1
|
Lazzara F, Conti F, Maugeri G, D’Agata V, Sotera L, Bucolo C. Corneal protective effects of a new ophthalmic formulation based on vitamin B12 and sodium hyaluronate. Front Pharmacol 2025; 16:1548213. [PMID: 39959421 PMCID: PMC11826061 DOI: 10.3389/fphar.2025.1548213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Corneal damage can happen due to a variety of insults, including environmental factors and iatrogenic issues. For instance, the corneal epithelium is sensitive to oxidative stress caused by reactive oxygen species (ROS) or by ultraviolet B (UVB) radiation. Moreover, the strictly correlated oxidative damage and inflammatory processes impair the corneal reparative wound healing mechanism. Corneal protection after damage remains an unmet medical need that requires urgent management. Sodium hyaluronate is known to protect the cornea against oxidative and inflammatory injury. Additionally, vitamin B12 is a good candidate for counteracting corneal damage, helping preserve visual functions. Methods The present study aimed to investigate the potential protective effect of an ophthalmic formulation based on 0.01% vitamin B12% and 0.15% sodium hyaluronate (DROPYAL EVO) compared to other ophthalmic formulations containing sodium hyaluronate and trehalose (TRIMIX and THEALOZ DUO). Two different in vitro models of corneal damage were carried out in corneal epithelial cells exposed to hydrogen peroxide (H2O2, 1 mM) or UVB (20 mJ/cm2). Cell viability, cytotoxicity, ROS production, and mRNA expression of pro-inflammatory cytokines (TNF-α and IL-1β) were assessed by MTT, LDH, 2',7'-dichlorofluorescein diacetate (DCFDA) assays and Real-time PCR, respectively. Additionally, the ability of ophthalmic formulations to affect the wound healing process in corneal epithelial cells was assessed at different time points by scratch wound healing assay. Results The eye drops containing vitamin B12 were able to significantly counteract oxidative and inflammatory damage in corneal epithelial cells exposed to H2O2 stimulus and UVB radiation, in terms of ROS production and pro-inflammatory cytokines expression. Additionally, the eye drops containing vitamin B12 obtained significantly better outcomes in terms of wound closure at 36 h and 48 h after scratching the corneal epithelial cells, compared to the other two formulations containing trehalose. Discussion Vitamin B12 potentially enhances the protective effect of sodium hyaluronate, accelerating the wound healing process and modulating oxidative stress and inflammation. Vitamin B12, in combination with sodium hyaluronate, could represent a promising approach to managing corneal epithelial damage. Further clinical investigations are needed to confirm this data.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Ludovica Sotera
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Elmanawy MA, Boraie N, Bakr BA, Makled S. Augmented ocular uptake and anti-inflammatory efficacy of decorated Genistein-loaded NLCs incorporated in in situ gel. Int J Pharm 2024; 662:124508. [PMID: 39053680 DOI: 10.1016/j.ijpharm.2024.124508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Genistein (Gen); a naturally occurring isoflavone, acts as a tyrosine kinase inhibitor and efficiently downregulates inflammatory cytokines, which are pivotal in eye inflammation. Also, Gen suffers from sparse ocular bioavailability due to poor solubility. In this work, nanostructured lipid carriers (NLCs) were successfully fabricated by using solid (stearic acid and compritol) and liquid (oleic acid) lipids. The optimized Gen-loaded NLCs showed a nanosize range of 140-246 nm, ≥ 98 % entrapment efficiency, and controlled release over 48 h. The ζ-potential of NLCs was increased from -27.3 mV to 25-27.4 mV due to surface modification with chitosan (CS) or eudragit RS100 (ERS 100). All NLCs showed prominent biocompatibility with enhanced cellular uptake on corneal stromal fibroblasts. Moreover, the different NLCs were incorporated into a mucoadhesive in situ gel. The optimized in situ gel (G9), containing 20 % poloxamers and 0.5 % hydroxyethyl cellulose, exhibited excellent gelling ability within 10.5 s, gelling temperature at 33.1 ± 0.6 ℃, spreadability diameter of 4.73 ± 0.12 cm, shear-thinning behavior, and 20 min ex vivo mucoadhesion time with drug release for 120 h. The in vivo results showed distinguished permeation and distribution potential for ocular delivery. In vivo anti-inflammatory effects after 3 days of treatment with CS-Gen-NLCs/G9 and ERS-Gen-NLCs/G9 revealed a downregulation of interleukin-6 levels in the cornea and retina compared to the untreated group. Our research highlights the promising anti-inflammatory potential of ERS-Gen-NLCs/G9 as an efficient, non-irritant Gen nanodelivery system for managing anterior and posterior ocular inflammation.
