1
|
Serafini RA, Frere JJ, Giosan IM, Nwaneshiudu CA. SARS-CoV-2-induced sensory perturbations: A narrative review of clinical phenotypes, molecular pathologies, and possible interventions. Brain Behav Immun Health 2025; 45:100983. [PMID: 40231214 PMCID: PMC11995741 DOI: 10.1016/j.bbih.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
Background The acute and post-acute sequelae of SARS-CoV-2 infection have been of great clinical interest since the inception of the COVID-19 pandemic. Despite a high prevalence of individuals with persistent symptoms, a wholistic view of the effects of SARS-CoV-2 on special sensory systems is lacking. Considering the significant impact of normal sensory function on quality of life, the goal of this review is to highlight unresolved issues related to SARS-CoV-2-associated insults to the sensory nervous system. Major findings In this narrative review, we discuss the epidemiology of SARS-CoV-2-induced sensory perturbations, underlying pathological mechanisms, and possible therapeutic strategies across the olfactory, gustatory, somatosensory, visual, and auditory systems. Examined literature included studies with human biospecimens, human-derived cell lines, and naturally susceptible animal models, which highlighted evidence of persistent functional disruption in all sensory systems. SARS-CoV-2 infection was associated with persistent inflammation in the olfactory epithelium/bulb, somatosensory ganglia, and gustatory systems, long-term transcriptional perturbations in the sensory central nervous system and peripheral nervous system, and detectable degeneration/apoptosis in the gustatory and visual systems. Few studies have proposed evidence-based therapeutic strategies for attenuating specific sensory abnormalities after SARS-CoV-2 infection. Conclusion While the olfactory system, and to some extent the visual and somatosensory systems, have been more thoroughly investigated from symptomatology, behavioral and molecular perspectives, there is still an unmet need for the development of therapeutics to treat COVID-induced impairment of these systems. Further, additional attention must be placed on COVID-associated impairment of the gustatory, visual, and auditory systems, which lack detailed mechanistic investigations into their pathogenesis.
Collapse
Affiliation(s)
- Randal A. Serafini
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Chinwe A. Nwaneshiudu
- Department of Anesthesia, Perioperative and Pain Medicine, Center for Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
2
|
Lozo KW, Aktipis A, Alcock J. Neuroimmune Pain and Its Manipulation by Pathogens. Evol Appl 2025; 18:e70098. [PMID: 40270922 PMCID: PMC12015744 DOI: 10.1111/eva.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
Recent studies highlight extensive crosstalk that exists between sensory neurons responsible for pain and the immune system. Cutaneous pain neurons detect harmful microbes, recruit immune cells, and produce anticipatory immunity in nearby tissues. These complementary systems generally protect hosts from infections. At the same time, neuroimmune pain is vulnerable to manipulation. Some pathogens evade immunity activated by nociceptors by producing opioid analogs and by interfering with sensory nerve function. Other organisms manipulate neuroimmune pain by increasing it. Hosts may gain protection from interference by adjusting pain sensitivity. Nociceptive sensitization follows expectations of signal detection theory and the smoke detector principle, allowing pain to be more easily triggered in response to microbial threats and damage. However, pain sensitization at the spinal level and cortical responses to pain are themselves the target of manipulation by parasites and other organisms. Here we review examples of parasites, bacteria, and other medically important organisms that interfere with pain signaling and describe their implications for public health, infectious disease, and the treatment of pain.
Collapse
Affiliation(s)
- Kevin W. Lozo
- University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Athena Aktipis
- Department of PsychologyArizona State UniversityTempeArizonaUSA
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
| | - Joe Alcock
- Department of Emergency MedicineUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
3
|
Schmidt BL, De Logu F, Nassini R, Geppetti P, Bunnett NW. Pain Signaling by GPCRs and RTKs. Trends Pharmacol Sci 2025; 46:372-385. [PMID: 40057436 PMCID: PMC11972155 DOI: 10.1016/j.tips.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 04/06/2025]
Abstract
Chronic pain is common and debilitating, yet is inadequately treated by current therapies, which can have life-threatening side effects. Treatments targeting G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), key pain mediators, often fail in clinical trials for unknown reasons. Here, we discuss the recent evidence that GPCRs and RTKs generate sustained signals from multiprotein signaling complexes or signalosomes in intracellular compartments to control chronic pain. We evaluate the evidence that selective antagonism of these intracellular signals provides more efficacious and long-lasting pain relief than antagonism of receptors at the surface of cells. We highlight how the identification of coreceptors and molecular scaffolds that underpin pain signaling by multiple receptors has identified new therapeutic targets for chronic pain, surmounting the redundancy of the pain signaling pathway.
Collapse
Affiliation(s)
- Brain L Schmidt
- Translational Research Center, New York University Dentistry, New York, NY 10010, USA; Department of Molecular Pathobiology and Pain Research Center, New York University Dentistry, New York, NY 10010, USA
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Pierangelo Geppetti
- Department of Molecular Pathobiology and Pain Research Center, New York University Dentistry, New York, NY 10010, USA; Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Nigel W Bunnett
- Department of Molecular Pathobiology and Pain Research Center, New York University Dentistry, New York, NY 10010, USA.
| |
Collapse
|
4
|
Fan CY, McAllister BB, Stokes-Heck S, Harding EK, Pereira de Vasconcelos A, Mah LK, Lima LV, van den Hoogen NJ, Rosen SF, Ham B, Zhang Z, Liu H, Zemp FJ, Burkhard R, Geuking MB, Mahoney DJ, Zamponi GW, Mogil JS, Ousman SS, Trang T. Divergent sex-specific pannexin-1 mechanisms in microglia and T cells underlie neuropathic pain. Neuron 2025; 113:896-911.e9. [PMID: 39892387 DOI: 10.1016/j.neuron.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Chronic pain is a leading cause of disability, affecting more women than men. Different immune cells contribute to this sexual divergence, but the mechanisms, especially in females, are not well defined. We show that pannexin-1 (Panx1) channels on microglia and T cells differentially cause mechanical allodynia, a debilitating symptom of neuropathic pain. In male rodents, Panx1 drives vascular endothelial growth factor-A (VEGF-A) release from microglia. Cell-specific knockdown of microglial Panx1 or pharmacological blockade of the VEGF receptor attenuated allodynia in nerve-injured males. In females, nerve injury increased spinal CD8+ T cells and leptin levels. Leptin release from female-derived CD8+ T cells was Panx1 dependent, and intrathecal leptin-neutralizing antibody injection sex-specifically reversed allodynia. Adoptive transfer of female-derived CD8+ T cells caused robust allodynia, which was prevented by a leptin-neutralizing antibody or leptin small interfering RNA (siRNA) knockdown. Panx1-targeted approaches may alleviate neuropathic pain in both sexes, while T cell- and leptin-directed treatments could have sex-dependent benefits for women.
