1
|
Smet I, Billet B, Germonpré PJ, Peña I, de la Osa AM, Keiner D, Polati E, Lindblom P, Minne V, Chowdhury S, Banducci SE, Tamosauskas R, Park N, Lalkhen A, Vajramani G, Dhamne S. Pain, quality of life, and function in chronic intractable leg pain were substantially improved with 10kHz spinal cord stimulation in a multicentre European study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08752-w. [PMID: 40192770 DOI: 10.1007/s00586-025-08752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 04/27/2025]
Abstract
PURPOSE This prospective, single-arm, multicentre study evaluated the effectiveness of 10 kHz spinal cord stimulation (SCS) in relieving pain and improving function and quality of life in patients with chronic intractable leg pain in routine clinical practice. METHODS Patients with leg pain refractory to conservative therapy and scoring ≥ 5 cm on a 10-cm visual analog scale (VAS) were enrolled at 12 centres. Those who achieved ≥ 50% leg pain relief during a temporary trial underwent permanent implantation and were followed for 12 months. Outcomes collected included the proportion of patients who achieved ≥ 50% reduction in leg pain VAS score, health-related quality-of-life (EQ-5D-5 L, functional disability [ODI]), opioid use, sleep quality (PSQ-3), global impression of change (GIC), and patient satisfaction. RESULTS Of 121 patients trialed, 118 completed the trial and 95 proceeded to implant. At 3 months, 61/95 (64.2%) of all implanted patients were responders to therapy (≥ 50% VAS reduction), which remained stable at 64.2% through 12 months. EQ-5D-5 L, ODI, and PSQ-3 showed clinically important and sustained improvement over 12 months (repeated measures ANOVA, p < 0.001). Patients also reduced opioid dosage on average (p = 0.022). The safety profile was consistent with previous reports using 10 kHz SCS. CONCLUSION This study supports 10 kHz SCS as an effective and safe therapeutic option to reduce pain and disability while improving health-related quality of life in patients with chronic intractable leg pain. 10 kHz SCS appears to be effective in significantly improving the severe disability and poor quality of life experienced by patients with chronic intractable leg pain. STUDY REGISTERED ISRCTN Registry - ISRCTN11180496.
Collapse
Affiliation(s)
| | | | | | - Isaac Peña
- Hospital Universitario Virgen Del Rocio, Seville, Spain
| | | | - Doerthe Keiner
- Universitätsklinikum des Saarlandes Klinik für Neurochirurgie, Homburg, Germany
| | - Enrico Polati
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | | | | | | | | | | | | | | | - Girish Vajramani
- University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Sameer Dhamne
- University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
2
|
Saueressig T, Owen PJ, Pedder H, Kaczorowski S, Miller CT, Donath L, Belavý DL. Are some people more susceptible to placebos? A systematic review and meta-analysis of inter-individual variability in musculoskeletal pain. THE JOURNAL OF PAIN 2025; 29:104745. [PMID: 39613126 DOI: 10.1016/j.jpain.2024.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Existing data suggest placebo responses to treatments are small, but some people may be more likely to respond. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) on interindividual variability in response to placebo interventions MEDLINE, EMBASE, CINAHL, Web of Science Core Collection, CENTRAL, and SPORTDiscus were searched from inception to September 2023. Trial registry searches, citation tracking, and searches for prior systematic reviews were completed. The PEDro scale assessed study quality. Random effects robust variance estimation estimated the log variability ratio (VR), identifying subgroups with varying responses. Twenty-six studies were included, comprising various musculoskeletal pain conditions. Analysis of pain intensity (VR: 1.06, 95%-confidence interval (CI):[0.97; 1.16], 95%-prediction interval (PI):[0.75; 1.51], p = 0.17, k = 26 studies, N = 52 outcomes, GRADE: low), physical function (VR: 1.14, 95%-CI:[0.97; 1.34], 95%-PI:[0.62; 2.11], p = 0.11, k = 19, N = 40, GRADE: low), and health-related quality of life (VR: 1.14, 95%-CI:[0.91; 1.41], 95%-PI:[0.72; 1.80], p = 0.19, k = 7, N = 13, GRADE: low) outcomes revealed minimal, non-statistically significant variability in placebo response compared to control. However, wide prediction intervals suggest uncertainty regarding individual response patterns. There are likely no distinct subgroups of people who are more likely to respond to placebo interventions in musculoskeletal pain; although the available data limits the certainty of this assessment. Future work should consider individual participant data meta-analyses to better elucidate potential responder subgroups and optimize treatment strategies for musculoskeletal pain. PERSPECTIVE: This study systematically reviewed and analyzed RCTs to assess interindividual variability in placebo responses for musculoskeletal pain. Findings suggest minimal variability in placebo response, with no distinct subgroups more likely to respond. Wide prediction intervals indicate uncertainty, highlighting the need for future individual participant data meta-analyses to better elucidate potential responder subgroups.
Collapse
Affiliation(s)
- Tobias Saueressig
- Hochschule für Gesundheit (University of Applied Sciences), Department of Applied Health Sciences, Division of Physiotherapy, Gesundheitscampus 6-8, Bochum 44801, Germany; Physio Meets Science GmbH, Johannes Reidel Str. 19, Leimen 69181, Germany.
| | - Patrick J Owen
- Eastern Health Emergency Medicine Program, Melbourne, Victoria, Australia; Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Hugo Pedder
- University of Bristol, Population Health Sciences, Bristol Medical School, UK.
| | - Svenja Kaczorowski
- Hochschule für Gesundheit (University of Applied Sciences), Department of Applied Health Sciences, Division of Physiotherapy, Gesundheitscampus 6-8, Bochum 44801, Germany.
| | - Clint T Miller
- Deakin University, Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Geelong, VIC 3220, Australia.
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne 50933, Germany.
| | - Daniel L Belavý
- Hochschule für Gesundheit (University of Applied Sciences), Department of Applied Health Sciences, Division of Physiotherapy, Gesundheitscampus 6-8, Bochum 44801, Germany.
| |
Collapse
|
3
|
Hamm-Faber TE, Vissers KCP, Bronkhorst E, Arnts I, Gültuna I, van Haren FGAM, Wensing CAGL, Engels Y, Henssen DJHA. Is There a Correlation Between Objective Measurement Tools and Self-Reporting Questionnaires To Evaluate Physical Activity and Health Status in Patients With Persistent Spinal Pain Syndrome Type 2 Before and After Spinal Cord Stimulation? Outcomes of a Feasibility Study. Neuromodulation 2025:S1094-7159(25)00020-0. [PMID: 39955666 DOI: 10.1016/j.neurom.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION The effect of spinal cord stimulation (SCS) on physical activity in patients with persistent spinal pain syndrome (PSPS) type 2 is commonly evaluated with standardized, validated self-reporting questionnaires. However, questionnaires are susceptible to subjective bias and may not align with objective data. OBJECTIVE We investigated the correlation among objective measurement devices, the Oswestry Disability Index (ODI), and patient's health status regarding physical activity in patients with PSPS type 2 receiving SCS. MATERIALS AND METHODS Alongside the ODI, we used an activity tracker to objectively measure physical activity and a neurostimulator device to objectively measure body positions at baseline and three-month follow-up. In addition, health status was measured using the positive model of health. RESULTS We included 20 patients, of whom 17 completed the three-month follow-up period. At three months follow-up, we found a significant correlation between the activity tracker's steps (r = -0.636, p = 0.006) and distance per day (r = -0.649, p = 0.005) with the ODI and a significant correlation of the neurostimulator's mobile position with the ODI (r = -0.497, p = 0.043). Furthermore, the activity tracker showed a significant increase in strenuous physical activity at three-month follow-up (p = 0.039). We also observed a substantial improvement across the domains of bodily function, social and societal participation, and daily functioning of the positive model of health. CONCLUSIONS This study showed significant correlations among objective measurement devices, the ODI, and health status, which could contribute to a more holistic approach to evaluating the effect of SCS. Prospective powered studies with a control group are needed to better understand this area. CLINICAL TRIAL REGISTRATION The protocol was registered in the Dutch Trial Register (NTR) on March 13, 2021 under registration number NL 9301 (number NL-OMON21829).
