1
|
Xue P, Liu Y, Wang H, Huang J, Luo M. miRNA-103-3p-Hlf regulates apoptosis and autophagy by targeting hepatic leukaemia factor in heart failure. ESC Heart Fail 2023; 10:3038-3045. [PMID: 37562973 PMCID: PMC10567626 DOI: 10.1002/ehf2.14493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023] Open
Abstract
AIMS Cardiomyocyte apoptosis is an important factor leading to the occurrence and development of heart failure (HF), which is associated with high mortality of patients with cardiovascular diseases. This study aims to investigate the underlying mechanisms of HF in terms of expression and regulation patterns using bioinformatics and experimental validation. METHODS AND RESULTS Two HF datasets were collected: a dataset GSE112056 downloaded from the GEO database (including mRNA and miRNA sequencing data) and another is the laboratory-owned mRNA dataset. Differential mRNAs and miRNAs in the two datasets were screened using the raw Bayesian approach method. Gene Ontology was used to perform functional enrichment analysis of the differential mRNAs and co-expression network analysis of the differential mRNAs, combined with nuclear transcription factors in the differential miRNAs and mRNAs for target gene prediction. A HF cell model was constructed using mouse cardiomyocytes (HL-1), and the role and mechanism of miRNA-103-3p-Hlf (hepatic leukaemia factor) in the process of HF was verified by cell transfection, luciferase reporter gene, WB, and qPCR. We found that Hlf gene expression was decreased in the HF model group and strongly correlated with FYCO1 (FYVE and coiled-coil domain-containing protein 1) gene, a phenomenon enriched in apoptotic autophagy-related pathways. MiR-103-3p expression was up-regulated in the HF model group, and its targeting correlation with Hlf was confirmed by luciferase activity assay. In the HL-1 cell model, miR-103-3p significantly promoted apoptosis and inhibited autophagy in HL-1 cells (all P < 0.05), and overexpression of the Hlf gene reversed this phenomenon, inhibiting apoptosis and promoting autophagy in HL-1 cells (all P < 0.05). CONCLUSIONS MiR-103-3p affects myocardial cells apoptosis and autophagy by targeting Hlf, playing as a potential therapeutic biomarker for HF progression.
Collapse
Affiliation(s)
- Pengcheng Xue
- Department of GeriatricsTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Department of CardiologyThe Third the People's Hospital of BengbuBengbuChina
| | - Yang Liu
- Department of GeriatricsTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Haifeng Wang
- Department of GeriatricsTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Junling Huang
- Department of GeriatricsTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Ming Luo
- Department of GeriatricsTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
2
|
Jiang J, Zhang N, Song H, Yang Y, Li J, Hu X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health 2023; 23:137. [PMID: 36894905 PMCID: PMC9999511 DOI: 10.1186/s12903-023-02827-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the protective effect and mechanism of oridonin in an in vitro lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs) model of periodontitis. METHODS Primary hPDLSCs were isolated and cultured, and then the expression of surface antigens CD146, STRO-1 and CD45 of hPDLSCs was detected by flow cytometry. The mRNA expression level of Runx2, OPN, Col-1, GRP78, CHOP, ATF4 and ATF6 in the cells was tested by qRT-PCR. MTT was taken to determine the cytotoxicity of oridonin at different concentrations (0-4 μM) on hPDLSCs. Besides, ALP staining, alizarin red staining and Oil Red O staining were utilized to assess the osteogenic differentiation (ALP concentration, mineralized calcium nodule formation) and adipogenic differentiation abilities of the cells. The proinflammatory factors level in the cells was measured by ELISA. The protein expression level of NF-κB/NLRP3 pathway-related proteins and endoplasmic reticulum (ER) stress-related markers in the cells were detected by Western blot. RESULTS hPDLSCs with positive CD146 and STRO-1 expression and negative CD45 expression were successfully isolated in this study. 0.1-2 μM of oridonin had no significant cytotoxicity on the growth of hPDLSCs, while 2 μM of oridonin could not only greatly reduce the inhibitory effect of LPS on the proliferation and osteogenic differentiation of hPDLSCs cells, but also inhibit LPS-induced inflammation and ER stress in hPDLSCs cells. Moreover, further mechanism research showed that 2 μM of oridonin suppressed NF-κB/NLRP3 signaling pathway activity in LPS-induced hPDLSCs cells. CONCLUSIONS Oridonin promotes proliferation and osteogenic differentiation of LPS-induced hPDLSCs in an inflammatory environment, possibly by inhibiting ER stress and NF-κB/NLRP3 pathway. Oridonin may have a potential role in the repair and regeneration of hPDLSCs.
Collapse
Affiliation(s)
- Junhao Jiang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China.
| | - Nong Zhang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Haibo Song
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Ya Yang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Juan Li
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
3
|
Liu D, Niu Y, Duan Y, Wang J, Yan G. Association of 3-year change in sleep duration with risk of all-cause mortality in Chinese older population: A national cohort study. Sleep Med 2023; 105:25-31. [PMID: 36940517 DOI: 10.1016/j.sleep.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Existing evidence on the association of dynamic change in sleep duration with risk of all-cause mortality in Chinese older population is limited. We aimed to explore the association of 3-year change in sleep duration with risk of all-cause mortality in a Chinese older population. MATERIALS AND METHODS A total of 5772 Chinese older participants (median age 82 years) were enrolled in the current study. Cox proportional-hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of 3-year change in sleep duration with risk of all-cause mortality. Subgroup analyses of the association between 3-year change in sleep duration and risk of all-cause mortality were conducted by age, sex and residence. RESULTS During a median of 4.08 years of follow-up, death developed in 1762 participants. Compared with -1 to <1 h/day change in sleep duration, the adjusted risk of all-cause mortality with < -3 h/day change in sleep duration may increase 26% (HR = 1.26, 95% CI: 1.05-1.52); the risk of all-cause mortality with 3-year change from short to long sleep duration, or long to short sleep duration versus stable normal sleep duration status was increased about 28% and 52%, respectively (HR = 1.28, 95% CI: 1.00-1.64 and HR = 1.52, 95% CI: 1.21-1.92). Subgroup analyses demonstrated that similar significant associations were observed among participants with 65 to <85 years, men and living in city and town. CONCLUSIONS Dynamic sleep duration change was significantly associated with risk of all-cause mortality. The current study suggests that sleep duration may be a non-invasive indicator for interventions aiming to reduction risk of all-cause mortality in Chinese older population.
Collapse
Affiliation(s)
- Dechen Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Yuqi Niu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Yingqi Duan
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jinjin Wang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Guoli Yan
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
4
|
Protective Effect of Sufentanil on Myocardial Ischemia-Reperfusion Injury in Rats by Inhibiting Endoplasmic Reticulum Stress. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6267720. [PMID: 35356663 PMCID: PMC8958077 DOI: 10.1155/2022/6267720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Objective Sufentanil is the most common drug in clinical practice for the treatment of ischemic heart disease. This study is to investigate the protective mechanism of sufentanil on rat myocardial ischemia-reperfusion (I/R) injury. Methods A rat I/R model was established by ligating the left anterior descending coronary artery. A total of 24 SD male rats were enrolled and divided randomly into the control group, I/R group, sufentanil group (SUF; 3 μg/kg), and diltiazem group (DLZ; 20 mg/kg; positive control). The rat hearts were subjected to 30 min of ischemia followed by 120 min of reperfusion. Subsequently, hemodynamics, pathological changes of myocardial tissue, serum biochemical parameters, oxidative stress factors, the level of serum inducible nitric oxide synthases (iNOS), interleukin-6 (IL-6), and other bioactive factors were analyzed in the rats. Result Compared with the I/R group, sufentanil significantly improved cardiac action, myocardial fiber, and cardiomyocyte morphology and reduced inflammatory cell infiltration in rats in the SUF group. And the level of creatine kinase isoenzyme (CK-MB), troponin (cTn), lactate dehydrogenase (LDH), malondialdehyde (MDA), iNOS, and IL-6 was significantly declined in the serum of SUF group, while the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were significantly activated in the myocardial tissues. In addition, sufentanil also significantly decreased the protein expression of GRP78, CHOP, Caspase 12, and ATF6 in the myocardial tissue of the SUF group. Conclusion Sufentanil has a significant protective activity on myocardial I/R injury in rats, the mechanism of which may be associated with the inhibition of endoplasmic reticulum stress and oxidative stress.
Collapse
|
5
|
Sepúlveda-Fragoso V, Alexandre-Santos B, Salles ACP, Proença AB, de Paula Alves AP, Vázquez-Carrera M, Nóbrega ACL, Frantz EDC, Magliano DC. Crosstalk between the renin-angiotensin system and the endoplasmic reticulum stress in the cardiovascular system: Lessons learned so far. Life Sci 2021; 284:119919. [PMID: 34480931 DOI: 10.1016/j.lfs.2021.119919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin (Ang) system (RAS) is a complex hormonal system present locally in several tissues such as cardiovascular organs. RAS deregulation through overactivation of the classical arm [Ang-converting enzyme (ACE)/Ang-II/Ang type 1 receptor (AT1R)] has been linked to the development of cardiovascular diseases and activation of endoplasmic reticulum (ER) stress pathways. The ER stress is a condition that, if unresolved, might lead to heart failure, atherosclerosis, hypertension, and endothelial dysfunction. Accumulated evidence has shown that the RAS modulates the UPR activation. Several studies reported increased ER stress markers in response to Ang-II treatment, in both in vivo and in vitro models. Evidence has also pointed that targeting the RAS classical arm through RAS blockers, gene silencing or genetic models leads to lower levels of ER stress markers. Few studies demonstrated protective effects of the counter-regulatory arm (ACE-2/Ang-(1-7)/Mas receptor) over ER stress. However, the crosstalk mechanisms between the arms of the RAS and ER stress remain unclear. In this review, we sought to explore the classical arm of the RAS as a key mechanism in UPR activation and to suggest a possible protective role of the counter-regulatory arm in mitigating ER stress.
