1
|
Ciceri ACM, de Oliveira LE, Richter AL, de Carvalho JAM, Lucena MR, Gomes GW, Figueiredo MS, Nunes Dos Santos MN, Blaia-D'Avila VLN, Cançado RD, Guerra-Shinohara EM, Paniz C. Hematological ratios and cytokine profiles in heterozygous beta-thalassemia. Hematol Transfus Cell Ther 2025; 47:103845. [PMID: 40367897 DOI: 10.1016/j.htct.2025.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 05/16/2025] Open
Abstract
INTRODUCTION β-Thalassemia is defined by a reduced or complete absence of β-globin chain synthesis in hemoglobin, leading to hemolytic anemia. Heterozygous β-thalassemia, also known as β-thalassemia trait (hBTh), the mildest form of this anemia, typically does not cause symptoms in carriers. However, it may lead to changes in the immune system, including an increase in total leukocyte, neutrophil, and lymphocyte counts. OBJECTIVE This study aimed to evaluate various immune and inflammation markers, including neutrophil/lymphocyte, derived neutrophil/lymphocyte, lymphocyte/monocyte, platelet/lymphocyte, neutrophil/platelet ratios, systemic immune-inflammation index, systemic inflammation response index, neutrophil/natural killer cell ratio (NNKR), and inflammatory cytokines in β-thalassemia trait carriers. METHOD A retrospective observational study was conducted, including 50 β-thalassemia trait individuals and 100 healthy controls. RESULTS Leukocyte, neutrophil and reticulocyte counts, and interleukin 6 levels were higher in carriers compared to controls. Notably, the β-thalassemia trait group had increased neutrophil/platelet, neutrophil/lymphocyte and derived neutrophil/lymphocyte ratios, and the systemic immune-inflammation and systemic inflammation response indexes were higher compared to the controls. CONCLUSIONS β-thalassemia trait shows a more pronounced inflammatory profile as indicated by hematological ratios. These ratios, therefore are potentially cost-effective and easily applicable markers for monitoring patients with the β-thalassemia trait.
Collapse
Affiliation(s)
- Ana Carolina Marques Ciceri
- Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisas em Análises Clínicas Aplicadas - LAPACA, Santa Maria, RS, Brazil
| | - Laura Eduarda de Oliveira
- Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisas em Análises Clínicas Aplicadas - LAPACA, Santa Maria, RS, Brazil
| | - Ana Luísa Richter
- Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisas em Análises Clínicas Aplicadas - LAPACA, Santa Maria, RS, Brazil
| | - José Antonio Mainardi de Carvalho
- Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisas em Análises Clínicas Aplicadas - LAPACA, Santa Maria, RS, Brazil
| | - Maylla Rodrigues Lucena
- Universidade Ceuma - Campus Imperatriz, Imperatriz, MA, Brazil; Universidade Federal de São Paulo, Disciplina de Hematologia e Hemoterapia, São Paulo, SP, Brazil
| | | | - Maria Stella Figueiredo
- Universidade Federal de São Paulo, Disciplina de Hematologia e Hemoterapia, São Paulo, SP, Brazil
| | - Magnun Nueldo Nunes Dos Santos
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Patologia Clínica, São Paulo, SP, Brazil
| | | | - Rodolfo Delfini Cançado
- Faculdade de Ciências Médicas da Santa Casa de São Paulo, Departmento de Hematologia e Oncologia, São Paulo, SP, Brazil
| | | | - Clóvis Paniz
- Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisas em Análises Clínicas Aplicadas - LAPACA, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Meloni A, Saba L, Positano V, Taccori M, Pistoia L, De Marco E, Sanna PMG, Longo F, Giovangrossi P, Gerardi C, Barone A, Visceglie D, Barra V, Clemente A, Cau R. Left ventricular diastolic and systolic functions by cardiac magnetic resonance in beta-thalassemia major: correlation with clinical findings and cardiac complications. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:847-857. [PMID: 39928284 DOI: 10.1007/s10554-025-03352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
This cross-sectional study explored the association of left ventricular (LV) fractional area change (FAC) with demographic characteristics, clinical data, cardiovascular magnetic resonance (CMR) findings, and cardiac complications (heart failure and arrythmias) in patients with beta-thalassemia major (β-TM). We included 292 β-TM patients (151 females, 36.72 ± 11.76 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia project and 20 healthy controls (8 females, 36.97 ± 3.54 years). CMR was used to assess FAC and derive LV systolic and diastolic indexes, to quantify myocardial iron overload (MIO) by the T2* technique and LV volumes and ejection fraction, and to detect late gadolinium enhancement (LGE). Healthy subjects and β-TM patients showed comparable LV systolic and diastolic indexes. In β-TM, the LV systolic index was significantly correlated with global heart T2* values, and patients with significant MIO (T2*<20ms) were more likely to have a reduced LV systolic index compared to those without MIO (odds ratio-OR = 3.13; p = 0.013). In multivariate analysis, global heart T2* values and positive LGE emerged as independent determinants of the LV systolic index. The number of segments with LGE inversely correlated with the LV systolic index (p = 0.003). Patients with a reduced LV systolic index were more likely to have cardiac diseases than those with a normal LV systolic index (OR = 5.34; p < 0.0001). No significant correlates were found for the LV diastolic index. In well-treated β-TM patients, MIO and LGE were the strongest determinants of the LV systolic index, and a reduced LV systolic index was associated with an increased risk of cardiac complications.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1, Pisa, 56124, Italy.
| | - Luca Saba
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1, Pisa, 56124, Italy
| | - Mauro Taccori
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Laura Pistoia
- U.O.C. Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Emanuela De Marco
- U.O. Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria Pisana- Stabilimento S. Chiara, Pisa, Italy
| | | | - Filomena Longo
- Unità Operativa Day Hospital Della Talassemia e Delle Emoglobinopatie, Azienda Ospedaliero-Universitaria "S. Anna", Cona- Ferrara, Italy
| | - Piera Giovangrossi
- Servizio di Immunoematologia e Medicina Trasfusionale, Ospedale S. M. Goretti, Latina, Italy
| | - Calogera Gerardi
- Unità Operativa Semplice Dipartimentale di Talassemia, Presidio Ospedaliero "Giovanni Paolo II" - Distretto AG2 di Sciacca, Sciacca, AG, Italy
| | - Angelica Barone
- Unità Operativa di Pediatria e Oncoematologia Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Domenico Visceglie
- Servizio di Immunoematologia e Medicina Trasfusionale, Ospedale "Di Venere", Bari, Italy
| | - Valerio Barra
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Riccardo Cau
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| |
Collapse
|
3
|
Baltus C, Moutereau S, Couque N, Allaf B, Giansily-Blaizot M, Boutin J, Lee K, Bernit E, Cadet E, Bobee V, Picard V, Pissard S, Galactéros F, Renoux C, Connes P, Aguilar-Martinez P, Pondarre C, Joly P. Comprehensive analysis of sickle β +-thalassemia genotypes and their associated HbA levels in France. Blood Cells Mol Dis 2025; 112:102923. [PMID: 40174328 DOI: 10.1016/j.bcmd.2025.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
We retrospectively reviewed the clinical records of 228 HbS/β+-thal patients. The different genotypes were distributed into three groups according to their mean residual HbA levels: <10 % (group 1; n = 22), between 10 and 20 % (group 2; n = 175) and > 20 % (group 3; n = 31). Routine red blood cells and hemoglobin parameters were compared between the three groups. Sixteen different sickle β+-thal genotypes were identified but only four of them were associated with a residual HbA level below 10 %. Patients of this group exhibited a more severe anemia (Hb < 10 g/dL; reticulocytes >200 G/L) compared to the two other groups. However, no difference could be observed on those parameters between patients of group 2 and 3, as well as for the main RBC parameters. According to our study, >80 % of the sickle β+-thalassemia patients in France have a residual HbA level beyond 10 % and a mild to moderate anemia. Only four β+-thal variations (all affecting the splicing process) would lead to a potentially severe SCD syndrome in association with HbS (HbA < 10 %) but this result should be confirmed in a prospective clinical study.
Collapse
Affiliation(s)
- Cecilia Baltus
- Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Stéphane Moutereau
- Département de Biochimie et Pharmacologie, DMU de Biologie, Hôpital Universitaire Henri-Mondor (AP-HP), Créteil, France; Inserm-IMRB U955 eq2, Université Paris Est Créteil, Créteil, France
| | - Nathalie Couque
- Service de génétique moléculaire, Département de Génétique, Hôpital Universitaire Robert-Debré (AP-HP), Paris, France
| | - Bichr Allaf
- Service de Biochimie, Hôpital Universitaire Robert-Debré (AP-HP), Paris, France
| | - Muriel Giansily-Blaizot
- Service d'Hématologie biologique, Centre de référence des syndromes drépanocytaires majeurs, thalassémies et autres pathologies rares du globule rouge et de l'érythropoïèse, CHU de Montpellier, Université de Montpellier, France
| | - Julian Boutin
- Service de Biochimie, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Ketty Lee
- Laboratoire de Génétique moléculaire, CHU de Guadeloupe, Pointe-à-Pitre, France
| | - Emmanuelle Bernit
- Centre de référence pour la Drépanocytose, les Thalassémies et les maladies constitutives du Globule Rouge et de l'Erythropoïèse, CHU de Guadeloupe, Pointe-à-Pitre, France
| | - Estelle Cadet
- Laboratoire de Génétique Médicale, CHU Amiens-Picardie, Amiens, France
| | - Victor Bobee
- Laboratoire d'Hématologie, CHU de Rouen, Rouen, France
| | - Véronique Picard
- Laboratoire d'Hématologie biologique - Génétique moléculaire, Hôpital Universitaire Bicêtre (AP-HP), Le Kremlin-Bicêtre, France
| | - Serge Pissard
- Inserm-IMRB U955 eq2, Université Paris Est Créteil, Créteil, France; Département de Génétique, DMU de Biologie, Hôpital Universitaire Henri-Mondor (AP-HP), Créteil, France
| | - Frédéric Galactéros
- Département de Biochimie et Pharmacologie, DMU de Biologie, Hôpital Universitaire Henri-Mondor (AP-HP), Créteil, France; UMGGR GHU Henri Mondor APHP, U-PEC Créteil, France
| | - Céline Renoux
- Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France; Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
| | - Philippe Connes
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
| | - Patricia Aguilar-Martinez
- Service d'Hématologie biologique, Centre de référence des syndromes drépanocytaires majeurs, thalassémies et autres pathologies rares du globule rouge et de l'érythropoïèse, CHU de Montpellier, Université de Montpellier, France
| | - Corinne Pondarre
- Centre Hospitalier Inter-Communal de Créteil, Créteil, France; Inserm U955, université Paris XII, Créteil, France
| | - Philippe Joly
- Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France; Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France.
| |
Collapse
|
4
|
Volloch V, Rits-Volloch S. Alzheimer's Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory. Int J Mol Sci 2025; 26:4252. [PMID: 40362488 PMCID: PMC12073115 DOI: 10.3390/ijms26094252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer's disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD-conventional and unconventional-differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5'UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the "omnipotent" Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that "sporadic AD" is not sporadic at all ("non-familial" would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball's chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other "…mab" or "…stat" notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently "deep", opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents-activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5'-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with "validation" sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Heng TH, Walter K, Huang QQ, Karjalainen J, Daly MJ, Heyne HO, Malawsky DS, Kalantzis G, Finer S, van Heel DA, Martin HC. Widespread recessive effects on common diseases in a cohort of 44,000 British Pakistanis and Bangladeshis with high autozygosity. Am J Hum Genet 2025:S0002-9297(25)00141-7. [PMID: 40306283 DOI: 10.1016/j.ajhg.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Genetic association studies have focused on testing additive models in cohorts with European ancestry. Little is known about recessive effects on common diseases, specifically for non-European ancestry. Genes & Health is a cohort of British Pakistani and Bangladeshi individuals with elevated rates of consanguinity and endogamy, making it suitable to study recessive effects. We imputed variants into a genotyped dataset (n = 44,190) by using two reference panels: a set of 4,982 whole-exome sequences from within the cohort and the Trans-Omics for Precision Medicine (TOPMed-r2) panel. We performed association testing with 898 diseases from electronic health records. 185 independent loci reached genome-wide significance (p < 5 × 10-8) under the recessive model, with p values lower than under the additive model, and >40% of these were novel. 140 loci demonstrated nominally significant (p < 0.05) dominance deviation p values, confirming a recessive association pattern. Sixteen loci in three clusters were significant at a Bonferroni threshold, accounting for multiple phenotypes tested (p < 5.4 × 10-12). In FinnGen, we replicated 44% of the expected number of Bonferroni-significant loci we were powered to replicate, at least one from each cluster, including an intronic variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3; rs66812091) and non-alcoholic fatty liver disease, a previously reported additive association. We present evidence suggesting that the association is recessive instead (odds ratio [OR] = 1.3, recessive p = 2 × 10-12, additive p = 2 × 10-11, dominance deviation p = 3 × 10-2, and FinnGen recessive OR = 1.3 and p = 6 × 10-12). We identified a novel protective recessive association between a missense variant in SGLT4 (rs61746559), a sodium-glucose transporter with a possible role in the renin-angiotensin-aldosterone system, and hypertension (OR = 0.2, p = 3 × 10-8, dominance deviation p = 7 × 10-6). These results motivate interrogating recessive effects on common diseases more widely.