Collapse
Affiliation(s)
- Tanja E Hamm-Faber
- Department of Pain Medicine, Albert Schweitzer Hospital, Zwijndrecht, The Netherlands.
| | - Kris C P Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge Arnts
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ismail Gültuna
- Department of Pain Medicine, Albert Schweitzer Hospital, Zwijndrecht, The Netherlands
| | - Frank G A M van Haren
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Yvonne Engels
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dylan J H A Henssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Luna D, Hettie G, Pirrotta L, Salmasi V, Hah JM. Real-world long-term outcomes of peripheral nerve stimulation: a prospective observational study. Pain Manag 2025; 15:37-44. [PMID: 39834252 PMCID: PMC11801347 DOI: 10.1080/17581869.2025.2451605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
AIM We aimed to evaluate real-world outcomes of peripheral nerve stimulation (PNS) used to treat chronic neuropathic pain (CNP) at a tertiary pain management center. METHODS Thirty adults who underwent PNS for CNP between June 2015 and September 2021 completed pain and psychosocial assessments in the 6 months before, and 2-3 years after PNS treatment. Pain intensity was measured using the NIH Patient Reported Outcomes Measurement Information System (PROMIS) Pain Intensity Short From (3A). Psychosocial outcomes including depression, anxiety, and sleep disturbance were also measured. RESULTS Prior to receiving PNS, long-term responders reported significantly fewer depressive symptoms compared to non-responders (PROMIS depression t-score 50.3 [10.7] vs 57.9 [8.9]; p-value = 0.05). Eleven participants (36.7%) reported long-term treatment response. There was a significantly greater improvement in pain intensity among responders compared to non-responders who reported increased pain (PROMIS Pain Intensity score -9.0 [-4.2] vs. +3.1[+3.2]; p-value < 0.0001). CONCLUSIONS Patients report clinically meaningful long-term pain relief after receiving PNS through both 60-day and permanent implant systems, with significant reductions in pain intensity observed in long-term responders. Long-term responders reported fewer depressive symptoms compared to non-responders prior to receiving therapy, emphasizing the importance of psychological screening and psychological optimization prior to receiving PNS.
Collapse
Affiliation(s)
- Darwin Luna
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Gabrielle Hettie
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Luke Pirrotta
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Vafi Salmasi
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer M. Hah
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Duarte RV, Bresnahan R, Copley S, Eldabe S, Thomson S, North RB, Baranidharan G, Levy RM, Collins GS, Taylor RS. Reporting guidelines for randomised controlled trial reports of implantable neurostimulation devices: the CONSORT-iNeurostim extension. EClinicalMedicine 2024; 78:102932. [PMID: 39606687 PMCID: PMC11600657 DOI: 10.1016/j.eclinm.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background The Consolidated Standards of Reporting Trials (CONSORT) statement has improved the quality of reporting of randomised trials. Extensions to the CONSORT statement are often needed to address specific issues of trial reporting, including those relevant to particular types of interventions. Methodological and reporting deficiencies in clinical trials of implantable neurostimulation devices are common. The CONSORT-iNeurostim extension is a new reporting guideline for randomised controlled trials evaluating implantable neurostimulation devices. Methods CONSORT-iNeurostim was developed using the EQUATOR methodological framework including a literature review and expert consultation to generate an initial list of candidate items. The candidate items were included in a two-round Delphi survey, discussed at an international consensus meeting (42 stakeholders including healthcare professionals, methodologists, journal editors and industry representatives from the United States, United Kingdom, Netherlands and other countries), and refined through a checklist pilot (18 stakeholders). Findings The initial extension item list included 49 candidate items relevant to CONSORT-iNeurostim. We received 132 responses in the first round of the Delphi survey and 99 responses in the second round. Participants suggested an additional 20 candidate items for CONSORT-iNeurostim during the first round of the survey, and those achieving initial consensus were discussed at the consensus meeting. The CONSORT-iNeurostim extension includes 7 new checklist items, including one item for reporting the neurostimulation intervention comprising a separate checklist of 14 items. Interpretation The CONSORT-iNeurostim extension will promote increased transparency, clarity, and completeness of trial reports of implantable neurostimulation devices. It will assist journal editors, peer-reviewers, and readers to better interpret the appropriateness and generalisability of the methods used and reported outcomes. Funding Abbott, Boston Scientific Corp., Mainstay Medical, Medtronic Ltd, Nevro Corp. and Saluda Medical.
Collapse
Affiliation(s)
- Rui V. Duarte
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia
| | - Rebecca Bresnahan
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Sue Copley
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Simon Thomson
- Pain Medicine and Neuromodulation, Mid and South Essex University Hospitals NHSFT, Basildon, UK
| | - Richard B. North
- Neurosurgery, Anesthesiology and Critical Care Medicine (ret.), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Robert M. Levy
- International Neuromodulation Society, San Francisco, USA
| | - Gary S. Collins
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
- UK EQUATOR Centre, University of Oxford, Oxford, UK
| | - Rod S. Taylor
- MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Levy RM, Mekhail NA, Kapural L, Gilmore CA, Petersen EA, Goree JH, Pope JE, Costandi SJ, Kallewaard JW, Thomson S, Gilligan C, AlFarra T, Broachwala MY, Chopra H, Hunter CW, Rosen SM, Amirdelfan K, Falowski SM, Li S, Scowcroft J, Lad SP, Sayed D, Antony A, Deer TR, Hayek SM, Guirguis MN, Boeding RB, Calodney AK, Bruel B, Buchanan P, Soliday N, Duarte RV, Leitner A, Staats PS. Maximal Analgesic Effect Attained by the Use of Objective Neurophysiological Measurements With Closed-Loop Spinal Cord Stimulation. Neuromodulation 2024; 27:1393-1405. [PMID: 39254621 DOI: 10.1016/j.neurom.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) has been challenged by the lack of neurophysiologic data to guide therapy optimization. Current SCS programming by trial-and-error results in suboptimal and variable therapeutic effects. A novel system with a physiologic closed-loop feedback mechanism using evoked-compound action potentials enables the optimization of physiologic neural dose by consistently and accurately activating spinal cord fibers. We aimed to identify neurophysiologic dose metrics and their ranges that resulted in clinically meaningful treatment responses. MATERIALS AND METHODS Subjects from 3 clinical studies (n = 180) with baseline back and leg pain ≥60 mm visual analog scale and physical function in the severe to crippled category were included. Maximal analgesic effect (MAE) was operationally defined as the greatest percent reduction in pain intensity or as the greatest cumulative responder score (minimal clinically important differences [MCIDs]) obtained within the first 3 months of SCS implant. The physiologic metrics that produced the MAE were analyzed. RESULTS We showed that a neural dose regimen with a high neural dose accuracy of 2.8μV and dose ratio of 1.4 resulted in a profound clinical benefit to chronic pain patients (MAE of 79 ± 1% for pain reduction and 12.5 ± 0.4 MCIDs). No differences were observed for MAE or neurophysiological dose metrics between the trial phase and post-implant MAE visit. CONCLUSION For the first time, an evidence-based neural dose regimen is available for a neurostimulation intervention as a starting point to enable optimization of clinical benefit, monitoring of adherence, and management of the therapy.