Collapse
Affiliation(s)
- Churmy Y Fan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Aliny Pereira de Vasconcelos
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Laura K Mah
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lucas V Lima
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah F Rosen
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Boram Ham
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Zizhen Zhang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hongrui Liu
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Franz J Zemp
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Regula Burkhard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jeffrey S Mogil
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Shalina S Ousman
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
5
|
Hu T, Pang M, Sun Q, Gou Y, Liu J, Wang X, Ma Y, Chen W, Wei C, Liu M, Ding Y, Zhang Y, Liu D, Wu W, Wang P, Zhu H, Li Q, Yang F. Sema3A relieves neuropathic pain by reducing eIF2α phosphorylation via suppressing PI3K/Akt/mTOR pathway. THE JOURNAL OF PAIN 2025; 30:105374. [PMID: 40107588 DOI: 10.1016/j.jpain.2025.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Primary sensory neurons serve as a critical link between the peripheral nervous system (PNS) and the central nervous system (CNS). They represent the initial neural tissue responsible for transmitting sensations and pain. In case where peripheral nerves are injured, nerve fiber regeneration can lead to severe pain. Semaphorin3A (Sema3A), an axon guidance molecule that can be secreted by Schwann cells, has been shown to effectively inhibit the regeneration of embryonic and adult dorsal root ganglion (DRG). However, its role in neuropathic pain and the underlying mechanisms remain unexplored. This study employed a chronic constriction injury (CCI) model of neuropathic pain in mice. We observed that increased expression of Sema3A could alleviate both mechanical and heat nociceptive behaviors in model mice. By overexpressing Sema3A in ipsilateral DRG neurons via DRG injection, we found that the phosphorylation of the PI3K/Akt/mTOR signaling pathway and eukaryotic initiation factor 2α (eIF2α) was inhibited, thereby inhibiting pain. eIF2α is a translation initiation factor and its phosphorylation can regulate global translation. The inhibition of eIF2α phosphorylation through PKR and PERK inhibitors also reduced the expression of ion channels and ultimately alleviated neuropathic pain. We found that Sema3A could suppress the phosphorylation of eIF2α by inhibiting the PI3K/AKT/mTOR pathway, thus affecting pain perception. These findings suggested that alterations in Sema3A expression and eIF2α phosphorylation were involved in the development of neuropathic pain, providing potential new targets for clinical pain-relief drug development. PERSPECTIVE: The expression of Sema3A in DRG neurons was decreased following peripheral nerve injury. Elevating Sema3A levels alleviated neuropathic pain by inhibiting the PI3K/Akt/mTOR pathway and eIF2α phosphorylation, thus affecting ion channel expression in DRG of neuropathic pain model animals. This highlighted Sema3A as potential therapeutic targets for pain relief.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin 300222, China
| | - Miaoyi Pang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin 300299, China
| | - Jing Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaotong Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiran Ma
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yumeng Ding
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dianxin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongwei Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Allen HN, Khanna R. Unveiling the Dichotomic Nature of VEGFA in neuropathic pain: A path to targeted therapeutics. Neurotherapeutics 2025; 22:e00534. [PMID: 39864964 PMCID: PMC12014398 DOI: 10.1016/j.neurot.2025.e00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Affiliation(s)
- Heather N Allen
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA; Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Donadio V, Incensi A, Furia AL, Parisini S, Colaci F, Giannoccaro MP, Morelli L, Ricciardiello F, Di Stasi V, De Maria A, Rizzo G, Liguori R. Small fiber neuropathy associated with COVID-19 infection and vaccination: A prospective case-control study. Eur J Neurol 2025; 32:e16538. [PMID: 39526678 PMCID: PMC11625946 DOI: 10.1111/ene.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Small fiber neuropathy (SFN) after both COVID-19 infection or vaccination has been reported in sporadic cases, but a detailed description and comparison are missing. We aimed to screen a large cohort of patients complaining of pain and autonomic symptoms after COVID-19 natural infection or vaccination to ascertain the presence of SFN and its correlation with autoimmune diseases. METHODS We prospectively recruited for this case-control study 66 patients: 33 developing sensory and autonomic symptoms after a natural COVID-19 infection (P-COVID) and 33 after a mRNA vaccination against COVID-19 (P-VAC). We also used 33 matched healthy controls (HC) collected before 2019 when the COVID-19 virus appeared. Patients underwent neurological examination and clinical scales, an extensive serum screening, and skin biopsy to detect small nerve fiber involvement. RESULTS Clinical scales showed higher scores for autonomic symptoms in P-COVID patients than in P-VAC patients, but the other scales did not differ. P-COVID and P-VAC patients showed a significant decrease in somatic small nerve fibers compared with HC, whereas autonomic innervation did not differ. SFN was more frequent in P-COVID patients (94%) than in P-VAC patients (79%). Epidermal innervation was correlated with clinical scales for pain and autonomic dysfunctions. Autoimmune abnormalities were frequent in both groups but importantly they were not correlated with SFN. CONCLUSIONS Somatic SFN was frequently found in both P-COVID and P-VAC patients, with a higher incidence in the former group. Spared skin autonomic innervation was spared in both groups although a subtle autonomic involvement in P-COVID patients was suggested by a high COMPASS-31 scale score. SFN was not correlated with autoimmune dysfunctions, although autoimmune diseases were frequent in both groups.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - ALessandro Furia
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Sara Parisini
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Francesco Colaci
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Luana Morelli
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Fortuna Ricciardiello
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Vitoantonio Di Stasi
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Andrea De Maria
- Department of Health SciencesUniversity of Genova and IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Infections in Immunocompromised Host Unit, Division of Infectious DiseasesIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
8
|
Peach CJ, Tonello R, Damo E, Gomez K, Calderon-Rivera A, Bruni R, Bansia H, Maile L, Manu AM, Hahn H, Thomsen AR, Schmidt BL, Davidson S, des Georges A, Khanna R, Bunnett NW. Neuropilin-1 inhibition suppresses nerve growth factor signaling and nociception in pain models. J Clin Invest 2024; 135:e183873. [PMID: 39589827 PMCID: PMC11827847 DOI: 10.1172/jci183873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain, yet failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a coreceptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 was coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppressed NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibited NGF/TrkA signaling, whereas NRP1 overexpression enhanced signaling. NGF bound NRP1 with high affinity and interacted with and chaperoned TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggested that the C-terminal R/KXXR/K NGF motif interacts with the extracellular "b" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G α interacting protein C-terminus 1 (GIPC1), which scaffolds NRP1 and TrkA to myosin VI, colocalized in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogated NGF-evoked excitation of nociceptors and pain-like behavior. Thus, NRP1 is a nociceptor-enriched coreceptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited nonopioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain.
Collapse
Affiliation(s)
- Chloe J. Peach
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Elisa Damo
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Renato Bruni
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Harsh Bansia
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Laura Maile
- Department of Anesthesiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ana-Maria Manu
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Hyunggu Hahn
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Alex R.B. Thomsen
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Brian L. Schmidt
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
- Translational Research Center, College of Dentistry
- Department of Oral and Maxillofacial Surgery, College of Dentistry, and
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| | - Steve Davidson
- Department of Anesthesiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Amedee des Georges
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry and
- Pain Research Center, New York University, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| |
Collapse
|
9
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
10
|
Jia S, Liu H, Yang T, Gao S, Li D, Zhang Z, Zhang Z, Gao X, Liang Y, Liang X, Wang Y, Meng C. Single-cell sequencing reveals cellular heterogeneity of nucleus pulposus in intervertebral disc degeneration. Sci Rep 2024; 14:27245. [PMID: 39516278 PMCID: PMC11549379 DOI: 10.1038/s41598-024-78675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The nucleus pulposus (NP) plays a vital role in intervertebral disc degeneration (IVDD). Previous studies have revealed cellular heterogeneity in NP tissue during IVDD progression. However, the cellular and molecular alterations of diverse cell clusters during IVDD remain to be fully elucidated. NP tissues were isolated from patients with different grades of IVDD undergoing discectomy, and then subjected to single-cell RNA sequencing (scRNA-seq). Cell subsets were identified based on unbiased clustering of gene expression profiles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to determine the molecular features of diverse cell clusters. Monocle analysis was used to illustrate the differentiation trajectories of chondrocytes. Additionally, CellPhoneDB analysis revealed potential interactions between chondrocytes and other cells during IVDD. Based on the expression profiles of 47,610 individual cells, eight putative clusters including chondrocytes, endothelial cells, fibroblasts, macrophages, mural cells, osteoclasts, proliferating stromal cells and T cells were identified. The chondrocyte cluster was classified into three subsets, C1-C3, which were associated with stress-resistance, fibrosis and inflammatory responses, respectively. Pseudo-time trajectories suggested that chondrocytes gradually differentiated into fibroblasts during IVDD. Immune cells including cDC2s, macrophages and monocytes were identified. Further analysis showed that chondrocytes might communicate with immune cells via the MIF, TNFSF9, SPP1 and CCL4L2 signaling pathways. In addition, we found that invading endothelial cells might interact with chondrocytes through the COL4A1, CXCL12, VEGFA and SEMA3E signaling pathways. Our results reveal the cellular complexity and phenotypic characteristics of NP tissues at single-cell resolution, which will contribute to the in-depth investigation of preventative and regenerative strategies for IVDD.
Collapse
Affiliation(s)
- Shu Jia
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Hongmei Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Taibai Lake New District, 133 Hehua Road, Jining, 272000, Shandong Province, China
| | - Tao Yang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Sheng Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Dongru Li
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Zhenyu Zhang
- Department of Clinical Medical College, Jining Medical University, 45 Jianshe Road, Jining, 272000, Shandong Province, China
| | - Zifang Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Xu Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Yanhu Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Xiao Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Yexin Wang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China.
| |
Collapse
|
11
|
Sánchez-Martínez C, Grueso E, Calvo-López T, Martinez-Ortega J, Ruiz A, Almendral JM. VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications. Cells 2024; 13:1815. [PMID: 39513922 PMCID: PMC11545703 DOI: 10.3390/cells13211815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses' systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF's functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF-virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Esther Grueso
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Martinez-Ortega
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Salum GM, Abd El Meguid M, Fotouh BE, Dawood RM. Impacts of host factors on susceptibility to SARS-CoV-2 infection and COVID-19 progression. J Immunoassay Immunochem 2024; 45:493-517. [PMID: 39552098 DOI: 10.1080/15321819.2024.2429538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
SARS-CoV-2, identified in Wuhan, China, in December 2019, is the third coronavirus responsible for a global epidemic, following SARS-CoV (2002) and MERS-CoV (2012). Given the recent emergence of COVID-19, comprehensive immunological data are still limited. The susceptibility and severity of SARS-CoV-2 infection are influenced by various host factors, including hormonal changes, genetic variations, inflammatory biomarkers, and behavioral attitudes. Identifying genetic factors contributing to infection severity may accelerate therapeutic development, including drug repurposing, natural extracts, and post-vaccine interventions (Initiative and Covid, 2021). This review discusses the human protein machinery involved in (a) SARS-CoV-2 host receptors, (b) the human immune response, and (c) the impact of demographic and genetic differences on individual risk for COVID-19. This review aims to clarify host factors implicated in SARS-CoV-2 susceptibility and progression, highlighting potential therapeutic targets and supportive treatment strategies.