Collapse
Affiliation(s)
- Teng Hiang Heng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Mark J Daly
- Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Henrike O Heyne
- Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Hasso Plattner Institute, 14482 Potsdam, Germany
| | - Daniel S Malawsky
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Sarah Finer
- Wolfson Institute for Population Health, Queen Mary University of London, London E1 4NS, UK
| | - David A van Heel
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|
6
|
Almasoudi HH. Therapeutic promise of CRISPR-Cas9 gene editing in sickle cell disease and β-thalassemia: A current review. Curr Res Transl Med 2025; 73:103513. [PMID: 40252393 DOI: 10.1016/j.retram.2025.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/15/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Sickle cell disease (SCD and β-thalassemia (BT) affects millions of people worldwide. In addition, around 500,000 infants are born with SCD and 60,000 people are diagnosed with BT every year. Mutations in the hemoglobin subunit beta (HBB) gene are responsible for causing both BT and SCD. Indeed, the diversity of potential mutations in the HBB gene elucidates the diversity in clinical severity observed in individuals with BT and related morbidities. On the other hand, SCD takes place because of the alteration in a single amino acid at position 6 in the beta-globin chain, where a base substitution occurs from glutamic acid to valine, which eventually results in abnormal sickle hemoglobin. Conventional therapies for BT and SCD including pharmaceutical drugs and blood transfusion might temporarily improve the clinical severity of these diseases, however these therapies cannot cure the diseases. CRISPR-Cas9 (CC9) is revolutionizing genome engineering, offering promising therapeutic avenues for genetic diseases. Therefore, CC9-mediated gene therapy provides great hope in the treatment of both BT and SCD. CC9-mediated gene therapy has already demonstrated its effectiveness in correcting both SCD and BT-causing mutations. Moreover, CC9-mediated gene editing was found to be effective in reactivating the expression of hemoglobin F (HbF) and regulating LRF and BCL11A. A number of clinical trials with CC9 gene-edited therapies are being carried out to elucidate their potential in treating BT and SCD. Genetics and pathophysiological mechanisms of SCD and BT, the mechanism of CC9-mediated gene editing, and common delivery methods of the CC9 system have been discussed in this review. Moreover, an in-depth discussion on applications and the current status of CC9-mediated gene editing in SCD and BT along with current challenges and future perspectives have been provided.
Collapse
Affiliation(s)
- Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia.
| |
Collapse
|
7
|
Kosta S, Bhandari S, Sahu R, Joshi P, Bhandari V. Genetic landscape and hematological profiling of thalassemia in patients from the Malwa region, Central India. Mol Genet Genomics 2025; 300:42. [PMID: 40220063 DOI: 10.1007/s00438-025-02245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Thalassemia is a significant health issue in the Malwa region of Central India, contributing to a substantial burden of inherited hemoglobin disorders. Understanding the genetic mutations and their clinical impact is crucial for effective management. To analyze the genetic mutations in thalassemia patients from the Malwa region and correlate them with hematological parameters and clinical severity. Ninety-two patients with clinically diagnosed thalassemia underwent hemoglobin electrophoresis and whole exome sequencing (WES) for genetic analysis. Blood tests, including complete blood count (CBC) and iron studies, were conducted. Statistical analyses were applied to identify genotype-phenotype correlations. WES identified mutations in 91 patients, with Codon 26 (G→A) and IVS-I-5 (G→C) being the most common mutations, affecting 32.6% and 23.9% of the cohort, respectively. Novel mutations were detected in 9 patients (9.7%). Frameshift mutations, particularly at codons 41/42, were associated with more severe anemia (mean hemoglobin 6.9 g/dL) and higher transfusion dependency (85%). Patients with high serum ferritin levels (mean 280 ± 90 ng/mL) exhibited significant iron overload, correlating with increased splenomegaly (p < 0.01). A strong genotype-phenotype correlation was established, with statistical significance observed between mutation types and clinical outcomes (p < 0.01). Our study highlights the genetic and clinical heterogeneity of β-thalassemia in the Malwa region, emphasizing the need for population-based screening and region-specific genetic counselling strategies. The identification of novel mutations, there in-silico pathogenicity predictions, and comparisons with mutation databases further strengthen the claim of novelty and clinical relevance. WES remains a critical tool for improving early diagnosis, risk assessment, and personalized treatment approaches for thalassemia patients.
Collapse
Affiliation(s)
- Susmit Kosta
- Department of Molecular Biology and Medical Genetics, Sri Aurobindo Medical College & P.G. Institute, Sri Aurobindo University, Indore Indore-Ujjain Highway, Indore, Madhya Pradesh, India.
| | - Shweta Bhandari
- Department of Maternal & Fetal Medicine, Sri Aurobindo Medical College & P.G. Institute, Sri Aurobindo University, Indore, India
| | - Roshni Sahu
- Department of Molecular Biology and Medical Genetics, Sri Aurobindo Medical College & P.G. Institute, Sri Aurobindo University, Indore Indore-Ujjain Highway, Indore, Madhya Pradesh, India
| | - Pallavi Joshi
- Department of Molecular Biology and Medical Genetics, Sri Aurobindo Medical College & P.G. Institute, Sri Aurobindo University, Indore Indore-Ujjain Highway, Indore, Madhya Pradesh, India
| | | |
Collapse
|
8
|
Simbula M, Manchinu MF, Olla S, Congiu M, Vaccargiu S, Caria CA, Poddie D, Ristaldi MS. Drugs Repurposing of Molecules Modulating Human Delta Globin Gene Expression via a Model of Transgenic Foetal Liver Cells: Implications for Beta-Hemoglobinopathy Therapeutics. Biomolecules 2025; 15:565. [PMID: 40305292 PMCID: PMC12025224 DOI: 10.3390/biom15040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Beta-hemoglobinopathies such as beta-thalassemia and sickle cell disease are severe genetic blood disorders affecting the beta globin chain of haemoglobin A (α2β2). Activation of delta globin, the non-alpha globin of HbA2 (α2δ2), could represent a possible approach to improve the clinical severity of these pathologies. Notably, the therapeutic potential of delta globin has been demonstrated in previous studies using a mouse model of beta-thalassemia and sickle cell disease. The present study evaluated delta globin gene activation by small molecules in erythroid cells isolated from transgenic murine foetal liver. A screening of 119 molecules, selected for their potential in drug repurposing, was performed without prior selection based on specific pathways of interest. Three candidates-Nexturastat, Stattic and Palbociclib-were found to have high efficacy on delta globin expression. Palbociclib also proved effective in increasing gamma globin expression. All of these compounds have pharmacokinetic profiles that are beneficial for clinical application, providing potential inducer agents of HbA2 that could have therapeutic effects in the treatment of beta-hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Serafina Ristaldi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy; (M.S.); (M.F.M.); (S.O.); (M.C.); (S.V.); (C.A.C.); (D.P.)
| |
Collapse
|
9
|
Jain P, Ikram S, Kashiv Y, Chanchlani M, Singh H, Singhai A. Spectrum of Ophthalmic Manifestations in Patients With Transfusion-Dependent Thalassemia. Cureus 2025; 17:e82218. [PMID: 40370899 PMCID: PMC12076089 DOI: 10.7759/cureus.82218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/16/2025] Open
Abstract
INTRODUCTION Thalassemia is a hereditary blood disorder characterized by impaired hemoglobin production, necessitating regular blood transfusions to manage anemia and associated complications. This condition also poses a significant risk for a range of ophthalmic manifestations due to factors such as iron overload from repeated transfusions, organ dysfunctions, and metabolic imbalances. This research aimed to evaluate the prevalence of ophthalmic anomalies in patients with transfusion-dependent thalassemia (TDT) and to ascertain their correlation with serum ferritin levels, hemoglobin concentrations, and the length of chelation therapy. MATERIALS AND METHODS This cross-sectional study was carried out at a tertiary care center in Central India in the pediatric and ophthalmology departments. All patients diagnosed with beta-thalassemia major between the ages of one and 15 were included in the study. Written informed consent was taken from the parents of participants. Patients with congenital ocular abnormalities, patients with a history of ocular trauma and surgery, and patients with hemoglobin diseases other than beta-thalassemia major were excluded. Complete medical history, including the disease's onset and course, blood transfusion frequency, splenectomy (performed or not), iron-chelating agents (nature, amount, time, and adherence to the regimen), positive consanguinity, and related conditions in the family, was recorded from the parents of every child. The ocular examination consisted of refraction, visual acuity, fundoscopy, slit-lamp examination, tonometry, perimetry in glaucoma suspects, tear break-up time (TBUT) test, and color vision testing. The data were analysed using the Statistical Product and Service Solutions (SPSS, version 19; IBM SPSS Statistics for Windows, Armonk, NY) software. RESULTS Mean (±standard deviation) age of study participants was 8.10±3.83 years (age range: 1.5-14 years). Males comprised a smaller proportion of study participants than females, at 44% and 56%, respectively. We found one or more ocular manifestations in 38 (76%) of the patients, whereas the remaining 12 (24%) had none. Among all the ophthalmic manifestations, refractive errors were found in 56% of patients, followed by vascular tortuosity (32%). In this study, black pigmentation near the optic disc was found in 12% (6) of the patients, 4% had optic disc edema, and 4% had a high cup disc ratio. Yellowish pigmentation of the conjunctiva was seen in 8% of the patients, and 4% had dry eyes with TBUT shorter than 10 seconds. CONCLUSION Ophthalmic manifestations such as refractive errors, vascular tortuosity, pigmentation near the optic disc, and disc edema are common findings in thalassemia patients. This comprehensive study highlights the importance of regular ophthalmic evaluations in TDT patients, emphasizing the need for an interdisciplinary approach that includes hematologists and ophthalmologists. Early detection and management of ophthalmic complications can significantly enhance a patient's quality of life and preserve vision. Future research should focus on understanding the underlying mechanisms of these ocular manifestations and developing targeted interventions to mitigate their impact.
Collapse
Affiliation(s)
- Pragya Jain
- Ophthalmology, People's College of Medical Sciences and Research Centre, Bhopal, IND
| | - Sadaf Ikram
- Pediatrics, People's College of Medical Sciences and Research Centre, Bhopal, IND
| | - Yuri Kashiv
- Ophthalmology, Chirayu Medical College and Hospital, Bhopal, IND
| | - Madhu Chanchlani
- Ophthalmology, People's College of Medical Sciences and Research Centre, Bhopal, IND
| | - Harpal Singh
- Ophthalmology, People's College of Medical Sciences and Research Centre, Bhopal, IND
| | - Abhishek Singhai
- General Medicine, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| |
Collapse
|
10
|
Hardouin G, Miccio A, Brusson M. Gene therapy for β-thalassemia: current and future options. Trends Mol Med 2025; 31:344-358. [PMID: 39794177 DOI: 10.1016/j.molmed.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
Beta-thalassemia is a severe, hereditary blood disorder characterized by anemia, transfusion dependence, reduced life expectancy, and poor quality of life. Allogeneic transplantation of hematopoietic stem cells (HSCs) is the only curative treatment for transfusion-dependent β-thalassemia, but a lack of compatible donors prevents the use of this approach for most patients. Over the past 20 years, the rise of gene therapy and the development of lentiviral vectors and genome-editing tools has extended curative options to a broader range of patients. Here, we review breakthroughs in gene addition- and genome-editing-based therapies for β-thalassemia, the clinical outcomes enabling approval by regulatory agencies, and perspectives for further development.
Collapse
Affiliation(s)
- Giulia Hardouin
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.
| | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.
| | - Megane Brusson
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France
| |
Collapse
|
11
|
Cheng LG, Huang SL, Hwang K. Genetic syndromes leading to male infertility: a systematic review. Fertil Steril 2025:S0015-0282(25)00162-1. [PMID: 40122225 DOI: 10.1016/j.fertnstert.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Male-factor infertility is a multifactorial, complex, and increasingly common condition, of which genetic factors have more frequently been implicated. Not only are the causal relationships between genetic variation and male infertility phenotypes understudied, but also the differences in frequency of disease-causing genetic alterations within different geographic and ethnic groups. Guidelines remain inconsistent as to recommended genomic testing during the male infertility workup. Our current fund of knowledge limits our diagnostic capability where the etiology of male infertility remains idiopathic in about 40% of patients, despite advances in genomic sequencing and testing.