Collapse
Affiliation(s)
- Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA.
| | - Nagy A Mekhail
- Evidence-Based Pain Management Research, Neurologic Institute, Cleveland Clinic, Cleveland Ohio, OH, USA
| | - Leonardo Kapural
- Center for Clinical Research, Carolinas Pain Institute, Winston-Salem, NC, USA
| | | | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Johnathan H Goree
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Shrif J Costandi
- Evidence-Based Pain Management Research, Neurologic Institute, Cleveland Clinic, Cleveland Ohio, OH, USA
| | - Jan Willem Kallewaard
- Department of Anaesthesiology and Pain Management, Rijnstate Hospital, Elst, The Netherlands; Department of Anesthesiology and Pain Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Simon Thomson
- Pain Medicine and Neuromodulation, Mid & South Essex University Hospitals, Essex, UK
| | | | - Tariq AlFarra
- Department of Physical Medicine & Rehabilitation, Mount Sinai Hospital, New York, NY, USA
| | - Mustafa Y Broachwala
- Department of Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Harman Chopra
- Department of Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Corey W Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | - Steven M Rosen
- Delaware Valley Pain and Spine Institute, Trevose, PA, USA
| | | | | | - Sean Li
- National Spine and Pain Centers, Shrewsbury, NJ, USA
| | | | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ajay Antony
- The Orthopaedic Institute, Gainesville, FL, USA
| | - Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Salim M Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | | | | | | | - Brian Bruel
- Department of Physical Medicine and Rehabilitation, McGovern Medical School and Cy Pain and Spine PLLC, Houston, TX, USA
| | - Patrick Buchanan
- Spanish Hills Interventional Pain Specialists, Camarillo, CA, USA
| | - Nicole Soliday
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia
| | - Rui V Duarte
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia; Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Angela Leitner
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia
| | | |
Collapse
|
7
|
Bresnahan R, Copley S, Eldabe S, Thomson S, North RB, Baranidharan G, Levy RM, Collins GS, Taylor RS, Duarte RV. Reporting guidelines for protocols of randomised controlled trials of implantable neurostimulation devices: the SPIRIT-iNeurostim extension. EClinicalMedicine 2024; 78:102933. [PMID: 39610902 PMCID: PMC11602573 DOI: 10.1016/j.eclinm.2024.102933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Background The Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) statement has improved the quality of reporting of randomised trial protocols. Extensions to the SPIRIT statement are needed to address specific issues of trial protocol reporting, including those relevant to particular types of interventions. Methodological and reporting deficiencies in protocols of clinical trials of implantable neurostimulation devices are common. The SPIRIT-iNeurostim extension is a new reporting guideline for randomised controlled trial protocols evaluating implantable neurostimulation devices. Methods SPIRIT-iNeurostim was developed using the EQUATOR methodological framework including a literature review and expert consultation to generate an initial list of candidate items. The candidate items were included in a two-round Delphi survey, discussed at an international consensus meeting (42 stakeholders including healthcare professionals, methodologists, journal editors and industry representatives from the United States, United Kingdom, Netherlands and other countries), and refined through a checklist pilot (18 stakeholders). Findings The initial extension item list included 42 candidate items relevant to SPIRIT-iNeurostim. We received 132 responses in the first round of the Delphi survey and 99 responses in the second round. Participants suggested an additional 14 candidate items for SPIRIT-iNeurostim during the first round of the survey, and those achieving initial consensus were discussed at the consensus meeting. The SPIRIT-iNeurostim extension includes 5 new checklist items, including one item for reporting the neurostimulation intervention comprising a separate checklist of 14 items. Interpretation The SPIRIT-iNeurostim extension will help to promote increased transparency, clarity, and completeness of reporting trial protocols evaluating implantable neurostimulation devices. It will assist journal editors, peer-reviewers, and readers to better interpret the appropriateness and generalisability of the methods used for a planned clinical trial. Funding Abbott, Boston Scientific Corp., Mainstay Medical, Medtronic Ltd, Nevro Corp., and Saluda Medical.
Collapse
Affiliation(s)
- Rebecca Bresnahan
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Sue Copley
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Simon Thomson
- Pain Medicine and Neuromodulation, Mid and South Essex University Hospitals NHSFT, Basildon, UK
| | - Richard B. North
- Neurosurgery, Anesthesiology and Critical Care Medicine (ret.), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Robert M. Levy
- International Neuromodulation Society, San Francisco, USA
| | - Gary S. Collins
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
- UK EQUATOR Centre, University of Oxford, Oxford, UK
| | - Rod S. Taylor
- MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, University of Glasgow, Glasgow, UK
| | - Rui V. Duarte
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia
| |
Collapse
|
8
|
Nijhuis H, Kallewaard JW, van de Minkelis J, Hofsté WJ, Elzinga L, Armstrong P, Gültuna I, Almac E, Baranidharan G, Nikolic S, Gulve A, Vesper J, Dietz BE, Mugan D, Huygen FJPM. Durability of Evoked Compound Action Potential (ECAP)-Controlled, Closed-Loop Spinal Cord Stimulation (SCS) in a Real-World European Chronic Pain Population. Pain Ther 2024; 13:1119-1136. [PMID: 38954217 PMCID: PMC11393244 DOI: 10.1007/s40122-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION Closed-loop spinal cord stimulation (CL-SCS) is a recently introduced system that records evoked compound action potentials (ECAPs) from the spinal cord elicited by each stimulation pulse and uses this information to automatically adjust the stimulation strength in real time, known as ECAP-controlled SCS. This innovative system compensates for fluctuations in the distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a predetermined target level. This data collection study was designed to assess the performance of the first CL-SCS system in a real-world setting under normal conditions of use in multiple European centers. The study analyzes and presents clinical outcomes and electrophysiological and device data and compares these findings with those reported in earlier pre-market studies of the same system. METHODS This prospective, multicenter, observational study was conducted in 13 European centers and aimed to gather electrophysiological and device data. The study focused on the real-world application of this system in treating chronic pain affecting the trunk and/or limbs, adhering to standard conditions of use. In addition to collecting and analyzing basic demographic information, the study presents data from the inaugural patient cohort permanently implanted at multiple European centers. RESULTS A significant decrease in pain intensity was observed for overall back or leg pain scores (verbal numerical rating score [VNRS]) between baseline (mean ± standard error of the mean [SEM]; n = 135; 8.2 ± 0.1), 3 months (n = 93; 2.3 ± 0.2), 6 months (n = 82; 2.5 ± 0.3), and 12 months (n = 76; 2.5 ± 0.3). Comparison of overall pain relief (%) to the AVALON and EVOKE studies showed no significant differences at 3 and 12 months between the real-world data release (RWE; 71.3%; 69.6%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies. Further investigation was undertaken to objectively characterize the physiological parameters of SCS therapy in this cohort using the metrics of percent time above ECAP threshold (%), dose ratio, and dose accuracy (µV), according to previously described methods. Results showed that a median of 90% (40.7-99.2) of stimuli were above the ECAP threshold, with a dose ratio of 1.3 (1.1-1.4) and dose accuracy of 4.4 µV (0.0-7.1), based on data from 236, 230, and 254 patients, respectively. Thus, across all three metrics, the majority of patients had objective therapy metrics corresponding to the highest levels of pain relief in previously reported studies (usage over threshold > 80%, dose ratio > 1.2, and error < 10 µV). CONCLUSIONS In conclusion, this study provides valuable insights into the real-world application of the ECAP-controlled CL-SCS system, highlighting its potential for maintaining effective pain relief and objective neurophysiological therapy metrics at levels seen in randomized control trials, and potential for quantifying patient burden associated with SCS system use via patient-device interaction metrics. CLINICAL TRIAL REGISTRATION In the Netherlands, the study is duly registered on the International Clinical Trials Registry Platform (Trial NL7889). In Germany, the study is duly registered as NCT05272137 and in the United Kingdom as ISCRTN27710516 and has been reviewed by the ethics committee in both countries.