Collapse
Affiliation(s)
- Marwa A Elmanawy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
3
|
van Setten GB. Ocular Surface Allostasis-When Homeostasis Is Lost: Challenging Coping Potential, Stress Tolerance, and Resilience. Biomolecules 2023; 13:1246. [PMID: 37627311 PMCID: PMC10452761 DOI: 10.3390/biom13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The loss of ocular surface (OS) homeostasis characterizes the onset of dry eye disease. Resilience defines the ability to withstand this threat, reflecting the ability of the ocular surface to cope with and bounce back after challenging events. The coping capacity of the OS defines the ability to successfully manage cellular stress. Cellular stress, which is central to the outcome of the pathophysiology of dry eye disease, is characterized by intensity, continuity, and receptivity, which lead to the loss of homeostasis, resulting in a phase of autocatalytic dysregulation, an event that is not well-defined. To better define this event, here, we present a model providing a potential approach when homeostasis is challenged and the coping capacities have reached their limits, resulting in the stage of heterostasis, in which the dysregulated cellular stress mechanisms take over, leading to dry eye disease. The main feature of the proposed model is the concept that, prior to the initiation of the events leading to cellular stress, there is a period of intense activation of all available coping mechanisms preventing the imminent dysregulation of ocular surface homeostasis. When the remaining coping mechanisms and resilience potential have been maximally exploited and have, finally, been exceeded, there will be a transition to manifest disease with all the well-known signs and symptoms, with a shift to allostasis, reflecting the establishment of another state of balance. The intention of this review was to show that it is possibly the phase of heterostasis preceding the establishment of allostasis that offers a better chance for therapeutic intervention and optimized recovery. Once allostasis has been established, as a new steady-state of balance at a higher level of constant cell stress and inflammation, treatment may be far more difficult, and the potential for reversal is drastically decreased. Homeostasis, once lost, can possibly not be fully recovered. The processes established during heterostasis and allostasis require different approaches and treatments for their control, indicating that the current treatment options for homeostasis need to be adapted to a more-demanding situation. The loss of homeostasis necessarily implies the establishment of a new balance; here, we refer to such a state as allostasis.
Collapse
Affiliation(s)
- Gysbert-Botho van Setten
- St. Eriks Eye Hospital, 171 04 Solna, Sweden;
- Lab of DOHF and Wound Healing, Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Eugeniavägen 12/Level 6, 171 04 Solna, Sweden
| |
Collapse
|
4
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Hynnekleiv L, Magno M, Vernhardsdottir RR, Moschowits E, Tønseth KA, Dartt DA, Vehof J, Utheim TP. Hyaluronic acid in the treatment of dry eye disease. Acta Ophthalmol 2022; 100:844-860. [PMID: 35514082 PMCID: PMC9790727 DOI: 10.1111/aos.15159] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/31/2022]
Abstract
Dry eye disease (DED) is a highly prevalent and debilitating condition affecting several hundred million people worldwide. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan commonly used in the treatment of DED. This review aims to critically evaluate the literature on the safety and efficacy of artificial tears containing HA used in DED treatment. Literature searches were conducted in PubMed, including MEDLINE, and in Embase via Ovid with the search term: "(hyaluronic acid OR hyaluronan OR hyaluronate) AND (dry eye OR sicca)". A total of 53 clinical trials are included in this review, including eight placebo-controlled trials. Hyaluronic acid concentrations ranged from 0.1% to 0.4%. Studies lasted up to 3 months. A broad spectrum of DED types and severities was represented in the reviewed literature. No major complications or adverse events were reported. Artificial tears containing 0.1% to 0.4% HA were effective at improving both signs and symptoms of DED. Two major gaps in the literature have been identified: 1. no study investigated the ideal drop frequency for HA-containing eyedrops, and 2. insufficient evidence was presented to recommend any specific HA formulation over another. Future investigations assessing the optimal drop frequency for different concentrations and molecular weights of HA, different drop formulations, including tonicity, and accounting for DED severity and aetiology are essential for an evidence-based, individualized approach to DED treatment.
Collapse
Affiliation(s)
- Leif Hynnekleiv
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of OphthalmologyHaukeland University HospitalBergenNorway,Department of Twin Research & Genetic EpidemiologyKing's College LondonSt Thomas' HospitalLondonUK
| | - Morten Magno
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of Ophthalmology and EpidemiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands,Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | | | - Emily Moschowits
- Department of Medical BiochemistryOslo University HospitalOsloNorway
| | - Kim Alexander Tønseth
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jelle Vehof
- Department of Twin Research & Genetic EpidemiologyKing's College LondonSt Thomas' HospitalLondonUK,Department of Ophthalmology and EpidemiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands,Department of OphthalmologyVestfold Hospital TrustTønsbergNorway
| | - Tor P. Utheim
- Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of OphthalmologySørlandet Hospital ArendalArendalNorway,Department of OphthalmologyStavanger University HospitalOsloNorway,Department of OphthalmologyVestre Viken HospitalDrammenNorway
| |
Collapse
|
6
|
Hwang DB, Kim SY, Won DH, Kim C, Shin YS, Park JH, Chun YJ, Lim KM, Yun JW. Egr1 Gene Expression as a Potential Biomarker for In Vitro Prediction of Ocular Toxicity. Pharmaceutics 2021; 13:pharmaceutics13101584. [PMID: 34683877 PMCID: PMC8537669 DOI: 10.3390/pharmaceutics13101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Animal models are used for preclinical toxicity studies, and the need for in vitro alternative methods has been strongly raised. Our study aims to elucidate the potential mechanism of change in EGR1 expression under situations of toxic injury and to develop an Egr1 promoter-luciferase gene reporter assay for an in vitro alternative method for toxicity prediction in drug discovery. We first found an increase in early growth response-1 (EGR1) mRNA/protein expressions in the liver and kidney of cisplatin-treated injured rats. Additionally, the EGR1 protein level was also elevated under situations of ocular injury after sodium lauryl sulfate (SLS) eye drops. These in vivo observations on injury-related EGR1 induction were confirmed by in vitro studies, where human corneal epithelial cells were treated with representative irritants (SLS and benzalkonium chloride) and 17 chemicals having different UN GHS irritant categories. Additionally, our results suggest the involvement of ERK, JNK, p38 MAPK pathways in EGR1 elevation in response to gamma-butyrolactone-induced injury. As EGR1 is considered to be a pivotal factor in proliferation and regeneration, siRNA-mediated knockdown of Egr1 promoted cytotoxic potential through a delay of injury-related recovery. More importantly, the elevation of promoter activities was observed by various irritants in cells transfected with Egr1 promoter-reporter vector. In conclusion, Egr1 can be a potential biomarker in a promoter-reporter system to improve the accuracy of in vitro predictions for ocular irritation.