Collapse
Affiliation(s)
| | - Sherry L Huang
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kathleen Hwang
- Department of Surgery, Division of Urology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
12
|
Meloni A, Pistoia L, Spasiano A, Sorrentino F, Messina G, Santodirocco M, Borsellino Z, Cecinati V, Positano V, Restaino G, Schicchi N, Grassedonio E, Vallone A, Emdin M, Clemente A, Barison A. Prevalence and Correlates of Dilated and Non-Dilated Left Ventricular Cardiomyopathy in Transfusion-Dependent Thalassemia: Data from a National, Multicenter, Observational Registry. J Cardiovasc Dev Dis 2025; 12:103. [PMID: 40137101 PMCID: PMC11943376 DOI: 10.3390/jcdd12030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
We investigated the prevalence, clinical characteristics, and prognostic role of dilated cardiomyopathy (DCM) and non-dilated left ventricular cardiomyopathy (NDLVC) in patients with transfusion-dependent β-thalassemia (β-TDT). We retrospectively included 415 β-TDT patients who underwent cardiovascular magnetic resonance to quantify myocardial iron overload (MIO) and biventricular function parameters and to detect replacement myocardial fibrosis. Demographic and laboratory parameters were comparable among patients with no overt cardiomyopathy (NOCM; n = 294), DCM (n = 12), and NDLVC (n = 109), while cardiac size and systolic function were significantly different. Compared to NOCM patients, DCM and NDLVC patients had a higher prevalence of MIO and replacement myocardial fibrosis. During a mean follow-up of 57.03 ± 18.01 months, cardiac complications occurred in 32 (7.7%) patients: 15 heart failures, 15 supraventricular arrhythmias, and 2 pulmonary hypertensions. Compared to the NOCM group, both the NDLVC and the DCM groups were associated with a significantly increased risk of cardiac complications (hazard ratio = 4.26 and 8.81, respectively). In the multivariate analysis, the independent predictive factors were age, MIO, and the presence of DCM and NDLVC versus the NOCM phenotype. In β-TDT, the detection of NDLVC and DCM phenotypes may hold value in predicting cardiac outcomes.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
| | - Laura Pistoia
- Unità Operativa Semplice Dipartimentale Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Anna Spasiano
- Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, 80131 Napoli, Italy;
| | - Francesco Sorrentino
- Unità Operativa Semplice Dipartimentale Day Hospital Talassemici, Ospedale “Sant’Eugenio”, 00143 Roma, Italy;
| | - Giuseppe Messina
- Centro Microcitemie, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| | - Michele Santodirocco
- Centro Microcitemia—Day Hospital Thalassemia Poliambulatorio “Giovanni Paolo II”, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Zelia Borsellino
- Unità Operativa Complessa Ematologia con Talassemia, Azienda di Rilievo Nazionale ad Alta Specializzazione Civico “Benfratelli-Di Cristina”, 90134 Palermo, Italy;
| | - Valerio Cecinati
- Struttura Semplice di Microcitemia, Ospedale “SS. Annunziata”, 74123 Taranto, Italy;
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
| | - Gennaro Restaino
- Radiology Department, Responsible Research Hospital, 86100 Campobasso, Italy;
| | - Nicolò Schicchi
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria Ospedali Riuniti “Umberto I-Lancisi-Salesi”, 60020 Ancona, Italy;
| | - Emanuele Grassedonio
- Sezione di Scienze Radiologiche—Dipartimento di Biopatologia e Biotecnologie Mediche, Policlinico “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Antonino Vallone
- Reparto di Radiologia, Azienda Ospedaliera “Garibaldi” Presidio Ospedaliero Nesima, 95126 Catania, Italy;
| | - Michele Emdin
- Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Andrea Barison
- Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
| |
Collapse
|
13
|
Safwan M, Bourgleh MS, Alsudays A, Haider KH. Combinatorial approach to treat iron overload cardiomyopathy in pediatric patients with thalassemia-major: A systematic review and meta-analysis. World J Cardiol 2025; 17:103733. [PMID: 40061283 PMCID: PMC11886390 DOI: 10.4330/wjc.v17.i2.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Iron overload cardiomyopathy is a significant cause of morbidity and mortality in transfusion-dependent thalassemia patients. Standard iron chelation therapy is less efficient in alleviating iron accumulation in many organs, especially when iron enters the cells via specific calcium channels. AIM To validate our hypothesis that adding amlodipine to the iron chelation regimen is more efficient in alleviating myocardial iron overload. METHODS Five databases, including PubMed, Cochrane Library, Embase, ScienceDirect, and ClinicalTrials.gov, were systematically searched, and three randomized controlled trials involving 144 pediatric patients with transfusion-dependent thalassemia were included in our meta-analysis based on the predefined eligibility criteria. The quality of the included studies was assessed based on the Cochrane collaboration tool for bias assessment. The primary outcome assessed was myocardial-T2 and myocardial iron concentration, while the secondary results showed serum ferritin level, liver iron concentration, and treatment adverse outcomes. Weighted mean difference and odds ratio were calculated to measure the changes in the estimated treatment effects. RESULTS During the follow-up period, Amlodipine treatment significantly improved cardiac T2 by 2.79 ms compared to the control group [95% confidence interval (CI): 0.34-5.24, P = 0.03, I 2 = 0%]. Additionally, a significant reduction of 0.31 in myocardial iron concentration was observed with amlodipine treatment compared to the control group [95%CI: -0.38-(-0.25), P < 0.00001, I 2 = 0%]. Liver iron concentration was slightly lower in the amlodipine group by -0.04 mg/g, but this difference was not statistically significant (95%CI: -0.33-0.24, P = 0.77, I 2 = 0%). Amlodipine also showed a non-significant trend toward a reduction in serum ferritin levels (-328.86 ng/mL, 95%CI: -1212.34-554.62, P = 0.47, I 2 = 90%). Regarding safety, there were no significant differences between the groups in the incidence of gastrointestinal upset, hypotension, or lower limb edema. CONCLUSION Amlodipine with iron chelation therapy significantly improved cardiac parameters, including cardiac-T2 and myocardial iron, in patients with transfusion-dependent thalassemia without causing significant adverse events but enhancing the efficacy of iron chelation therapy.
Collapse
Affiliation(s)
- Moaz Safwan
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Mariam Safwan Bourgleh
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Aseel Alsudays
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia.
| |
Collapse
|
14
|
Menderes D, Emerce E, Göktaş T, Çakmak G, Aslan D. DNA damage in children with β-thalassemia minor: genotoxicity assessment by comet assay. Turk J Pediatr 2025; 67:39-50. [PMID: 40084733 DOI: 10.24953/turkjpediatr.2025.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/01/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND In transfusion-dependent forms of β-thalassemia, chronic anemia and iron overload lead to the development of oxidative stress-related DNA damage. In β-thalassemia minor (β-Tm), oxidative stress resulting from an unbalanced globin chain ratio has been documented, even in the absence of anemia and its complications. However, the status of oxidative stress-related DNA damage has not yet been elucidated. The aim of this study was to assess DNA damage in β-Tm in a pediatric population. MATERIAL AND METHODS We compared 142 children with β-Tm to 113 healthy controls, including siblings of the β-Tm individuals. The comet assay was used to assess DNA damage in peripheral blood lymphocytes. Additionally, oxidative stress markers and biochemical parameters were measured. RESULTS No significant differences were observed between the β-Tm group and controls in terms of demographics, biochemical parameters, or baseline oxidative stress levels (p>0.05). In the comet assay, there was no difference in tail intensity (TI) between subjects and controls, nor between siblings with and without β-Tm (p=0.551 and p=0.655, respectively). However, when the β-Tm group was divided by age, a gradual increase in DNA damage, as measured by TI, was observed. This increase was more pronounced in the β-Tm group compared to controls. CONCLUSION We observed no significant differences in DNA damage between β-Tm individuals and controls. However, TI increased at a faster rate with age in carriers compared to non-carriers, suggesting that environmental factors might exert a more pronounced influence on the genetic integrity of individuals with a β-Tm background. Although β-Tm itself does not seem to pose a substantial genotoxic risk in childhood, our findings underscore the importance of further research into the interplay between β-Tm and other risk factors throughout life. We advocate for long-term monitoring of β-Tm children to assess the health and potential genetic consequences.
Collapse
Affiliation(s)
- Deniz Menderes
- Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Esra Emerce
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Tayfun Göktaş
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Gonca Çakmak
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Deniz Aslan
- Section of Hematology, Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Türkiye
| |
Collapse
|
15
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
16
|
Ansharullah BA, Sutanto H, Romadhon PZ. Thalassemia and iron overload cardiomyopathy: Pathophysiological insights, clinical implications, and management strategies. Curr Probl Cardiol 2025; 50:102911. [PMID: 39477176 DOI: 10.1016/j.cpcardiol.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Thalassemia is a hereditary blood disorder characterized by reduced hemoglobin production, leading to chronic anemia. A major complication of thalassemia is iron overload, primarily due to regular blood transfusions and increased gastrointestinal iron absorption, which can lead to iron overload cardiomyopathy, a significant cause of morbidity and mortality in thalassemia patients. This review aims to provide an in-depth analysis of the pathophysiological mechanisms underlying iron overload cardiomyopathy in thalassemia, examining how excessive iron accumulation disrupts cardiac function through oxidative stress, cellular damage, and altered calcium homeostasis. Clinical manifestations, including fatigue, arrhythmias, and heart failure, are discussed alongside diagnostic strategies such as echocardiography and cardiac MRI for early detection and monitoring. Management approaches focusing on iron chelation therapy, lifestyle modifications, and advanced interventions like gene therapy are explored. The review also highlights the importance of early diagnosis, regular monitoring, and patient adherence to therapy to prevent the progression of cardiomyopathy. Recent advances in treatment and future research directions, including personalized medicine, and gene editing technologies, are presented. Addressing the challenges in managing iron overload in thalassemia patients is crucial for improving outcomes and enhancing quality of life.
Collapse
Affiliation(s)
- Bagus Aditya Ansharullah
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, 60286, Indonesia
| | - Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia; Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, 60286, Indonesia
| | - Pradana Zaky Romadhon
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, 60286, Indonesia; Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.
| |
Collapse
|
17
|
Zeng GK, Yang YF, Ge YY, Yang Y, Lai BR, Cao YB, Yu XH, Yang LY. Identification of a β-Globin Gene Mutation with the Genotype β-28(A > G), IVS-I-5(G > A)/βCD 71/72(+A) Using Third-Generation Sequencing. Hemoglobin 2025; 49:63-68. [PMID: 39780430 DOI: 10.1080/03630269.2024.2446371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
This study presents the hematological and genetic analysis of a child with severe β-thalassemia harboring triple heterozygous mutations. The child, diagnosed with anemia at the age of 1 year, became transfusion-dependent and maintained a hemoglobin level of 72.00-84.00 g/L following regular blood transfusions. At the age of 9 years, genetic analysis was conducted using PCR-reverse dot blot (PCR-RDB), Sanger sequencing, and third-generation nanopore sequencing. Sanger sequencing identified a triple heterozygous mutation in the β-globin gene: -28(A > G) (HBB:c.-78A > G), IVS-I-5(G > A) (HBB:c0.92 + 5G > A), and CD 71/72(+A) (HBB:c.216_217insA). Nanopore sequencing further confirmed the genotype as β-28(A>G), IVS-I-5(G>A)/βCD 71/72(+A). The combination of these mutations represents a rare β-thalassemia genotype in China, contributing to the β-globin gene mutation database for the Chinese population. This study highlights the importance of employing family analysis or third-generation sequencing technologies to clarify complex mutation linkages when Sanger sequencing alone cannot determine the relationship between multiple mutations.
Collapse
Affiliation(s)
- Guang-Kuan Zeng
- Precision Medical Lab Center, People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China
| | - Yan-Fang Yang
- Prenatal Diagnosis Center, Maoming People's Hospital, Maoming, Guangdong, People's Republic of China
| | - Yi-Yuan Ge
- Research Unit, Guangdong Hybribio Limited Corporation, Guangzhou, Guangdong Province, China
| | - Ying Yang
- Research Unit, Guangdong Hybribio Limited Corporation, Guangzhou, Guangdong Province, China
| | - Bai-Ru Lai
- Precision Medical Lab Center, People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China
| | - Yan-Bin Cao
- Precision Medical Lab Center, People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China
| | - Xiao-Hua Yu
- Precision Medical Lab Center, People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China
| | - Li-Ye Yang
- Precision Medical Lab Center, People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Baqar M, Ahmed JM, Asim M, Pradhan N, Altaf S. Experiences of family caregivers of children living with thalassaemia-major in Karachi: a phenomenological study. BMJ PUBLIC HEALTH 2024; 2:e001359. [PMID: 40018539 PMCID: PMC11816845 DOI: 10.1136/bmjph-2024-001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 03/01/2025]
Abstract
Introduction Thalassaemia major, a global health burden, presents a growing challenge in Pakistan's strained healthcare system. This study explores how caregivers of children with beta-thalassaemia major navigate healthcare services, aiming to identify facilitators and barriers to accessing optimal care. Methods A qualitative interpretative phenomenological approach was employed. In-depth interviews with 18 purposively sampled caregivers from Karachi thalassaemia centres were conducted. Thematic analysis using a combined inductive-deductive approach identified themes within the interview data. Result The study revealed significant challenges for caregivers at individual, interpersonal and organisational levels. Lack of awareness about carrier states, limited disease knowledge, financial constraints and concerns about the child's future emerged as primary hurdles. Parents felt helpless due to the absence of emotional and social support for their children's treatment. Obstacles such as complicated registration processes at thalassaemia-care centres, high costs of chelating agents and blood unavailability were major barriers to seeking care and caregiving. Additionally, the study highlighted the absence of guidelines for thalassaemia-carrier detection among mothers during antenatal care. Conclusion The study emphasised the importance of implementing premarital screening programmes due to the lack of knowledge about the disease and carrier state. To prevent the disease, it is crucial to include thalassaemia-carrier detection for mothers in antenatal guidelines and provide counselling at the primary level. Additionally, caregivers encountered treatment accessibility issues, prompting the establishment of a satellite thalassaemia centre linked to a top-tier tertiary care hospital in the public sector. This initiative addressed treatment challenges and improved overall care for patients with thalassaemia and their caregivers.
