compared to WMI. Our study identifies a potential role for Trx1 overexpression and its association with its regulatory proteins TXNIP, AKAP12, and subsequent activation of Akt/GSK-3β/β-catenin/HIF-1α-mediated VEGF and eNOS expression in inducing angiogenesis and reduced ventricular remodeling. Hence, Trx1 and other proteins identified in our study may prove to be potential therapeutic targets in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington-06032, Connecticut, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington-06032, Connecticut, USA
| | - Lijun Zhan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington-06032, Connecticut, USA
| | - Yuzo Akita
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington-06032, Connecticut, USA
| | - Samson Mathews Samuel
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington-06032, Connecticut, USA
| | | | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI
| | - Gautam Maulik
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington-06032, Connecticut, USA
| |
Collapse
|
47
|
Danalache BA, Gutkowska J, Ślusarz MJ, Berezowska I, Jankowski M. Oxytocin-Gly-Lys-Arg: a novel cardiomyogenic peptide. PLoS One 2010; 5:e13643. [PMID: 21048978 PMCID: PMC2964328 DOI: 10.1371/journal.pone.0013643] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/07/2010] [Indexed: 11/30/2022] Open
Abstract
Background Oxytocin (OT), synthesized in the heart, has the ability to heal injured hearts and to promote cardiomyogenesis from stem cells. Recently, we reported that the OT-GKR molecule, a processing intermediate of OT, potently increased the spontaneous formation of cardiomyocytes (CM) in embryonic stem D3 cells and augmented glucose uptake in newborn rat CM above the level stimulated by OT. In the present experiments, we investigated whether OT-GKR exists in fetal and newborn rodent hearts, interacts with the OT receptors (OTR) and primes the generation of contracting cells expressing CM markers in P19 cells, a model for the study of early heart differentiation. Methodology/Principal Findings High performance liquid chromatography of newborn rat heart extracts indicated that OT-GKR was a dominant form of OT. Immunocytochemistry of mouse embryos (embryonic day 15) showed cardiac OT-GKR accumulation and OTR expression. Computerized molecular modeling revealed OT-GKR docking to active OTR sites and to V1a receptor of vasopressin. In embryonic P19 cells, OT-GKR induced contracting cell colonies and ventricular CM markers more potently than OT, an effect being suppressed by OT antagonists and OTR-specific small interfering (si) RNA. The V1a receptor antagonist and specific si-RNA also significantly reduced OT-GKR-stimulated P19 contracting cells. In comparison to OT, OT-GKR induced in P19 cells less α-actinin, myogenin and MyoD mRNA, skeletal muscle markers. Conclusions/Significance These results raise the possibility that C-terminally extended OT molecules stimulate CM differentiation and contribute to heart growth during fetal life.
Collapse
Affiliation(s)
- Bogdan A. Danalache
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM) – Hôtel-Dieu, Montreal, Quebec, Canada
| | - Jolanta Gutkowska
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM) – Hôtel-Dieu, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Irena Berezowska
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marek Jankowski
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM) – Hôtel-Dieu, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
48
|
Broderick TL, Wang Y, Gutkowska J, Wang D, Jankowski M. Downregulation of oxytocin receptors in right ventricle of rats with monocrotaline-induced pulmonary hypertension. Acta Physiol (Oxf) 2010; 200:147-58. [PMID: 20377540 DOI: 10.1111/j.1748-1716.2010.02134.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM pulmonary hypertension (PH) in the rat leads to right ventricular (RV) hypertrophy, inflammation and increased natriuretic peptide (NP) levels in plasma and RV. Because the release of nitric oxide (NO) and atrial natriuretic peptide (ANP) is a function of the oxytocin receptor (OTR), we examined the effect of PH on gene and protein expression of OTR, NP (A, atrial; B, brain) and receptors (NPRs), nitric oxide synthases (NOS), interleukin (IL)-1β, IL-6 and tumour necrosis factor-α in the hypertrophied RV in a model of PH. METHODS RV hypertrophy was induced in male Sprague-Dawley rats with monocrotaline (MCT; 60 mg kg(-1) ) and was confirmed by the presence of an increased RV weight and RV-to-[left ventricle (LV) and septum] ratio. RESULTS in the RV of MCT-treated rats, a approximately 40% reduction in OTR mRNA and protein was observed compared with the RV of control rats. This reduction was associated with increased transcripts of ANP and BNP in both ventricles and a corresponding increase in NP receptor mRNA expression for receptors A, B and C. Protein expression of inducible NOS was increased in the RV, whereas endothelial NOS transcripts were increased only in the LV of MCT-treated rats. In the RV of MCT-treated rats, downregulation of OTR was also associated with increased mRNA expression of IL-1β and IL-6. CONCLUSION our results show that downregulation of the OTR in the RV of MCT-treated rats is associated with increased expression of NP and their receptors as well as IL-1β and IL-6. This reduction in OTR in RV myocardium may have an impact on cardiac function in the MCT-induced model of PH.