Collapse
Affiliation(s)
- Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Paula de Paula Alves
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Claudio Lucas Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
6
|
Chen Y, Zhou S, Zhang A, Huang J, Zhang G, Cui L. Temporal changes and prognostic value of plasma ghrelin level in patients with acute heart failure: a prospective study. Heart Vessels 2021; 37:419-425. [PMID: 34533592 DOI: 10.1007/s00380-021-01935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Plasma ghrelin levels can be elevated in patients with acute heart failure (AHF). This study aimed to analyze the temporal changes and prognostic value of ghrelin levels in patients with AHF. METHODS This prospective study included patients with AHF at the Cardiology Department, Weifang People's Hospital (May 2018-October 2019), and age- and sex-matched healthy controls. Plasma ghrelin levels were measured. Multivariable logistic regression and receiver operating characteristic (ROC) curve analyses were used to evaluate whether ghrelin levels could predict major cardiac adverse events (MACEs) during a 1-year follow-up. RESULTS Finally, 92 patients with AHF and 50 healthy controls were enrolled. Ghrelin levels were higher in patients with AHF at 1, 3, 12, and 24 h compared with controls (all P < 0.01). Ghrelin levels in the AHF group were higher at 3 and 12 h than at 1 and 24 h (P < 0.001). Ghrelin level at 3 h in patients with AHF was negatively correlated with the left ventricular end-diastolic diameter and left ventricular ejection fraction (both P < 0.05). MACEs occurred in 48 patients with AHF. Ghrelin levels were higher in the MACE group than in the non-MACE group at 1 (P = 0.011) and 3 h (P = 0.034). Multivariable regression showed that ghrelin level at 3 h was independently associated with MACEs [OR = 0.629, 95% confidence interval (CI): 0.515-0.742, P = 0.010], but the area under the ROC curve was only 0.629 (95% CI 0.515-0.742). CONCLUSIONS Plasma ghrelin levels are elevated in AHF and patients with MACEs during follow-up.
Collapse
Affiliation(s)
- Yanbo Chen
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Cardioangiology, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Sani Zhou
- Central Sterile Supply Department, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Aiyuan Zhang
- Department of Cardioangiology, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Jing Huang
- Department of Cardioangiology, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Guangfang Zhang
- Department of Cardioangiology, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Badi R. Acylated Ghrelin Attenuates l-Thyroxin-induced Cardiac Damage in Rats by Antioxidant and Anti-inflammatory Effects and Downregulating Components of the Cardiac Renin-angiotensin System. J Cardiovasc Pharmacol 2021; 78:422-436. [PMID: 34132689 DOI: 10.1097/fjc.0000000000001084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT This study investigated the protective effect of acylated ghrelin (AG) against l-thyroxin (l-Thy)-induced cardiac damage in rats and examined possible mechanisms. Male rats were divided into five intervention groups of 12 rats/group: control, control + AG, l-Thy, l-Thy + AG, and l-Thy + AG + [D-Lys3]-GHRP-6 (AG antagonist). l-Thy significantly reduced the levels of AG and des-acyl ghrelin and the AG to des-acyl ghrelin ratio. Administration of AG to l-Thy-treated rats reduced cardiac weights and levels of reactive oxygen species and preserved the function and structure of the left ventricle. In addition, AG also reduced the protein levels of cleaved caspase-3 and cytochrome c and prevented mitochondrial permeability transition pore opening. In the left ventricle of both control + AG-treated and l-Thy + AG-treated rats, AG significantly increased left ventricular levels of manganese superoxide dismutase (SOD2), total glutathione (GSH), and Bcl2. It also reduced the levels of malondialdehyde, tumor necrosis factor-α (TNF-α), interleukin-6, and Bax and the nuclear activity of nuclear factor-kappa B. Concomitantly, in both treated groups, AG reduced the mRNA and protein levels of NADPH oxidase 1, angiotensin (Ang) II type 1 receptor, and Ang-converting enzyme 2. All the beneficial effects of AG in l-Thy-treated rats were prevented by the coadministration of [D-Lys3]-GHRP-6, a selective growth hormone secretagogue receptor subtype 1a antagonist. In conclusion, AG protects against hyperthyroidism-induced cardiac hypertrophy and damage, which is mainly due to its antioxidant and anti-inflammatory potentials and requires the activation of GHS-R1a.
Collapse
MESH Headings
- Acylation
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/pharmacology
- Disease Models, Animal
- Ghrelin/analogs & derivatives
- Ghrelin/metabolism
- Ghrelin/pharmacology
- Hyperthyroidism/chemically induced
- Hyperthyroidism/metabolism
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/prevention & control
- Inflammation Mediators/metabolism
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Reactive Nitrogen Species/metabolism
- Renin-Angiotensin System/drug effects
- Thyroxine
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- Rehab Badi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia ; and
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
8
|
Wang M, Qian L, Li J, Ming H, Fang L, Li Y, Zhang M, Xu Y, Ban Y, Zhang W, Zhang Y, Liu Y, Wang N. GHSR deficiency exacerbates cardiac fibrosis: role in macrophage inflammasome activation and myofibroblast differentiation. Cardiovasc Res 2021; 116:2091-2102. [PMID: 31790138 DOI: 10.1093/cvr/cvz318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/06/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS Sustained activation of β-adrenergic signalling induces cardiac fibrosis, which marks progression to heart failure. GHSR (growth hormone secretagogue receptor) is the receptor for ghrelin, which is an orexigenic gastric hormone with newly defined cardiovascular effects. The present study determined the effects of GHSR deficiency in a mouse model of isoproterenol (ISO)-induced cardiac fibrosis and examined the underlying mechanism. METHODS AND RESULTS Histochemical studies showed that GHSR deficiency exacerbated cardiac fibrosis. Quantitative RT-PCR, western blotting, and immunofluorescence staining demonstrated that cardiac fibroblasts isolated from GHSR-/- mice exhibited increased expression of marker genes for myofibroblast trans-differentiation (α-SMA, SM22, and calponin) upon transforming growth factor-β treatment compared to wild-type mice. RNA-sequencing of heart transcriptomes revealed that differentially expressed genes in GHSR-/- hearts were enriched in such biological processes as extracellular matrix organization, inflammatory response, lipid metabolism, cell cycle, migration, and adhesion. Particularly, GHSR deficiency increased Wnt/β-catenin pathway activation in ISO-induced myocardial fibrosis. In addition, loss of GHSR in macrophages instigated inflammasome activation with increased cleavage and release of interleukin-18. CONCLUSION These results for the first time demonstrated that GHSR deficiency aggravated ISO-induced cardiac fibrosis, suggesting that GHSR was a potential target for the intervention of cardiac fibrosis.
Collapse
Affiliation(s)
- Mo Wang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Lei Qian
- The Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hao Ming
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Li Fang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yingjia Li
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Man Zhang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yaohua Xu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yiqian Ban
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Weizhen Zhang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Youyi Zhang
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,Institute of Vascular Medicine, The Third Hospital, Peking University, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Nanping Wang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,The Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
9
|
Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529:111259. [PMID: 33781840 DOI: 10.1016/j.mce.2021.111259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease, blood pressure determination, hypertension pathogenesis, and the renin-angiotensin system (RAS) are inextricably linked. Hence, understanding the RAS is pivotal to unraveling the pathophysiology of hypertension and the determinants to maintaining normal blood pressure. The RAS has been the subject of intense investigation for over a century. Moreover, medications that block the RAS are mainstay therapies in clinical medicine and have been shown to reduce morbidity and mortality in patients with diabetes, cardiovascular, and kidney diseases. The main effector peptide of the RAS is the interaction of the octapeptide- Ang II with its receptor. The type 1 angiotensin receptor (AT1R) is the effector receptor for Ang II. These G protein-coupled receptors (GPCRs) are ubiquitously expressed in a variety of cell lineages and tissues relevant to cardiovascular disease throughout the body. The advent of cell specific deletion of genes using Cre LoxP technology in mice has allowed for the identification of discreet actions of AT1Rs in blood pressure control and kidney disease. The kidney is one of the major targets of the RAS, which is responsible in maintaining fluid, electrolyte balance, and blood pressure. In this review we will discuss the role of AT1Rs in the kidney, vasculature, and immune cells and address their effects on hypertension and kidney disease.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Blood Pressure/genetics
- Gene Expression Regulation
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Thien Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ritika Revoori
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States; Renal Section, Durham VA Health Care System, Durham, NC, United States.
| |
Collapse
|
10
|
Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol 2021; 9:636553. [PMID: 33869181 PMCID: PMC8047138 DOI: 10.3389/fcell.2021.636553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Our previous research has shown that type-2a Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) undergoes posttranscriptional oxidative modifications in cardiac microvascular endothelial cells (CMECs) in the context of excessive cardiac oxidative injury. However, whether SERCA2a inactivity induces cytosolic Ca2+ imbalance in mitochondrial homeostasis is far from clear. Mitofusin2 (Mfn2) is well known as an important protein involved in endoplasmic reticulum (ER)/mitochondrial Ca2+ tethering and the regulation of mitochondrial quality. Therefore, the aim of our study was to elucidate the specific mechanism of SERCA2a-mediated Ca2+ overload in the mitochondria via Mfn2 tethering and the survival rate of the heart under conditions of cardiac microvascular ischemic injury. In vitro, CMECs extracted from mice were subjected to 6 h of hypoxic injury to mimic ischemic heart injury. C57-WT and Mfn2KO mice were subjected to a 1 h ischemia procedure via ligation of the left anterior descending branch to establish an in vivo cardiac ischemic injury model. TTC staining, immunohistochemistry and echocardiography were used to assess the myocardial infarct size, microvascular damage, and heart function. In vitro, ischemic injury induced irreversible oxidative modification of SERCA2a, including sulfonylation at cysteine 674 and nitration at tyrosine 294/295, and inactivation of SERCA2a, which initiated calcium overload. In addition, ischemic injury-triggered [Ca2+]c overload and subsequent [Ca2+]m overload led to mPTP opening and ΔΨm dissipation compared with the control. Furthermore, ablation of Mfn2 alleviated SERCA2a-induced mitochondrial calcium overload and subsequent mito-apoptosis in the context of CMEC hypoxic injury. In vivo, compared with that in wild-type mice, the myocardial infarct size in Mfn2KO mice was significantly decreased. In addition, the findings revealed that Mfn2KO mice had better heart contractile function, decreased myocardial infarction indicators, and improved mitochondrial morphology. Taken together, the results of our study suggested that SERCA2a-dependent [Ca2+]c overload led to mitochondrial dysfunction and activation of Mfn2-mediated [Ca2+]m overload. Overexpression of SERCA2a or ablation of Mfn2 expression mitigated mitochondrial morphological and functional damage by modifying the SERCA2a/Ca2+-Mfn2 pathway. Overall, these pathways are promising therapeutic targets for acute cardiac microvascular ischemic injury.