Collapse
Affiliation(s)
| | | | - Muhammad Asim
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - Nousheen Pradhan
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - Sadaf Altaf
- Department of Oncology, The Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
19
|
Jayaram PR, Devadas S, Jain P, Devi C G. Knowledge, attitude and acceptance regarding bone marrow transplantation in caregivers of beta-thalassemia major patients. J Community Genet 2024; 15:673-679. [PMID: 39392570 PMCID: PMC11645398 DOI: 10.1007/s12687-024-00739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
OBJECTIVE Knowledge, Attitude, and Acceptance regarding Bone marrow transplantation in caregivers of beta-thalassemia major patients. METHODS A cross-sectional study was conducted among the caregivers of pediatric patients with betathalassemia major in blood transfusion centres in Bangalore, India. Their knowledge, attitude, and acceptance regarding bone marrow transplantation were assessed using a validated questionnaire. The study aimed to identify factors that influence caregivers' decision about bone marrow transplantation. RESULTS The knowledge, attitude, and acceptance of the caregivers towards bone marrow transplantation are shown to depend on gender, education and socio-economic status. The results of this study reveal that male caregivers generally exhibited higher levels of knowledge and had a better attitude towards it as compared to their female counterparts. Higher education and socio-economic status were associated with better knowledge, more favourable attitudes and a higher acceptance towards the procedure.
Collapse
Affiliation(s)
- Purva Reddy Jayaram
- Bangalore Medical College and Research Institute, Bangalore, Karnataka, India.
| | - Sahana Devadas
- Department of Pediatrics, Vani Vilas Hospital, Bangalore, Karnataka, India
| | - Paridhi Jain
- Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Gayathri Devi C
- Department of Pediatrics, Vani Vilas Hospital, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Ismail UN, Azlan CA, Khairullah S, Azman RR, Omar NF, Md Shah MN, Jackson N, Ng KH. Marrow Fat-Cortical Bone Relationship in β-Thalassemia: A Study Using MRI. J Magn Reson Imaging 2024; 60:2447-2456. [PMID: 38556790 DOI: 10.1002/jmri.29366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Growing evidence suggests that marrow adipocytes play an active role in the regulation of bone metabolism and hematopoiesis. However, research on the relationship between bone and fat in the context of hematological diseases, particularly β-thalassemia, remains limited. PURPOSE To investigate the relationship between marrow fat and cortical bone thickness in β-thalassemia and to identify key determinants influencing these variables. STUDY TYPE Prospective. SUBJECTS Thirty-five subjects in four subject groups of increasing disease severity: 6 healthy control (25.0 ± 5.3 years, 2 male), 4 β-thalassemia minor, 13 intermedia, and 12 major (29.1 ± 6.4 years, 15 male). FIELD STRENGTH/SEQUENCE 3.0 T, 3D fast low angle shot sequence and T1-weighted turbo spin echo. ASSESSMENT Analyses on proton density fat fraction (PDFF) and R2* values in femur subregions (femoral head, greater trochanter, intertrochanteric, diaphysis, distal) and cortical thickness (CBI) of the subjects' left femur. Clinical data such as age, sex, body mass index (BMI), and disease severity were also included. STATISTICAL TESTS One-way analysis of variance (ANOVA), mixed ANOVA, Pearson correlation and multiple regression. P-values <0.05 were considered significant. RESULTS Bone marrow PDFF significantly varied between the femur subregions, F(2.89,89.63) = 44.185 and disease severity, F(1,3) = 12.357. A significant interaction between subject groups and femur subregions on bone marrow PDFF was observed, F(8.67,89.63) = 3.723. Notably, a moderate positive correlation was observed between PDFF and CBI (r = 0.33-0.45). Multiple regression models for both PDFF (R2 = 0.476, F(13,151) = 10.547) and CBI (R2 = 0.477, F(13,151) = 10.580) were significant. Significant predictors for PDFF were disease severity (βTMi = 0.36, βTMa = 0.17), CBI (β = 0.24), R2* (β = -0.32), and height (β = -0.29) while for CBI, the significant determinants were sex (β = -0.27), BMI (β = 0.55), disease severity (βTMi = 2.15), and PDFF (β = 0.25). DATA CONCLUSION This study revealed a positive correlation between bone marrow fat fraction and cortical bone thickness in β-thalassemia with varying disease severity, potentially indicating a complex interplay between bone health and marrow composition. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Umi Nabilah Ismail
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Che Ahmad Azlan
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shasha Khairullah
- Haematology Unit, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Raja Rizal Azman
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur Farhayu Omar
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohammad Nazri Md Shah
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nicholas Jackson
- Red Cell Unit, Department of Haematology, University College London Hospital, London, UK
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
van der Meij E, Smiers FJW, Koopmann TT, Krapels I, LePoole K, Lopriore E, Middeldorp JM, Ootjers CS, Scharnhorst V, Scheepers HCJ, Harteveld CL, Verweij EJTJ. Heterozygous Beta-Thalassaemia in Pregnancy: Two Rare Causes of Severe Fetal Anemia Requiring Intrauterine Blood Transfusions. Prenat Diagn 2024. [PMID: 39488721 DOI: 10.1002/pd.6695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/30/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024]
Abstract
AIM In this article, we present two cases of severe fetal hemolytic anemia based on a beta-thalassaemia trait inherited from a single parent. RESULTS These cases, presented at 20 and 28 weeks' gestation, necessitated intra-uterine blood transfusions. This occurrence is remarkable because it challenges the common assumption that beta-thalassaemia typically has no prenatal implications regarding fetal anemia. Both fetuses inherited a rare heterozygous mutation from their mother, resulting in gamma-thalassaemia-related anemia. In the first case, the anemia was related to a deletion in the beta locus control region (βLCR) and in the second case, a deletion on chromosome 11p15.4 was the cause. These mutations not only affect the beta chain production, but also the gamma chain production, leading to a reduction in the synthesis of HbF, ineffective erythropoiesis and consequently, perinatal hemolytic anemia. CONCLUSION Clinicians should be vigilant regarding these rare mutations in families with a history of beta-thalassaemia as the fetal clinical consequences can be severe and intra-uterine blood transfusions may prove life-saving for these fetuses.
Collapse
Affiliation(s)
- Eva van der Meij
- Department of Obstetrics & Gynaecology, Division of Fetal Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans J W Smiers
- Department of Pediatric Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tamara T Koopmann
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kaatje LePoole
- Sanquin Blood Bank, Unit Transfusion Medicine, Amsterdam, The Netherlands
| | - Enrico Lopriore
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna M Middeldorp
- Department of Obstetrics & Gynaecology, Division of Fetal Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia S Ootjers
- Department of Hematology, Division Transfusion Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Volkher Scharnhorst
- Department of Biomedical Engineering, Catharina Hospital, Clinical Laboratory and Technical University Eindhoven, Eindhoven, The Netherlands
| | - Hubertina C J Scheepers
- GROW, Departement of Obstetrics and Gynaecology, School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cornelis L Harteveld
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - E J T Joanne Verweij
- Department of Obstetrics & Gynaecology, Division of Fetal Therapy, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Al-Jubouri AM, Eliwa A, Haithm Y, Al-Qahtani N, Jolo L, Yassin M. Relationship between hemoglobinopathies and male infertility: a scoping review. Int J Hematol 2024; 120:566-574. [PMID: 39331276 PMCID: PMC11513741 DOI: 10.1007/s12185-024-03844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Infertility is a common issue that threatens couples worldwide. Infertility can result from the male or female partner alone, or both partners. It can be due to multiple factors related to the patient's overall health or lifestyle. Causes related to patient health can be systemic or related to gonadal dysfunction. One of the systematic causes can be hematological. The two most common hemoglobinopathies that are thought to cause infertility, especially male infertility, are sickle cell disease (SCD) and thalassemia major (TM). These two hemoglobinopathies cause male infertility through pathophysiological alterations. Specifically, they alter the oxygen carrying ability of red blood cells (RBCs), causing tissue hypoxia that affects the normal physiological process of spermatogenesis, eventually inducing infertility. Semen analyses and other systemic blood testing can be used to investigate male infertility. Both hemoglobinopathies can be helped by blood transfusions, which can then alleviate male infertility. This paper aims to explore the relationship between hemoglobinopathies (SCD and TM) and their role in contributing to male infertility, in addition to the role of blood transfusions in addressing male infertility by correcting the root cause.
Collapse
Affiliation(s)
| | - Ahmed Eliwa
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Yunes Haithm
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Noof Al-Qahtani
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Lolwa Jolo
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Mohamed Yassin
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar.
- Department of Hematology, Hamad Medical Center, Doha, Qatar.
| |
Collapse
|
23
|
Jensen K, Hammer A, Khatib A, Hazin M. Non-HFE Hemochromatosis in the Context of β-Thalassemia Trait: A Case Study on Iron Overload Dysregulation. Cureus 2024; 16:e74431. [PMID: 39723309 PMCID: PMC11669421 DOI: 10.7759/cureus.74431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Thalassemia and hemochromatosis are two distinct conditions that involve dysregulation of iron metabolism, though their origin, clinical presentations, and treatments differ. This case represents a patient with incidentally discovered microcytic anemia due to β-thalassemia trait and non-HFE hemochromatosis. It discusses the potential synergistic effect of these two diseases on iron overload and highlights the need for further testing to determine hereditary versus secondary causes of hemochromatosis. In addition, this case study also offers insight into the management of these conditions with somewhat conflicting treatments. In this case, the patient was advised to avoid phlebotomies so as not to worsen the anemia and was referred to hepatology.
Collapse
Affiliation(s)
- Kate Jensen
- Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Andrew Hammer
- Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Ahmad Khatib
- Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Moustafa Hazin
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| |
Collapse
|
24
|
Majid I, Sergeev YV. Linking Protein Stability to Pathogenicity: Predicting Clinical Significance of Single-Missense Mutations in Ocular Proteins Using Machine Learning. Int J Mol Sci 2024; 25:11649. [PMID: 39519200 PMCID: PMC11546782 DOI: 10.3390/ijms252111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the effect of single-missense mutations on protein stability is crucial for clinical decision-making and therapeutic development. The impact of these mutations on protein stability and 3D structure remains underexplored. Here, we developed a program to investigate the relationship between pathogenic mutations with protein unfolding and compared seven machine learning (ML) models to predict the clinical significance of single-missense mutations with unknown impacts, based on protein stability parameters. We analyzed seven proteins associated with ocular disease-causing genes. The program revealed an R-squared value of 0.846 using Decision Tree Regression between pathogenic mutations and decreased protein stability, with 96.20% of pathogenic mutations in RPE65 leading to protein instability. Among the ML models, Random Forest achieved the highest AUC (0.922) and PR AUC (0.879) in predicting the clinical significance of mutations with unknown effects. Our findings indicate that most pathogenic mutations affecting protein stability occur in alpha-helices, beta-pleated sheets, and active sites. This study suggests that protein stability can serve as a valuable parameter for interpreting the clinical significance of single-missense mutations in ocular proteins.