Collapse
Affiliation(s)
- Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Yoo-Sub Shin
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (K.-M.L.); (J.-W.Y.); Tel.: +82-2-3277-3055 (K.-M.L.); +82-2-2164-4830 (J.-W.Y.)
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea
- Correspondence: (K.-M.L.); (J.-W.Y.); Tel.: +82-2-3277-3055 (K.-M.L.); +82-2-2164-4830 (J.-W.Y.)
| |
Collapse
|
7
|
Chen TY, Tseng CL, Lin CA, Lin HY, Venkatesan P, Lai PS. Effects of Eye Drops Containing Hyaluronic Acid-Nimesulide Conjugates in a Benzalkonium Chloride-Induced Experimental Dry Eye Rabbit Model. Pharmaceutics 2021; 13:1366. [PMID: 34575442 PMCID: PMC8469214 DOI: 10.3390/pharmaceutics13091366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Dry eye syndrome (DES) is a common ocular disease worldwide. Currently, anti-inflammatory agents and immunosuppressive drugs, such as cyclosporine A, have been widely used to treat this chronic condition. However, the multifactorial etiology of DES, poor tolerance, low bioavailability, and prolonged treatment to response time have limited their usage. In this study, nimesulide, a cyclooxygenase (COX)-2 selective inhibitor, was conjugated with hyaluronic acid (HA), and the HA-nimesulide conjugates were expected to increase the solubility and biocompatibility for alleviating the DES in the benzalkonium chloride (BAC)-induced goblet cell-loss dry eye model. The therapeutic efficacy of HA-nimesulide was assessed using fluorescein staining, goblet cell density by conjunctival impression cytology, and histology and immunohistochemistry of corneal tissues. Compared to commercial artificial tears and Restasis®, the HA-nimesulide conjugates could promote goblet cell recovery and enhance the regeneration of the corneal epithelium. Importantly, immunofluorescent staining studies demonstrated that the HA-nimesulide conjugates could decrease the number of infiltrating CD11b-positive cells after two weeks of topical application. In the anti-inflammatory test, the HA-nimesulide conjugates could inhibit the production of pro-inflammatory cytokines and prostaglandin E2 (PGE2) in the lipopolysaccharide (LPS)-stimulated Raw 264.7 cell model. In conclusion, we demonstrated that HA-nimesulide conjugates had anti-inflammatory activity, and promoted goblet cell recovery and corneal epithelium regeneration when used as topical eye drops; accordingly, the HA-nimesulide conjugates could potentially be effective for the treatment of DES.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; (T.-Y.C.); (P.V.)
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Hua-Yang Lin
- Preclinical Development Research Department, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan;
| | - Parthiban Venkatesan
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; (T.-Y.C.); (P.V.)
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; (T.-Y.C.); (P.V.)
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| |
Collapse
|
8
|
Hou Y, Xin M, Li Q, Wu X. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res 2021; 204:108454. [PMID: 33497689 DOI: 10.1016/j.exer.2021.108454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to explore the feasibility of targeting the HMGB1 signaling pathway to treat diabetic keratopathy with a dipotassium glycyrrhizinate-based micelle ophthalmic solution encapsulating genistein (DG-Gen), and to evaluate whether these dipotassium glycyrrhizinate (DG) micelles could synergistically enhance the therapeutic effect of encapsulated genistein (Gen). An optimized DG-Gen ophthalmic solution was fabricated with a Gen/DG weight of ratio 1:15, and this formulation featured an encapsulation efficiency of 98.96 ± 0.82%, and an average particle size of 29.50 ± 2.05 nm. The DG-Gen ophthalmic solution was observed to have good in vivo ocular tolerance and excellent in vivo corneal permeation, and to remarkably improve in vitro antioxidant activity. Ocular topical application of the DG-Gen ophthalmic solution significantly prompted corneal re-epithelialization and nerve regeneration in diabetic mice, and this efficacy might be due to the inhibition of HMGB1 signaling through down-regulation of HMGB1 and its receptors RAGE and TLR4, as well as inflammatory factor interleukin (IL)-6 and IL-1β. In conclusion, these data showed that HMGB1 signaling is a potential regulation target for the treatment of diabetic keratopathy, and novel DG-micelle formulation encapsulating active agents such as Gen could synergistically cause blockage of HMGB1 signaling to prompt diabetic corneal and nerve wound healing.