Collapse
Affiliation(s)
- Feng Tian
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B. Regulatory effects of ghrelin on endoplasmic reticulum stress, oxidative stress, and autophagy: Therapeutic potential. Neuropeptides 2021; 85:102112. [PMID: 33333485 DOI: 10.1016/j.npep.2020.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Ghrelin is a regulatory peptide that is the endogenous ligand of the growth hormone secretagogue 1a (GHS-R1a) which belongs to the G protein-coupled receptor family. Ghrelin and GHS-R1a are widely expressed in the central and peripheral tissues and play therapeutic potential roles in the cytoprotection of many internal organs. Endoplasmic reticulum stress (ERS), oxidative stress, and autophagy dysfunction, which are involved in various diseases. In recent years, accumulating evidence has suggested that ghrelin exerts protective effects by regulating ERS, oxidative stress, and autophagy in diverse diseases. This review article summarizes information about the roles of the ghrelin system on ERS, oxidative stress, and autophagy in multiple diseases. It is suggested that ghrelin positively affects the treatment of diseases and may be considered as a therapeutic drug in many illnesses.
Collapse
Affiliation(s)
- Huiqing Wang
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
12
|
Ullah A, Chen G, Hussain A, Khan H, Abbas A, Zhou Z, Shafiq M, Ahmad S, Ali U, Usman M, Raza F, Ahmed A, Qiu Z, Zheng M, Liu D. Cyclam-Modified Polyethyleneimine for Simultaneous TGFβ siRNA Delivery and CXCR4 Inhibition for the Treatment of CCl 4-Induced Liver Fibrosis. Int J Nanomedicine 2021; 16:4451-4470. [PMID: 34234436 PMCID: PMC8257077 DOI: 10.2147/ijn.s314367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver fibrosis is a chronic liver disease with excessive production of extracellular matrix proteins, leading to cirrhosis, hepatocellular carcinoma, and death. PURPOSE This study aimed at the development of a novel derivative of polyethyleneimine (PEI) that can effectively deliver transforming growth factor β (TGFβ) siRNA and inhibit chemokine receptor 4 (CXCR4) for TGFβ silencing and CXCR4 Inhibition, respectively, to treat CCl4-induced liver fibrosis in a mouse model. METHODS Cyclam-modified PEI (PEI-Cyclam) was synthesized by incorporating cyclam moiety into PEI by nucleophilic substitution reaction. Gel electrophoresis confirmed the PEI-Cyclam polyplex formation and stability against RNAase and serum degradation. Transmission electron microscopy and zeta sizer were employed for the morphology, particle size, and zeta potential, respectively. The gene silencing and CXCR4 targeting abilities of PEI-Cyclam polyplex were evaluated by luciferase and CXCR4 redistribution assays, respectively. The histological and immunohistochemical staining determined the anti-fibrotic activity of PEI-Cyclam polyplex. The TGFβ silencing of PEI-Cyclam polyplex was authenticated by Western blotting. RESULTS The 1H NMR of PEI-Cyclam exhibited successful incorporation of cyclam content onto PEI. The PEI-Cyclam polyplex displayed spherical morphology, positive surface charge, and stability against RNAse and serum degradation. Cyclam modification decreased the cytotoxicity and demonstrated CXCR4 antagonistic and luciferase gene silencing efficiency. PEI-Cyclam/siTGFβ polyplexes decreased inflammation, collagen deposition, apoptosis, and cell proliferation, thus ameliorating liver fibrosis. Also, PEI-Cyclam/siTGFβ polyplex significantly downregulated α-smooth muscle actin, TGFβ, and collagen type III. CONCLUSION Our findings validate the feasibility of using PEI-Cyclam as a siRNA delivery vector for simultaneous TGFβ siRNA delivery and CXCR4 inhibition for the combined anti-fibrotic effects in a setting of CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
- Correspondence: Aftab Ullah; Daojun Liu Email ;
| | - Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People’s Republic of China
| | - Abid Hussain
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Hanif Khan
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| | - Azar Abbas
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Zhanwei Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, people's Republic of China
| | - Saleem Ahmad
- Department of Medicine, Shantou University Medical College Cancer Hospital, Shantou, People’s Republic of China
| | - Usman Ali
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Muhammad Usman
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, people's Republic of China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Abrar Ahmed
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Zijie Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Maochao Zheng
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| |
Collapse
|
13
|
ASK1 Enhances Angiotensin II-Induced Liver Fibrosis In Vitro by Mediating Endoplasmic Reticulum Stress-Dependent Exosomes. Mediators Inflamm 2020; 2020:8183713. [PMID: 33223956 PMCID: PMC7669360 DOI: 10.1155/2020/8183713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 01/16/2023] Open
Abstract
Background Apoptosis signal-regulating kinase 1 (ASK1) has been reported to induce fibrotic signaling in the setting of oxidative stress. However, the role of ASK1 and its mechanism of action in angiotensin II- (Ang II-) induced liver fibrosis remain largely unknown. Methods Human hepatic LX-2 stellate cells were treated with Ang II alone or cotreated with Ang II plus an ASK1 inhibitor (GS-4997) or siRNA-targeting ASK1. Immunofluorescent staining, real-time PCR, and western blotting were used to determine the expressionof α-SMA, Col I, and Col III expression. Cell viability was assessed by the CCK-8 assay. The concentrations of IL-1β, IL-18, and TNF-α in conditioned medium were determined by ELISA. The levels of intracellular ROS in LX-2 cells were analyzed using a ROS assay kit. Exosome size was determined by electron microscopy. Results Ang II markedly increased the expression of extracellular matrix (ECM) proteins (α-SMA, Col I, and Col III) and proinflammatory cytokines (IL-1β, IL-18, and TNF-α). Ang II also increased the expression of endoplasmic reticulum stress (ERS) markers (GRP78, p-PERK, and CHOP) and p-ASK1. Results also showed that pretreatment with GS-4997 or siRNA could abolish all the abovementioned effects on LX-2 cells. Furthermore, we found that exosome release caused by ASK1-mediated ERS was involved in the activation of LX-2 cells by Ang II. The activation of LX-2 cells could be blocked by treating the exosomes with annexin. Conclusions In summary, we found that ASK1 mediates Ang II-activated ERS in HSCs and the subsequent activation of HSCs, suggesting a promising strategy for treating liver fibrosis.
Collapse
|
14
|
Elhadidy MG, Elmasry A, Rabei MR, Eladel AE. Effect of ghrelin on VEGF-B and connexin-43 in a rat model of doxorubicin-induced cardiomyopathy. J Basic Clin Physiol Pharmacol 2019; 31:jbcpp-2018-0212. [PMID: 31730522 DOI: 10.1515/jbcpp-2018-0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/28/2019] [Indexed: 12/21/2022]
Abstract
Background Since their discovery in the early 1960s, doxorubicin (DOX) remains the most effective anticancer drug. However, this drug has confirmed to be a double-edged sword because it causes a cardiomyopathy that leads to congestive heart failure. Ghrelin, a multi-functional peptide, plays an important role in cardiovascular protection. Therefore, we investigated the effects of ghrelin on vascular endothelial growth factor-beta (VEGF-B) and connexin-43 (Cx43) expression in DOX-induced cardiomyopathy. Methods Forty adult male rats were divided randomly into four groups: normal, normal + ghrelin, DOX-induced cardiomyopathy, and DOX-induced cardiomyopathy + ghrelin. Biochemical and histopathological analysis, electrocardiograph (ECG), heart rate, systolic blood pressure (SBP), and immunohistochemical staining of VEGF-B and Cx43 were assessed for all rats in heart tissue specimens. The duration of the study was 2 weeks. Results DOX-induced cardiomyopathy in rats showed significant ECG changes such as prolongation of PR, QT, QTC intervals and ST segment, a decrease in amplitude and an increase in the duration of QRS complex, bradycardia, and a decrease in SBP. Also, rats in the DOX group showed myocardial histopathological damage in the form of severe fibrosis with decreased expression of Cx43 and a non-significant difference in expression of VEGF-B when compared to normal rats. Treatment with ghrelin resulted in a significant improvement in all the studied parameters and was associated with an increase in VEGF-B and Cx43 expression. Conclusions Ghrelin has a beneficial effect against DOX-induced cardiomyopathy which may be mediated through VEGF-B and Cx43 expression in the myocardium. Ghrelin is a promising cardioprotective drug in DOX-induced cardiomyopathy patients, but further studies are needed to evaluate its use.
Collapse
Affiliation(s)
- Mona G Elhadidy
- Mansoura University, Faculty of Medicine, Department of Medical Physiology, 35516Mansoura, Egypt
| | - Ahlam Elmasry
- Mansoura University, Faculty of Medicine, Department of Clinical Pharmacology, 24 Gomhouria St., 35516Mansoura, Egypt
| | - Mohammed R Rabei
- Mansoura University, Faculty of Medicine, Department of Medical Physiology, 35516Mansoura, Egypt
| | - Ahmed E Eladel
- Mansoura University, Faculty of Medicine, Department of Pathology, 35516Mansoura, Egypt
| |
Collapse
|
15
|
Wang H, Huang S, Xu M, Yang J, Yang J, Liu M, Wan C, Liao H, Fan D, Tang Q. Galangin ameliorates cardiac remodeling via the MEK1/2-ERK1/2 and PI3K-AKT pathways. J Cell Physiol 2019; 234:15654-15667. [PMID: 30741414 PMCID: PMC6686163 DOI: 10.1002/jcp.28216] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Cardiac remodeling is associated with inflammation and apoptosis. Galangin, as a natural flavonol, has the potent function of regulating inflammation and apoptosis, which are factors related to cardiac remodeling. Beginning 3 days after aortic banding (AB) or Sham surgery, mice were treated with galangin for 4 weeks. Cardiac remodeling was assessed according to echocardiographic parameters, histological analyses, and hypertrophy and fibrosis markers. Our results showed that galangin administration attenuated cardiac hypertrophy, dysfunction, and fibrosis response in AB mice and angiotensin II-treated H9c2 cells. The inhibitory action of galangin in cardiac remodeling was mediated by MEK1/2-extracellular-regulated protein kinases 1/2 (ERK1/2)-GATA4 and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)-glycogen synthase kinase 3β (GSK3β) activation. Furthermore, we found that galangin inhibited inflammatory response and apoptosis. Our findings suggest that galangin protects against cardiac remodeling through decreasing inflammatory responses and apoptosis, which are associated with inhibition of the MEK1/2-ERK1/2-GATA4 and PI3K-AKT-GSK3β signals.