Collapse
Affiliation(s)
- Harold Nijhuis
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, Netherlands.
| | - Jan-Willem Kallewaard
- Rijnstate Hospital, Velp, Netherlands
- Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Willem-Jan Hofsté
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, Netherlands
| | | | | | | | - Emre Almac
- Alrijne Hospital, Leiderdorp, Netherlands
| | | | | | - Ashish Gulve
- James Cook University Hospital, Middlesbrough, UK
| | - Jan Vesper
- Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Dave Mugan
- Saluda Medical Europe Ltd, Harrogate, UK
| | | |
Collapse
|
9
|
Klasova J, Hussain N, Umer I, Al-Hindawi A, ElSaban M, Lahori S, D'Souza RS. Emotional and psychosocial function after dorsal column spinal cord stimulator implantation: a systematic review and meta-analysis. Reg Anesth Pain Med 2024:rapm-2024-105523. [PMID: 38942426 DOI: 10.1136/rapm-2024-105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The efficacy of spinal cord stimulation (SCS) in chronic pain studies is traditionally assessed by pain scores, which do not reflect the multidimensional nature of pain perception. Despite the evidence of SCS's influence on emotional functioning comprehensive assessments of its effect remain lacking. OBJECTIVE To assess changes in emotional and psychosocial functioning in patients who underwent SCS implantation for chronic pain. EVIDENCE REVIEW Ovid MEDLINE, EMBASE, PsychINFO, Cochrane CENTRAL and Scopus databases were searched for original peer-reviewed publications reporting emotional functioning after SCS. The primary outcomes were a pooled mean difference (MD) in anxiety, depression, global functioning, mental well-being and pain catastrophizing at 12 months. The Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) was used to determine the quality of evidence. FINDINGS Thirty-two studies were included in the primary analysis. Statistically significant improvements were observed in anxiety (MD -2.16; 95% CI -2.84 to -1.49; p<0.001), depression (MD -4.66; 95% CI -6.26 to -3.06; p<0.001), global functioning (MD 20.30; 95% CI 14.69 to 25.90; p<0.001), mental well-being (MD 4.95; 95% CI 3.60 to 6.31; p<0.001), and pain catastrophizing (MD -12.09; 95% CI -14.94 to -9.23; p<0.001). Subgroup analyses revealed differences in Global Assessment of Functioning and mental well-being based on study design and in depression based on waveform paradigm. CONCLUSION The results highlight the statistically and clinically significant improvements in emotional and psychosocial outcomes in patients with chronic pain undergoing SCS therapy. However, these results need to be interpreted with caution due to the very low certainty of evidence per the GRADE criteria. PROSPERO REGISTRATION CRD42023446326.
Collapse
Affiliation(s)
- Johana Klasova
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ibrahim Umer
- Department of Anesthesiology, St Joseph's University Medical Center, Paterson, New Jersey, USA
| | - Ahmed Al-Hindawi
- Royal College of Surgeons in Ireland Medical University of Bahrain, Al Muharraq, Bahrain
| | - Mariam ElSaban
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Simmy Lahori
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Mekhail NA, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, Pope JE, Hunter CW, Rosen SM, Costandi SJ, Falowski SM, Burgher AH, Gilmore CA, Qureshi FA, Staats PS, Scowcroft J, McJunkin T, Carlson J, Kim CK, Yang MI, Stauss T, Petersen EA, Hagedorn JM, Rauck R, Kallewaard JW, Baranidharan G, Taylor RS, Poree L, Brounstein D, Duarte RV, Gmel GE, Gorman R, Gould I, Hanson E, Karantonis DM, Khurram A, Leitner A, Mugan D, Obradovic M, Ouyang Z, Parker J, Single P, Soliday N. ECAP-controlled closed-loop versus open-loop SCS for the treatment of chronic pain: 36-month results of the EVOKE blinded randomized clinical trial. Reg Anesth Pain Med 2024; 49:346-354. [PMID: 37640452 PMCID: PMC11103285 DOI: 10.1136/rapm-2023-104751] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION The evidence for spinal cord stimulation (SCS) has been criticized for the absence of blinded, parallel randomized controlled trials (RCTs) and limited evaluations of the long-term effects of SCS in RCTs. The aim of this study was to determine whether evoked compound action potential (ECAP)-controlled, closed-loop SCS (CL-SCS) is associated with better outcomes when compared with fixed-output, open-loop SCS (OL-SCS) 36 months following implant. METHODS The EVOKE study was a multicenter, participant-blinded, investigator-blinded, and outcome assessor-blinded, randomized, controlled, parallel-arm clinical trial that compared ECAP-controlled CL-SCS with fixed-output OL-SCS. Participants with chronic, intractable back and leg pain refractory to conservative therapy were enrolled between January 2017 and February 2018, with follow-up through 36 months. The primary outcome was a reduction of at least 50% in overall back and leg pain. Holistic treatment response, a composite outcome including pain intensity, physical and emotional functioning, sleep, and health-related quality of life, and objective neural activation was also assessed. RESULTS At 36 months, more CL-SCS than OL-SCS participants reported ≥50% reduction (CL-SCS=77.6%, OL-SCS=49.3%; difference: 28.4%, 95% CI 12.8% to 43.9%, p<0.001) and ≥80% reduction (CL-SCS=49.3%, OL-SCS=31.3%; difference: 17.9, 95% CI 1.6% to 34.2%, p=0.032) in overall back and leg pain intensity. Clinically meaningful improvements from baseline were observed at 36 months in both CL-SCS and OL-SCS groups in all other patient-reported outcomes with greater levels of improvement with CL-SCS. A greater proportion of patients with CL-SCS were holistic treatment responders at 36-month follow-up (44.8% vs 28.4%), with a greater cumulative responder score for CL-SCS patients. Greater neural activation and accuracy were observed with CL-SCS. There were no differences between CL-SCS and OL-SCS groups in adverse events. No explants due to loss of efficacy were observed in the CL-SCS group. CONCLUSION This long-term evaluation with objective measurement of SCS therapy demonstrated that ECAP-controlled CL-SCS resulted in sustained, durable pain relief and superior holistic treatment response through 36 months. Greater neural activation and increased accuracy of therapy delivery were observed with ECAP-controlled CL-SCS than OL-SCS. TRIAL REGISTRATION NUMBER NCT02924129.
Collapse
Affiliation(s)
- Nagy A Mekhail
- Department of Pain Management, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert M Levy
- Neurosurgical Services, Anesthesia Pain Care Consultants, Boca Raton, Florida, USA
| | - Timothy R Deer
- Spine and Nerve Center of the Virginias, West Virginia University - Health Sciences Campus, Morgantown, West Virginia, USA
| | - Leonardo Kapural
- Carolinas Pain Institute, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sean Li
- Premier Pain Centers, Shrewsbury, New Jersey, USA
| | - Kasra Amirdelfan
- Research, Integrated Pain Management Medical Group Inc, Walnut Creek, California, USA
| | - Jason E Pope
- Evolve Restorative Center, Santa Rosa, California, USA
| | - Corey W Hunter
- Ainsworth Institute of Pain Management, New York, New York, USA
| | - Steven M Rosen
- Delaware Valley Pain and Spine Institute, Trevose, Pennsylvania, USA
| | - Shrif J Costandi
- Department of Pain Management, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven M Falowski
- Argires-Marotti Neurosurgical Associates of Lancaster, Lancaster, Pennsylvania, USA
| | | | - Christopher A Gilmore
- Center for Clinical Research, Carolinas Pain Institute, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | - Christopher K Kim
- Spine and Nerve Center of the Virginias, West Virginia University - Health Sciences Campus, Morgantown, West Virginia, USA
| | | | - Thomas Stauss
- Pain Physicians of Wisconsin, Milwaukee, Wisconsin, USA
| | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Richard Rauck
- Center for Clinical Research, Carolinas Pain Institute, Winston-Salem, North Carolina, USA
| | - Jan W Kallewaard
- Anesthesiology and Pain Medicine, Rijnstate Hospital, Arnhem, The Netherlands
- Anesthesiology and Pain Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | | | - Rod S Taylor
- Institute of Health and Well Being, University of Glasgow, Glasgow, UK
| | - Lawrence Poree
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - Dan Brounstein
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Rui V Duarte
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
- Health Data Science, University of Liverpool, Liverpool, UK
| | - Gerrit E Gmel
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Robert Gorman
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Ian Gould
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Erin Hanson
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | | | - Abeer Khurram
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Angela Leitner
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Dave Mugan
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Milan Obradovic
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Zhonghua Ouyang
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - John Parker
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Peter Single
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Nicole Soliday
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| |
Collapse
|
11
|
Kapural L, Mekhail NA, Costandi S, Gilmore C, Pope JE, Li S, Hunter CW, Poree L, Staats PS, Taylor RS, Eldabe S, Kallewaard JW, Thomson S, Petersen EA, Sayed D, Deer TR, Antony A, Budwany R, Leitner A, Soliday N, Duarte RV, Levy RM. Durable multimodal and holistic response for physiologic closed-loop spinal cord stimulation supported by objective evidence from the EVOKE double-blind randomized controlled trial. Reg Anesth Pain Med 2024; 49:233-240. [PMID: 37491149 PMCID: PMC11041592 DOI: 10.1136/rapm-2023-104639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Chronic pain patients may experience impairments in multiple health-related domains. The design and interpretation of clinical trials of chronic pain interventions, however, remains primarily focused on treatment effects on pain intensity. This study investigates a novel, multidimensional holistic treatment response to evoked compound action potential-controlled closed-loop versus open-loop spinal cord stimulation as well as the degree of neural activation that produced that treatment response. METHODS Outcome data for pain intensity, physical function, health-related quality of life, sleep quality and emotional function were derived from individual patient level data from the EVOKE multicenter, participant, investigator, and outcome assessor-blinded, parallel-arm randomized controlled trial with 24 month follow-up. Evaluation of holistic treatment response considered whether the baseline score was worse than normative values and whether minimal clinical important differences were reached in each of the domains that were impaired at baseline. A cumulative responder score was calculated to reflect the total minimal clinical important differences accumulated across all domains. Objective neurophysiological data, including spinal cord activation were measured. RESULTS Patients were randomized to closed-loop (n=67) or open-loop (n=67). A greater proportion of patients with closed-loop spinal cord stimulation (49.3% vs 26.9%) were holistic responders at 24-month follow-up, with at least one minimal clinical important difference in all impaired domains (absolute risk difference: 22.4%, 95% CI 6.4% to 38.4%, p=0.012). The cumulative responder score was significantly greater for closed-loop patients at all time points and resulted in the achievement of more than three additional minimal clinical important differences at 24-month follow-up (mean difference 3.4, 95% CI 1.3 to 5.5, p=0.002). Neural activation was three times more accurate in closed-loop spinal cord stimulation (p<0.001 at all time points). CONCLUSION The results of this study suggest that closed-loop spinal cord stimulation can provide sustained clinically meaningful improvements in multiple domains and provide holistic improvement in the long-term for patients with chronic refractory pain. TRIAL REGISTRATION NUMBER NCT02924129.