Collapse
Affiliation(s)
- Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Müller-Lierheim WGK. Why Chain Length of Hyaluronan in Eye Drops Matters. Diagnostics (Basel) 2020; 10:E511. [PMID: 32717869 PMCID: PMC7459843 DOI: 10.3390/diagnostics10080511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The chain length of hyaluronan (HA) determines its physical as well as its physiological properties. Results of clinical research on HA eye drops are not comparable without this parameter. In this article methods for the assessment of the average molecular weight of HA in eye drops and a terminology for molecular weight ranges are proposed. The classification of HA eye drops according to their zero shear viscosity and viscosity at 1000 s-1 shear rate is presented. Based on the gradient of mucin MUC5AC concentration within the mucoaqueous layer of the tear film a hypothesis on the consequences of this gradient on the rheological properties of the tear film is provided. The mucoadhesive properties of HA and their dependence on chain length are explained. The ability of HA to bind to receptors on the ocular epithelial cells, and in particular the potential consequences of the interaction between HA and the receptor HARE, responsible for HA endocytosis by corneal epithelial cells is discussed. The physiological function of HA in the framework of ocular surface homeostasis and wound healing are outlined, and the influence of the chain length of HA on the clinical performance of HA eye drops is illustrated. The use of very high molecular weight HA (hylan A) eye drops as drug vehicle for the next generation of ophthalmic drugs with minimized side effects is proposed and its advantages elucidated. Consequences of the diagnosis and treatment of ocular surface disease are discussed.
Collapse
|
10
|
Terreni E, Chetoni P, Tampucci S, Burgalassi S, Al-kinani AA, Alany RG, Monti D. Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A. Pharmaceutics 2020; 12:E253. [PMID: 32168973 PMCID: PMC7150936 DOI: 10.3390/pharmaceutics12030253] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological protective mechanisms of the eye reduce the bioavailability of topically administered drugs above all for those with high molecular weight and /or lipophilic characteristics, such as Cyclosporine A (CyA). The combined strategy based on the association of nanomicelles and mucoadhesive polymer seems promising since a limited number of commercial products containing CyA have been recently approved. The scope of this investigation was the design of Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano), based on a binary system of two surfactants in combination with hyaluronic acid, and their biopharmaceutical evaluation. The optimisation of the ASMP-Nano in term of the amount of surfactants, CyA-loading and size determined the selection of the clear and stable Nano1HAB-CyA formulation containing 0.105% w/w CyA loaded-nanomicelles with a size of 14.41 nm. The nanostructured system had a protective effect towards epithelial corneal cells with a cell viability of more than 80%. It interacted with cellular barriers favouring the uptake and the accumulation of CyA into the cells as evidenced by fluorescent probe distribution, by hindering CyA permeation through reconstituted corneal epithelial tissue. In pharmacokinetics study on rabbits, the nanomicellar carrier prolonged the CyA retention time in the precorneal area mainly in presence of hyaluronic acid (HA), a mucoadhesive polymer.
Collapse
Affiliation(s)
- Eleonora Terreni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| | - Ali Athab Al-kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT1 2EE, UK; (A.A.A.-k.); (R.G.A.)
| | - Raid G. Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT1 2EE, UK; (A.A.A.-k.); (R.G.A.)
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.T.); (P.C.); (S.T.); (S.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56126 Pisa, Italy
| |
Collapse
|
11
|
Anti-Irritant and Anti-Inflammatory Effects of DHA Encapsulated in Resveratrol-Based Solid Lipid Nanoparticles in Human Keratinocytes. Nutrients 2019; 11:nu11061400. [PMID: 31234344 PMCID: PMC6627705 DOI: 10.3390/nu11061400] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
We recently found that the dietary long chain omega-3 polyunsaturated fatty acid (LC-ω-3 PUFA), docosahexaenoic acid (DHA), showed enhanced antineoplastic activity against colon cancer cells if encapsulated in resveratrol-based solid lipid nanoparticles (RV-SLNs). In the present study, we investigated whether the DHA enclosed in RV-SLNs (DHA-RV-SLNs) could have the potential of attenuating irritation and inflammation caused by environmental factors at the skin level. To this aim, we used two keratinocyte lines (HaCaT and NCTC 2544 cells) and exposed them to the cytotoxic action of the surfactant, sodium dodecyl sulfate (SDS), as an in vitro model of irritation, or to the pro-inflammatory activity of the cytokine TNF-α. We found that DHA enclosed in RV-SLNs significantly enhanced its ability to contrast the cytotoxic effect of SDS and to inhibit the SDS- and TNF-α-induced production of the inflammatory cytokines IL-1β, IL-6, and 1 MCP-1, in the two keratinocyte cell lines, as well as the NLRP3 inflammasome activation. Moreover, it more efficiently reduced the upsurge of reactive oxygen species (ROS) levels obtained in the presence of a pro-oxidant (H2O2). Overall, our findings suggest the possibility that a sustained dietary supplementation with DHA-RV-SLNs could efficiently protect skin from the pro-irritant and pro-inflammatory activity of environmental attacks.
Collapse
|
12
|
Mateo Orobia AJ, Saa J, Ollero Lorenzo A, Herreras JM. Combination of hyaluronic acid, carmellose, and osmoprotectants for the treatment of dry eye disease. Clin Ophthalmol 2018; 12:453-461. [PMID: 29563769 PMCID: PMC5846763 DOI: 10.2147/opth.s157853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Dry Eye Disease (DED) is a multifactorial disease, with a high prevalence, that can have a great impact on the quality of life of patients. The first step of treatment includes the use of lacrimal substitutes composed of polymers, possible to associate osmoprotectant agents to the lacrimal substitutes. The aim of this article is to analyze the properties of the combination of hyaluronic acid (HA), carmellose, and osmoprotectors (Optava Fusion®; Allergan, Inc., Irvine, CA, USA) on DED. General considerations on the use of artificial tears are also proposed. Methods A group of ophthalmologists, experts in the management of the ocular surface, analyzed different aspects related to DED; among them, the use of artificial tears in general and the properties of the combination of HA, carmellose, and osmoprotectors, in particular, were discussed. A review of the literature was carried out, which included different articles published in Spanish, English, and French until April 2017. Conclusions DED is a common chronic pathology that usually requires sustained treatment. In addition, the combination of HA, carmellose, and osmoprotectors has proven to be effective in the treatment of symptoms and signs of dry eye by the synergistic action of all its components. This review provides key elements to help ophthalmologists who begin in the management of DED.