Collapse
Affiliation(s)
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Balcázar-Villarroel M, Mancilla-Uribe A, Navia-León S, Carmine F, Birditt K, Sandoval C. Diagnostic Performance of Red Blood Cell Indices in the Differential Diagnosis of Iron Deficiency Anemia and the Thalassemia Trait in Chile: A Retrospective Study. Diagnostics (Basel) 2024; 14:2353. [PMID: 39518321 PMCID: PMC11545601 DOI: 10.3390/diagnostics14212353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Iron deficiency anemia (IDA) and the β-thalassemia trait (BTT) are two main causes of hypochromic-microcytic anemia worldwide. Researchers have described many red blood cell (RBC) indices as screening tests for presumptive differentiation, based on differences observed in complete blood count (CBC) data for each condition. There are few BTT reports in Chile, and neither laboratories nor clinical staff have widely used these indices. OBJECTIVE The objective of this study was to evaluate the diagnostic performance of 29 RBC indices in 182 patients (51 BTT and 131 IDA) and compare CBC results in both groups. METHODS A retrospective search was carried out in the Laboratory Information System between January 2021 and February 2024 to collect results from CBC, and 29 RBC indices were calculated for each patient. Then, sensitivity, specificity, positive predictive value, negative predictive value, Youden's index, positive likelihood ratio, negative likelihood ratio, and diagnostic accuracy were calculated using MedCalc©. RESULTS The Green and King, Wongprachum, and Keikhaei indices showed the best discriminatory power with Youden index values of 0.923, 0.908, and 0.896, respectively, and significant differences were observed in all CBC parameters between BTT and IDA patients (p < 0.001). CONCLUSIONS The Green and King, Wongprachum, and Keikhaei indices showed the best performance; therefore, they can be used as screening for the differential diagnosis between BTT and IDA in order to improve diagnosis given the important therapeutic and epidemiological implications. In this way, clinical laboratories could have a main role in the investigation of these patients.
Collapse
Affiliation(s)
| | | | - Sandra Navia-León
- Laboratorio Clínico TecnoMedic, Puerto Montt 5502901, Chile; (A.M.-U.); (S.N.-L.)
| | - Florencia Carmine
- Carrera de Medicina, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Katherine Birditt
- Physiology Development and Neuroscience Department, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
26
|
Malay J, Salama RAA, Alam Qureshi GS, Ammar ARAA, Janardhan G, Safdar M, Elshamy HAH. Gene Therapy: A Revolutionary Step in Treating Thalassemia. Hematol Rep 2024; 16:656-668. [PMID: 39449307 PMCID: PMC11503351 DOI: 10.3390/hematolrep16040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Beta thalassemia is an inherited blood disorder that results in inefficient erythropoiesis due to genetic mutation that leads to the reduction or absence of the hemoglobin beta-globulin protein. Approximately 8.5% of UAE residents suffer from β-thalassemia, a significant health and financial problem. The treatment options available for β-Thalassemia major are limited and associated with a wide range of complications. β-thalassemia gene therapy is emerging as a potential novel treatment option that eliminates the complications caused by the current long-term treatment modalities and the associated economic burden. This paper reviews the scientific literature related to emerging gene therapy for β-Thalassemia by analyzing all the articles published from January 2010 to December 2023 in the English language on Databases like PubMed, Scopus, ProQuest, and CINAHL. The use of gene therapy has demonstrated promising outcomes for a permanent cure of β-Thalassemia. To conclude, gene therapy is an innovative solution. It demonstrates a promising future, but does come with its own setbacks and is something that must be tackled in order to revolutionize it in the medical world. FDA-approved ZYNTEGLO is a potentially one-time curative treatment for β-Thalassemia. Although cutting-edge, its use is limited because of the high cost-a price of USD 2.8 million per patient.
Collapse
Affiliation(s)
- Jhancy Malay
- Department of Pediatrics, RAK Medical and Health Sciences University, Ras Al Khaimah 11127, United Arab Emirates
| | - Rasha Aziz Attia Salama
- Department of Community Medicine, RAK Medical and Health Science University, Ras Al Khaimah 11127, United Arab Emirates;
| | - Ghania Shehzad Alam Qureshi
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11127, United Arab Emirates; (G.S.A.Q.); (A.R.); (G.J.); (M.S.)
| | - Ali Raafat Ali Ahmed Ammar
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11127, United Arab Emirates; (G.S.A.Q.); (A.R.); (G.J.); (M.S.)
| | - Gayatri Janardhan
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11127, United Arab Emirates; (G.S.A.Q.); (A.R.); (G.J.); (M.S.)
| | - Maryam Safdar
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11127, United Arab Emirates; (G.S.A.Q.); (A.R.); (G.J.); (M.S.)
| | - Hesham Amin Hamdy Elshamy
- Department of Surgery, RAK Medical and Health Sciences University, Ras Al Khaimah 11127, United Arab Emirates;
| |
Collapse
|
27
|
Meloni A, Saba L, Positano V, Pistoia L, Campanella A, Spasiano A, Putti MC, Fotzi I, Cossu A, Corigliano E, Massa A, Keilberg P, Cademartiri F, Cau R. Global longitudinal strain by cardiac magnetic resonance is associated with cardiac iron and complications in beta-thalassemia major patients. Int J Cardiol 2024; 413:132319. [PMID: 38971535 DOI: 10.1016/j.ijcard.2024.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The aim of this cross-sectional study was to investigate the association of left ventricular (LV) strain parameters with demographics, clinical data, cardiovascular magnetic resonance (CMR) findings, and cardiac complications (heart failure and arrhythmias) in patients with β-thalassemia major (β-TM). METHOD We considered 266 β-TM patients (134 females, 37.08 ± 11.60 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia (E-MIOT) project and 80 healthy controls (50 females, mean age 39.77 ± 11.29 years). The CMR protocol included cine images for the assessment of global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) using feature tracking (FT) and for the quantification of LV function parameters, the T2* technique for the assessment of myocardial iron overload, and late gadolinium enhancement (LGE) technique. RESULTS In comparison to the healthy control group, β-TM patients showed impaired GLS, GCS, and GRS values. Among β-TM patients, sex was identified as the sole independent determinant of all LV strain parameters. All LV strain parameters displayed a significant correlation with LV end-diastolic volume index, end-systolic volume index, mass index, and ejection fraction, and with the number of segments exhibiting LGE. Only GLS exhibited a significant correlation with global heart T2* values and the number of segments with T2* < 20 ms. Patients with cardiac complications exhibited significantly impaired GLS compared to those without cardiac complications. CONCLUSION In patients with β-TM, GLS, GCS, and GRS were impaired in comparison with control subjects. Among LV strain parameters, only GLS demonstrated a significant association with cardiac iron levels and complications.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy; Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Luca Saba
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy; Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy; U.O.C. Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Alessandra Campanella
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Anna Spasiano
- Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale "A. Cardarelli", Napoli, Italy
| | - Maria Caterina Putti
- Dipartimento della Salute della Donna e del Bambino, Clinica di Emato-Oncologia Pediatrica, Azienda Ospedaliero-Università di Padova, Padova, Italy
| | - Ilaria Fotzi
- SOC Oncologia, Ematologia e Trapianto di Cellule Staminali Emopoietiche, Meyer Children's Hospital IRCCS, Firenze, Italy
| | - Antonella Cossu
- Ambulatorio Trasfusionale - Servizio Immunoematologia e Medicina Trasfusionale Dipartimento dei Servizi, Presidio Ospedaliero "San Francesco", Nuoro, Italy
| | | | - Antonella Massa
- Servizio Trasfusionale, Ospedale "Giovanni Paolo II", Olbia, Italy
| | - Petra Keilberg
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy.
| | - Riccardo Cau
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| |
Collapse
|
28
|
Meloni A, Saba L, Positano V, Pistoia L, Porcu M, Massei F, Sanna PMG, Longo F, Giovangrossi P, Argento C, Gerardi C, Cademartiri F, Cau R. Left atrial strain in patients with β-thalassemia major: a cross-sectional CMR study. Eur Radiol 2024; 34:5965-5977. [PMID: 38478060 DOI: 10.1007/s00330-024-10667-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 08/31/2024]
Abstract
OBJECTIVES The aim of this cross-sectional study was to investigate the association of left atrial (LA) strain parameters with demographics, clinical data, cardiovascular magnetic resonance (CMR) findings, and cardiac complications (heart failure and arrhythmias) in a cohort of patients with β-thalassemia major (β-TM). MATERIALS AND METHODS We considered 264 β-TM patients (133 females, 36.79 ± 11.95 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia (E-MIOT) project. Moreover, we included 35 sex- and age-matched healthy controls (14 females, mean age 37.36 ± 17.52 years). Reservoir, conduit, and booster LA functions were analysed by CMR feature tracking using dedicated software. RESULTS Compared to the healthy control group, β-TM patients demonstrated lower LA reservoir strain and booster strains, as well as LA reservoir and booster strain rates. However, no differences were found in LA conduit deformation parameters. In β-TM patients, ageing, sex, and left ventricle (LV) volume indexes were independent determinants of LA strain parameters. The number of segments with late gadolinium enhancement (LGE) significantly correlated with all LA strain parameters, with the exception of the LA conduit rate. Patients with cardiac complications exhibited significantly impaired strain parameters compared to patients without cardiac complications. CONCLUSION In patients with β-TM, LA strain parameters were impaired compared to control subjects, and they exhibited a significant correlation with the number of LV segments with LGE. Furthermore, patients with cardiac complications had impaired left atrial strain parameters. Clinical relevance statement In patients with β-thalassemia major, left atrial strain parameters were impaired compared to control subjects and emerged as a sensitive marker of cardiac complications, stronger than cardiac iron levels. KEY POINTS • Compared to healthy subjects, β-thalassemia major patients demonstrated significantly lower left atrial reservoir strain and booster strains, as well as left atrial reservoir and booster strain rates. • In β-thalassemia major, ageing, sex, and left ventricular volume indexes were independent determinants of left atrial strain parameters, while left atrial strain parameters were not correlated with myocardial iron overload. • An independent association between reduced left atrial strain parameters and a history of cardiac complications was found in β-thalassemia major patients.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy
| | - Luca Saba
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy
- U.O.C. Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Michele Porcu
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Francesco Massei
- U.O. Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria Pisana - Stabilimento S. Chiara, Pisa, Italy
| | | | - Filomena Longo
- Unità Operativa Day Hospital della Talassemia e delle Emoglobinopatie, Azienda Ospedaliero-Universitaria "S. Anna", Cona, FE, Italy
| | - Piera Giovangrossi
- Servizio di Immunoematologia e Medicina Trasfusionale, Ospedale S. M. Goretti, Latina, Italy
| | - Crocetta Argento
- Centro di Talassemia, Ospedale "San Giovanni Di Dio", Agrigento, Italy
| | - Calogera Gerardi
- Unità Operativa Semplice Dipartimentale di Talassemia, Presidio Ospedaliero "Giovanni Paolo II" - Distretto AG2 di Sciacca, Sciacca, AG, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy.
| | - Riccardo Cau
- Dipartimento di Radiologia, Azienda Ospedaliero-Universitaria di Cagliari - Polo di Monserrato, Cagliari, Italy
| |
Collapse
|
29
|
Adhikari P. Addressing complexities in β-thalassemia care: a case series from a resource-limited setting. Ann Med Surg (Lond) 2024; 86:4979-4983. [PMID: 39239054 PMCID: PMC11374262 DOI: 10.1097/ms9.0000000000002471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction and importance β-thalassemia is a hereditary blood disorder with a global prevalence, presenting diagnostic and management challenges, particularly in regions with high consanguinity rates. Diagnostic methods include clinical assessments, genetic testing, and hemoglobin electrophoresis. Treatment typically involves transfusions and chelation therapy, with gene therapy showing promise. This case series emphasizes the need for tailored care strategies and global health initiatives to improve outcomes for β-thalassemia patients worldwide. Methods This case series involves five patients from rural Nepal presenting various β-thalassemia manifestations. The cases highlight the challenges in diagnosis and management in resource-limited settings. Data were collected through clinical assessments, laboratory investigations, and follow-ups. Each patient's medical history, presentation, and treatment regimen were documented. Outcomes The cases underscore the importance of regular follow-ups, community engagement, and personalized treatment strategies tailored to genetic profiles. Key findings include the necessity for consistent transfusion schedules, iron overload monitoring, and managing complications associated with β-thalassemia. Enhanced education and healthcare collaboration were noted as critical for optimizing care and outcomes in resource-limited settings. Conclusions Managing β-thalassemia in resource-limited settings demands timely intervention, regular monitoring, and community involvement. Enhanced healthcare collaboration, access to advanced diagnostic tools, and tailored treatment strategies are paramount in addressing the unique challenges of β-thalassemia. These measures are essential for ensuring an improved quality of life for affected individuals in such regions.