Collapse
Affiliation(s)
- Leonardo Kapural
- Carolinas Pain Institute, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | - Jason E Pope
- Evolve Restorative Center, Santa Rosa, California, USA
| | - Sean Li
- Premier Pain Centers, Shrewsbury, New Jersey, USA
| | - Corey W Hunter
- Ainsworth Institute of Pain Management, New York, New York, USA
| | - Lawrence Poree
- University of California at San Francisco, San Francisco, California, USA
| | | | - Rod S Taylor
- Institute of Health and Well Being, University of Glasgow, Glasgow, UK
| | - Sam Eldabe
- Pain Medicine, James Cook Univesity Hospital, Middlesbrough, UK
| | - Jan Willem Kallewaard
- Anesthesiology and Pain Medicine, Rijnstate Hospital, Arnhem, The Netherlands
- Anesthesiology and Pain Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Simon Thomson
- Pain Medicine and Neuromodulation, Mid & South Essex University Hospitals, Essex, UK
| | - Erika A Petersen
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Dawood Sayed
- The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy R Deer
- Spine and Nerve Center of the Virginias, West Virginia University - Health Sciences Campus, Morgantown, West Virginia, USA
| | - Ajay Antony
- The Orthopaedic Institute, Gainesville, Florida, USA
| | - Ryan Budwany
- West Virginia University, Morgantown, West Virginia, USA
| | - Angela Leitner
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Nicole Soliday
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Rui V Duarte
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
- Health Data Science, University of Liverpool, Liverpool, UK
| | - Robert M Levy
- Anesthesia Pain Care Consultants, Boca Raton, Florida, USA
| |
Collapse
|
12
|
Eldabe S, Nevitt S, Copley S, Maden M, Goudman L, Hayek S, Mekhail N, Moens M, Rigoard P, Duarte R. Does industry funding and study location impact findings from randomized controlled trials of spinal cord stimulation? A systematic review and meta-analysis. Reg Anesth Pain Med 2024; 49:272-284. [PMID: 37611944 DOI: 10.1136/rapm-2023-104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND/IMPORTANCE Concerns have been raised that effects observed in studies of spinal cord stimulation (SCS) funded by industry have not been replicated in non-industry-funded studies and that findings may differ based on geographical location where the study was conducted. OBJECTIVE To investigate the impact of industry funding and geographical location on pain intensity, function, health-related quality of life and adverse events reported in randomized controlled trials (RCTs) of SCS. EVIDENCE REVIEW Systematic review conducted using MEDLINE, CENTRAL, EMBASE and WikiStim databases until September 2022. Parallel-group RCTs evaluating SCS for patients with neuropathic pain were included. Results of studies were combined in random-effects meta-analysis using the generic-inverse variance method. Subgroup meta-analyses were conducted according to funding source and study location. Risk of bias was assessed using Cochrane RoB 2.0 tool. FINDINGS Twenty-nine reports of 17 RCTs (1823 participants) were included. For the comparison of SCS with usual care, test for subgroup differences indicate no significant differences (p=0.48, moderate certainty evidence) in pain intensity score at 6 months for studies with no funding or funding not disclosed (pooled mean difference (MD) -1.96 (95% CI -3.23 to -0.69; 95% prediction interval (PI) not estimable, I2=0%, τ2=0)), industry funding (pooled MD -2.70 (95% CI -4.29 to -1.11; 95% PI -8.75 to 3.35, I2=97%, τ2=2.96) or non-industry funding (MD -3.09 (95% CI -4.47 to -1.72); 95% PI, I2 and τ2 not applicable). Studies with industry funding for the comparison of high-frequency SCS (HF-SCS) with low-frequency SCS (LF-SCS) showed statistically significant advantages for HF-SCS compared to LF-SCS while studies with no funding showed no differences between HF-SCS and LF-SCS (low certainty evidence). CONCLUSION All outcomes of SCS versus usual care were not significantly different between studies funded by industry and those independent from industry. Pain intensity score and change in pain intensity from baseline for comparisons of HF-SCS to LF-SCS seem to be impacted by industry funding.
Collapse
Affiliation(s)
- Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Sarah Nevitt
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Sue Copley
- Anaesthesia and Pain Management, James Cook University Hospital, Middlesbrough, UK
| | - Michelle Maden
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Lisa Goudman
- Department of Neurosurgery, UZ Brussel, Brussel, Belgium
| | - Salim Hayek
- Anesthesiology, Case Western Reserve University, Unviersity Hospitals, Cleveland, Ohio, USA
| | | | - Maarten Moens
- Department of Neurosurgery, UZ Brussel, Brussel, Belgium
| | - Phillipe Rigoard
- PRISMATICS Lab, Poitiers, France
- Department of Neurosurgery, Poitiers University Hospital, Poitiers, France
| | | |
Collapse
|
13
|
Sivanesan E, North RB, Russo MA, Levy RM, Linderoth B, Hayek SM, Eldabe S, Lempka SF. A Definition of Neuromodulation and Classification of Implantable Electrical Modulation for Chronic Pain. Neuromodulation 2024; 27:1-12. [PMID: 37952135 DOI: 10.1016/j.neurom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Neuromodulation therapies use a variety of treatment modalities (eg, electrical stimulation) to treat chronic pain. These therapies have experienced rapid growth that has coincided with escalating confusion regarding the nomenclature surrounding these neuromodulation technologies. Furthermore, studies are often published without a complete description of the effective stimulation dose, making it impossible to replicate the findings. To improve clinical care and facilitate dissemination among the public, payors, research groups, and regulatory bodies, there is a clear need for a standardization of terms. APPROACH We formed an international group of authors comprising basic scientists, anesthesiologists, neurosurgeons, and engineers with expertise in neuromodulation. Because the field of neuromodulation is extensive, we chose to focus on creating a taxonomy and standardized definitions for implantable electrical modulation of chronic pain. RESULTS We first present a consensus definition of neuromodulation. We then describe a classification scheme based on the 1) intended use (the site of modulation and its indications) and 2) physical properties (waveforms and dose) of a neuromodulation therapy. CONCLUSIONS This framework will help guide future high-quality studies of implantable neuromodulatory treatments and improve reporting of their findings. Standardization with this classification scheme and clear definitions will help physicians, researchers, payors, and patients better understand the applications of implantable electrical modulation for pain and guide informed treatment decisions.