Collapse
Affiliation(s)
- Antonio José Mateo Orobia
- Cornea and Ocular Surface Unit, Aragón Healthcare Research Institute (Instituto de Investigación Sanitaria de Aragón), Miguel Servet University Hospital, Zaragoza, Spain
| | - Jorge Saa
- Ophthalmology Department and Research Unit of Jove Hospital Foundation, Gijón, Spain
| | - Alberto Ollero Lorenzo
- Cornea and Ocular Surface Unit, Meixoeiro Hospital, Complejo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain
| | - José María Herreras
- Valladolid University Clinical Hospital, Valladolid, Spain.,University Institute of Applied Ophthalmobiology (IOBA [Instituto Universitario de Oftalmobiología Aplicada]). Miguel Delibes Campus, Paseo de Belén, Valladolid, Spain
| |
Collapse
|
13
|
The Role of the P2X7 Receptor in Ocular Stresses: A Potential Therapeutic Target. Vision (Basel) 2017; 1:vision1020014. [PMID: 31740640 PMCID: PMC6835678 DOI: 10.3390/vision1020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 05/14/2017] [Indexed: 01/30/2023] Open
Abstract
The P2X7 receptor is expressed in both anterior and posterior segments of the eyeball. In the ocular surface, the P2X7 receptor is activated in case of external aggressions: preservatives and surfactants induce the activation of P2X7 receptors, leading to either apoptosis, inflammation, or cell proliferation. In the retina, the key endogenous actors of age-related macular degeneration, diabetic retinopathy, and glaucoma act through P2X7 receptors’ activation and/or upregulation of P2X7 receptors’ expression. Different therapeutic strategies aimed at the P2X7 receptor exist. P2X7 receptor antagonists, such as divalent cations and Brilliant Blue G (BBG) could be used to target either the ocular surface or the retina, as long as polyunsaturated fatty acids may exert their effects through the disruption of plasma membrane lipid rafts or saffron that reduces the response evoked by P2X7 receptor stimulation. Treatments against P2X7 receptor activation are proposed by using either eye drops or food supplements.
Collapse
|
14
|
The Protective Role of Hyaluronic Acid in Cr(VI)-Induced Oxidative Damage in Corneal Epithelial Cells. J Ophthalmol 2017; 2017:3678586. [PMID: 28428894 PMCID: PMC5385914 DOI: 10.1155/2017/3678586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Cr(VI) exposure could produce kinds of intermediates and reactive oxygen species, both of which were related to DNA damage. Hyaluronan (HA) has impressive biological functions and was reported to protect corneal epithelial cells against oxidative damage induced by ultraviolet B, benzalkonium chloride, and sodium lauryl sulfate. So the aim of our study was to investigate HA protection on human corneal epithelial (HCE) cells against Cr(VI)-induced toxic effects. The HCE cell lines were exposed to different concentrations of K2Cr2O7 (1.875, 3.75, 7.5, 15.0, and 30 μM) or a combination of K2Cr2O7 and 0.2% HA and incubated with different times (15 min, 30 min, and 60 min). Our data showed that Cr(VI) exposure could cause decreased cell viability, increased DNA damage, and ROS generation to the HCE cell lines. But incubation of HA increased HCE cell survival rates and decreased DNA damage and ROS generation induced by Cr(VI) in a dose- and time-dependent manner. We report for the first time that HA can protect HCE cells against the toxicity of Cr(VI), indicating that it will be a promising therapeutic agent to corneal injuries caused by Cr(VI).
Collapse
|
15
|
Rat P, Olivier E, Tanter C, Wakx A, Dutot M. A fast and reproducible cell- and 96-well plate-based method for the evaluation of P2X7 receptor activation using YO-PRO-1 fluorescent dye. J Biol Methods 2017; 4:e64. [PMID: 31453224 PMCID: PMC6708926 DOI: 10.14440/jbm.2017.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023] Open
Abstract
The YO-PRO-1 assay provides a quantitative estimation of P2X7 receptor activation. P2X7 receptor is associated to pathological conditions including infectious, inflammatory, neurological, musculoskeletal disorders, pain and cancer. Most primary cells and cell lines from diverse origin may be used thanks to the ubiquitous distribution of P2X7 receptor. To study the activation of P2X7 receptor by chemicals or biological agents, we established a microplate-based cytometry protocol to accurately and rapidly quantify the activation of P2X7 receptor that leads to the formation of large pores in cell membranes. The YO-PRO-1 assay is based on the ability of cells to incorporate and bind YO-PRO-1 dye to DNA after activation of P2X7 receptor through pore formation. Cells are seeded in 96-well plates and incubated with the compound being tested for the appropriate time. The microplate is then incubated for 10 min with YO-PRO-1 staining solution. After the 10 min staining time, fluorescence signal is read using a microplate reader in 1 min. This procedure is easier and requires less handling steps than flow cytometry. 96-well plate based YO-PRO-1 assay is a reproducible and fast method to study both P2X7 receptor activation by toxic agents at subnecrotic concentrations and P2X7 receptor inhibition by antagonists.