Collapse
Affiliation(s)
- Hui‐Bo Wang
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Si‐Hui Huang
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Man Xu
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Jun Yang
- Department of CardiologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityInstitute of Cardiovascular DiseasesYichangPeople's Republic of China
| | - Jian Yang
- Department of CardiologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityInstitute of Cardiovascular DiseasesYichangPeople's Republic of China
| | - Ming‐Xin Liu
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Chun‐Xia Wan
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Hai‐Han Liao
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Di Fan
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Qi‐Zhu Tang
- Department of CardiologyHubei Key Laboratory of CardiologyCardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| |
Collapse
|
16
|
Menikdiwela KR, Ramalingam L, Allen L, Scoggin S, Kalupahana NS, Moustaid-Moussa N. Angiotensin II Increases Endoplasmic Reticulum Stress in Adipose Tissue and Adipocytes. Sci Rep 2019; 9:8481. [PMID: 31186446 PMCID: PMC6560092 DOI: 10.1038/s41598-019-44834-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/15/2019] [Indexed: 01/23/2023] Open
Abstract
The Renin Angiotensin System (RAS), a key regulator of blood pressure has been linked to metabolic disorders. We have previously reported that adipose overexpression of angiotensinogen in mice (Agt-Tg) induces obesity, in part mediated by adipose tissue inflammation, through yet unidentified mechanisms. Hence, we hypothesize that adipose tissue enrichment of angiotensinogen leads to activation of inflammatory cascades and endoplasmic reticulum (ER) stress, thereby, contributing to obesity. We used wild type (Wt), Agt-Tg and Agt-knockout (KO) mice along with 3T3-L1 and human adipocytes treated with RAS, ER stress and inflammation inhibitors. ER stress and pro-inflammation markers were significantly higher in Agt-Tg compared to Wt mice and captopril significantly reduced their expression. Furthermore, in vitro treatment with Ang II significantly induced ER stress and inflammation, whereas angiotensin II receptor inhibitor, telmisartan reduced RAS effects. Moreover, miR-30 family had significantly lower expression in Agt-Tg group. MiR-708-5p and -143-3p were upregulated when RAS was overexpressed, and RAS antagonists reduced miR-143-3p and -708-5p in both mouse adipose tissue and adipocytes. Activation of RAS by Ang II treatment, increased inflammation and ER stress in adipocytes mainly via AT1 receptor, possibly mediated by miR-30 family, -708-5p and/or -143-3p. Hence, RAS and mediating microRNAs could be used as potential targets to reduce RAS induced obesity and related comorbid diseases.
Collapse
Affiliation(s)
- Kalhara R Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - London Allen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.,Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA. .,Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
17
|
Wang X, Yang C, Liu X, Yang P. The impact of microRNA-122 and its target gene Sestrin-2 on the protective effect of ghrelin in angiotensin II-induced cardiomyocyte apoptosis. RSC Adv 2018; 8:10107-10114. [PMID: 35540851 PMCID: PMC9078835 DOI: 10.1039/c7ra13028g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Ghrelin with n-octanoylated serine 3 residue is a peptide hormone with well-known cardioprotective properties. MicroRNA-122 is associated with the pathogenesis of many cardiovascular diseases, including apoptosis and was found highly increased in our previous rat model of post-myocardial infarction heart failure. In this study, we aimed to identify the target gene of microRNA-122 and to evaluate their impacts on the protective effect of acylated ghrelin in angiotensin II-induced apoptosis. The results showed that microRNA-122 was upregulated in the angiotensin II administration group accompanied by increased cell apoptosis, which were both reversed by ghrelin. Furthermore, microRNA-122 mimics upregulated numerous pro-apoptotic genes and increased apoptosis. The luciferase activity assay revealed Sestrin-2 as a direct target of microRNA-122. The expression of Sestrin-2 was downregulated by angiotensin II and upregulated by co-treatment with ghrelin. Inhibition of microRNA-122 and overexpression of Sestrin-2 alleviated apoptosis which was further reduced upon administered of ghrelin. Together, these results indicated that Sestrin-2 expression is inhibited by microRNA-122 and that this inhibition is involved in the protective effect of ghrelin and angiotensin II-induced apoptosis. We also found that microRNA-122 influenced several apoptosis pathways including the caspase cascade reaction and death receptor-mediated pathways. Collectively, our data reveal that microRNA-122 and its target gene Sestrin-2, under the regulation of angiotensin II and ghrelin, are important players in cardiomyocyte apoptosis. We therefore believe that microRNA-122 and Sestrin-2 can be developed as potential therapeutic targets against apoptosis in cardiovascular diseases. Inhibition of microRNA-122 and overexpression of Sestrin-2 alleviated angiotensin II-induced cardiomyocyte apoptosis and enhanced the protective effect of ghrelin.![]()
Collapse
Affiliation(s)
- Xiaotong Wang
- The Department of Cardiology, China-Japan Union Hospital, Jilin University Changchun 130011 Jilin China
| | - Chunyan Yang
- The Department of Cardiology, China-Japan Union Hospital, Jilin University Changchun 130011 Jilin China
| | - Xueyan Liu
- The Department of Cardiology, China-Japan Union Hospital, Jilin University Changchun 130011 Jilin China
| | - Ping Yang
- The Department of Cardiology, China-Japan Union Hospital, Jilin University Changchun 130011 Jilin China
| |
Collapse
|
18
|
Zhang W, Liu Z, Zhang Y, Bao Q, Wu W, Huang H, Liu X. Silencing calreticulin gene might protect cardiomyocytes from angiotensin II-induced apoptosis. Life Sci 2018; 198:119-127. [PMID: 29453988 DOI: 10.1016/j.lfs.2018.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 02/05/2023]
Abstract
AIMS Calreticulin (CRT), as a chaperone, contributes to protein folding and quality control cycle. CRT is an important factor regulating Ca2+ that participates in cell apoptosis. However, the function of CRT in the heart is still controversial. Therefore, we aimed to investigate the potential role of CRT in angiotensin II-induced cardiomyocytes apoptosis. MAIN METHODS Primary cultured neonatal cardiomyocytes were stimulated with angiotensin II to induce the apoptosis. Expression of CRT and endoplasmic reticulum (ER) stress associated protein was detected by western blotting after angiotensin II stimulation for 24 h. The reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were also detected. Additionally, the function of CRT on cardiomyocytes apoptosis and ER stress/unfolded protein response signaling pathway was investigated by transfecting specific CRT-targeting siRNA. KEY FINDINGS Cardiomyocytes apoptosis was induced by angiotensin II. The protein level of CRT was elevated after angiotensin -II stimulation for 24 h. Additionally, the protein levels of GRP78, ATF4, C-ATF6, CHOP and the ROS production were elevated, but the Bcl-2 expression and the level of MMP were down-regulated. After silencing CRT gene in the process of angiotensin II-induced cardiomyocytes apoptosis, cardiomyocytes apoptosis rate decreased, meanwhile the protein expression of CRT, GRP78, ATF4, C-ATF6 and CHOP were down-regulated. However, the Bcl-2 expression was up-regulated, and the increase of ROS and the loss of MMP were alleviated. SIGNIFICANCE Our study demonstrated that CRT might protect cardiomyocytes from apoptosis induced by angiotensin II, in which ER stress and mitochondria function were identified as possible underlying molecular bases.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, China
| | - Zhiyue Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, China
| | - Yanmei Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, China
| | - Qinxue Bao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - He Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, China..
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China..
| |
Collapse
|
19
|
Camargo-Silva G, Turones LC, da Cruz KR, Gomes KP, Mendonça MM, Nunes A, de Jesus IG, Colugnati DB, Pansani AP, Pobbe RLH, Santos R, Fontes MAP, Guatimosim S, de Castro CH, Ianzer D, Ferreira RN, Xavier CH. Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response. Life Sci 2018; 196:84-92. [PMID: 29366747 DOI: 10.1016/j.lfs.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Prior evidence indicates that ghrelin is involved in the integration of cardiovascular functions and behavioral responses. Ghrelin actions are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), which is expressed in peripheral tissues and central areas involved in the control of cardiovascular responses to stress. AIMS In the present study, we assessed the role of ghrelin - GHS-R1a axis in the cardiovascular reactivity to acute emotional stress in rats. MAIN METHODS AND KEY FINDINGS Ghrelin potentiated the tachycardia evoked by restraint and air jet stresses, which was reverted by GHS-R1a blockade. Evaluation of the autonomic balance revealed that the sympathetic branch modulates the ghrelin-evoked positive chronotropy. In isolated hearts, the perfusion with ghrelin potentiated the contractile responses caused by stimulation of the beta-adrenergic receptor, without altering the amplitude of the responses evoked by acetylcholine. Experiments in isolated cardiomyocytes revealed that ghrelin amplified the increases in calcium transient changes evoked by isoproterenol. SIGNIFICANCE Taken together, our results indicate that the Ghrelin-GHS-R1a axis potentiates the magnitude of stress-evoked tachycardia by modulating the autonomic nervous system and peripheral mechanisms, strongly relying on the activation of cardiac calcium transient and beta-adrenergic receptors.