Collapse
Affiliation(s)
- Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Richard B North
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Marc A Russo
- Hunter Pain Specialists, Broadmeadow, New South Wales, Australia
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Salim M Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Horan WP, Sachs G, Velligan DI, Davis M, Keefe RS, Khin NA, Butlen-Ducuing F, Harvey PD. Current and Emerging Technologies to Address the Placebo Response Challenge in CNS Clinical Trials: Promise, Pitfalls, and Pathways Forward. INNOVATIONS IN CLINICAL NEUROSCIENCE 2024; 21:19-30. [PMID: 38495609 PMCID: PMC10941857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Excessive placebo response rates have long been a major challenge for central nervous system (CNS) drug discovery. As CNS trials progressively shift toward digitalization, decentralization, and novel remote assessment approaches, questions are emerging about whether innovative technologies can help mitigate the placebo response. This article begins with a conceptual framework for understanding placebo response. We then critically evaluate the potential of a range of innovative technologies and associated research designs that might help mitigate the placebo response and enhance detection of treatment signals. These include technologies developed to directly address placebo response; technology-based approaches focused on recruitment, retention, and data collection with potential relevance to placebo response; and novel remote digital phenotyping technologies. Finally, we describe key scientific and regulatory considerations when evaluating and selecting innovative strategies to mitigate placebo response. While a range of technological innovations shows potential for helping to address the placebo response in CNS trials, much work remains to carefully evaluate their risks and benefits.
Collapse
Affiliation(s)
- William P. Horan
- Dr. Horan is with Karuna Therapeutics in Boston, Massachusetts, and University of California in Los Angeles, California
| | - Gary Sachs
- Dr. Sachs is with Signant Health in Boston, Massachusetts, and Harvard Medical School in Boston, Massachusetts
| | - Dawn I. Velligan
- Dr. Velligan is with University of Texas Health Science Center at San Antonio in San Antonio, Texas
| | - Michael Davis
- Dr. Davis is with Usona Institute in Madison, Wisconsin
| | - Richard S.E. Keefe
- Dr. Keefe is with Duke University Medical Center in Durham, North Carolina
| | - Ni A. Khin
- Dr. Khin is with Neurocrine Biosciences, Inc. in San Diego, California
| | - Florence Butlen-Ducuing
- Dr. Butlen-Ducuing is with Office for Neurological and Psychiatric Disorders, European Medicines Agency in Amsterdam, The Netherlands
| | - Philip D. Harvey
- Dr. Harvey is with University of Miami Miller School of Medicine in Miami, Florida
| |
Collapse
|
15
|
Bastiaens F, van de Wijgert IH, Bronkhorst EM, van Roosendaal BKWP, van Heteren EPZ, Gilligan C, Staats P, Wegener JT, van Hooff ML, Vissers KCP. Factors Predicting Clinically Relevant Pain Relief After Spinal Cord Stimulation for Patients With Chronic Low Back and/or Leg Pain: A Systematic Review With Meta-Analysis and Meta-Regression. Neuromodulation 2024; 27:70-82. [PMID: 38184342 DOI: 10.1016/j.neurom.2023.10.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 01/08/2024]
Abstract
RATIONALE To optimize results with spinal cord stimulation (SCS) for chronic low back pain (CLBP) and/or leg pain, including persistent spinal pain syndrome (PSPS), careful patient selection based on proved predictive factors is essential. Unfortunately, the necessary selection process required to optimize outcomes of SCS remains challenging. OBJECTIVE This review aimed to evaluate predictive factors of clinically relevant pain relief after SCS for patients with CLBP and/or radicular leg pain, including PSPS. MATERIALS AND METHODS In August 2023, PubMed, Cinahl, Cochrane, and EMBASE were searched to identify studies published between January 2010 and August 2023. Studies reporting the percentage of patients with ≥50% pain relief after SCS in patients with CLBP and leg pain, including PSPS at 12 or 24 months, were included. Meta-analysis was conducted to pool results for back, leg, and general pain relief. Predictive factors for pain relief after 12 months were examined using univariable and multivariable meta-regression. RESULTS A total of 27 studies (2220 patients) were included for further analysis. The mean percentages of patients with substantial pain relief were 68% for leg pain, 63% for back pain, and 73% for general pain at 12 months follow-up, and 63% for leg pain, 59% for back pain, and 71% for general pain at 24 months follow-up assessment. The implantation method and baseline Oswestry Disability Index made the multivariable meta-regression model for ≥50% back pain relief. Sex and pain duration made the final model for ≥50% leg pain relief. Variable stimulation and implantation method made the final model for general pain relief. CONCLUSIONS This review supports SCS as an effective pain-relieving treatment for CLBP and/or leg pain, and models were developed to predict substantial back and leg pain relief. To provide high-grade evidence for predictive factors, SCS studies of high quality are needed in which standardized factors predictive of SCS success, based on in-patient improvements, are monitored and reported.
Collapse
Affiliation(s)
- Ferdinand Bastiaens
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands; Department of Anesthesiology and Pain Medicine, Sint Maartenskliniek, Nijmegen, The Netherlands.
| | - Ilse H van de Wijgert
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Ewald M Bronkhorst
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Esther P Z van Heteren
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christopher Gilligan
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
| | - Peter Staats
- National Spine and Pain, ElectroCore, Inc, Jacksonville, FL, USA
| | - Jessica T Wegener
- Department of Anesthesiology and Pain Medicine, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Miranda L van Hooff
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands; Department of Orthopedics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kris C P Vissers
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Anesthesiology and Pain Medicine, Sint Maartenskliniek, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Jang HN, Oh TJ. Pharmacological and Nonpharmacological Treatments for Painful Diabetic Peripheral Neuropathy. Diabetes Metab J 2023; 47:743-756. [PMID: 37670573 PMCID: PMC10695723 DOI: 10.4093/dmj.2023.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most prevalent chronic complications of diabetes. The lifetime prevalence of DPN is thought to be >50%, and 15%-25% of patients with diabetes experience neuropathic pain, referred to as "painful DPN." Appropriate treatment of painful DPN is important because this pain contributes to a poor quality of life by causing sleep disturbance, anxiety, and depression. The basic principle for the management of painful DPN is to control hyperglycemia and other modifiable risk factors, but these may be insufficient for preventing or improving DPN. Because there is no promising diseasemodifying medication for DPN, the pain itself needs to be managed when treating painful DPN. Drugs for neuropathic pain, such as gabapentinoids, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, alpha-lipoic acid, sodium channel blockers, and topical capsaicin, are used for the management of painful DPN. The U.S. Food and Drug Administration (FDA) has approved pregabalin, duloxetine, tapentadol, and the 8% capsaicin patch as drugs for the treatment of painful DPN. Recently, spinal cord stimulation using electrical stimulation is approved by the FDA for the treatment for painful DPN. This review describes the currently available pharmacological and nonpharmacological treatments for painful DPN.
Collapse
Affiliation(s)
- Han Na Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Johnson S, Goebel A. Sham controls in device trials for chronic pain - tricky in practice-a review article. Contemp Clin Trials Commun 2023; 35:101203. [PMID: 37662705 PMCID: PMC10474149 DOI: 10.1016/j.conctc.2023.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background Chronic pain affects one in four people and this figure is likely to increase further in line with an ageing population. Efforts to evaluate nonpharmacological interventions to support this patient population have become a priority for pain research. For device trials, the use of a sham control can add to the scientific validity and quality of a study. However, only a small proportion of pain trials include a sham control, and many are of poor quality. To facilitate the conduct of high-quality trials there is a need for a comprehensive overview to guide researchers within this area. The objective of this review was to synthesise the published data to address this need. Methods We identified studies that considered the evaluation, design, and conduct of sham-controlled trials in chronic pain by searching MEDLINE, CINAHL and Science Direct to November 2022. Studies that included sufficient content to inform the conduct/design of future research were included. An inductive thematic analysis approach was used to identify themes that require consideration when conducting sham-controlled trials. These are presented as a narrative review. Results 37 articles were included. Identified themes related to the type of sham device, sham design, bias, study population and ethics. Conclusions To conduct good quality research the challenges surrounding the use of sham interventions need to be better considered. We highlight salient issues and provide recommendations for the conduct and reporting of sham-controlled device trials in chronic pain.