Collapse
Affiliation(s)
- Patrice Rat
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Elodie Olivier
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Soliance-Givaudan, Route de Bazancourt, 51110 Pomacle, France
| | - Caroline Tanter
- Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| | - Anaïs Wakx
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Mélody Dutot
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| |
Collapse
|
16
|
Effects of 4-methylumbelliferone and high molecular weight hyaluronic acid on the inflammation of corneal stromal cells induced by LPS. Graefes Arch Clin Exp Ophthalmol 2016; 255:559-566. [PMID: 27924359 DOI: 10.1007/s00417-016-3561-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/30/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
|
17
|
Post-translational allosteric activation of the P2X7 receptor through glycosaminoglycan chains of CD44 proteoglycans. Cell Death Discov 2015; 1:15005. [PMID: 27551441 PMCID: PMC4979527 DOI: 10.1038/cddiscovery.2015.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Here, we present evidence for the positive allosteric modulation of the P2X7 receptor through glycosaminoglycans (GAGs) in CHO (cell line derived from the ovary of the Chinese hamster) cells. The marked potentiation of P2X7 activity through GAGs in the presence of non-saturating agonists concentrations was evident with the endogenous expression of the receptor in CHO cells. The presence of GAGs on the surface of CHO cells greatly increased the sensitivity to adenosine 5'-triphosphate and changed the main P2X7 receptor kinetic parameters EC50, Hill coefficient and E max. GAGs decreased the allosteric inhibition of P2X7 receptor through Mg(2+). GAGs activated P2X7 receptor-mediated cytoplasmic Ca(2+) influx and pore formation. Consequently, wild-type CHO-K1 cells were 2.5-fold more sensitive to cell death induced through P2X7 agonists than mutant CHO-745 cells defective in GAGs biosynthesis. In the present study, we provide the first evidence that the P2X7 receptor interacts with CD44 on the CHO-K1 cell surface. Thus, these data demonstrated that GAGs positively modulate the P2X7 receptor, and sCD44 is a part of a regulatory positive feedback loop linking P2X7 receptor activation for the intracellular response mediated through P2X7 receptor stimulation.
Collapse
|
18
|
Kaya S, Schmidl D, Schmetterer L, Witkowska KJ, Unterhuber A, Aranha dos Santos V, Baar C, Garhöfer G, Werkmeister RM. Effect of hyaluronic acid on tear film thickness as assessed with ultra-high resolution optical coherence tomography. Acta Ophthalmol 2015; 93:439-443. [PMID: 25601227 DOI: 10.1111/aos.12647] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/30/2014] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to assess the effect of a single drop of hyaluronic acid on tear film thickness (TFT) in healthy subjects. METHODS Sixteen healthy subjects (eight male/eight female) aged between 20 and 36 years were included in this randomized, double-masked placebo-controlled study. One eye received a single dose of hyaluronic acid (Olixia pure(®) ; Croma Pharma, Korneuburg, Austria) eye drops, and the fellow eye received physiologic saline solution as placebo control. The study eye was chosen randomly. TFT as measured with a custom-built Fourier-domain optical coherence tomography (FD-OCT) system was the main outcome variable and measured before and every 10 min until 1 hr after topical administration. RESULTS Baseline TFT was 4.8 ± 0.5 μm in the study eye and 5.0 ± 0.4 μm in the control eyes. Hyaluronic acid significantly increased TFT (p = 0.008 versus placebo) with a maximum effect 10 min after instillation (13.9 ± 11.9%). Post hoc analysis revealed that an increase in TFT was seen until 30 min after administration compared to placebo. Data in the placebo group show high reproducibility with an intraclass correlation coefficient of 0.93 and a coefficient of variation of 5.4 ± 3.3%. CONCLUSION The data of this study indicate that hyaluronic acid increases TFT for as long as 30 min in healthy subjects. In addition, our data provide evidence that our custom-built OCT system is capable of measuring residence time of lubricants on the ocular surface.
Collapse
Affiliation(s)
- Semira Kaya
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
- Department of Ophthalmology; Paracelsus University Salzburg; Salzburg Austria
| | - Doreen Schmidl
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Katarzyna J. Witkowska
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
| | | | - Carina Baar
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
| |
Collapse
|
19
|
Wang X, Liu W, Sun CL, Armenian SH, Hakonarson H, Hageman L, Ding Y, Landier W, Blanco JG, Chen L, Quiñones A, Ferguson D, Winick N, Ginsberg JP, Keller F, Neglia JP, Desai S, Sklar CA, Castellino SM, Cherrick I, Dreyer ZE, Hudson MM, Robison LL, Yasui Y, Relling MV, Bhatia S. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children's oncology group. J Clin Oncol 2014; 32:647-53. [PMID: 24470002 PMCID: PMC3927733 DOI: 10.1200/jco.2013.50.3557] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The strong dose-dependent association between anthracyclines and cardiomyopathy is further exacerbated by the co-occurrence of cardiovascular risk factors (diabetes and hypertension). The high morbidity associated with cardiomyopathy necessitates an understanding of the underlying pathogenesis so that targeted interventions can be developed. PATIENTS AND METHODS By using a two-stage design, we investigated host susceptibility to anthracycline-related cardiomyopathy by using the ITMAT/Broad CARe cardiovascular single nucleotide polymorphism (SNP) array to profile common SNPs in 2,100 genes considered relevant to de novo cardiovascular disease. RESULTS By using a matched case-control design (93 cases, 194 controls), we identified a common SNP, rs2232228, in the hyaluronan synthase 3 (HAS3) gene that exerts a modifying effect on anthracycline dose-dependent cardiomyopathy risk (P = 5.3 × 10(-7)). Among individuals with rs2232228 GG genotype, cardiomyopathy was infrequent and not dose related. However, in individuals exposed to high-dose (> 250 mg/m(2)) anthracyclines, the rs2232228 AA genotype conferred an 8.9-fold (95% CI, 2.1- to 37.5-fold; P = .003) increased cardiomyopathy risk compared with the GG genotype. This gene-environment interaction was successfully replicated in an independent set of 76 patients with anthracycline-related cardiomyopathy. Relative HAS3 mRNA levels measured in healthy hearts tended to be lower among individuals with AA compared with GA genotypes (P = .09). CONCLUSION Hyaluronan (HA) produced by HAS3 is a ubiquitous component of the extracellular matrix and plays an active role in tissue remodeling. In addition, HA is known to reduce reactive oxygen species (ROS) -induced cardiac injury. The high cardiomyopathy risk associated with AA genotype could be due to inadequate remodeling and/or inadequate protection of the heart from ROS-mediated injury on high anthracycline exposure.