Collapse
Affiliation(s)
- Gabriel Camargo-Silva
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Larissa Córdova Turones
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Kellen Rosa da Cruz
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Karina Pereira Gomes
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Michelle Mendanha Mendonça
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Allancer Nunes
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Itamar Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Basile Colugnati
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Aline Priscila Pansani
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Roger Luis Henschel Pobbe
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Robson Santos
- National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | | | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | - Carlos Henrique de Castro
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | - Danielle Ianzer
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil
| | - Reginaldo Nassar Ferreira
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Carlos Henrique Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil; National Institute of Science and Technology Nanobiopharmaceutics (INCT NanoBioFar), Brazil.
| |
Collapse
|
20
|
Yang C, Liu J, Liu K, Du B, Shi K, Ding M, Li B, Yang P. Ghrelin suppresses cardiac fibrosis of post-myocardial infarction heart failure rats by adjusting the activin A-follistatin imbalance. Peptides 2018; 99:27-35. [PMID: 29113826 DOI: 10.1016/j.peptides.2017.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Ghrelin, a growth hormone-releasing peptide, potentially improves cardiac function, but the mechanisms remain unclear. In the study, the rat heart failure (HF) model was established by ligating the left anterior descending coronary artery (LAD) and treated with ghrelin (100μg/kg, subcutaneous injection, bid); neonatal rat cardiomyocytes were cultured and stimulated with Ang II (0.1μM) and ghrelin(0.1μM) to explore the underlying mechanism of ghrelin in myocardial remodeling. Hemodynamic changes and serum brain natriuretic peptide (BNP) concentrations were measured to assess cardiac function. Left ventricular mass index (LVMI), hematoxylin and eosin (H&E) staining, and Masson's trichrome staining were performed to evaluate myocardial fibrosis. Interestingly, ghrelin significantly improved cardiac function by inhibiting fibrous tissue proliferation. To further explore the mechanisms by which ghrelin interferes with myocardial fibrosis, the levels of activin A (Act A) and its blocker-follistatin (FS) were examined by immunohistochemistry; Act A levels were significantly increased in the myocardial infarction (MI), and ghrelin administeration downregulated Act A expression. In contrast, FS expression showed no significant change in all experimental groups. Furthermore, ghrelin decreased Ang II-induced Act A expression with no effect on FS expression in primary rat cardiomyocytes in vitro (real-time quantitative PCR and ELISA). Thus, ghrelin corrected the Act A/FS imbalance. Finally, Act A treated cultured primary rat cardiac fibroblasts (CFs) showed increased proliferation [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay] and enhanced expressions of type I and type III collagen (Col I and Col III) (real-time quantitative PCR). These data suggest that ghrelin inhibits myocardial fibrosis, attenuates left ventricular remodeling, and eventually improves cardiac function by adjusting Act A/FS imbalance.
Collapse
Affiliation(s)
- Chunyan Yang
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jinsha Liu
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital, Jilin University, Changchun, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Kaiyao Shi
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Mei Ding
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Bing Li
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
21
|
Colldén G, Tschöp MH, Müller TD. Therapeutic Potential of Targeting the Ghrelin Pathway. Int J Mol Sci 2017; 18:ijms18040798. [PMID: 28398233 PMCID: PMC5412382 DOI: 10.3390/ijms18040798] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Collapse
Affiliation(s)
- Gustav Colldén
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Institute for Diabetes and Obesity (IDO), Business Campus Garching-Hochbrück, Parkring 13, 85748 Garching, Germany.
| |
Collapse
|
22
|
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside protects murine hearts against ischemia/reperfusion injury by activating Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin 2017; 38:317-330. [PMID: 28112174 DOI: 10.1038/aps.2016.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a water-soluble active component extracted from Polygonum multiflorum Thunb. A number of studies demonstrate that TSG exerts cardioprotective effects. Since endoplasmic reticulum (ER) stress plays a key role in myocardial ischemia/reperfusion (MI/R)-induced cell apoptosis, we sought to determine whether modulation of the ER stress during MI/R injury was involved in the cardioprotective action of TSG. Male mice were treated with TSG (60 mg·kg-1·d-1, ig) for 2 weeks and then were subjected to MI/R surgery. Pre-administration of TSG significantly improved post-operative cardiac function, and suppressed MI/R-induced myocardial apoptosis, evidenced by the reduction in the myocardial apoptotic index, serum levels of LDH and CK after 6 h of reperfusion. TSG (0.1-1000 μmol/L) did not affect the viability of cultured H9c2 cardiomyoblasts in vitro, but pretreatment with TSG dose-dependently decreased simulated ischemia/reperfusion (SIR)-induced cell apoptosis. Furthermore, both in vivo and in vitro studies revealed that TSG treatment activated the Notch1/Hes1 signaling pathway and suppressed ER stress, as evidenced by increasing Notch1, Notch1 intracellular domain (NICD), Hes1, and Bcl-2 expression levels and by decreasing p-PERK/PERK ratio, p-eIF2α/eIF2α ratio, and ATF4, CHOP, Bax, and caspase-3 expression levels. Moreover, the protective effects conferred by TSG on SIR-treated H9c2 cardiomyoblasts were abolished by co-administration of DAPT (the Notch1 signaling inhibitor). In summary, TSG ameliorates MI/R injury in vivo and in vitro by activating the Notch1/Hes1 signaling pathway and attenuating ER stress-induced apoptosis.
Collapse
|
23
|
Liu M, Mao C, Li J, Han F, Yang P. Effects of the Activin A-Follistatin System on Myocardial Cell Apoptosis through the Endoplasmic Reticulum Stress Pathway in Heart Failure. Int J Mol Sci 2017; 18:ijms18020374. [PMID: 28208629 PMCID: PMC5343909 DOI: 10.3390/ijms18020374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A previous study suggested that activin A inhibited myocardial cell apoptosis. This study thus aimed to explore the effects of the activin A-follistatin system on myocardial cell apoptosis in heart failure (HF) rats in order to determine whether or not the mechanism operates through the endoplasmic reticulum stress (ERS) pathway. METHODS Myocardial infarction (MI) by vascular deprivation was used to induce HF. The enzyme-linked immunosorbent assay was used to detect activin A, follistatin and brain natriuretic peptide (BNP) contents in serum. Immunohistochemical staining for activin A, follistatin, CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP) and caspase-3 was performed on the myocardial tissue. The activin A-stimulated apoptosis of H9c2 cells was tested by flow cytometry. Western blot was used to detect the expression levels of activin A, follistatin and ERS-related proteins. RESULTS It was found that the high expression of activin A could cause activin A-follistatin system imbalance, inducing myocardial cell apoptosis via ERS in vivo. When HF developed to a certain stage, the expression of follistatin was upregulated to antagonize the expression of activin A. Activin A inhibited cardiomyocyte apoptosis with a low concentration and promoted apoptosis with a high concentration in vitro, also via ERS. CONCLUSION Activin A-follistatin system participated in ERS-mediated myocardial cell apoptosis in HF.
Collapse
Affiliation(s)
- Miao Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China.
| | - Cuiying Mao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China.
| | - Jiayu Li
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China.
| | - Fanglei Han
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China.
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China.
| |
Collapse
|
24
|
Ai W, Wu M, Chen L, Jiang B, Mu M, Liu L, Yuan Z. Ghrelin ameliorates atherosclerosis by inhibiting endoplasmic reticulum stress. Fundam Clin Pharmacol 2016; 31:147-154. [PMID: 27753125 DOI: 10.1111/fcp.12251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Wenting Ai
- Department of Cardiovascular Medicine; First Affiliated Hospital of Medical College; Xi'an Jiaotong University; Xi'an 710061 China
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an 710068 China
| | - Min Wu
- Endocrinology Department; Shaanxi Provincial People's Hospital; Xi'an 710068 China
| | - Lin Chen
- Pathology Department; Shaanxi Provincial People's Hospital; Xi'an 710068 China
| | - Baozhou Jiang
- Emergency Department; Shaanxi Provincial People's Hospital; Xi'an 710068 China
| | - Mian Mu
- Chaoyang District Panjiayuan Second Community Health Service Center; Beijing 100021 China
| | - Lihua Liu
- The Second Hospital of Yulin; Yulin 719000 China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine; First Affiliated Hospital of Medical College; Xi'an Jiaotong University; Xi'an 710061 China
| |
Collapse
|
25
|
Bi X, Niu J, Ding W, Zhang M, Yang M, Gu Y. Angiopoietin-1 attenuates angiotensin II-induced ER stress in glomerular endothelial cells via a Tie2 receptor/ERK1/2-p38 MAPK-dependent mechanism. Mol Cell Endocrinol 2016; 428:118-32. [PMID: 27033326 DOI: 10.1016/j.mce.2016.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Research has indicated that endoplasmic reticulum (ER) stress in endothelial cells affects vascular pathologies and induces cellular dysfunction and apoptosis. Angiopoietin1 (Angpt1) has been shown to have therapeutic potential in some vascular diseases, including chronic kidney disease. This study showed that Angpt1 is a powerful factor that attenuated ER stress-induced cellular dysfunction and apoptosis in glomerular endothelial cells (GEnCs). Furthermore, Angpt1 significantly decreased the angiotensin II (Ang II)-induced expression of the ER stress response proteins GRP78, GRP94, p-PERK and CHOP. These results suggest that the Angpt1-mediated cellular protection may occur downstream of the ER stress response. In addition, both specific inhibitors and siRNAs for Tie2 reversed these changes, implying the importance of Tie2 receptor activation in the signalling pathways that prevent ER stress. The protective effects of Angpt1 are related to the activation of two downstream signalling pathways, ERK1/2 and p38 MAPK. The inhibition of these pathways with specific inhibitors, PD98059 and SB203580, respectively, partially increased the expression of chaperones that assist in folding proteins in the ER and reduce the protective effects of Angpt1. In conclusion, Angpt1 attenuated ER stress-induced cellular dysfunction and apoptosis via the Tie2 receptor/ERK1/2-p38 MAPK pathways in GEnCs. This study may provide insights into a novel underlying mechanism and a strategy for alleviating ER stress-induced injury.
Collapse
Affiliation(s)
- Xiao Bi
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wei Ding
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minmin Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Yang
- Division of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yong Gu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Niu L, Cui X, Qi Y, Xie D, Wu Q, Chen X, Ge J, Liu Z. Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice. PLoS One 2016; 11:e0156090. [PMID: 27224286 PMCID: PMC4880333 DOI: 10.1371/journal.pone.0156090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy.