Collapse
Affiliation(s)
- Selina Johnson
- Walton Centre NHS Foundation Trust, Fazakerley, Liverpool, L9 7BB, UK
- Pain Research Institute, Institute of Life Course and Medical Sciences, Musculoskeletal and Ageing Science, University of Liverpool, Fazakerley, Liverpool, L9 7AL, UK
| | - Andreas Goebel
- Walton Centre NHS Foundation Trust, Fazakerley, Liverpool, L9 7BB, UK
- Pain Research Institute, Institute of Life Course and Medical Sciences, Musculoskeletal and Ageing Science, University of Liverpool, Fazakerley, Liverpool, L9 7AL, UK
| |
Collapse
|
18
|
Nijhuis HJA, Hofsté WJ, Krabbenbos IP, Dietz BE, Mugan D, Huygen F. First Report on Real-World Outcomes with Evoked Compound Action Potential (ECAP)-Controlled Closed-Loop Spinal Cord Stimulation for Treatment of Chronic Pain. Pain Ther 2023; 12:1221-1233. [PMID: 37481774 PMCID: PMC10444915 DOI: 10.1007/s40122-023-00540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
INTRODUCTION A novel closed-loop spinal cord stimulation (SCS) system has recently been approved for use which records evoked compound action potentials (ECAPs) from the spinal cord and utilizes these recordings to automatically adjust the stimulation strength in real time. It automatically compensates for fluctuations in distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a determined target level. This data collection was principally designed to evaluate the performance of this first closed-loop SCS system in a 'real-world' setting under normal conditions of use in a single European center. METHODS In this prospective, single-center observational data collection, 22 patients were recruited at the outpatient pain clinic of the St. Antonius Hospital. All candidates were suffering from chronic pain in the trunk and/or limbs due to PSPS type 2 (persistent spinal pain syndrome). As standard of care, follow-up visits were completed at 3 months, 6 months, and 12 months post-device activation. Patient-reported outcome data (pain intensity, patient satisfaction) and electrophysiological and device data (ECAP amplitude, conduction velocity, current output, pulse width, frequency, usage), and patient interaction with their controller were collected at baseline and during standard of care follow-up visits. RESULTS Significant decreases in pain intensity for overall back or leg pain scores (verbal numerical rating score = VNRS) were observed between baseline [mean ± SEM (standard error of the mean); n = 22; 8.4 ± 0.2)], 3 months (n = 12; 1.9 ± 0.5), 6 months (n = 16; 2.6 ± 0.5), and 12 months (n = 20; 2.0 ± 0.5), with 85.0% of the patients being satisfied at 12 months. Additionally, no significant differences in average pain relief at 3 months and 12 months between the real-world data (77.2%; 76.8%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies were observed. CONCLUSIONS These initial 'real-world' data on ECAP-controlled, closed-loop SCS in a real-world clinical setting appear to be promising, as they provide novel insights of the beneficial effect of ECAP-controlled, closed-loop SCS in a real-world setting. The presented results demonstrate a noteworthy maintenance of pain relief over 12 months and corroborate the outcomes observed in the AVALON prospective, multicenter, single-arm study and the EVOKE double-blind, multicenter, randomized controlled trial. TRIAL REGISTRATION The data collection is registered on the International Clinical Trials Registry Platform (Trial NL7889).
Collapse
Affiliation(s)
- Harold J. A. Nijhuis
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Willem-Jan Hofsté
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Imre P. Krabbenbos
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | | | - Dave Mugan
- Saluda Medical Europe Ltd, Harrogate, United Kingdom
| | - Frank Huygen
- Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Duarte RV, Bentley A, Soliday N, Leitner A, Gulve A, Staats PS, Sayed D, Falowski SM, Hunter CW, Taylor RS. Cost-utility Analysis of Evoke Closed-loop Spinal Cord Stimulation for Chronic Back and Leg Pain. Clin J Pain 2023; 39:551-559. [PMID: 37440335 PMCID: PMC10498882 DOI: 10.1097/ajp.0000000000001146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES The effectiveness of Evoke closed-loop spinal cord stimulation (CL-SCS), a novel modality of neurostimulation, has been demonstrated in a randomized controlled trial (RCT). The objective of this cost-utility analysis was to develop a de novo economic model to estimate the cost-effectiveness of Evoke CL-SCS when compared with open-loop SCS (OL-SCS) for the management of chronic back and leg pain. METHODS A decision tree followed by a Markov model was used to estimate the costs and outcomes of Evoke CL-SCS versus OL-SCS over a 15-year time horizon from the UK National Health Service perspective. A "high-responder" health state was included to reflect improved levels of SCS pain reduction recently reported. Results are expressed as incremental cost per quality-adjusted life year (QALY). Deterministic and probabilistic sensitivity analysis (PSA) was conducted to assess uncertainty in the model inputs. RESULTS Evoke CL-SCS was estimated to be the dominant treatment strategy at ~5 years postimplant (ie, it generates more QALYs while cost saving compared with OL-SCS). Probabilistic sensitivity analysis showed that Evoke CL-SCS has a 92% likelihood of being cost-effective at a willingness to pay threshold of £20,000/QALY. Results were robust across a wide range of scenario and sensitivity analyses. DISCUSSION The results indicate a strong economic case for the use of Evoke CL-SCS in the management of chronic back and leg pain with or without prior spinal surgery with dominance observed at ~5 years.
Collapse
Affiliation(s)
- Rui V. Duarte
- Department of Health Data Science, University of Liverpool, Liverpool, UK
- Saluda Medical Pty Ltd., Artarmon, NSW, Australia
| | | | | | | | - Ashish Gulve
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | | | - Dawood Sayed
- The University of Kansas Health System, Kansas City, KS
| | | | | | - Rod S. Taylor
- MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Leitner A, Hanson E, Soliday N, Staats P, Levy R, Pope J, Kallewaard JW, Doleys D, Li S, Weisbein J, Amirdelfan K, Poree L. Real World Clinical Utility of Neurophysiological Measurement Utilizing Closed-Loop Spinal Cord Stimulation in a Chronic Pain Population: The ECAP Study Protocol. J Pain Res 2023; 16:2497-2507. [PMID: 37497371 PMCID: PMC10368120 DOI: 10.2147/jpr.s411927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Background Spinal cord stimulation (SCS) is an established chronic pain treatment, but the effectiveness of traditional, open-loop paradigms has been plagued by variable sustainability in a real-world setting. A new approach, utilizing evoked compound action potential (ECAP) controlled closed-loop (CL) SCS, continuously monitors spinal cord activation and automatically adjusts the stimulation amplitude of every pulse, maintaining stimulation at the prescribed ECAP level through this continual feedback mechanism. Recent studies demonstrated the long-term safety and efficacy of ECAP-controlled CL-SCS. Here, we report the design of a prospective, multicenter, single-arm feasibility study to characterize clinical outcomes in a real-world chronic pain population utilizing ECAP-controlled CL-SCS. Objective neurophysiological measurements such as device performance and patient therapy compliance, will be analyzed against baseline biopsychosocial assessments, to explore the clinical utility of these objective physiologic biomarkers in patient phenotyping. Methods This study will enroll up to 300 subjects with chronic, intractable trunk and/or limb pain in up to 25 United States investigation sites. Subjects meeting eligibility criteria will undergo a trial procedure and a permanent implant following a successful trial. Neurophysiological measurements (measured in-clinic and continuously during home use) and clinical outcomes including pain, quality-of-life, psychological, emotional, and functional assessments will be collected at baseline, trial end, and up to 24-months post-implantation. Discussion Associations between objective neurophysiological data, clinical evaluation and patient-reported outcomes may have important clinical and scientific implications. They may provide novel insights about the chronic pain pathophysiology, its modulation during CL-SCS, and identification of pain phenotypes and/or mechanisms associated with treatment response during SCS trials and long-term therapy. Data from the ECAP study could lead to improvements in diagnosis, assessment, patient identification and management of chronic pain. It could also provide the foundation for development of a new SCS treatment approach customized by the patient's pain phenotype, unique neurophysiology, and disease severity.