Collapse
Affiliation(s)
- Ghada M Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | | |
Collapse
|
13
|
Peach CJ, Tonello R, Damo E, Gomez K, Calderon-Rivera A, Bruni R, Bansia H, Maile L, Manu AM, Hahn H, Thomsen ARB, Schmidt BL, Davidson S, des Georges A, Khanna R, Bunnett NW. Neuropilin-1 is a co-receptor for Nerve Growth Factor-evoked pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570398. [PMID: 38106002 PMCID: PMC10723411 DOI: 10.1101/2023.12.06.570398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain yet, failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a co-receptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 is coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppress NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibits NGF/TrkA signaling, whereas NRP1 overexpression enhances signaling. NGF binds NRP1 with high affinity and interacts with and chaperones TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggests that C-terminal R/KXXR/K NGF motif interacts with extracellular "b" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G Alpha Interacting Protein C-terminus 1 (GIPC1) scaffolds NRP1 and TrkA to myosin VI and colocalizes in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogates NGF-evoked excitation of nociceptors and pain-like behavior. NRP1 is a nociceptor-enriched co-receptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited non-opioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain. Summary Neuropilin-1 and G Alpha Interacting Protein C-terminus 1 are necessary for nerve growth factor-evoked pain and are non-opioid therapeutic targets for chronic pain.
Collapse
|
14
|
Cuevas-Tapia OA, Gutiérrez-Sánchez M, Pozos-Guillén A, Cauich-Rodríguez JV, Escobar-García DM. Biocompatibility and expression of transcription factors of a type B gelatin-Extracellular Matrix of Porcin Urinary Blader scaffold. J Biomater Appl 2024; 39:288-297. [PMID: 39073096 DOI: 10.1177/08853282241267867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE to evaluate a membrane based on type B gelatin (G) and porcine urinary bladder extracellular matrix (PUB-EM), highlighting the potential effect of the combination evaluated by biocompatibility and regulation of the expression of transcription factors involved in tissue regeneration. G-PUB-EM membranes were prepared at 12.5, 25, and 50% w/v, and evaluated for biocompatibility with Fibroblast. Chemical characterization by FTIR-ATR showed complex spectra during crosslinking process with glutaraldehyde. Physical tests were performed in deionized water and PBS for 48 h. A significant increase in swelling was observed during the first 2 h. Biocompatibility testing (MTS) and evaluation of the expression profile of genes involved in the cell cycle (Cyclin-D1 VEGF, TNF and NF-κ-B) by PCR showed an increase in viability in a PUB-EM content-dependent way, except for 50% PUB-EM membrane which showed cytotoxic effects with a decrease in cell viability below 70%. The membranes showed an increase in the expression of some factors of cell cycle, as well as inflammatory processes that could promote tissue repair. 12.5 and 25% gelatin type B/porcine urinary bladder extracellular matrix (G/PUB-EM) based membranes have potential for tissue regeneration applications. IMPACT STATEMENT The use of membranes based on type B gelatin and porcine urinary bladder for tissue engineering represents a novel strategy. Biocompatibility and signaling pathways play a primary role in tissue repair and wound recovery. Transcription factors that mediate signaling, cell division and vascularization are part of molecules that intervene in the regenerative potential of cells. These techniques will have a significant impact on tissue repair and regeneration and thus stop depending on tissue donors or other surgical sites from the same patient, as is the case with burn patients.
Collapse
Affiliation(s)
- Olivia Abril Cuevas-Tapia
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | - Mariana Gutiérrez-Sánchez
- Endodontics Posgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | - Amaury Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| | | | - Diana María Escobar-García
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, San Luis Potosí, México
| |
Collapse
|
15
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
16
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
17
|
Joyce JD, Moore GA, Goswami P, Harrell TL, Taylor TM, Hawks SA, Green JC, Jia M, Irwin MD, Leslie E, Duggal NK, Thompson CK, Bertke AS. SARS-CoV-2 Rapidly Infects Peripheral Sensory and Autonomic Neurons, Contributing to Central Nervous System Neuroinvasion before Viremia. Int J Mol Sci 2024; 25:8245. [PMID: 39125815 PMCID: PMC11311394 DOI: 10.3390/ijms25158245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurological symptoms associated with COVID-19, acute and long term, suggest SARS-CoV-2 affects both the peripheral and central nervous systems (PNS/CNS). Although studies have shown olfactory and hematogenous invasion into the CNS, coinciding with neuroinflammation, little attention has been paid to susceptibility of the PNS to infection or to its contribution to CNS invasion. Here we show that sensory and autonomic neurons in the PNS are susceptible to productive infection with SARS-CoV-2 and outline physiological and molecular mechanisms mediating neuroinvasion. Our infection of K18-hACE2 mice, wild-type mice, and golden Syrian hamsters, as well as primary peripheral sensory and autonomic neuronal cultures, show viral RNA, proteins, and infectious virus in PNS neurons, satellite glial cells, and functionally connected CNS tissues. Additionally, we demonstrate, in vitro, that neuropilin-1 facilitates SARS-CoV-2 neuronal entry. SARS-CoV-2 rapidly invades the PNS prior to viremia, establishes a productive infection in peripheral neurons, and results in sensory symptoms often reported by COVID-19 patients.
Collapse
Affiliation(s)
- Jonathan D. Joyce
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Greyson A. Moore
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Poorna Goswami
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Telvin L. Harrell
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Tina M. Taylor
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Seth A. Hawks
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Jillian C. Green
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Matthew D. Irwin
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Emma Leslie
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Nisha K. Duggal
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Christopher K. Thompson
- School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Andrea S. Bertke
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| |
Collapse
|
18
|
Bowsher R, Marczylo TH, Gooch K, Bailey A, Wright MD, Marczylo EL. Smoking and vaping alter genes related to mechanisms of SARS-CoV-2 susceptibility and severity: a systematic review and meta-analysis. Eur Respir J 2024; 64:2400133. [PMID: 38991709 PMCID: PMC11269771 DOI: 10.1183/13993003.00133-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Rachel Bowsher
- Toxicology Department, UK Health Security Agency, Chilton, UK
- Pharmacology Section, St George's University of London, London, UK
| | | | - Karen Gooch
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Salisbury, UK
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, London, UK
| | | | - Emma L Marczylo
- Toxicology Department, UK Health Security Agency, Chilton, UK
| |
Collapse
|
19
|
El-Hddad SSA, Sobhy MH, El-Morsy A, Shoman NA, El-Adl K. Quinazolines and thiazolidine-2,4-dions as SARS-CoV-2 inhibitors: repurposing, in silico molecular docking and dynamics simulation. RSC Adv 2024; 14:13237-13250. [PMID: 38655479 PMCID: PMC11037030 DOI: 10.1039/d4ra02029d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
This paper presents an extensive analysis of COVID-19 with a specific focus on VEGFR-2 inhibitors as potential treatments. The investigation includes an overview of computational methodologies employed in drug repurposing and highlights in silico research aimed at developing treatments for SARS-CoV-2. The study explores the possible effects of twenty-eight established VEGFR-2 inhibitors, which include amide and urea linkers, against SARS-CoV-2. Among these, nine inhibitors exhibit highly promising in silico outcomes (designated as 3-6, 11, 24, 26, 27, and sorafenib) and are subjected to extensive molecular dynamics (MD) simulations to evaluate the binding modes and affinities of these inhibitors to the SARS-CoV-2 Mpro across a 100 ns timeframe. Additionally, MD simulations are conducted to ascertain the binding free energy of the most compelling ligand-pocket complexes identified through docking studies. The findings provide valuable understanding regarding the dynamic and thermodynamic properties of the interactions between ligands and pockets, reinforcing the outcomes of the docking studies and presenting promising prospects for the creation of therapeutic treatments targeting COVID-19.