Collapse
|
30
|
Meloni A, Pistoia L, Ricchi P, Longo F, Cecinati V, Sorrentino F, Borsellino Z, Bagnato S, Rossi V, Fina P, Riva A, Renne S, Peritore G, Positano V, Cademartiri F. Magnetic Resonance Evaluation of Tissue Iron Deposition and Cardiac Function in Adult Regularly Transfused Thalassemia Intermedia Compared with Thalassemia Major Patients. J Clin Med 2024; 13:4791. [PMID: 39200932 PMCID: PMC11355279 DOI: 10.3390/jcm13164791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Objectives: This multicenter, retrospective, population-based, matched-cohort study compared clinical characteristics and magnetic resonance imaging (MRI) findings, including hepatic, pancreatic, and cardiac iron levels and cardiac function, between 135 adult regularly transfused thalassemia intermedia (TI) patients (44.73 ± 12.16 years, 77 females) and 135 age- and sex-matched thalassemia major (TM) patients (43.35 ± 9.83 years, 77 females), enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network. Methods: The MRI protocol included the quantification of hepatic, pancreatic, and cardiac iron levels (R2* technique), the assessment of biventricular function parameters (cine images), and the detection of replacement myocardial fibrosis (late gadolinium enhancement technique). Results: Age, sex, frequency of splenectomy and chelation, and serum ferritin levels were not significantly different (p > 0.05) between the two groups, but TI patients started regular transfusions significantly later (p < 0.0001) and showed significantly lower pre-transfusion hemoglobin levels (p = 0.005). No difference was found in hepatic iron levels (p = 0.853). TI patients exhibited significantly lower pancreatic R2* values (p < 0.0001), also correcting for the duration of regular transfusions, and significantly lower cardiac R2* values (p < 0.0001). In the receiver operating characteristic analysis, pancreatic iron was the strongest discriminator between the two diseases. Left and right ventricular end-diastolic volume indexes were significantly higher in TI than in TM patients (p = 0.003 and p = 0.046, respectively), but the correction for the duration of regular transfusions removed the disease-specific differences (p > 0.05). Left ventricular (LV) mass index was significantly higher in TI (p = 0.049), while no difference (p > 0.05) was found in biventricular ejection fractions and replacement myocardial fibrosis. Conclusions: TI patients showed lower pancreatic and cardiac iron burden and more pronounced LV hypertrophy. These differences could not be explained by the different duration of the transfusional regimen.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (L.P.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Laura Pistoia
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (L.P.); (V.P.)
- Unità Operativa Complessa Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Paolo Ricchi
- Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, 80131 Napoli, Italy;
| | - Filomena Longo
- Unità Operativa Day Hospital della Talassemia e delle Emoglobinopatie, Azienda Ospedaliero-Universitaria “S. Anna”, 44124 Cona (FE), Italy;
| | - Valerio Cecinati
- Struttura Semplice di Microcitemia, Ospedale “SS. Annunziata” ASL Taranto, 74123 Taranto, Italy;
| | | | - Zelia Borsellino
- Unità Operativa Complessa Ematologia con Talassemia, “ARNAS” Civico Di Cristina Benfratelli, 90134 Palermo, Italy;
| | - Sergio Bagnato
- Ematologia Microcitemia, Ospedale San Giovanni di Dio—ASP Crotone, 88900 Crotone, Italy;
| | - Vincenza Rossi
- Unità Operativa Complessa Ematologia, Ospedale di Cosenza, 87100 Cosenza, Italy;
| | - Priscilla Fina
- Unità Operativa Complessa Diagnostica per Immagini, Ospedale “Sandro Pertini”, 00157 Roma, Italy;
| | - Ada Riva
- Struttura Complessa di Radiologia, Ospedale “SS. Annunziata” ASL Taranto, 74100 Taranto, Italy;
| | - Stefania Renne
- Struttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero “Giovanni Paolo II”, 88046 Lamezia Terme (CZ), Italy;
| | - Giuseppe Peritore
- Unità Operativa Complessa di Radiologia, “ARNAS” Civico Di Cristina Benfratelli, 90127 Palermo, Italy;
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (L.P.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| |
Collapse
|
31
|
Zhang W, Li X, Yu U, Huang X, Wang H, Lu Y, Liu S, Zhang J. Genome-wide methylation and gene-expression analyses in thalassemia. Aging (Albany NY) 2024; 16:11591-11605. [PMID: 39133159 PMCID: PMC11346785 DOI: 10.18632/aging.206037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/11/2024] [Indexed: 08/13/2024]
Abstract
Thalassemia is the most common autosomal genetic disorder in humans. The pathogenesis of thalassemia is principally due to the deletion or mutation of globin genes that then leads to disorders in globin-chain synthesis, and its predominant clinical manifestations include chronic forms of hemolytic anemia. However, research on the epigenetics and underlying pathogenesis of thalassemia is in its nascency and not yet been systematically realized. In this study, we compared the results of RNA-seq and the whole-genome bisulfite sequencing (WGBS) on 22 peripheral blood samples from 14 thalassemic patients and eight healthy individuals revealed a genome-wide methylation landscape of differentially methylated regions (DMRs). And functional-enrichment analysis revealed the enriched biological pathways with respect to the differentially expressed genes (DEGs) and differentially methylated genes (DMGs) to include hematopoietic lineage, glucose metabolism, and ribosome. To further analyze the interaction between the transcriptome and methylome, we implemented a comprehensive analysis of overlaps between DEGs and DMGs, and observed that biological processes significantly enriched the immune-related genes (i.e., our hypermethylated and down-regulated gene group). Hypermethylated and hypomethylated regions of thalassemia-related genes exhibited different distribution patterns. We thus, further identified and validated thalassemia-associated DMGs and DEGs by multi-omics integrative analyses of DNA methylation and transcriptomics data, and provided a comprehensive genomic map of thalassemia that will facilitate the exploration of the epigenetics mechanisms and pathogenesis underlying thalassemia.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiaokang Li
- Center for Reproductive Medicine, University of Hongkong-Shenzhen Hospital, Shenzhen 518053, Guangdong, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong, China
| | - Xin Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Hongmei Wang
- Department of Infectious Diseases, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong, China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
32
|
Zhang C, Xu J, Wu Y, Xu C, Xu P. Base Editors-Mediated Gene Therapy in Hematopoietic Stem Cells for Hematologic Diseases. Stem Cell Rev Rep 2024; 20:1387-1405. [PMID: 38644403 PMCID: PMC11319617 DOI: 10.1007/s12015-024-10715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Base editors, developed from the CRISPR/Cas system, consist of components such as deaminase and Cas variants. Since their emergence in 2016, the precision, efficiency, and safety of base editors have been gradually optimized. The feasibility of using base editors in gene therapy has been demonstrated in several disease models. Compared with the CRISPR/Cas system, base editors have shown great potential in hematopoietic stem cells (HSCs) and HSC-based gene therapy, because they do not generate double-stranded breaks (DSBs) while achieving the precise realization of single-base substitutions. This precise editing mechanism allows for the permanent correction of genetic defects directly at their source within HSCs, thus promising a lasting therapeutic effect. Recent advances in base editors are expected to significantly increase the number of clinical trials for HSC-based gene therapies. In this review, we summarize the development and recent progress of DNA base editors, discuss their applications in HSC gene therapy, and highlight the prospects and challenges of future clinical stem cell therapies.
Collapse
Affiliation(s)
- Chengpeng Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jinchao Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Yikang Wu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Can Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
33
|
Meloni A, Saba L, Positano V, Pistoia L, Spasiano A, Putti MC, Casini T, Cossu A, Corigliano E, Massa A, Cademartiri F, Cau R. Left and right atrioventricular coupling index in patients with beta-thalassemia major. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1631-1640. [PMID: 38775931 DOI: 10.1007/s10554-024-03146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/15/2024] [Indexed: 09/15/2024]
Abstract
The aim of this cross-sectional study was to investigate the relationship of left atrioventricular coupling index (LACI) and right atrioventricular coupling index (RACI) with demographics, clinical data, cardiovascular magnetic resonance findings, and cardiac complications (heart failure, arrhythmias, and pulmonary hypertension) in a cohort of patients with beta-thalassemia major (β-TM). We evaluated 292 β-TM patients (151 females, 36.72 ± 11.76 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia (E-MIOT) project. Moreover, we assessed 32 sex- and age-matched healthy controls (12 females, mean age 40.78 ± 14.35 years). LACI was determined by calculating the ratio of the left atrium end-diastolic volume to the left ventricle end-diastolic volume, while RACI was defined by calculating the ratio of the right atrium end-diastolic volume to the right ventricle end-diastolic volume. Compared to healthy control, β-TM demonstrated increased LACI (22.99 ± 13.58% vs. 16.05 ± 5.28%; p < 0.0001) and RACI (27.84 ± 10.30% vs. 17.06 ± 5.03%; p < 0.0001). Aging, diabetes, splenectomy, and the presence of late gadolinium enhancement (LGE) showed a significant positive association with both LACI and RACI. In stepwise regression analysis, the presence of LGE was found to be an independent predictor of both impaired LACI and RACI (β coefficient = 0.244, p < 0.0001 and β coefficient = 0.218, p = 0.003; respectively). LACI and RACI were not correlated with myocardial iron overload. Patients with cardiac complications had significantly higher LACI and RACI than patients without cardiac complications. In patients with β-TM, LACI and RACI were significantly associated with the presence of LV LGE. In addition, patients with cardiac complications had impaired LACI and RACI.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 56124, Pisa, Italy
| | - Luca Saba
- Dipartimento Di Radiologia, Azienda Ospedaliero-Universitaria Di Cagliari - Polo Di Monserrato, Cagliari, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 56124, Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 56124, Pisa, Italy
- U.O.C. Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Anna Spasiano
- U.O.S.D. Malattie Rare del Globulo Rosso, Azienda Ospedaliera Di Rilievo Nazionale "A. Cardarelli", Naples, Italy
| | - Maria Caterina Putti
- Dipartimento Della Salute Della Donna E del Bambino - Clinica Di Emato-Oncologia Pediatrica, Azienda Ospedaliero-Università Di Padova, Padua, Italy
| | - Tommaso Casini
- SOC Oncologia, Ematologia e Trapianto Di Cellule Staminali Emopoietiche, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Antonella Cossu
- Ambulatorio Trasfusionale - Servizio Immunoematologia E Medicina Trasfusionale Dipartimento Dei Servizi, Presidio Ospedaliero "San Francesco", Nuoro, Italy
| | | | - Antonella Massa
- Servizio trasfusionale, Ospedale "Giovanni Paolo II", Olbia, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 56124, Pisa, Italy.
| | - Riccardo Cau
- Dipartimento Di Radiologia, Azienda Ospedaliero-Universitaria Di Cagliari - Polo Di Monserrato, Cagliari, Italy
| |
Collapse
|
34
|
Coskun C, Unal S. Dominant Beta Thalassemia: A Very Rare Cause of Thalassemia in a Mediterranean Country. Hemoglobin 2024; 48:258-260. [PMID: 39092788 DOI: 10.1080/03630269.2024.2386067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Beta thalassemia is one of the monogenic disorders characterized by decreased production of β-globin chains and various types of mutations have been reported to cause thalassemia phenotype. On the other hand, rare mutations also affect and diversify the disease spectrum. Herein, we present an anemic patient from Turkey diagnosed with dominant β thalassemia due to a heterozygous mutation in exon 3 of the HBB gene.
Collapse
Affiliation(s)
- Cagri Coskun
- Department of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Sule Unal
- Department of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
35
|
Huang R, Liu Y, Xu J, Lin D, Mao A, Yang L, Zhong G, Wang H, Xu R, Chen Y, Zhou Q. Back-to-Back Comparison of Third-Generation Sequencing and Next-Generation Sequencing in Carrier Screening of Thalassemia. Arch Pathol Lab Med 2024; 148:797-804. [PMID: 36630651 DOI: 10.5858/arpa.2022-0168-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 01/13/2023]
Abstract
CONTEXT.— Recently, new technologies, such as next-generation sequencing and third-generation sequencing, have been used in carrier screening of thalassemia. However, there is no direct comparison between the 2 methods in carrier screening of thalassemia. OBJECTIVE.— To compare the clinical performance of third-generation sequencing with next-generation sequencing in carrier screening of thalassemia. DESIGN.— Next-generation sequencing and third-generation sequencing were simultaneously conducted for 1122 individuals in Hainan Province. RESULTS.— Among 1122 genetic results, 1105 (98.48%) were concordant and 17 (1.52%) were discordant between the 2 methods. Among the 17 discordant results, 4 were common thalassemia variants, 9 were rare thalassemia variants, and 4 were variations with unknown pathogenicity. Sanger sequencing and polymerase chain reaction for discordant samples confirmed all the results of third-generation sequencing. Among the 685 individuals with common and rare thalassemia variants detected by third-generation sequencing, 512 (74.74%) were carriers of α-thalassemia, 110 (16.06%) were carriers of β-thalassemia, and 63 (9.20%) had coinheritance of α-thalassemia and β-thalassemia. Three thalassemia variants were reported for the first time in Hainan Province, including -THAI, -α2.4, and ααααanti3.7. Eleven variants with potential pathogenicity were identified in 36 patients with positive hemoglobin test results. Among 52 individuals with negative hemoglobin test results, 17 were identified with thalassemia variants. In total, third-generation sequencing and next-generation sequencing correctly detected 763 and 746 individuals with variants, respectively. Third-generation sequencing yielded a 2.28% (17 of 746) increment compared with next-generation sequencing. CONCLUSIONS.— Third-generation sequencing was demonstrated to be a more accurate and reliable approach in carrier screening of thalassemia compared with next-generation sequencing.