Collapse
Affiliation(s)
- Liman Niu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongxue Xie
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qian Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xinxin Chen
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| |
Collapse
|
27
|
Han H, Zhu J, Zhu Z, Ni J, Du R, Dai Y, Chen Y, Wu Z, Lu L, Zhang R. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. J Am Heart Assoc 2015; 4:e001852. [PMID: 26066032 PMCID: PMC4599533 DOI: 10.1161/jaha.115.001852] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Cardiovascular disease is the leading cause of death in patients with chronic kidney disease. A body of evidence suggests that p-cresyl sulfate (PCS), a uremic toxin, is associated with the cardiovascular mortality rate of patients with chronic kidney disease; however, the molecular mechanisms underlying this feature have not yet been fully elucidated. Methods and Results We aimed to determine whether PCS accumulation could adversely affect cardiac dysfunction via direct cytotoxicity to cardiomyocytes. In mice that underwent 5/6 nephrectomy, PCS promoted cardiac apoptosis and affected the ratio of left ventricular transmitral early peak flow velocity to left ventricular transmitral late peak flow velocity (the E/A ratio) observed by echocardiography (n=8 in each group). Apocynin, an inhibitor of NADPH oxidase activity, attenuates this alteration of the E/A ratio (n=6 in each group). PCS also exhibited proapoptotic properties in H9c2 cells by upregulating the expression of p22phox and p47phox, NADPH oxidase subunits, and the production of reactive oxygen species. Apocynin and N-acetylcysteine were both able to suppress the effect of PCS, underscoring the importance of NADPH oxidase activation for the mechanism of action. Conclusions This study demonstrated that the cardiac toxicity of PCS is at least partially attributed to induced NADPH oxidase activity and reactive oxygen species production facilitating cardiac apoptosis and resulting in diastolic dysfunction.
Collapse
Affiliation(s)
- Hui Han
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.) Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., Y.D., Y.C., L.L., R.Z.)
| | - Jinzhou Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.)
| | - Zhengbin Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.)
| | - Jingwei Ni
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.)
| | - Run Du
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.)
| | - Yang Dai
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., Y.D., Y.C., L.L., R.Z.)
| | - Yanjia Chen
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., Y.D., Y.C., L.L., R.Z.)
| | - Zhijun Wu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.)
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.) Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., Y.D., Y.C., L.L., R.Z.)
| | - Ruiyan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., J.Z., Z.Z., J.N., R.D., Z.W., L.L., R.Z.) Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.H., Y.D., Y.C., L.L., R.Z.)
| |
Collapse
|
28
|
Aliparasti MR, Alipour MR, Almasi S, Feizi H. Ghrelin Administration Increases the Bax/Bcl-2 Gene Expression Ratio in the Heart of Chronic Hypoxic Rats. Adv Pharm Bull 2015; 5:195-9. [PMID: 26236657 DOI: 10.15171/apb.2015.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/22/2014] [Accepted: 07/02/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Programmed cell death or apoptosis, is a biochemical procedure that initiates due to some conditions, including hypoxia. Bax and Bcl-2 are among the agents that regulate apoptosis. The amplification of the first one triggers the initiation of apoptosis, and the second one prevents it. Ghrelin is an endogenous peptide that antiapoptosis is its new effect. The aim of this study is to examine the effect of ghrelin on the Bax/Bcl-2 ratio. METHODS Twenty four wistar rats were divided randomly in three groups; control, hypoxic + saline and hypoxic + ghrelin. Hypoxic animals lived in O2 11% for 2 weeks and received either saline or ghrelin subcutaneously daily. The bax and Bcl-2 gene expression were measured by Real-Time RT-PCR. RESULTS Chronic hypoxia increased the Bax gene expression significantly compared with normal animals (P = 0.008), but the Bcl-2 was not affected by hypoxia. The Bax/Bcl-2 ratio also amplified significantly (P=0.005). Ghrelin administration significantly increased the Bax/Bcl-2 ratio in the hypoxic animals compared to the hypoxic + saline and normal groups (p=0.042 and P= 0.001, respectively). CONCLUSION In the present study, animals' treatment with ghrelin leads to an increment of Bax/Bcl-2 ratio, which indicates a controversy related to cardioprotection of ghrelin.
Collapse
Affiliation(s)
| | | | - Shohreh Almasi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Physiology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
29
|
Whirledge SD, Garcia JM, Smith RG, Lamb DJ. Ghrelin partially protects against cisplatin-induced male murine gonadal toxicity in a GHSR-1a-dependent manner. Biol Reprod 2015; 92:76. [PMID: 25631345 DOI: 10.1095/biolreprod.114.123570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chemotherapeutic drug cisplatin causes a number of dose-dependent side effects, including cachexia and testicular damage. Patients receiving a high cumulative dose of cisplatin may develop permanent azoospermia and subsequent infertility. Thus, the development of chemotherapeutic regimens with the optimal postsurvival quality of life (fertility) is of high importance. This study tested the hypothesis that ghrelin administration can prevent or minimize cisplatin-induced testicular damage and cachexia. Ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR-1a), are expressed and function in the testis. Targeted deletion of ghrelin, or its receptor, significantly increases the rate of cell death in the testis, suggesting a protective role. Intraperitoneal administration of vehicle, ghrelin, or cisplatin alone or in combination with ghrelin, in cycles of 9 or 18 days, to adult male C57Bl/6 mice was performed. Body weight was measured daily and testicular and epididymal weight, sperm density and motility, testicular histology, and testicular cell death were analyzed at the time of euthanization. Ghrelin coadministration decreased the severity of cisplatin-induced cachexia and gonadal toxicity. Body, testicular, and epididymal weights significantly increased as testicular cell death decreased with ghrelin coadministration. The widespread damage to the seminiferous epithelium induced by cisplatin administration was less severe in mice simultaneously treated with ghrelin. Furthermore, ghrelin diminished the deleterious effects of cisplatin on testis and body weight homeostasis in wild-type but not Ghsr(-/-) mice, showing that ghrelin's actions are mediated via GHSR. Ghrelin or more stable GHSR agonists potentially offer a novel therapeutic approach to minimize the testicular damage that occurs after gonadotoxin exposure.
Collapse
Affiliation(s)
- Shannon D Whirledge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jose M Garcia
- Division of Endocrinology, Diabetes, and Metabolism, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, Texas
| | - Roy G Smith
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - Dolores J Lamb
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Scott Department of Urology, Baylor College of Medicine, Houston, Texas Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
30
|
Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses 2015; 84:350-5. [PMID: 25649854 DOI: 10.1016/j.mehy.2015.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
Molecular hydrogen (H2) can scavenge hydroxyl radical and diminish the toxicity of peroxynitrite; hence, it has interesting potential for antioxidant protection. Recently, a number of studies have explored the utility of inhaled hydrogen gas, or of hydrogen-saturated water, administered parenterally or orally, in rodent models of pathology and in clinical trials, oftentimes with very positive outcomes. The efficacy of orally ingested hydrogen-rich water (HW) has been particularly surprising, given that only transient and rather small increments in plasma hydrogen can be achieved by this method. A recent study in mice has discovered that orally administered HW provokes increased gastric production of the orexic hormone ghrelin, and that this ghrelin mediates the favorable impact of HW on a mouse model of Parkinson's disease. The possibility that most of the benefits observed with HW in experimental studies are mediated by ghrelin merits consideration. Ghrelin is well known to function as an appetite stimulant and secretagogue for growth hormone, but it influences physiological function throughout the body via interaction with the widely express GHS-R1a receptor. Rodent and, to a more limited extent, clinical studies establish that ghrelin has versatile neuroprotective and cognitive enhancing activity, favorably impacts vascular health, exerts anti-inflammatory activity useful in autoimmune disorders, and is markedly hepatoprotective. The stimulatory impact of ghrelin on GH-IGF-I activity, while potentially beneficial in sarcopenia or cachectic disorders, does raise concerns regarding the long-term impact of ghrelin up-regulation on cancer risk. The impact of ingesting HW water on ghrelin production in humans needs to be evaluated; if HW does up-regulate ghrelin in humans, it may have versatile potential for prevention and control of a number of health disorders.
Collapse
|
31
|
Khatib MN, Simkhada P, Gode D. Cardioprotective effects of ghrelin in heart failure: from gut to heart. Heart Views 2014; 15:74-6. [PMID: 25538820 PMCID: PMC4268614 DOI: 10.4103/1995-705x.144792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chronic heart failure (CHF) is a major cause of morbidity and mortality. Cardioprotective effects of ghrelin, especially in its acylated form have been demonstrated in heart failure (HF) models and exploratory human clinical studies. Hence, it has been proposed for the treatment of HF. However, the underlying mechanism of its protective effects against HF remains unclear. Future researches are needed to evaluate the efficacy of Ghrelin as a new biomarker and prognostic tool and for exploring its therapeutic potential in patients suffering from CHF.