Collapse
Affiliation(s)
- Sanadelaslam S A El-Hddad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University Al Bayda 991 Libya
| | - Mohamed H Sobhy
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Nabil A Shoman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University Giza Egypt
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo11884 Egypt
| |
Collapse
|
20
|
Gomez K, Allen HN, Duran P, Loya-Lopez S, Calderon-Rivera A, Moutal A, Tang C, Nelson TS, Perez-Miller S, Khanna R. Targeted transcriptional upregulation of SENP1 by CRISPR activation enhances deSUMOylation pathways to elicit antinociception in the spinal nerve ligation model of neuropathic pain. Pain 2024; 165:866-883. [PMID: 37862053 PMCID: PMC11389604 DOI: 10.1097/j.pain.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Heather N Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
21
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
22
|
Chen Y, Liu P, Zhang Z, Ye Y, Yi S, Fan C, Zhao W, Liu J. Genetic overlap and causality between COVID-19 and multi-site chronic pain: the importance of immunity. Front Immunol 2024; 15:1277720. [PMID: 38633255 PMCID: PMC11022998 DOI: 10.3389/fimmu.2024.1277720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background The existence of chronic pain increases susceptibility to virus and is now widely acknowledged as a prominent feature recognized as a major manifestation of long-term coronavirus disease 2019 (COVID-19) infection. Given the ongoing COVID-19 pandemic, it is imperative to explore the genetic associations between chronic pain and predisposition to COVID-19. Methods We conducted genetic analysis at the single nucleotide polymorphism (SNP), gene, and molecular levels using summary statistics of genome-wide association study (GWAS) and analyzed the drug targets by summary data-based Mendelian randomization analysis (SMR) to alleviate the multi-site chronic pain in COVID-19. Additionally, we performed a latent causal variable (LCV) method to investigate the causal relationship between chronic pain and susceptibility to COVID-19. Results The cross-trait meta-analysis identified 19 significant SNPs shared between COVID-19 and chronic pain. Coloc analysis indicated that the posterior probability of association (PPH4) for three loci was above 70% in both critical COVID-19 and COVID-19, with the corresponding top three SNPs being rs13135092, rs7588831, and rs13135092. A total of 482 significant overlapped genes were detected from MAGMA and CPASSOC results. Additionally, the gene ANAPC4 was identified as a potential drug target for treating chronic pain (P=7.66E-05) in COVID-19 (P=8.23E-03). Tissue enrichment analysis highlighted that the amygdala (P=7.81E-04) and prefrontal cortex (P=8.19E-05) as pivotal in regulating chronic pain of critical COVID-19. KEGG pathway enrichment further revealed the enrichment of pleiotropic genes in both COVID-19 (P=3.20E-03,Padjust=4.77E-02,hsa05171) and neurotrophic pathways (P=9.03E-04,Padjust =2.55E-02,hsa04621). Finally, the latent causal variable (LCV) model was applied to find the genetic component of critical COVID-19 was causal for multi-site chronic pain (P=0.015), with a genetic causality proportion (GCP) of was 0.60. Conclusions In this study, we identified several functional genes and underscored the pivotal role of the inflammatory system in the correlation between the paired traits. Notably, heat shock proteins emerged as potential objective biomarkers for chronic pain symptoms in individuals with COVID-19. Additionally, the ubiquitin system might play a role in mediating the impact of COVID-19 on chronic pain. These findings contribute to a more comprehensive understanding of the pleiotropy between COVID-19 and chronic pain, offering insights for therapeutic trials.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyi Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingling Ye
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunhua Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhao
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| | - Jun Liu
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
23
|
Gomez K, Duran P, Tonello R, Allen HN, Boinon L, Calderon-Rivera A, Loya-López S, Nelson TS, Ran D, Moutal A, Bunnett NW, Khanna R. Neuropilin-1 is essential for vascular endothelial growth factor A-mediated increase of sensory neuron activity and development of pain-like behaviors. Pain 2023; 164:2696-2710. [PMID: 37366599 PMCID: PMC10751385 DOI: 10.1097/j.pain.0000000000002970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, AZ, United States of America
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Tyler S. Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, AZ, United States of America
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University; Saint Louis, MO, United States of America
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
24
|
Karkashan A, Attar R. Computational screening of natural products to identify potential inhibitors for human neuropilin-1 (NRP1) receptor to abrogate the binding of SARS-CoV-2 and host cell. J Biomol Struct Dyn 2023; 41:9987-9996. [PMID: 36437796 DOI: 10.1080/07391102.2022.2150685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Recently, a new variant B.1.1.529 or Omicron variant and its sub-variants (BA2.75, BA.5) of SARS-CoV-2 (Severe acute respiratory virus 2) have been reported with a larger number of mutations in the spike protein and particularly in the RBD (receptor-binding domain). The omicron (B.1.1.529) variant has aggravated the pandemic situation further and needs more analysis for therapeutic development. Keeping in view the urgency of the required data, the current study used molecular modeling and simulation-based methods to target the NRP1 (Neuropilin 1) protein to halt the entry into the host cell. Employing a molecular screening approach to screen the North-East African natural compounds database (NEANCDB) revealed Subereamine B with a docking score of -8.44 kcal/mol, Zinolol with the docking score of -8.05 while Subereamine A with a docking score of -7.88 kcal/mol as the best hits against NRP1. Molecular simulation-based further validation revealed stable dynamics, good structural packing, and dynamic residues flexibility index. Moreover, hydrogen bonding fraction analysis demonstrated the interactions remained sustained during the simulation. Furthermore, the total binding free energy for Subereamine B was -44.24 ±0.91 kcal/mol, for Zinolol -34.32 ±0.40 kcal/mol while for Subereamine A the TBE was calculated to be -41.78 ± 0.36 kcal/mol respectively. This shows that the two arginine-based alkaloids, i.e. Subereamine B and Subereamine A could inhibit the NRP1 more strongly than Zinolol. In conclusion, this study provides a basis for the development of novel drugs against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alaa Karkashan
- Department of Biology, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Roba Attar
- Department of Biology, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Saleki K, Alijanizadeh P, Azadmehr A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomed Pharmacother 2023; 167:115558. [PMID: 37748412 DOI: 10.1016/j.biopha.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
A major immunopathological feature of Coronavirus disease-2019 (COVID-19) is excessive inflammation in the form of "cytokine storm". The storm is characterized by injurious levels of cytokines which form a complicated network damaging different organs, including the lungs and the brain. The main starter of "cytokine network" hyperactivation in COVID-19 has not been discovered yet. Neuropilins (NRPs) are transmembrane proteins that act as neuronal guidance and angiogenesis modulators. The crucial function of NRPs in forming the nervous and vascular systems has been well-studied. NRP1 and NRP2 are the two identified homologs of NRP. NRP1 has been shown as a viral entry pathway for SARS-CoV2, which facilitates neuroinvasion by the virus within the central or peripheral nervous systems. These molecules directly interact with various COVID-19-related molecules, such as specific regions of the spike protein (major immune element of SARS-CoV2), vascular endothelial growth factor (VEGF) receptors, VEGFR1/2, and ANGPTL4 (regulator of vessel permeability and integrity). NRPs mainly play a role in hyperinflammatory injury of the CNS and lungs, and also the liver, kidney, pancreas, and heart in COVID-19 patients. New findings have suggested NRPs good candidates for pharmacotherapy of COVID-19. However, therapeutic targeting of NRP1 in COVID-19 is still in the preclinical phase. This review presents the implications of NRP1 in multi-organ inflammation-induced injury by SARS-CoV2 and provides insights for NRP1-targeting treatments for COVID-19 patients.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
26
|
Hou D, Cao W, Kim S, Cui X, Ziarnik M, Im W, Zhang XF. Biophysical investigation of interactions between SARS-CoV-2 spike protein and neuropilin-1. Protein Sci 2023; 32:e4773. [PMID: 37656811 PMCID: PMC10510470 DOI: 10.1002/pro.4773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Recent studies have suggested that neuropilin-1 (NRP1) may serve as a potential receptor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the biophysical characteristics of interactions between NRP1 and SARS-CoV-2 remain unclear. In this study, we examined the interactions between NRP1 and various SARS-CoV-2 spike (S) fragments, including the receptor-binding domain (RBD) and the S protein trimer in a soluble form or expressed on pseudovirions, using atomic force microscopy and structural modeling. Our measurements shows that NRP1 interacts with the RBD and trimer at a higher binding frequency (BF) compared to ACE2. This NRP1-RBD interaction has also been predicted and simulated via AlphaFold2 and molecular dynamics simulations, and the results indicate that their binding patterns are very similar to RBD-ACE2 interactions. Additionally, under similar loading rates, the most probable unbinding forces between NRP1 and S trimer (both soluble form and on pseudovirions) are larger than the forces between NRP1 and RBD and between trimer and ACE2. Further analysis indicates that NRP1 has a stronger binding affinity to the SARS-CoV-2 S trimer with a dissociation rate of 0.87 s-1 , four times lower than the dissociation rate of 3.65 s-1 between NRP1 and RBD. Moreover, additional experiments show that RBD-neutralizing antibodies can significantly reduce the BF for both ACE2 and NRP1. Together, the study suggests that NRP1 can be an alternative receptor for SARS-CoV-2 attachment to human cells, and the neutralizing antibodies targeting SARS-CoV-2 RBD can reduce the binding between SARS-CoV-2 and NRP1.