Collapse
Affiliation(s)
- Xuexia Wang
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Wei Liu and Yutaka Yasui, University of Alberta; Sunil Desai, Stollery Children's Hospital, Edmonton, AB, Canada; Can-Lan Sun, Saro H. Armenian, Lindsey Hageman, Yan Ding, Wendy Landier, and Smita Bhatia, City of Hope, Duarte; Lu Chen, University of Southern California, Los Angeles, CA; Hakon Hakonarson and Jill P. Ginsberg, Children's Hospital of Philadelphia, Philadelphia, PA; Javier G. Blanco, Alfo Quiñones, and Daniel Ferguson, The State University of New York at Buffalo, Buffalo; Charles A. Sklar, Memorial Sloan-Kettering Cancer Center, New York City; Irene Cherrick, Upstate Medical University, Syracuse, NY; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Baylor College of Medicine, Houston, TX; Frank Keller, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA; Joseph P. Neglia, University of Minnesota Medical School, Minneapolis, MN; Sharon M. Castellino, Wake Forest University Health Sciences, Winston-Salem, NC; and Melissa M. Hudson, Leslie L. Robison, and Mary V. Relling, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li JM, Chou HC, Wang SH, Wu CL, Chen YW, Lin ST, Chen YH, Chan HL. Hyaluronic acid-dependent protection against UVB-damaged human corneal cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:429-449. [PMID: 23813585 DOI: 10.1002/em.21794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Within ultraviolet radiation, ultraviolet B (UVB) is the most energetic and damaging to humans. At the protein level, UVB irradiation downregulates the expression of antioxidant enzymes leading to the accumulation of reactive oxygen species (ROS). Due to lacking of a global analysis of UVB-modulated corneal proteome, we investigate in vitro the mechanism of UVB-induced corneal damage to determine whether hyaluronic acid (HA) is able to reduce UVB irradiation-induced injury in human corneal epithelial cells. Accordingly, human corneal epithelial cell lines (HCE-2) were irradiated with UVB, followed by incubation with low molecular weight HA (LMW-HA, 100 kDa) or high molecular weight HA (HMW-HA, 1,000 kDa) to investigate the physiologic protection of HMW-HA in UVB-induced corneal injury, and to perform a global proteomic analysis. The data demonstrated that HA treatment protects corneal epithelial cells in the UVB-induced wound model, and that the molecular weight of HA is a crucial factor. Only HMW-HA significantly reduces the UVB-induced cytotoxic effects in corneal cells and increases cell migration and wound-healing ability. In addition, proteomic analysis showed that HMW-HA might modulate cytoskeleton regulation, signal transduction, biosynthesis, redox regulation, and protein folding to stimulate wound healing and to prevent these UVB-damaged cells from cell death. Further studies evidenced membrane-associated progesterone receptor component 1 (mPR) and malate dehydrogenase (MDH2) play essential roles in protecting corneal cells from UVB irradiation. This study reports on UVB-modulated cellular proteins that might play an important role in UVB-induced corneal cell injury and show HMW-HA to be a potential substance for protecting corneal cells from UVB-induced injury.