Collapse
Affiliation(s)
| | - Padam Simkhada
- The School of Health and Related Research, The University of Sheffield, United Kingdom
| | - Dilip Gode
- Vice Chancellor, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| |
Collapse
|
32
|
Wang Z, Wang Y, Ye J, Lu X, Cheng Y, Xiang L, Chen L, Feng W, Shi H, Yu X, Lin L, Zhang H, Xiao J, Li X. bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 2014; 19:595-607. [PMID: 25533999 PMCID: PMC4369816 DOI: 10.1111/jcmm.12346] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China; School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sivertsen B, Holliday N, Madsen AN, Holst B. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor. Br J Pharmacol 2014; 170:1349-62. [PMID: 24032557 DOI: 10.1111/bph.12361] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/17/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several different signalling pathways including Gαq , Gαi/o , Gα12/13 and arrestin recruitment. These multiple signalling pathways allow for functionally biased signalling, where one signalling pathway may be favoured over another either by selective ligands or through mutations in the receptor. In the present review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G-protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have been demonstrated to signal more strongly through the Gαq -coupled pathway than the Gα12/13 -coupled pathway. Similarly a ligand that promotes Gαq coupling over Gαi coupling has been described and it has been suggested that several different active conformations of the receptor may exist dependent on the properties of the agonist. Importantly, ligands with such biased signalling properties may allow the development of drugs that selectively modulate only the therapeutically relevant physiological functions, thereby decreasing the risk of side effects. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- B Sivertsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
Yuan MJ, Huang H, Quan L, Tang YH, Wang X, Jiang H, Huang CX. Expression of ghrelin and its receptor in rats after coronary artery ligation. ACTA ACUST UNITED AC 2014; 192-193:1-5. [PMID: 25058156 DOI: 10.1016/j.regpep.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
Ghrelin is a novel growth hormone-releasing peptide, which has been shown to exert beneficial effects on cardiac function and ventricular remodeling. The present study aimed to investigate the expression of ghrelin and the growth hormone (GH) secretagogue receptor 1a (GHSR-1a), and the association with cardiac remodeling in rats with myocardial infarction (MI). Twenty-four hours after ligation of the anterior descending artery (LAD), adult male Sprague-Dawley rats were randomized to 3 d, 7 d and 28 d group. Sham animals underwent thoracotomy and pericardiotomy, but not LAD ligation. Expression of both ghrelin and GHSR-1a was assessed by means of immunohistochemistry and real-time PCR. Plasma ghrelin levels were measured by ELISA kit. In addition, cardiac remodeling was assessed by echocardiographic and hemodynamic measurements. Plasma and cardiac expression of ghrelin decreased on days 3, 7 and 28 compared with the sham group (P<0.05). In contrast the GHSR-1a mRNA levels increased during the same days (P<0.05). Decreased positive immunoreaction for ghrelin and increased positive GHSR-1a were also observed in the infarcted heart. Interestingly, plasma ghrelin correlated negatively with left ventricular end-diastolic pressure (r=-0.59, P=0.002) and left ventricular end-diastolic dimension (r=-0.73, P<0.01). The ghrelin system may play an important role regulating cardiac remodeling after MI and present as a potential significant target for pharmacological modulation and treating cardiac remodeling.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- Dept of Cardiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei Province, PR China
| | - He Huang
- Dept of Cardiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei Province, PR China
| | - Li Quan
- Dept of Cardiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei Province, PR China
| | - Yan-Hong Tang
- Dept of Cardiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei Province, PR China
| | - Xi Wang
- Dept of Cardiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei Province, PR China
| | - Hong Jiang
- Dept of Cardiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei Province, PR China
| | - Cong-Xin Huang
- Dept of Cardiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei Province, PR China.
| |
Collapse
|
35
|
Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca²⁺-ATPase activity and inhibiting endoplasmic reticulum stress. J Cardiovasc Pharmacol 2014; 62:143-53. [PMID: 23609327 DOI: 10.1097/fjc.0b013e31829521af] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIM The aim of this study was to explore the mechanisms underlying the effects of globular adiponectin (gAd) on myocardial ischemia/reperfusion (I/R) injury. METHODS An in vivo myocardial I/R model and an in vitro neonatal rat cardiomyocyte hypoxia/reoxygenation (H/R) model simulating I/R injury in vivo were adopted to investigate whether and how the cardioprotective effects of gAd are mediated by the inhibition of endoplasmic reticulum (ER) stress. RESULTS gAd (1 μg/g, intravenously) attenuated the myocardial infarct size, myocardial enzyme activity, and apoptosis in rats with I/R, and similar protection was observed in primary cultures of neonatal rat cardiomyocytes. The protective effects of gAd were associated with the suppression of ER stress, as evidenced by reversing the upregulation of 78-kDa glucose-regulated protein, C/EBP homologous protein, and caspase-12 that were induced by H/R and thapsigargin. In addition, gAd conferred resistance to ER stress and cardiomyocyte injury by modulating ER Ca²⁺-ATPase (SERCA) activity. Moreover, gAd further increased H/R-enhanced Akt phosphorylation. The protective effects of gAd on ER stress and SERCA activity were abolished by preincubation of rat neonatal cardiomyocytes with the PI3K inhibitor LY294002. Consistent with this finding, I/R-induced ER stress and SERCA dysfunction were also significantly ameliorated by gAd. These effects involved PI3K/Akt signaling pathway. CONCLUSIONS The protective effects of gAd during I/R are mediated, at least in part, by modulating SERCA activity and consequently suppressing ER stress via the activation of PI3K/Akt signaling.
Collapse
|
36
|
Yang C, Liu Z, Liu K, Yang P. Mechanisms of Ghrelin anti-heart failure: inhibition of Ang II-induced cardiomyocyte apoptosis by down-regulating AT1R expression. PLoS One 2014; 9:e85785. [PMID: 24465706 PMCID: PMC3897516 DOI: 10.1371/journal.pone.0085785] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
Background Ghrelin is a novel growth hormone–releasing peptide administered to treat chronic heart failure (CHF). However, the underlying mechanism of its protective effects against heart failure (HF) remains unclear. Methods and Results A total of 68 patients with CHF and 20 healthy individuals were included. The serum levels of Angiotensin II (Ang II) and ghrelin were measured using ELISA. The results showed that Ang II and ghrelin were both significantly increased in CHF patients and that the ghrelin levels were significantly positively correlated with Ang II. The left anterior descending coronary artery was ligated to establish a rat model of CHF, and cultured cardiomyocytes from neonatal rats were stimulated with Ang II to explore the role of ghrelin in CHF. The results showed that ghrelin inhibited cardiomyocyte apoptosis both in vivo and in vitro. Furthermore, caspase-3 expression was examined, and the results revealed that Ang II induces cardiomyocyte apoptosis through the caspase-3 pathway, whereas ghrelin inhibits this action. Lastly, to further elucidate the mechanism by which ghrelin inhibits Ang II action, the expression of the AT1 and AT2 receptors was evaluated; the results showed that Ang II up-regulates the AT1 and AT2 receptors in cardiomyocytes, whereas ghrelin inhibits AT1 receptor up-regulation but does not affect AT2 receptor expression. Conclusions These data suggest that the serum levels of ghrelin are significantly positively correlated with Ang II in CHF patients and that ghrelin can inhibit Ang II-induced cardiomyocyte apoptosis by down-regulating AT1R, thereby playing a role in preventing HF.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Apoptosis/drug effects
- Case-Control Studies
- Caspase 3/metabolism
- Down-Regulation/drug effects
- Female
- Ghrelin/metabolism
- Ghrelin/pharmacology
- Heart Failure/enzymology
- Heart Failure/pathology
- Heart Failure/prevention & control
- Humans
- Male
- Middle Aged
- Myocardium/enzymology
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
Collapse
Affiliation(s)
- Chunyan Yang
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhonghui Liu
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital, Jilin University, Changchun, China
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
37
|
Gu S, Zhang W, Chen J, Ma R, Xiao X, Ma X, Yao Z, Chen Y. EPC-derived microvesicles protect cardiomyocytes from Ang II-induced hypertrophy and apoptosis. PLoS One 2014; 9:e85396. [PMID: 24392165 PMCID: PMC3879348 DOI: 10.1371/journal.pone.0085396] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/04/2013] [Indexed: 01/19/2023] Open
Abstract
Cell-released microvesicles (MVs) represent a novel way of cell-to-cell communication. Previous evidence indicates that endothelial progenitor cells (EPCs)-derived MVs can modulate endothelial cell survival and proliferation. In this study, we evaluated whether EPC-MVs protect cardiomyocytes (CMs) against angiotensin II (Ang II)-induced hypertrophy and apoptosis. The H9c2 CMs were exposed to Ang II in the presence or absence of EPC-MVs. Cell viability, apoptosis, surface area and β-myosin heavy chain (β-MHC) expression were analyzed. Meanwhile, reactive oxygen species (ROS), serine/threonine kinase (Akt), endothelial nitric oxide synthase (eNOS), and their phosphorylated proteins (p-Akt, p-eNOS) were measured. Phosphatidylinositol-3-kinase (PI3K) and NOS inhibitors were used for pathway verification. The role of MV-carried RNAs in mediating these effects was also explored. Results showed 1) EPC-MVs were able to protect CMs against Ang II-induced changes in cell viability, apoptosis, surface area, β-MHC expression and ROS over-production; 2) The effects were accompanied with the up-regulation of Akt/p-Akt and its downstream eNOS/p-eNOS, and were abolished by PI3K inhibition or partially blocked by NOS inhibition; 3) Depletion of RNAs from EPC-MVs partially or totally eliminated the effects of EPC-MVs. Our data indicate that EPC-MVs protect CMs from hypertrophy and apoptosis through activating the PI3K/Akt/eNOS pathway via the RNAs carried by EPC-MVs.
Collapse
Affiliation(s)
- Shenhong Gu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Gerontology, the Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Wei Zhang
- Department of Cardiology, the People’s Hospital of Sanya, Sanya, China
| | - Ji Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ruilian Ma
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Cardiology, the People’s Hospital of Sanya, Sanya, China
| | - Xiang Xiao
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
| | - Xiaotang Ma
- Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhen Yao
- Department of Cardiology, the People’s Hospital of Sanya, Sanya, China
- * E-mail: (YC); (ZY)
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
- * E-mail: (YC); (ZY)
| |
Collapse
|
38
|
Holman EA, Guijarro A, Lim J, Piomelli D. Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats. Psychosom Med 2014; 76:20-28. [PMID: 24367128 PMCID: PMC3988664 DOI: 10.1097/psy.0000000000000025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Trauma exposure can precipitate acute stress (AS) and cardiovascular disorders (CVD). Identifying AS-related physiologic changes that affect CVD risk could inform development of early CVD prevention strategies. The endocannabinoid system (ECS) regulates hypothalamic-pituitary-adrenal axis and stress-related cardiovascular function. We examine stress-related ECS activity and its association with cardiovascular biochemistry/function after AS. METHODS Rodents (n = 8-16/group) were exposed to predator odor or saline; elevated plus maze, blood pressure, serum and cardiac ECS markers, and lipid metabolism were assessed 24 hours and 2 weeks postexposure. RESULTS At 24 hours, the predator odor group demonstrated anxiety-like behavior and had a) elevated serum markers of cardiac failure/damage (brain natriuretic peptide: 275.1 versus 234.6, p = .007; troponin I: 1.50 versus 0.78, p = .076), lipogenesis (triacylglycerols: 123.5 versus 85.93, p = .018), and inflammation (stearoyl delta-9 desaturase activity: 0.21 versus 0.07, p < .001); b) decreased cardiac 2-arachidonoyl-sn-glycerol (29.90 versus 65.95, p < .001), oleoylethanolamide (114.3 versus 125.4, p = .047), and palmitoylethanolamide (72.96 versus 82.87, p = .008); and c) increased cardiac inflammation (interleukin [IL]-1β/IL-6 ratio: 19.79 versus 13.57, p = .038; tumor necrosis factor α/IL-6 ratio: 1.73 versus 1.03, p = .019) and oxidative stress (thiobarbituric acid reactive substances: 7.81 versus 7.05, p = .022), which were associated with cardiac steatosis (higher triacylglycerol: 1.09 versus 0.72, p < .001). Cardiac lipogenesis persisted, and elevated blood pressure emerged 2 weeks postexposure. CONCLUSIONS Acute psychological stress elicits ECS-related cardiac responses associated with persistent, potentially pathological changes in rat cardiovascular biochemistry/function.