Collapse
Affiliation(s)
- Decheng Hou
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Wenpeng Cao
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Seonghan Kim
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Xinyu Cui
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Matthew Ziarnik
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wonpil Im
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Departments of Biological Sciences, Chemistry, and Computer Science and EngineeringLehigh UniversityBethlehemUSA
| | - X. Frank Zhang
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
27
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
28
|
Son GY, Tu NH, Santi MD, Lopez SL, Souza Bomfim GH, Vinu M, Zhou F, Chaloemtoem A, Alhariri R, Idaghdour Y, Khanna R, Ye Y, Lacruz RS. The Ca 2+ channel ORAI1 is a regulator of oral cancer growth and nociceptive pain. Sci Signal 2023; 16:eadf9535. [PMID: 37669398 PMCID: PMC10747475 DOI: 10.1126/scisignal.adf9535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Oral cancer causes pain associated with cancer progression. We report here that the function of the Ca2+ channel ORAI1 is an important regulator of oral cancer pain. ORAI1 was highly expressed in tumor samples from patients with oral cancer, and ORAI1 activation caused sustained Ca2+ influx in human oral cancer cells. RNA-seq analysis showed that ORAI1 regulated many genes encoding oral cancer markers such as metalloproteases (MMPs) and pain modulators. Compared with control cells, oral cancer cells lacking ORAI1 formed smaller tumors that elicited decreased allodynia when inoculated into mouse paws. Exposure of trigeminal ganglia neurons to MMP1 evoked an increase in action potentials. These data demonstrate an important role of ORAI1 in oral cancer progression and pain, potentially by controlling MMP1 abundance.
Collapse
Affiliation(s)
- Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| | - Nguyen Huu Tu
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Maria Daniela Santi
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Santiago Loya Lopez
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | | | - Manikandan Vinu
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Fang Zhou
- Department of Pathology, New York University Langone Health, New York, NY 10010
| | - Ariya Chaloemtoem
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rama Alhariri
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Yi Ye
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| |
Collapse
|
29
|
Lavin A, LeBlanc F, El Helou A. The impact of COVID-19 on chronic pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1234099. [PMID: 37711989 PMCID: PMC10499520 DOI: 10.3389/fpain.2023.1234099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
A reduced quality of life is often a hefty burden that those with chronic pain are left to bear. This review of literature from PubMed, Google Scholar and other relevant studies focuses on the complex relationship between COVID-19 and chronic pain, which is challenging to study during the COVID-19 pandemic. In this review, we will briefly discuss the epidemiologic facts and risk factors, followed by the proposed pathophysiologic mechanisms. Furthermore, we will cover the therapeutic avenues regarding various molecules and their possible interactions, with the most promising being those whose mechanism of action can be directly linked to the pathophysiologic aspects of the condition. Finally, we will describe how to deal with a chronic pain patient who consults during the pandemic.
Collapse
Affiliation(s)
- Abraham Lavin
- Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Félix LeBlanc
- Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Antonios El Helou
- Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Neurosurgery, Horizon Health Network, Moncton, NB, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
30
|
Stockmaier S. Bat behavioral immune responses in social contexts: current knowledge and future directions. Front Immunol 2023; 14:1232556. [PMID: 37662931 PMCID: PMC10469833 DOI: 10.3389/fimmu.2023.1232556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Animals often mount complex immune responses to infections. Aside from cellular and molecular defense mechanisms, animals can alter their behavior in response to infection by avoiding, resisting, or tolerating negative effects of pathogens. These behaviors are often connected to cellular and molecular immune responses. For instance, sickness behaviors are a set of behavioral changes triggered by the host inflammatory response (e.g., cytokines) and could aid in resisting or tolerating infection, as well as affect transmission dynamics if sick animals socially withdraw or are being avoided by others. To fully understand the group and population level transmission dynamics and consequences of pathogen infections in bats, it is not only important to consider cellular and molecular defense mechanisms, but also behavioral mechanisms, and how both interact. Although there has been increasing interest in bat immune responses due to their ability to successfully cope with viral infections, few studies have explored behavioral anti-pathogen defense mechanisms. My main objective is to explore the interaction of cellular and molecular defense mechanisms, and behavioral alterations that results from infection in bats, and to outline current knowledge and future research avenues in this field.
Collapse
Affiliation(s)
- Sebastian Stockmaier
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, United States
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
31
|
Gomez K, Stratton HJ, Duran P, Loya S, Tang C, Calderon-Rivera A, François-Moutal L, Khanna M, Madura CL, Luo S, McKiver B, Choi E, Ran D, Boinon L, Perez-Miller S, Damaj MI, Moutal A, Khanna R. Identification and targeting of a unique Na V1.7 domain driving chronic pain. Proc Natl Acad Sci U S A 2023; 120:e2217800120. [PMID: 37498871 PMCID: PMC10410761 DOI: 10.1073/pnas.2217800120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Santiago Loya
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | | | - May Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Bryan McKiver
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Edward Choi
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO63104
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY10010
| |
Collapse
|
32
|
Stoian A, Bajko Z, Stoian M, Cioflinc RA, Niculescu R, Arbănași EM, Russu E, Botoncea M, Bălașa R. The Occurrence of Acute Disseminated Encephalomyelitis in SARS-CoV-2 Infection/Vaccination: Our Experience and a Systematic Review of the Literature. Vaccines (Basel) 2023; 11:1225. [PMID: 37515041 PMCID: PMC10385010 DOI: 10.3390/vaccines11071225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The neurological complications of coronavirus disease 2019 (COVID-19) infection and the side effects of vaccination include immune-mediated diseases of the central nervous system (CNS) such as acute disseminated encephalomyelitis (ADEM). It is an acute-onset demyelinating disease that involves a rapid evolution and multifocal neurological deficits that develops following a viral or bacterial infection or, less frequently, following vaccination. Acute hemorrhagic leukoencephalitis (AHLE) is the hemorrhagic variant of ADEM that presents a more severe evolution which can be followed by coma and death. The objectives of this study consist in evaluating the diagnosis, clinical characteristics, imaging and laboratory features, evolution, and treatment of ADEM and AHLE following COVID-19 infection or vaccination. METHODS We performed a systematic review of the medical literature according to PRISMA guidelines that included ADEM cases published between 1 January 2020 and 30 November 2022 following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination and also included our own clinical experience regarding this pathology. RESULTS A total number of 74 patients were diagnosed with ADEM, 45 following COVID-19 infection and 29 after a SARS-CoV-2 vaccine. A total of 13 patients (17.33%) presented AHLE. The moderate form of COVID-19 presented a positive correlation with AHLE (r = 0.691, p < 0.001). The existence of coma and AHLE was correlated with poor outcomes. The following more aggressive immunomodulatory therapies applied in severe cases were correlated with poor outcomes (major sequelae and death): therapeutic plasma exchange (TPE) treatment (r = 382, p = 0.01) and combined therapy with corticosteroids and TPE (r = 0.337, p = 0.03). CONCLUSIONS Vaccinations are essential to reduce the spread of the COVID-19 pandemic, and the monitoring of adverse events is an important part of the strategic fight against SARS-CoV-2. The general benefits and the overall good evolution outweigh the risks, and prompt diagnosis is associated with a better prognosis in these patients.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Zoltan Bajko
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Mircea Stoian
- Department Anesthesiology and Critical Care Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Raluca Niculescu
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emil Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Eliza Russu
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Marian Botoncea
- Department of General Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Rodica Bălașa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
33
|
Mustafá ER, Weiss N. From SARS-CoV-2 to analgesia: harnessing the vascular endothelial growth factor A/neuropilin 1 axis for pain therapy. Pain 2023; 164:1403-1405. [PMID: 36651581 DOI: 10.1097/j.pain.0000000000002851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Emilio R Mustafá
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | |
Collapse
|
34
|
Stratton HJ, Boinon L, Gomez K, Martin L, Duran P, Ran D, Zhou Y, Luo S, Perez-Miller S, Patek M, Ibrahim MM, Patwardhan A, Moutal A, Khanna R. Targeting the vascular endothelial growth factor A/neuropilin 1 axis for relief of neuropathic pain. Pain 2023; 164:1473-1488. [PMID: 36729125 PMCID: PMC10277229 DOI: 10.1097/j.pain.0000000000002850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/08/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Vascular endothelial growth factor A (VEGF-A) is a pronociceptive factor that causes neuronal sensitization and pain. We reported that blocking the interaction between the membrane receptor neuropilin 1 (NRP1) and VEGF-A-blocked VEGF-A-mediated sensory neuron hyperexcitability and reduced mechanical hypersensitivity in a rodent chronic neuropathic pain model. These findings identified the NRP1-VEGF-A signaling axis for therapeutic targeting of chronic pain. In an in-silico screening of approximately 480 K small molecules binding to the extracellular b1b2 pocket of NRP1, we identified 9 chemical series, with 6 compounds disrupting VEGF-A binding to NRP1. The small molecule with greatest efficacy, 4'-methyl-2'-morpholino-2-(phenylamino)-[4,5'-bipyrimidin]-6(1H)-one, designated NRP1-4, was selected for further evaluation. In cultured primary sensory neurons, VEGF-A enhanced excitability and decreased firing threshold, which was blocked by NRP1-4. In addition, NaV1.7 and CaV2.2 currents and membrane expression were potentiated by treatment with VEGF-A, and this potentiation was blocked by NRP1-4 cotreatment. Neuropilin 1-4 reduced VEGF-A-mediated increases in the frequency and amplitude of spontaneous excitatory postsynaptic currents in dorsal horn of the spinal cord. Neuropilin 1-4 did not bind to more than 300 G-protein-coupled receptors and receptors including human opioids receptors, indicating a favorable safety profile. In rats with spared nerve injury-induced neuropathic pain, intrathecal administration of NRP1-4 significantly attenuated mechanical allodynia. Intravenous treatment with NRP1-4 reversed both mechanical allodynia and thermal hyperalgesia in rats with L5/L6 spinal nerve ligation-induced neuropathic pain. Collectively, our findings show that NRP1-4 is a first-in-class compound targeting the NRP1-VEGF-A signaling axis to control voltage-gated ion channel function, neuronal excitability, and synaptic activity that curb chronic pain.