Collapse
Affiliation(s)
- Renliang Huang
- From the Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, 571100, China (Huang, J. Xu, Lin, Yang, Zhong, Wang, Zhou)
| | - Yinyin Liu
- Berry Genomics Corporation, Beijing, 102200, China (Liu, Mao, R. Xu, Chen)
| | - Jing Xu
- From the Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, 571100, China (Huang, J. Xu, Lin, Yang, Zhong, Wang, Zhou)
| | - Dan Lin
- From the Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, 571100, China (Huang, J. Xu, Lin, Yang, Zhong, Wang, Zhou)
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, 102200, China (Liu, Mao, R. Xu, Chen)
| | - Liuqing Yang
- From the Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, 571100, China (Huang, J. Xu, Lin, Yang, Zhong, Wang, Zhou)
| | - Gaobu Zhong
- From the Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, 571100, China (Huang, J. Xu, Lin, Yang, Zhong, Wang, Zhou)
| | - Huoniao Wang
- From the Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, 571100, China (Huang, J. Xu, Lin, Yang, Zhong, Wang, Zhou)
| | - Ruofan Xu
- Berry Genomics Corporation, Beijing, 102200, China (Liu, Mao, R. Xu, Chen)
| | - Yiwei Chen
- Berry Genomics Corporation, Beijing, 102200, China (Liu, Mao, R. Xu, Chen)
| | - Qiaomiao Zhou
- From the Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, 571100, China (Huang, J. Xu, Lin, Yang, Zhong, Wang, Zhou)
| |
Collapse
|
36
|
Tavassoli S, Chung JH, Panigrahi AR, Shahsavar A, Lal A, Singer ST. Hemoglobin Balkh, a Novel Mutation in Codon 132 of α2-Globin Gene [α132(H15) (+T) or HBA2:C.396dup (p.Val134fs)]: A Case Report and Insight into the Pathophysiology. Hemoglobin 2024; 48:280-284. [PMID: 39415483 DOI: 10.1080/03630269.2024.2410295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 10/18/2024]
Abstract
We report a novel mutation on α2-globin gene leading to an elongated α-chain. This novel frameshift mutation was detected in a 13-year-old boy from Balkh province, Afghanistan. DNA analysis identified an insertion of thymine (T) at codon 132 [HBA2:c.396dup (p.Val134fs)]. We named the novel hemoglobin variant 'Hemoglobin Balkh' after the geographic location from which the patient originated. This novel variant was found in association with α3.7 kb α-globin gene deletion, suggesting a compound heterozygous state that contributes to the patient's clinical presentation.
Collapse
Affiliation(s)
- Shabnam Tavassoli
- Hemoglobinopathy Reference Laboratory, UCSF Benioff Children's Hospital, Oakland, CA, USA
| | - Jong H Chung
- Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Miller Children's Hospital, Long Beach, CA, USA
| | - Arun R Panigrahi
- Division of Pediatric Hematology/Oncology/BMT, University of California, Davis, CA, USA
| | - Azadeh Shahsavar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ashutosh Lal
- Department of Hematology/Oncology, Hemoglobinopathy Reference Laboratory, UCSF Benioff Children's Hospital, Oakland, CA, USA
| | - Sylvia Titi Singer
- Department of Hematology/Oncology, Hemoglobinopathy Reference Laboratory, UCSF Benioff Children's Hospital, Oakland, CA, USA
| |
Collapse
|
37
|
Rabadiya SM, Yogesh M, Nagda J, Gandhi R, Makwana N. Association of serum ferritin trends with liver enzyme patterns in β-thalassemia major: A longitudinal correlational study. J Family Med Prim Care 2024; 13:2698-2702. [PMID: 39070990 PMCID: PMC11272003 DOI: 10.4103/jfmpc.jfmpc_1897_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 07/30/2024] Open
Abstract
Background β-Thalassemia major patients require lifelong blood transfusions, leading to iron overload and liver injury. This study examines the longitudinal association between serum ferritin and liver function over 5 years in pediatric patients. Methods This retrospective study included 582 transfusion-dependent thalassemia patients aged 1-18 years. Serum ferritin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and albumin were measured annually. Correlation and linear regression analyses assessed associations between ferritin trajectories and liver enzymes. Results Mean ferritin rose from 1820 ± 960 ng/mL at baseline to 4500 ± 1900 ng/mL at year 5, indicating worsening iron overload. AST and ALT levels also steadily climbed over follow-up, whereas albumin declined slightly. Ferritin correlated positively with AST (r = 0.675, P < 0.01) and ALT (r = 0.607, P < 0.01), but not with albumin (r = -0.143, P = 0.153) annually. The regression interaction term showed within-patient ferritin increases over time were independently associated with escalating AST and ALT (P < 0.05), after adjusting for confounders. Conclusion Rising ferritin levels predict progressive liver injury in regularly transfused pediatric thalassemia patients. Tighter control of iron overload may help preserve hepatic function.
Collapse
Affiliation(s)
- Samarth Mukesh Rabadiya
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - M Yogesh
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - Jay Nagda
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - Rohankumar Gandhi
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| | - Naresh Makwana
- Department of Community Medicine, Shri M P Shah Govt Medical College, Jamnagar, Gujarat, India
| |
Collapse
|
38
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
39
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Jeenduang N, Horpet D, Plyduang T, Nuinoon M. Association of thalassemia, hemoglobinopathies, and vitamin D levels with lipid profile in adults: Community-based research in southern Thai population. Heliyon 2024; 10:e31374. [PMID: 38813217 PMCID: PMC11133901 DOI: 10.1016/j.heliyon.2024.e31374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
This study explored the frequency of lipid-lowering drug use in the thalassemia population and investigated the association of thalassemia, hemoglobinopathies, and serum 25(OH)D levels with lipid profile and red blood cell parameters. A combination of cross-sectional and community-based studies was conducted with 615 participants from the southern Thai population. Thalassemia and hemoglobinopathies were diagnosed using hemoglobin analysis and polymerase chain reaction-based methods to genotype globin genes. Biochemical parameters such as lipid profile, fasting blood sugar (FBS), and serum 25(OH)D levels were assessed using standard enzymatic methods and electrochemiluminescence immunoassays. Differences in the means of hematological and biochemical parameters between the thalassemia and non-thalassemia groups were compared and analyzed. A significantly lower frequency of lipid-lowering drug use was observed in the thalassemia group. Thalassemia, with clearly defined abnormalities in red blood cells, is associated with a 4.72-fold decreased risk of taking lipid-lowering drugs. Among thalassemia participants, the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly lower than those in non-thalassemia participants. The prevalence of hypovitaminosis D in carriers of thalassemia and/or hemoglobinopathies in the southern Thai population was 53 % in females and 21 % in males. The highest lipid profile was observed in samples without thalassemia and hypovitaminosis D. The genetics of thalassemia and hemoglobinopathies with obviously abnormal red blood cells could explain the variable lipid levels, in addition to lipid metabolism-related genes and environmental factors. However, the effect of thalassemia on lipid levels in each population may differ according to its prevalence. A larger sample size is required to confirm this association, especially in countries with a high prevalence of thalassemia.
Collapse
Affiliation(s)
- Nutjaree Jeenduang
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Food Technology and Innovation Research Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| | - Dararat Horpet
- Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, Thailand
| | - Thunyaluk Plyduang
- Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, Thailand
| | - Manit Nuinoon
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
41
|
Locatelli F, Lang P, Wall D, Meisel R, Corbacioglu S, Li AM, de la Fuente J, Shah AJ, Carpenter B, Kwiatkowski JL, Mapara M, Liem RI, Cappellini MD, Algeri M, Kattamis A, Sheth S, Grupp S, Handgretinger R, Kohli P, Shi D, Ross L, Bobruff Y, Simard C, Zhang L, Morrow PK, Hobbs WE, Frangoul H. Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia. N Engl J Med 2024; 390:1663-1676. [PMID: 38657265 DOI: 10.1056/nejmoa2309673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent β-thalassemia and a β0/β0, β0/β0-like, or non-β0/β0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS A total of 52 patients with transfusion-dependent β-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent β-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).
Collapse
Affiliation(s)
- Franco Locatelli
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Peter Lang
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Donna Wall
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Roland Meisel
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Selim Corbacioglu
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Amanda M Li
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Josu de la Fuente
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Ami J Shah
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Ben Carpenter
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Janet L Kwiatkowski
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Markus Mapara
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Robert I Liem
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Maria Domenica Cappellini
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Mattia Algeri
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Antonis Kattamis
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Sujit Sheth
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Stephan Grupp
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Rupert Handgretinger
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Puja Kohli
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Daoyuan Shi
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Leorah Ross
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Yael Bobruff
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Christopher Simard
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Lanju Zhang
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Phuong Khanh Morrow
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - William E Hobbs
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Haydar Frangoul
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| |
Collapse
|
42
|
Ravichandran S, Hoffmann M, Petersen J, Sjø L, Rasmussen AØ, Eidesgaard A, Glenthøj A. A Rare Case of De Novo Beta-Thalassemia Diagnosed by Whole-Genome Sequencing in an Ethnically Danish Newborn. Hemoglobin 2024; 48:196-199. [PMID: 38980105 DOI: 10.1080/03630269.2024.2335919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 07/10/2024]
Abstract
In 2020, a 2-month-old ethnically Danish girl was diagnosed with β-thalassemia after presenting with persistent jaundice. The peripheral blood smear showed significant aniso- and poikilocytosis, increased number of reticulocytes and erythroblastosis. Trio analysis of the index patient and both parents was performed by whole-genome sequencing. Here, both parents were found normal, however the analysis revealed an apparently de novo HBB:c.444A > C variant in the child. The child has recently been discharged three months after a successful bone marrow transplantation with a matched sibling-donor.
Collapse
Affiliation(s)
- Stefni Ravichandran
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Marianne Hoffmann
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Jesper Petersen
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lene Sjø
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Andreas Ørslev Rasmussen
- Department of Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annetta Eidesgaard
- Department of Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Meloni A, Pistoia L, Putti MC, Longo F, Corigliano E, Ricchi P, Rossi V, Casini T, Righi R, Renne S, Peritore G, Barbuto L, Positano V, Cademartiri F. Pancreatic iron in pediatric transfusion-dependent beta-thalassemia patients: A longitudinal MRI study. Pediatr Blood Cancer 2024; 71:e30923. [PMID: 38385860 DOI: 10.1002/pbc.30923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND In pediatric transfusion-dependent thalassemia (TDT) patients, we evaluated the prevalence, pattern, and clinical associations of pancreatic siderosis and the changes in pancreatic iron levels and their association with baseline and changes in total body iron balance. PROCEDURE We considered 86 pediatric TDT patients consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network. Iron overload (IO) was quantified by R2* magnetic resonance imaging (MRI). RESULTS Sixty-three (73%) patients had pancreatic IO (R2* > 38 Hz). Global pancreas R2* values were significantly correlated with mean serum ferritin levels, MRI liver iron concentration (LIC) values, and global heart R2* values. Global pancreas R2* values were significantly higher in patients with altered versus normal glucose metabolism. Thirty-one patients also performed the follow-up MRI at 18 ± 3 months. Higher pancreatic R2* values were detected at the follow-up, but the difference versus the baseline MRI was not significant. The 20% of patients with baseline pancreatic IO showed no pancreatic IO at the follow-up. The 46% of patients without baseline pancreatic IO developed pancreatic siderosis. The changes in global pancreas R2* between the two MRIs were not correlated with baseline serum ferritin levels, baseline, final, and changes in MRI LIC values, or baseline pancreatic iron levels. CONCLUSIONS In children with TDT, pancreatic siderosis is a frequent finding associated with hepatic siderosis and represents a risk factor for myocardial siderosis and alterations of glucose metabolism. Iron removal from the pancreas is exceptionally challenging and independent from hepatic iron status.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Maria Caterina Putti
- Dipartimento della Salute della Donna e del Bambino, Clinica di Emato-Oncologia Pediatrica, Azienda Ospedaliero-Università di Padova, Padua, Italy
| | - Filomena Longo
- Unità Operativa Day Hospital della Talassemia e delle Emoglobinopatie, Azienda Ospedaliero-Universitaria "S. Anna,", Cona, Ferrara, Italy
| | | | - Paolo Ricchi
- U.O.S.D. Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale "A. Cardarelli", Naples, Italy
| | | | - Tommaso Casini
- SOC Oncologia, Ematologia e Trapianto di Cellule Staminali Emopoietiche, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Riccardo Righi
- Diagnostica per Immagini e Radiologia Interventistica, Ospedale del Delta, Lagosanto, Ferrara, Italy
| | - Stefania Renne
- Struttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero "Giovanni Paolo II,", Lamezia Terme, Italy
| | - Giuseppe Peritore
- Unità Operativa Complessa di Radiologia, "ARNAS" Civico, Di Cristina Benfratelli, Palermo, Italy
| | - Luigi Barbuto
- U.O.C. Radiologia Generale e di Pronto Soccorso, Azienda Ospedaliera di Rilievo Nazionale "A. Cardarelli", Naples, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| |
Collapse
|
44
|
Locatelli F, Cavazzana M, Frangoul H, Fuente JDL, Algeri M, Meisel R. Autologous gene therapy for hemoglobinopathies: From bench to patient's bedside. Mol Ther 2024; 32:1202-1218. [PMID: 38454604 PMCID: PMC11081872 DOI: 10.1016/j.ymthe.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
In recent years, a growing number of clinical trials have been initiated to evaluate gene therapy approaches for the treatment of patients with transfusion-dependent β-thalassemia and sickle cell disease (SCD). Therapeutic modalities being assessed in these trials utilize different molecular techniques, including lentiviral vectors to add functional copies of the gene encoding the hemoglobin β subunit in defective cells and CRISPR-Cas9, transcription activator-like effector protein nuclease, and zinc finger nuclease gene editing strategies to either directly address the underlying genetic cause of disease or induce fetal hemoglobin production by gene disruption. Here, we review the mechanisms of action of these various gene addition and gene editing approaches and describe the status of clinical trials designed to evaluate the potentially for these approaches to provide one-time functional cures to patients with transfusion-dependent β-thalassemia and SCD.