Collapse
|
39
|
Rodríguez A. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes Facts 2014; 7:82-95. [PMID: 24685565 PMCID: PMC5644879 DOI: 10.1159/000360837] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/15/2013] [Indexed: 01/27/2023] Open
Abstract
Ghrelin and leptin show opposite effects on energy balance. Ghrelin constitutes a gut hormone that is secreted to the bloodstream in two major forms, acylated and desacyl ghrelin. The isoforms of ghrelin not only promote adiposity by the activation of hypothalamic orexigenic neurons but also directly stimulate the expression of several fat storage-related proteins in adipocytes, including ACC, FAS, LPL and perilipin, thereby stimulating intracytoplasmic lipid accumulation. Moreover, both acylated and desacyl ghrelin reduce TNF-α-induced apoptosis and autophagy in adipocytes, suggesting an anti-inflammatory role of ghrelin in human adipose tissue. On the other hand, leptin is an adipokine with lipolytic effects. In this sense, leptin modulates via PI3K/Akt/mTOR the expression of aquaglyceroporins such as AQP3 and AQP7 that facilitate glycerol efflux from adipocytes in response to the lipolytic stimuli via its translocation from the cytosolic fraction (AQP3) or lipid droplets (AQP7) to the plasma membrane. Ghrelin and leptin also participate in the homeostasis of the cardiovascular system. Ghrelin operates as a cardioprotective factor with increased circulating acylated ghrelin concentrations in patients with left ventricular hypertrophy (LVH) causally related to LV remodeling during the progression to LVH. Additionally, leptin induces vasodilation by inducible NO synthase expression (iNOS) in the vascular wall. In this sense, leptin inhibits the angiotensin II-induced Ca(2+) increase, contraction and proliferation of VSMC through NO-dependent mechanisms. Together, dysregulation of circulating ghrelin isoforms and leptin resistance associated to obesity, type 2 diabetes, or the metabolic syndrome contribute to cardiometabolic derangements observed in these pathologies.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
- *Amaia Rodrèguez, PhD, Metabolic Research Laboratory, Clínica Universidad de Navarra, Irunlarrea 1, 31008 Pamplona (Spain),
| |
Collapse
|
40
|
Effects of endothelial progenitor cell-derived microvesicles on hypoxia/reoxygenation-induced endothelial dysfunction and apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:572729. [PMID: 24288585 PMCID: PMC3830832 DOI: 10.1155/2013/572729] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
Abstract
Oxidative stress-induced endothelial dysfunction plays a key role in ischemia/reperfusion injury. Recent evidence indicates that endothelial progenitor cell-derived microvesicles (EPC-MVs) can promote angiogenesis of endothelial cells (ECs). Here, we investigated the potential effects of EPC-MVs on hypoxia/reoxygenation (H/R) injury in human brain microvascular ECs (hb-ECs). MVs were prepared from EPCs cultured in a serum deprivation (SD) medium (starving stress, sEPC-MVs) or SD medium containing tumor necrosis factor-α (TNFα) (apoptotic stress, aEPC-MVs). H/R injury model of hb-ECs was produced by 6 hr hypoxia (1% O2) and 24 hr reoxygenation. The H/R hb-ECs were co-cultured with EPC-MVs. Results showed that (1) H/R hb-ECs were dysfunctional and coupled with increased apoptosis and ROS overproduction; (2) under two different conditions, EPCs displayed remarkable difference in caspase 3 and miR126 expression, which were carried by the corresponsive EPC-MVs; (3) functionally, sEPC-MVs had beneficial effects on H/R hb-ECs, whereas aEPC-MVs had detrimental effects; (4) the diverse effects of sEPC-MVs and aEPC-MVs were associated with the changes in miR126 and eNOS expression and were abolished by PI3K inhibitor. In conclusion, sEPCs-MVs and aEPC-MVs are functionally different on hb-EC apoptosis and dysfunction via their carried RNAs associated with ROS production and PI3K/eNOS/NO pathway.
Collapse
|
41
|
Zhang GG, Cai HQ, Li YH, Sui YB, Zhang JS, Chang JR, Ning M, Wu Y, Tang CS, Qi YF, Yin XH. Ghrelin protects heart against ERS-induced injury and apoptosis by activating AMP-activated protein kinase. Peptides 2013; 48:156-65. [PMID: 23994559 DOI: 10.1016/j.peptides.2013.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/29/2022]
Abstract
Ghrelin, the endogenous ligand of growth hormone secretagogue receptor (GHS-R), is a cardioprotective peptide. In our previous work, we have revealed that ghrelin could protect heart against ischemia/reperfusion (I/R) injury by inhibiting endoplasmic reticulum stress (ERS), which contributes to many heart diseases. In current study, using both in vivo and in vitro models, we investigated how ghrelin inhibits myocardial ERS. In the in vivo rat heart injury model induced by isoproterenol (ISO), we found that exogenous ghrelin could alleviate heart dysfunction, reduce myocardial injury and apoptosis and inhibit the excessive myocardial ERS induced by ISO. More importantly, the activation of AMP-activated protein kinase (AMPK) was observed. To explore the role of AMPK activation in ERS inhibition by ghrelin, we set up two in vitro ERS models by exposing cultured rat cardiomyocytes to tunicamycin(Tm) or dithiothreitol (DTT). In both models, compared with Tm or DTT treatment alone, pre-incubation cardiomyocytes with ghrelin significantly activated AMPK, reversed the upregulation of the ERS markers, C/EBP-homologous protein (CHOP) and cleaved caspase-12, and reduced apoptosis of cardiomyocytes. Further, we found that the ERS inhibitory and anti-apoptotic actions induced by ghrelin were blocked by an AMPK inhibitor. To investigate how ghrelin activates AMPK, selective antagonist of GHS-R1a and inhibitor of Ca(2+)/Calmodulin-dependent protein kinase kinase (CaMKK) were added, respectively, before ghrelin pre-incubation, and we found that AMPK activation was prevented and the ERS inhibitory and anti-apoptotic actions of ghrelin were blocked. In conclusion, ghrelin could protect heart against ERS-induced injury and apoptosis, at least partially through a GHS-R1a/CaMKK/AMPK pathway.
Collapse
Affiliation(s)
- Gai-Gai Zhang
- Department of Geriatrics and Gerontology, Beijing Huaxin Hospital, the First Affiliated Hospital of Tsinghua University, Beijing 100016, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Icariin protects rat cardiac H9c2 cells from apoptosis by inhibiting endoplasmic reticulum stress. Int J Mol Sci 2013; 14:17845-60. [PMID: 23999590 PMCID: PMC3794756 DOI: 10.3390/ijms140917845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 01/02/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) is one of the mechanisms of apoptotic cell death. Inhibiting the apoptosis induced by ERS may be a novel therapeutic target in cardiovascular diseases. Icariin, a flavonoid isolated from Epimedium brevicornum Maxim, has been demonstrated to have cardiovascular protective effects, but its effects on ERS are unknown. In the present study, we focused on icariin and investigated whether it might protect the cardiac cell from apoptosis via inhibition of ERS. In H9c2 rat cardiomyoblast cells, pretreatment of icariin significantly inhibited cell apoptosis by tunicamycin, an ERS inducer. Icariin also decreased generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential and activation of caspase-3. Moreover, icariin inhibited upregulation of endoplasmic reticulum markers, GRP78, GRP94 and CHOP, elicited by tunicamycin. These results indicated that icariin could protect H9c2 cardiomyoblast cells from ERS-mitochondrial apoptosis in vitro, the mechanisms may be associated with its inhibiting of GRP78, GRP94 and CHOP and decreasing ROS generation directly. It may be a potential agent for treating cardiovascular disease.
Collapse
|
43
|
Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clin Sci (Lond) 2013; 124:307-23. [PMID: 23157407 DOI: 10.1042/cs20120300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.
Collapse
|
44
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
45
|
Delhanty PJD, Neggers SJ, van der Lely AJ. Mechanisms in endocrinology: Ghrelin: the differences between acyl- and des-acyl ghrelin. Eur J Endocrinol 2012; 167:601-8. [PMID: 22898499 DOI: 10.1530/eje-12-0456] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Des-acyl ghrelin (DAG) is one of the three preproghrelin gene-encoded peptides. Compared with ghrelin and obestatin, it has not received the attention it deserves. DAG has long been considered an inert degradation product of acyl ghrelin (AG). Recent evidence, however, indicates that DAG behaves like a separate hormone. DAG can act together with AG, can antagonize AG, and seems to have AG-independent effects. Therefore, it is believed that DAG must activate its own receptor and that it may also interact with AG at this receptor. Of potential clinical importance is that an increasing number of studies suggest that DAG might be a functional inhibitor of ghrelin and that DAG can suppress ghrelin levels in humans. Therefore, DAG or DAG analogs might be good candidates for future treatment of metabolic disorders or other conditions in which antagonism of AG actions could be beneficial, such as diabetes, obesity, and Prader-Willi syndrome.
Collapse
Affiliation(s)
- Patric J D Delhanty
- Department of Medicine, Erasmus University MC, CA Rotterdam, The Netherlands
| | | | | |
Collapse
|