Collapse
Affiliation(s)
- Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Laurent Martin
- Department of Anesthesiology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| | - Mohab M. Ibrahim
- Department of Anesthesiology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Amol Patwardhan
- Department of Anesthesiology, College of Medicine, The University of Arizona; Tucson, Arizona, 85724 United States of America
| | - Aubin Moutal
- Saint Louis University - School of Medicine, Department of Pharmacology and Physiology, 1402 S. Grand Blvd., Schwitalla Hall, Room 432, Saint Louis, MO 63104
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| |
Collapse
|
35
|
Serafini RA, Frere JJ, Zimering J, Giosan IM, Pryce KD, Golynker I, Panis M, Ruiz A, tenOever BR, Zachariou V. SARS-CoV-2 airway infection results in the development of somatosensory abnormalities in a hamster model. Sci Signal 2023; 16:eade4984. [PMID: 37159520 PMCID: PMC10422867 DOI: 10.1126/scisignal.ade4984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
Although largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and chronic phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster model to characterize and compare the effects of infection with SARS-CoV-2 and influenza A virus (IAV) on the sensory nervous system. We detected SARS-CoV-2 transcripts but no infectious material in the cervical and thoracic spinal cord and dorsal root ganglia (DRGs) within the first 24 hours of intranasal virus infection. SARS-CoV-2-infected hamsters exhibited mechanical hypersensitivity that was milder but prolonged compared with that observed in IAV-infected hamsters. RNA sequencing analysis of thoracic DRGs 1 to 4 days after infection suggested perturbations in predominantly neuronal signaling in SARS-CoV-2-infected animals as opposed to type I interferon signaling in IAV-infected animals. Later, 31 days after infection, a neuropathic transcriptome emerged in thoracic DRGs from SARS-CoV-2-infected animals, which coincided with SARS-CoV-2-specific mechanical hypersensitivity. These data revealed potential targets for pain management, including the RNA binding protein ILF3, which was validated in murine pain models. This work elucidates transcriptomic signatures in the DRGs triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities.
Collapse
Affiliation(s)
- Randal A. Serafini
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey Zimering
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilinca M. Giosan
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kerri D. Pryce
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maryline Panis
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Ruiz
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Venetia Zachariou
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
36
|
Li L, Sottas CM, Chen HY, Li Y, Cui H, Villano JS, Mankowski JL, Cannon PM, Papadopoulos V. SARS-CoV-2 Enters Human Leydig Cells and Affects Testosterone Production In Vitro. Cells 2023; 12:1198. [PMID: 37190107 PMCID: PMC10136776 DOI: 10.3390/cells12081198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a SARS-like coronavirus, continues to produce mounting infections and fatalities all over the world. Recent data point to SARS-CoV-2 viral infections in the human testis. As low testosterone levels are associated with SARS-CoV-2 viral infections in males and human Leydig cells are the main source of testosterone, we hypothesized that SARS-CoV-2 could infect human Leydig cells and impair their function. We successfully detected SARS-CoV-2 nucleocapsid in testicular Leydig cells of SARS-CoV-2-infected hamsters, providing evidence that Leydig cells can be infected with SARS-CoV-2. We then employed human Leydig-like cells (hLLCs) to show that the SARS-CoV-2 receptor angiotensin-converting enzyme 2 is highly expressed in hLLCs. Using a cell binding assay and a SARS-CoV-2 spike-pseudotyped viral vector (SARS-CoV-2 spike pseudovector), we showed that SARS-CoV-2 could enter hLLCs and increase testosterone production by hLLCs. We further combined the SARS-CoV-2 spike pseudovector system with pseudovector-based inhibition assays to show that SARS-CoV-2 enters hLLCs through pathways distinct from those of monkey kidney Vero E6 cells, a typical model used to study SARS-CoV-2 entry mechanisms. We finally revealed that neuropilin-1 and cathepsin B/L are expressed in hLLCs and human testes, raising the possibility that SARS-CoV-2 may enter hLLCs through these receptors or proteases. In conclusion, our study shows that SARS-CoV-2 can enter hLLCs through a distinct pathway and alter testosterone production.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chantal M. Sottas
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Haoyi Cui
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jason S. Villano
- Departments of Molecular and Comparative Pathobiology, Pathology and Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joseph L. Mankowski
- Departments of Molecular and Comparative Pathobiology, Pathology and Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
37
|
Goswami S, Samanta D, Duraivelan K. Molecular mimicry of host short linear motif-mediated interactions utilised by viruses for entry. Mol Biol Rep 2023; 50:4665-4673. [PMID: 37016039 PMCID: PMC10072811 DOI: 10.1007/s11033-023-08389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Viruses are obligate intracellular parasites that depend on host cellular machinery for performing even basic biological functions. One of the many ways they achieve this is through molecular mimicry, wherein the virus mimics a host sequence or structure, thereby being able to hijack the host's physiological interactions for its pathogenesis. Such adaptations are specific recognitions that often confer tissue and species-specific tropisms to the virus, and enable the virus to utilise previously existing host signalling networks, which ultimately aid in further steps of viral infection, such as entry, immune evasion and spread. A common form of sequence mimicry utilises short linear motifs (SLiMs). SLiMs are short-peptide sequences that mediate transient interactions and are major elements in host protein interaction networks. This work is aimed at providing a comprehensive review of current literature of some well-characterised SLiMs that play a role in the attachment and entry of viruses into host cells, which mimic physiological receptor-ligand interactions already present in the host. Considering recent trends in emerging diseases, further research on such motifs involved in viral entry can help in the discovery of previously unknown cellular receptors utilised by viruses, as well as help in the designing of targeted therapeutics such as vaccines or inhibitors directed towards these interactions.
Collapse
Affiliation(s)
- Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kheerthana Duraivelan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
38
|
Folic Acid and Leucovorin Have Potential to Prevent SARS-CoV-2-Virus Internalization by Interacting with S-Glycoprotein/Neuropilin-1 Receptor Complex. Molecules 2023; 28:molecules28052294. [PMID: 36903540 PMCID: PMC10005443 DOI: 10.3390/molecules28052294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.
Collapse
|
39
|
Abstract
Coughing is a dynamic physiological process resulting from input of vagal sensory neurons innervating the airways and perceived airway irritation. Although cough serves to protect and clear the airways, it can also be exploited by respiratory pathogens to facilitate disease transmission. Microbial components or infection-induced inflammatory mediators can directly interact with sensory nerve receptors to induce a cough response. Analysis of cough-generated aerosols and transmission studies have further demonstrated how infectious disease is spread through coughing. This review summarizes the neurophysiology of cough, cough induction by respiratory pathogens and inflammation, and cough-mediated disease transmission.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
40
|
Bellavite P, Ferraresi A, Isidoro C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023; 11:451. [PMID: 36830987 PMCID: PMC9953067 DOI: 10.3390/biomedicines11020451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus responsible for the COVID-19 disease) uses the Spike proteins of its envelope for infecting target cells expressing on the membrane the angiotensin converting enzyme 2 (ACE2) enzyme that acts as a receptor. To control the pandemic, genetically engineered vaccines have been designed for inducing neutralizing antibodies against the Spike proteins. These vaccines do not act like traditional protein-based vaccines, as they deliver the message in the form of mRNA or DNA to host cells that then produce and expose the Spike protein on the membrane (from which it can be shed in soluble form) to alert the immune system. Mass vaccination has brought to light various adverse effects associated with these genetically based vaccines, mainly affecting the circulatory and cardiovascular system. ACE2 is present as membrane-bound on several cell types, including the mucosa of the upper respiratory and of the gastrointestinal tracts, the endothelium, the platelets, and in soluble form in the plasma. The ACE2 enzyme converts the vasoconstrictor angiotensin II into peptides with vasodilator properties. Here we review the pathways for immunization and the molecular mechanisms through which the Spike protein, either from SARS-CoV-2 or encoded by the mRNA-based vaccines, interferes with the Renin-Angiotensin-System governed by ACE2, thus altering the homeostasis of the circulation and of the cardiovascular system. Understanding the molecular interactions of the Spike protein with ACE2 and the consequent impact on cardiovascular system homeostasis will direct the diagnosis and therapy of the vaccine-related adverse effects and provide information for development of a personalized vaccination that considers pathophysiological conditions predisposing to such adverse events.