Collapse
Affiliation(s)
- Franco Locatelli
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Marina Cavazzana
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris, 75006 Paris, France
| | - Haydar Frangoul
- Sarah Cannon Center for Blood Cancer at The Children's Hospital at TriStar Centennial, Nashville, TN 37203, USA
| | - Josu de la Fuente
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London W21NY, UK
| | - Mattia Algeri
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| |
Collapse
|
45
|
Rai HP, Stuart AJ. Beta-Thalassemia in Adulthood Previously Suspected as Treatment-Resistant Iron Deficiency Anemia: A Case Report. Cureus 2024; 16:e60275. [PMID: 38872652 PMCID: PMC11170228 DOI: 10.7759/cureus.60275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Beta-thalassemia (β-thalassemia) is a hematologic genetic condition that causes microcytic anemia due to defective synthesis of the hemoglobin beta chain. As a hypochromic microcytic anemia that is commonly associated with symptoms such as fatigue and pallor when identified in adulthood, β-thalassemia may be commonly underdiagnosed or misdiagnosed as iron deficiency anemia. This study presents a case of a patient with β-thalassemia who was initially misdiagnosed with treatment-resistant iron deficiency anemia. Here, we present the case of a 66-year-old male of Mediterranean descent with a history of military service who presented with persistent fatigue. He had a past medical history of hypertension, diabetes mellitus type 2, sleep apnea, and iron deficiency anemia. Despite undergoing unnecessarily prolonged iron supplementation for suspected iron deficiency anemia, the patient's complete blood count and peripheral blood smear continued to identify hypochromic microcytic anemia. Ultimately, hemoglobin electrophoresis was performed, and mutations were identified in the hemoglobin beta chain consistent with β-thalassemia minor. Due to its rarity and wide variation in presentation, β-thalassemia may be frequently misdiagnosed. β-thalassemia is a spectrum of disorders ranging from β-thalassemia minor, which may be asymptomatic and incidentally discovered in adulthood, to β-thalassemia major, which may include bone marrow deformities from extramedullary hematopoiesis and require frequent blood transfusions to sustain life. Therefore, patients who present with symptoms of β-thalassemia minor may not be identified until later in life after undergoing decades of ineffective treatment. β-thalassemia is a multifactorial disease with a variety of clinical presentations that can easily be misdiagnosed as other types of anemia. This case highlights the importance of performing thorough laboratory testing and casting a wide net of differential diagnoses when evaluating patients with treatment-resistant anemia. This case calls for further research on the genetic contributions to β-thalassemia as well as improved ways to identify this disorder, particularly in patients who may not have a severe form that is easily diagnosed in early childhood.
Collapse
Affiliation(s)
- Hitesh P Rai
- Research, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Anthony J Stuart
- Internal Medicine, Willis Knighton Tri-State Medical Clinic, Shreveport, USA
| |
Collapse
|
46
|
Baylot V, Le TK, Taïeb D, Rocchi P, Colleaux L. Between hope and reality: treatment of genetic diseases through nucleic acid-based drugs. Commun Biol 2024; 7:489. [PMID: 38653753 PMCID: PMC11039704 DOI: 10.1038/s42003-024-06121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Rare diseases (RD) affect a small number of people compared to the general population and are mostly genetic in origin. The first clinical signs often appear at birth or in childhood, and patients endure high levels of pain and progressive loss of autonomy frequently associated with short life expectancy. Until recently, the low prevalence of RD and the gatekeeping delay in their diagnosis have long hampered research. The era of nucleic acid (NA)-based therapies has revolutionized the landscape of RD treatment and new hopes arise with the perspectives of disease-modifying drugs development as some NA-based therapies are now entering the clinical stage. Herein, we review NA-based drugs that were approved and are currently under investigation for the treatment of RD. We also discuss the recent structural improvements of NA-based therapeutics and delivery system, which overcome the main limitations in their market expansion and the current approaches that are developed to address the endosomal escape issue. We finally open the discussion on the ethical and societal issues that raise this new technology in terms of regulatory approval and sustainability of production.
Collapse
Affiliation(s)
- Virginie Baylot
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Thi Khanh Le
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - David Taïeb
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - Palma Rocchi
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Laurence Colleaux
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| |
Collapse
|
47
|
Cai DL, Chan Y, Kong YM, Liu YZ, Guo Y, Cai AQ, Zhu BS. Ginsenoside Rg1 promotes fetal hemoglobin production in vitro: A potential therapeutic avenue for β-thalassemia. Eur J Pharmacol 2024; 968:176404. [PMID: 38382804 DOI: 10.1016/j.ejphar.2024.176404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
β-thalassemia, a globally prevalent genetic disorder, urgently requires innovative treatment options. Fetal hemoglobin (HbF) induction stands as a key therapeutic approach. This investigation focused on Ginsenoside Rg1 from the Panax genus for HbF induction. Employing K562 cells and human erythroid precursor cells (ErPCs) derived from neonatal cord blood, the study tested Rg1 at different concentrations. We measured its effects on γ-globin mRNA levels and HbF expression, alongside assessments of cell proliferation and differentiation. In K562 cells, Rg1 at 400 μM significantly increased γ-globin mRNA expression by 4.24 ± 1.08-fold compared to the control. In ErPCs, the 800 μM concentration was most effective, leading to an over 80% increase in F-cells and a marked upregulation in HbF expression. Notably, Rg1 did not adversely affect cell proliferation or differentiation, with the 200 μM concentration showing an increase in γ-globin mRNA by 2.33 ± 0.58-fold, and the 800 μM concentration enhancing HbF expression by 2.59 ± 0.03-fold in K562 cells. Our results underscore Rg1's potential as an effective and safer alternative for β-thalassemia treatment. By significantly enhancing HbF levels without cytotoxicity, Rg1 offers a notable advantage over traditional treatments like Hydroxyurea. While promising, these in vitro findings warrant further in vivo exploration to confirm Rg1's therapeutic efficacy and to unravel its underlying mechanistic pathways.
Collapse
Affiliation(s)
- Dong-Ling Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Ying Chan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Ya-Min Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yi-Ze Liu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yan Guo
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Ai-Qi Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Bao-Sheng Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
48
|
Yang L, Chen Y, He S, Yu D. The crucial role of NRF2 in erythropoiesis and anemia: Mechanisms and therapeutic opportunities. Arch Biochem Biophys 2024; 754:109948. [PMID: 38452967 DOI: 10.1016/j.abb.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial in cellular defense against oxidative and electrophilic stresses. Recent research has highlighted the significance of NRF2 in normal erythropoiesis and anemia. NRF2 regulates genes involved in vital aspects of erythroid development, including hemoglobin catabolism, inflammation, and iron homeostasis in erythrocytes. Disrupted NRF2 activity has been implicated in various pathologies involving abnormal erythropoiesis. In this review, we summarize the progress made in understanding the mechanisms of NRF2 activation in erythropoiesis and explore the roles of NRF2 in various types of anemia. This review also discusses the potential of targeting NRF2 as a new therapeutic approach to treat anemia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China
| | - Duonan Yu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610000, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225009, China; Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China.
| |
Collapse
|
49
|
Xu Z, Hu L, Liu Y, Peng C, Zeng G, Zeng L, Yang M, Linpeng S, Bu X, Jiang X, Xie T, Chen L, Zhou S, He J. Comparison of Third-Generation Sequencing and Routine Polymerase Chain Reaction in Genetic Analysis of Thalassemia. Arch Pathol Lab Med 2024; 148:336-344. [PMID: 37270807 DOI: 10.5858/arpa.2022-0299-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— Thalassemia is the most widely distributed monogenic autosomal recessive disorder in the world. Accurate genetic analysis of thalassemia is crucial for thalassemia prevention. OBJECTIVE.— To compare the clinical utility of a third-generation sequencing-based approach termed comprehensive analysis of thalassemia alleles with routine polymerase chain reaction (PCR) in genetic analysis of thalassemia and explore the molecular spectrum of thalassemia in Hunan Province. DESIGN.— Subjects in Hunan Province were recruited, and hematologic testing was performed. Five hundred four subjects positive on hemoglobin testing were then used as the cohort, and third-generation sequencing and routine PCR were used for genetic analysis. RESULTS.— Of the 504 subjects, 462 (91.67%) had the same results, whereas 42 (8.33%) exhibited discordant results between the 2 methods. Sanger sequencing and PCR testing confirmed the results of third-generation sequencing. In total, third-generation sequencing correctly detected 247 subjects with variants, whereas PCR identified 205, which showed an increase in detection of 20.49%. Moreover, α triplications were identified in 1.98% (10 of 504) hemoglobin testing-positive subjects in Hunan Province. Seven hemoglobin variants with potential pathogenicity were detected in 9 hemoglobin testing-positive subjects. CONCLUSIONS.— Third-generation sequencing is a more comprehensive, reliable, and efficient approach for genetic analysis of thalassemia than PCR, and allowed for a characterization of the thalassemia spectrum in Hunan Province.
Collapse
Affiliation(s)
- Zhen Xu
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Lanping Hu
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Yinyin Liu
- Berry Genomics Corporation, Beijing, China (Liu, Xie, Chen)
| | - Can Peng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Guo Zeng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Li Zeng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Mengyue Yang
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Siyuan Linpeng
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Xiufen Bu
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Xuanyu Jiang
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Tiantian Xie
- Berry Genomics Corporation, Beijing, China (Liu, Xie, Chen)
| | - Libao Chen
- Berry Genomics Corporation, Beijing, China (Liu, Xie, Chen)
| | - Shihao Zhou
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| | - Jun He
- From the Department of Genetics and Eugenics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China (Xu, Hu, Peng, G. Zeng, L. Zeng, Yang, Linpeng, Bu, Jiang, Zhou, He)
| |
Collapse
|
50
|
Gorivale M, Sawant P, Kargutkar N, Hariharan P, Thaker P, Chiddarwar A, Nadkarni A. When a synonymous mutation breaks the silence in a thalassaemia patient. Br J Haematol 2024; 204:677-682. [PMID: 37742714 DOI: 10.1111/bjh.19115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Synonymous mutations were considered to lack functional roles in human diseases; however, distinguishing deleterious synonymous mutations from benign ones is still a challenge. In this article, we identified a deleterious synonymous mutation β-codon 16 (C>T). HBB: c.51C>T, in compound heterozygous form with known β-thalassaemia mutation patients who clinically presented as non-transfusion-dependent thalassaemia (NTDT). A total of 9 families with 11 compound heterozygous index cases were reported. In the heterozygous state, codon 16 (C>T) mutation results in borderline HbA2 (3.18 ± 0.36%) and slightly reduced RBC indices (RBCs: 4.73 ± 0.75 × 106 /μL, Hb: 12.26 ± 2.60 g/dL, MCV: 79.48 ± 8.40 fL, MCH: 25.95 ± 4.15 pg). The compound heterozygous patients showed elevated HbA2 (5.98 ± 1.17%) and HbF (12.75 ± 7.51%) and presented clinically as NTDT with a mean Hb of 6.95 ± 1.29 g/dL. Many of them were dependent on few transfusions and had mild splenomegaly. Of the 11 patients, 5 (45.4%) were treated with hydroxyurea. This study highlights the clinical significance of synonymous mutation, when inherited with other β-thalassaemia mutations leading to the phenotype of NTDT. Thus, the study would help to improve screening protocols for β-thalassaemia carriers, which will ultimately improve the prevention programme.
Collapse
Affiliation(s)
- M Gorivale
- ICMR-National Institute of Immunohaematology, Mumbai, India
| | - P Sawant
- ICMR-National Institute of Immunohaematology, Mumbai, India
| | - N Kargutkar
- ICMR-National Institute of Immunohaematology, Mumbai, India
| | - P Hariharan
- ICMR-National Institute of Immunohaematology, Mumbai, India
| | - P Thaker
- ICMR-National Institute of Immunohaematology, Mumbai, India
| | - A Chiddarwar
- ICMR-National Institute of Immunohaematology, Mumbai, India
| | - A Nadkarni
- ICMR-National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|