Collapse
Affiliation(s)
- T L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Departmentof Physiology, MidwesternUniversity, AZ 85308, USA.
| | | | | | | | | |
Collapse
|
49
|
Jankowski M, Wang D, Danalache B, Gangal M, Gutkowska J. Cardiac oxytocin receptor blockade stimulates adverse cardiac remodeling in ovariectomized spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2010; 299:H265-74. [PMID: 20671291 DOI: 10.1152/ajpheart.00487.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increasing amount of evidence demonstrates the beneficial role of oxytocin (OT) in the cardiovascular system. Similar actions are attributed to genistein, an isoflavonic phytoestrogen. The treatment with genistein activates the OT system in the aorta of ovariectomized (OVX) Sprague-Dawley (SD) rats. The objective of this study was to determine the effects of low doses of genistein on the OT-induced effects in rat hypertension. The hypothesis tested was that treatment of OVX spontaneously hypertensive rats (SHRs) with genistein improves heart structure and heart work through a mechanism involving the specific OT receptor (OTR). OVX SHRs or SD rats were treated with genistein (in microg/g body wt sc, 10 days) in the presence or absence of an OT antagonist (OTA) [d(CH(2))(5), Tyr(Me)(2), Orn(8)]-vasotocin or a nonspecific estrogen receptor antagonist (ICI-182780). Vehicle-treated OVX rats served as controls. RT-PCR and Western blot analysis demonstrated that left ventricular (LV) OTR, downregulated by ovariectomy, increased in response to genistein. In SHRs or SD rats, this effect was blocked by OTA or ICI-182780 administration. The OTR was mainly localized in microvessels expressing the CD31 marker and colocalized with endothelial nitric oxide synthase. In SHRs, the genistein-stimulated OTR increases were associated with improved fractional shortening, decreased blood pressure (12 mmHg), decreased heart weight-to-body weight ratio, decreased fibrosis, and lowered brain natriuretic peptide in the LV. The prominent finding of the study is the detrimental effect of OTA treatment on the LV of SHRs. OTA treatment of OVX SHRs resulted in a dramatic worsening of ejection fractions and an augmented fibrosis. In conclusion, these results demonstrate that cardiac OTRs are involved in the regulation of cardiac function of OVX SHRs. The decreases of OTRs may contribute to cardiac pathology following menopause.
Collapse
Affiliation(s)
- Marek Jankowski
- Centre de recherche, CHUM-Hôtel-Dieu Pav. De Boulion, 3840, rue Saint-Urbain, Montréal, QC, H2W 1T8, Canada.
| | | | | | | | | |
Collapse
|
50
|
Jankowski M, Bissonauth V, Gao L, Gangal M, Wang D, Danalache B, Wang Y, Stoyanova E, Cloutier G, Blaise G, Gutkowska J. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res Cardiol 2009; 105:205-18. [DOI: 10.1007/s00395-009-0076-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 01/29/2023]
|