Collapse
Affiliation(s)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
41
|
Wang C, Song D, Huang Q, Liu Q. Advances in SEMA3F regulation of clinically high-incidence cancers. Cancer Biomark 2023; 38:131-142. [PMID: 37599522 DOI: 10.3233/cbm-230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cancer has become a leading cause of morbidity and mortality in recent years. Its high prevalence has had a severe impact on society. Researchers have achieved fruitful results in the causative factors, pathogenesis, treatment strategies, and cancer prevention. Semaphorin 3F (SEMA3F), a member of the signaling family, was initially reported in the literature to inhibit the growth, invasion, and metastasis of cancer cells in lung cancer. Later studies showed it has cancer-inhibiting effects in malignant tumors such as breast, colorectal, ovarian, oral squamous cell carcinoma, melanoma, and head and neck squamous carcinoma. In contrast, recent studies have reported that SEMA3F is expressed more in hepatocellular carcinoma than in normal tissue and promotes metastasis of hepatocellular carcinoma. We chose lung, breast, colorectal, and hepatocellular carcinomas with high clinical prevalence to review the roles and molecular mechanisms of SEMA3F in these four carcinomas. We concluded with an outlook on clinical interventions for patients targeting SEMA3F.
Collapse
Affiliation(s)
- Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Dezhi Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
42
|
Soto ME, Fuentevilla-Álvarez G, Palacios-Chavarría A, Vázquez RRV, Herrera-Bello H, Moreno-Castañeda L, Torres-Paz YE, González-Moyotl NJ, Pérez-Torres I, Aisa-Alvarez A, Manzano-Pech L, Pérez-Torres I, Huesca-Gómez C, Gamboa R. Impact on the Clinical Evolution of Patients with COVID-19 Pneumonia and the Participation of the NFE2L2/KEAP1 Polymorphisms in Regulating SARS-CoV-2 Infection. Int J Mol Sci 2022; 24:415. [PMID: 36613859 PMCID: PMC9820269 DOI: 10.3390/ijms24010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In patients with severe pneumonia due to COVID-19, the deregulation of oxidative stress is present. Nuclear erythroid factor 2 (NRF2) is regulated by KEAP1, and NRF2 regulates the expression of genes such as NFE2L2-KEAP1, which are involved in cellular defense against oxidative stress. In this study, we analyzed the participation of the polymorphisms of NFE2L2 and KEAP1 genes in the mechanisms of damage in lung disease patients with SARS-CoV-2 infection. Patients with COVID-19 and a control group were included. Organ dysfunction was evaluated using SOFA. SARS-CoV-2 infection was confirmed and classified as moderate or severe by ventilatory status and by the Berlin criteria for acute respiratory distress syndrome. SNPs in the gene locus for NFE2L2, rs2364723C>G, and KEAP1, rs9676881A>G, and rs34197572C>T were determined by qPCR. We analyzed 110 individuals with SARS-CoV-2 infection: 51 with severe evolution and 59 with moderate evolution. We also analyzed 111 controls. Significant differences were found for rs2364723 allele G in severe cases vs. controls (p = 0.02); for the rs9676881 allele G in moderate cases vs. controls (p = 0.04); for the rs34197572 allele T in severe cases vs. controls (p = 0.001); and in severe vs. moderate cases (p = 0.004). Our results showed that NFE2L2 rs2364723C>G allele G had a protective effect against severe COVID-19, while KEAP1 rs9676881A>G allele G and rs34197572C>T minor allele T were associated with more aggressive stages of COVID-19.
Collapse
Affiliation(s)
- María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, I.A.P. ABC I.A.P. ABC Sur 136 No. 116 Col. Las Américas, México City 01120, Mexico
| | - Giovanny Fuentevilla-Álvarez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Manuel Carpio y Plutarco Elias Calles, Col. Miguel Hidalgo, México City 11350, Mexico
| | - Adrián Palacios-Chavarría
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Rafael Ricardo Valdez Vázquez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Héctor Herrera-Bello
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Lidia Moreno-Castañeda
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
| | - Yazmín Estela Torres-Paz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Nadia Janet González-Moyotl
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Idalia Pérez-Torres
- Department of Genetic, Hospital Infantil de México “Federico Gómez”, Doctor Márquez 162, Col. Doctores, México City 06720, Mexico
| | - Alfredo Aisa-Alvarez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, México City 11200, Mexico
- Critical Care in American British Cowdray (ABC) Medical Center, I.A.P. ABC I.A.P. ABC Sur 136 No. 116 Col. Las Américas, México City 01120, Mexico
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Claudia Huesca-Gómez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| | - Ricardo Gamboa
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1. Col. Sección XVI., México City 14380, Mexico
| |
Collapse
|
43
|
Mimicking Gene-Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies. BIOLOGY 2022; 12:biology12010006. [PMID: 36671699 PMCID: PMC9855005 DOI: 10.3390/biology12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Cyclooxygenase 2 (COX2) inhibitors have been demonstrated to protect against hypoxia pathogenesis in several investigations. It has also been utilized as an adjuvant therapy in the treatment of COVID-19. COX inhibitors, which have previously been shown to be effective in treating previous viral and malarial infections are strong candidates for improving the COVID-19 therapeutic doctrine. However, another COX inhibitor, ibuprofen, is linked to an increase in the angiotensin-converting enzyme 2 (ACE2), which could increase virus susceptibility. Hence, inhibiting COX2 via therapeutics might not always be protective and we need to investigate the downstream molecules that may be involved in hypoxia environment adaptation. Research has discovered that people who are accustomed to reduced oxygen levels at altitude may be protected against the harmful effects of COVID-19. It is important to highlight that the study's conclusions only applied to those who regularly lived at high altitudes; they did not apply to those who occasionally moved to higher altitudes but still lived at lower altitudes. COVID-19 appears to be more dangerous to individuals residing at lower altitudes. The downstream molecules in the (COX2) pathway have been shown to adapt in high-altitude dwellers, which may partially explain why these individuals have a lower prevalence of COVID-19 infection. More research is needed, however, to directly address COX2 expression in people living at higher altitudes. It is possible to mimic the gene-environment interaction of higher altitude people by intermittent hypoxia training. COX-2 adaptation resulting from hypoxic exposure at altitude or intermittent hypoxia exercise training (IHT) seems to have an important therapeutic function. Swimming, a type of IHT, was found to lower COX-2 protein production, a pro-inflammatory milieu transcription factor, while increasing the anti-inflammatory microenvironment. Furthermore, Intermittent Hypoxia Preconditioning (IHP) has been demonstrated in numerous clinical investigations to enhance patients' cardiopulmonary function, raise cardiorespiratory fitness, and increase tissues' and organs' tolerance to ischemia. Biochemical activities of IHP have also been reported as a feasible application strategy for IHP for the rehabilitation of COVID-19 patients. In this paper, we aim to highlight some of the most relevant shared genes implicated with COVID-19 pathogenesis and hypoxia. We hypothesize that COVID-19 pathogenesis and hypoxia share a similar mechanism that affects apoptosis, proliferation, the immune system, and metabolism. We also highlight the necessity of studying individuals who live at higher altitudes to emulate their gene-environment interactions and compare the findings with IHT. Finally, we propose COX2 as an upstream target for testing the effectiveness of IHT in preventing or minimizing the effects of COVID-19 and other oxygen-related pathological conditions in the future.