Collapse
Affiliation(s)
- Ji-Min Li
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu CL, Chou HC, Li JM, Chen YW, Chen JH, Chen YH, Chan HL. Hyaluronic acid-dependent protection against alkali-burned human corneal cells. Electrophoresis 2013; 34:388-96. [DOI: 10.1002/elps.201200342] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Chieh-Lin Wu
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science; National Hsinchu University of Education; Hsinchu; Taiwan
| | - Ji-Min Li
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| | - Jui-Hsiang Chen
- Department of Biomedical Materials,; Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu; Taiwan
| | - Yu-Hua Chen
- Department of Biomedical Materials,; Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu; Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| |
Collapse
|
22
|
Law CH, Li JM, Chou HC, Chen YH, Chan HL. Hyaluronic acid-dependent protection in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Toxicology 2012. [PMID: 23178681 DOI: 10.1016/j.tox.2012.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyaluronic acid (HA), a glycosaminoglycan with high molecular weight, has been reported to promote cell proliferation and serves as an important extracellular matrix component. The aim of this study was to in vitro investigate whether HA is able to reduce reactive oxygen species (ROS)-induced heart ischemia-reperfusion injury and activate the cardiomyocyte's damage surveillance systems. Accordingly, rattus cardiomyocyte line, H9C2, was treated with H(2)O(2) as a heart ischemia-reperfusion model followed by incubation with low molecular weight hyaluronan (LMW-HA, 100 kDa) or high molecular weight hyaluronan (HMW-HA, 1000 kDa) and proteomic analysis was performed to investigate the physiologic protection of HA in H(2)O(2)-induced ischemia-reperfusion in cardiomyocyte. Our data demonstrated that HA treatment does protect cardiomyocyte in the ROS-induced ischemia-reperfusion model and the molecular weight of HA is a crucial factor. HMW-HA has been shown to significantly facilitate cell migration and wound healing via cytoskeletal rearrangement. Additionally, 2D-DIGE combined MALDI-TOF/TOF analysis showed that HMW-HA might modulate biosynthetic pathways, cell migration, cell outgrowth and protein folding to stimulate wound healing as well as prevent these ischemia-reperfusion-damaged cardiomyocytes from cell death. To our knowledge, we report for the first time the cell repair mechanism of HMW-HA against ischemia-reperfusion-damage in cardiomyocytes based on cell biology and proteomic analysis.
Collapse
Affiliation(s)
- Ching-Hsuan Law
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Ghazi K, Deng-Pichon U, Warnet JM, Rat P. Hyaluronan fragments improve wound healing on in vitro cutaneous model through P2X7 purinoreceptor basal activation: role of molecular weight. PLoS One 2012; 7:e48351. [PMID: 23173033 PMCID: PMC3500239 DOI: 10.1371/journal.pone.0048351] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/24/2012] [Indexed: 01/19/2023] Open
Abstract
Background hyaluronan biopolymer is used in dermatology but the underlying mechanism and the impact of its molecular weight have not yet been investigated in skin wound healing. The aim of our work was to study the role of HA molecular weight in the proliferative phase of wound healing and to understand how this physiological biopolymer acts to promote wound healing on a human keratinocyte in vitro model. Methodology and Findings wound healing closure was evaluated using scratch test assay, cell proliferation by counting cell with haemocytometer, expression of CD44 and ZO-1 (protein present in tight junctions specific of epithelia) using flow cytometry, and P2X7 receptor activation on living using a cytoflurometric method. Our study showed that medium hyaluronan fragment (MMW-HA, between 100 and 300 kDa) induced a significant increase in wound closure, increased ZO-1 protein expression and induced a slight activation of P2X7 receptor, contrary to high (between 1000 and 1400 kDa) and low (between 5 and 20 kDa) molecular hyaluronan fragments that had no healing effects. Basal activation of P2X7 receptor is already known to stimulate cell proliferation and this activation in our model plays a pivotal role in MMW-HA-induced wound healing. Indeed, we showed that use of BBG, a specific inhibitor of P2X7 receptor, blocked completely the beneficial effects of MMW-HA on wound healing. Conclusion taken together, our results showed for the first time the relationship between P2X7 receptor and hyaluronan in wound healing, and that topical use of MMW-HA (fragment between 100 and 300 kDa) could represent a new therapeutic strategy to promote healing.
Collapse
Affiliation(s)
- Kamelia Ghazi
- Chimie-Toxicologie Analytique et Cellulaire (EA 4463), Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Uriell Deng-Pichon
- Chimie-Toxicologie Analytique et Cellulaire (EA 4463), Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Jean-Michel Warnet
- Chimie-Toxicologie Analytique et Cellulaire (EA 4463), Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Patrice Rat
- Chimie-Toxicologie Analytique et Cellulaire (EA 4463), Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, Maytin EV. Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 2012; 132:198-207. [PMID: 21850020 PMCID: PMC3360468 DOI: 10.1038/jid.2011.248] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is an abundant matrix molecule, the function of which in the skin remains to be fully defined. To explore the roles of HA in cutaneous injury responses, double-knockout mice (abbreviated as Has1/3 null) that lack two HA synthase enzymes (Has1 and Has3), but still express functional Has2, were used in two types of experiments: (i) application of 12-O-tetradecanoylphorbol-13-acetate (TPA) and (ii) full-thickness wounding of the skin. Uninjured Has1/3-null mice were phenotypically normal. However, after TPA, the accumulation of HA that normally occurs in wild-type epidermis was blunted in Has1/3-null epidermis. In excisional wound-healing experiments, wound closure was significantly faster in Has1/3 null than in wild-type mice. Coincident with this abnormal wound healing, a marked decrease in epidermal and dermal HA and a marked increase in neutrophil efflux from cutaneous blood vessels were observed in Has1/3-null skin relative to wild-type skin. Has1/3-null wounds displayed an earlier onset of myofibroblast differentiation. In summary, selective loss of Has1 and Has3 leads to a proinflammatory milieu that favors recruitment of neutrophils and other inflammation-related changes in the dermis.
Collapse
Affiliation(s)
- Judith A. Mack
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Dept of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Ron J. Feldman
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Dept of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Naoki Itano
- Dept of Molecular Biosciences, Kyoto Sangyo University, Japan
| | - Koji Kimata
- Research Complex for Medicine Frontiers, Aichi Medical University, Aichi, Japan
| | - Mark Lauer
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincent C. Hascall
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Edward V. Maytin
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Dept of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|