Collapse
|
44
|
Talotta R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms 2022; 10:2452. [PMID: 36557705 PMCID: PMC9784975 DOI: 10.3390/microorganisms10122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Long coronavirus disease-19 (COVID-19) is a newly discovered syndrome characterized by multiple organ manifestations that persist for weeks to months, following the recovery from acute disease. Occasionally, neurological and cardiovascular side effects mimicking long COVID-19 have been reported in recipients of COVID-19 vaccines. Hypothetically, the clinical similarity could be due to a shared pathogenic role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike (S) protein produced by the virus or used for immunization. The S protein can bind to neuropilin (NRP)-1, which normally functions as a coreceptor for the vascular endothelial growth factor (VEGF)-A. By antagonizing the docking of VEGF-A to NRP-1, the S protein could disrupt physiological pathways involved in angiogenesis and nociception. One consequence could be the increase in unbound forms of VEGF-A that could bind to other receptors. SARS-CoV-2-infected individuals may exhibit increased plasma levels of VEGF-A during both acute illness and convalescence, which could be responsible for diffuse microvascular and neurological damage. A few studies suggest that serum VEGF-A may also be a potential biomarker for long COVID-19, whereas evidence for COVID-19 vaccines is lacking and merits further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
45
|
Inhibition of Angiogenesis by MiR-524-5p through Suppression of AKT and ERK Activation by Targeting CXCR7 in Colon Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:7224840. [DOI: 10.1155/2022/7224840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Increasing evidence shows that alterations in microRNA (miRNA) expression are involved in the occurrence and development of various malignant tumors, including colon cancer. MiRNA-524-5p has been reported to have anticancer activity in colon cancer. This study explored the influence of the miRNA-524-5p/CXCR7 axis on angiogenesis using colon cancer cells and further studied the mechanisms involved. We found that changing the expression of miRNA-524-5p can affect colonic proliferation, migration, and angiogenesis. Furthermore, angiogenesis induced by miRNA-524-5p overexpression was reversed by overexpression of CXCR7 in HT-29 cells, while the opposite was observed in Caco-2 cells. Furthermore, miRNA-524-5p inhibited the activation of AKT and ERK signaling by targeting CXCR7. Overall, our results indicated that the miRNA-524-5p/CXCR7 axis regulated angiogenesis in colon cancer cells through the AKT and ERK pathways.
Collapse
|
46
|
Eitner L, Maier C, Brinkmann F, Schlegtendal A, Knoke L, Enax-Krumova E, Lücke T. Somatosensory abnormalities after infection with SARS-CoV-2 - A prospective case-control study in children and adolescents. Front Pediatr 2022; 10:977827. [PMID: 36263148 PMCID: PMC9574195 DOI: 10.3389/fped.2022.977827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Long-term neurological complaints after SARS-CoV-2 infection occur in 4-66% of children and adolescents. Controlled studies on the integrity of the peripheral nerve system are scarce. Therefore, we examined the somatosensory function in children and adolescents after SARS-CoV-2 infection in a case-control study compared with age-matched individuals. Materials and Methods Eighty-one subjects after SARS-CoV-2 infection (n = 44 female, 11.4 ± 3.5 years, n = 75 SARS-CoV-2 seropositive, n = 6 PCR positive during infection and SARS-CoV-2 seronegative at the time point of study inclusion, n = 47 asymptomatic infection) were compared to 38 controls without SARS-CoV-2 infection (26 female, 10.3 ± 3.4 years, n = 15 with other infection within last 6 months). After standardised interviews and neurological examinations, large fibre (tactile and vibration detection thresholds) and small fibre (cold and warm detection thresholds, paradoxical heat sensation) functions were assessed on both feet following a validated protocol. After z-transformation of all values, all participants were compared to published reference values regarding the number of abnormal results. Additionally, the mean for all sensory parameters values of both study groups were compared to an ideal healthy population (with z-value 0 ± 1), as well as with each other, as previously described. Statistical analyses: t-test, Chi-squared test, and binominal test. Findings None of the controls, but 27 of the 81 patients (33%, p < 0.001) reported persistent complaints 2.7 ± 1.9 (0.8-8.5) months after SARS-CoV-2 infection, most often reduced exercise capacity (16%), fatigue (13%), pain (9%), or paraesthesia (6%). Reflex deficits or paresis were missing, but somatosensory profiles showed significantly increased detection thresholds for thermal (especially warm) and vibration stimuli compared to controls. Approximately 36% of the patients after SARS-CoV-2, but none of the controls revealed an abnormal sensory loss in at least one parameter (p < 0.01). Sensory loss was characterised in 26% by large and 12% by small fibre dysfunction, the latter appearing more frequently in children with prior symptomatic SARS-CoV-2 infection. Myalgia/paraesthesia was indicative of somatosensory dysfunction. In all eight re-examined children, the nerve function recovered after 2-4 months. Interpretation This study provides evidence that in a subgroup of children and adolescents previously infected with SARS-CoV-2, regardless of their complaints, the function of large or small nerve fibres is presumably reversibly impaired.
Collapse
Affiliation(s)
- Lynn Eitner
- Department of Neuropediatrics, University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Anne Schlegtendal
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Leona Knoke
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Lücke
- Department of Neuropediatrics, University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Neuropilin-1 Facilitates Pseudorabies Virus Replication and Viral Glycoprotein B Promotes Its Degradation in a Furin-Dependent Manner. J Virol 2022; 96:e0131822. [PMID: 36173190 PMCID: PMC9599266 DOI: 10.1128/jvi.01318-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.
Collapse
|
48
|
Charitou T, Kontou PI, Tamposis IA, Pavlopoulos GA, Braliou GG, Bagos PG. Drug genetic associations with COVID-19 manifestations: a data mining and network biology approach. THE PHARMACOGENOMICS JOURNAL 2022; 22:294-302. [PMID: 36171417 PMCID: PMC9517961 DOI: 10.1038/s41397-022-00289-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/16/2022] [Accepted: 09/08/2022] [Indexed: 01/08/2023]
Abstract
Available drugs have been used as an urgent attempt through clinical trials to minimize severe cases of hospitalizations with Coronavirus disease (COVID-19), however, there are limited data on common pharmacogenomics affecting concomitant medications response in patients with comorbidities. To identify the genomic determinants that influence COVID-19 susceptibility, we use a computational, statistical, and network biology approach to analyze relationships of ineffective concomitant medication with an adverse effect on patients. We statistically construct a pharmacogenetic/biomarker network with significant drug-gene interactions originating from gene-disease associations. Investigation of the predicted pharmacogenes encompassing the gene-disease-gene pharmacogenomics (PGx) network suggests that these genes could play a significant role in COVID-19 clinical manifestation due to their association with autoimmune, metabolic, neurological, cardiovascular, and degenerative disorders, some of which have been reported to be crucial comorbidities in a COVID-19 patient.
Collapse
|
49
|
Solimando AG, Marziliano D, Ribatti D. SARS-CoV-2 and Endothelial Cells: Vascular Changes, Intussusceptive Microvascular Growth and Novel Therapeutic Windows. Biomedicines 2022; 10:2242. [PMID: 36140343 PMCID: PMC9496230 DOI: 10.3390/biomedicines10092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial activation in infectious diseases plays a crucial role in understanding and predicting the outcomes and future treatments of several clinical conditions. COVID-19 is no exception. Moving from basic principles to novel approaches, an evolving view of endothelial activation provides insights into a better knowledge of the upstream actors in COVID-19 as a crucial future direction for managing SARS-CoV-2 and other infections. Assessing the function of resting and damaged endothelial cells in infection, particularly in COVID-19, five critical processes emerged controlling thrombo-resistance: vascular integrity, blood flow regulation, immune cell trafficking, angiogenesis and intussusceptive microvascular growth. Endothelial cell injury is associated with thrombosis, increased vessel contraction and a crucial phenomenon identified as intussusceptive microvascular growth, an unprecedented event of vessel splitting into two lumens through the integration of circulating pro-angiogenic cells. An essential awareness of endothelial cells and their phenotypic changes in COVID-19 inflammation is pivotal to understanding the vascular biology of infections and may offer crucial new therapeutic windows.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Donatello Marziliano
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
50
|
Banerjee S, Wang X, Du S, Zhu C, Jia Y, Wang Y, Cai Q. Comprehensive role of SARS-CoV-2 spike glycoprotein in regulating host signaling pathway. J Med Virol 2022; 94:4071-4087. [PMID: 35488404 PMCID: PMC9348444 DOI: 10.1002/jmv.27820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, global public health and the economy have suffered unprecedented damage. Based on the increasing related literature, the characteristics and pathogenic mechanisms of the virus, and epidemiological and clinical features of the disease are being rapidly discovered. The spike glycoprotein (S protein), as a key antigen of SARS-CoV-2 for developing vaccines, antibodies, and drug targets, has been shown to play an important role in viral entry, tissue tropism, and pathogenesis. In this review, we summarize the molecular mechanisms of interaction between S protein and host factors, especially receptor-mediated viral modulation of host signaling pathways, and highlight the progression of potential therapeutic targets, prophylactic and therapeutic agents for prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Biotechnology and BioengineeringKoba Institutional AreaGandhinagarGujaratIndia
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Caixia Zhu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuping Jia
- Shandong Academy of Pharmaceutical SciencesJinanChina
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, & School of Basic Medical Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|