Collapse
Affiliation(s)
- Angela Leitner
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Erin Hanson
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Nicole Soliday
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Peter Staats
- National Spine and Pain Centers, Shrewsbury, NJ, USA
| | - Robert Levy
- Departments of Neurosurgery and Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| | - Jason Pope
- Evolve Restorative Center, Santa Rosa, CA, USA
| | - Jan W Kallewaard
- Department of Anaesthesiology and Pain Management, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Anesthesiology and Pain Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Daniel Doleys
- Pain and Rehabilitation Institute, Birmingham, AL, USA
| | - Sean Li
- National Spine and Pain Centers, Shrewsbury, NJ, USA
| | | | | | - Lawrence Poree
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Huygen F, Hagedorn JM, Falowski S, Schultz D, Vesper J, Heros RD, Patterson DG, Dehghan S, Ross E, Kyani A, Mansouri MB, Kallewaard JW. Core patient-reported outcome measures for chronic pain patients treated with spinal cord stimulation or dorsal root ganglia stimulation. Health Qual Life Outcomes 2023; 21:77. [PMID: 37474950 PMCID: PMC10357671 DOI: 10.1186/s12955-023-02158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Neurostimulation is a highly effective therapy for the treatment of chronic Intractable pain, however, due to the complexity of pain, measuring a subject's long-term response to the therapy remains difficult. Frequent measurement of patient-reported outcomes (PROs) to reflect multiple aspects of subjects' pain is a crucial step in determining therapy outcomes. However, collecting full-length PROs is burdensome for both patients and clinicians. The objective of this work is to identify the reduced set of questions from multiple validated PROs that can accurately characterize chronic pain patients' responses to neurostimulation therapies. METHODS Validated PROs were used to capture pain, physical function and disability, as well as psychometric, satisfaction, and global health metrics. PROs were collected from 509 patients implanted with Spinal Cord Stimulation (SCS) or Dorsal Root Ganglia (DRG) neurostimulators enrolled in the prospective, international, post-market REALITY study (NCT03876054, Registration Date: March 15, 2019). A combination of linear regression, Pearson's correlation, and factor analysis were used to eliminate highly correlated questions and find the minimal meaningful set of questions within the predefined domains of each scale. RESULTS The shortened versions of the questionnaires presented almost identical accuracy for classifying the therapy outcomes as compared to the validated full-length versions. In addition, principal component analysis was performed on all the PROs and showed a robust clustering of pain intensity, psychological factors, physical function, and sleep across multiple PROs. A selected set of questions captured from multiple PROs can provide adequate information for measuring neurostimulation therapy outcomes. CONCLUSIONS PROs are important subjective measures to evaluate the physiological and psychological aspects of pain. However, these measures are cumbersome to collect. These shorter and more targeted PROs could result in better patient engagement, and enhanced and more frequent data collection processes for digital health platforms that minimize patient burden while increasing therapeutic benefits for chronic pain patients.
Collapse
Affiliation(s)
- Frank Huygen
- Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, Postbus 2040, 3000, Rotterdam, CA, Netherlands.
| | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jan Vesper
- Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hohenschurz-Schmidt DJ, Cherkin D, Rice AS, Dworkin RH, Turk DC, McDermott MP, Bair MJ, DeBar LL, Edwards RR, Farrar JT, Kerns RD, Markman JD, Rowbotham MC, Sherman KJ, Wasan AD, Cowan P, Desjardins P, Ferguson M, Freeman R, Gewandter JS, Gilron I, Grol-Prokopczyk H, Hertz SH, Iyengar S, Kamp C, Karp BI, Kleykamp BA, Loeser JD, Mackey S, Malamut R, McNicol E, Patel KV, Sandbrink F, Schmader K, Simon L, Steiner DJ, Veasley C, Vollert J. Research objectives and general considerations for pragmatic clinical trials of pain treatments: IMMPACT statement. Pain 2023; 164:1457-1472. [PMID: 36943273 PMCID: PMC10281023 DOI: 10.1097/j.pain.0000000000002888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 03/23/2023]
Abstract
ABSTRACT Many questions regarding the clinical management of people experiencing pain and related health policy decision-making may best be answered by pragmatic controlled trials. To generate clinically relevant and widely applicable findings, such trials aim to reproduce elements of routine clinical care or are embedded within clinical workflows. In contrast with traditional efficacy trials, pragmatic trials are intended to address a broader set of external validity questions critical for stakeholders (clinicians, healthcare leaders, policymakers, insurers, and patients) in considering the adoption and use of evidence-based treatments in daily clinical care. This article summarizes methodological considerations for pragmatic trials, mainly concerning methods of fundamental importance to the internal validity of trials. The relationship between these methods and common pragmatic trials methods and goals is considered, recognizing that the resulting trial designs are highly dependent on the specific research question under investigation. The basis of this statement was an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) systematic review of methods and a consensus meeting. The meeting was organized by the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership. The consensus process was informed by expert presentations, panel and consensus discussions, and a preparatory systematic review. In the context of pragmatic trials of pain treatments, we present fundamental considerations for the planning phase of pragmatic trials, including the specification of trial objectives, the selection of adequate designs, and methods to enhance internal validity while maintaining the ability to answer pragmatic research questions.
Collapse
Affiliation(s)
- David J. Hohenschurz-Schmidt
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dan Cherkin
- Department of Family Medicine, University of Washington and Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Andrew S.C. Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robert H. Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Dennis C. Turk
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Matthew J. Bair
- VA Center for Health Information and Communication, Regenstrief Institute, and Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lynn L. DeBar
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | | | - John T. Farrar
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert D. Kerns
- Departments of Psychiatry, Neurology and Psychology, Yale University, New Haven, CT, United States
| | - John D. Markman
- Neuromedicine Pain Management and Translational Pain Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Michael C. Rowbotham
- Department of Anesthesia, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Karen J. Sherman
- Kaiser Permanente Washington Health Research Institute and Department of Epidemiology, University of Washington, Seattle WA, United States
| | - Ajay D. Wasan
- Departments of Anesthesiology & Perioperative Medicine, and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Penney Cowan
- American Chronic Pain Association, Rocklin, CA, United States
| | - Paul Desjardins
- Department of Diagnostic Sciences, School of Dental Medicine, Rutgers University, Newark, NJ, United States
| | - McKenzie Ferguson
- Department of Pharmacy Practice, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Roy Freeman
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Jennifer S. Gewandter
- Department of Anesthesiology and Perioperative, University of Rochester, Rochester, NY, United States
| | - Ian Gilron
- Departments of Anesthesiology & Perioperative Medicine, Biomedical & Molecular Sciences, Centre for Neuroscience Studies, and School of Policy Studies, Queen's University, Kingston, ON, Canada
| | - Hanna Grol-Prokopczyk
- Department of Sociology, University at Buffalo, State University of New York, Buffalo NY, United States
| | - Sharon H. Hertz
- Hertz and Fields Consulting, Inc, Silver Spring, MD, United States
| | | | - Cornelia Kamp
- Center for Health and Technology (CHeT), Clinical Materials Services Unit (CMSU), University of Rochester Medical Center, Rochester, NY, United States
| | | | - Bethea A. Kleykamp
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - John D. Loeser
- Departments of Neurological Surgery and Anesthesia and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Sean Mackey
- Department of Anesthesiology, Perioperative, and Pain Medicine, Neurosciences and Neurology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Ewan McNicol
- Department of Pharmacy Practice, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Kushang V. Patel
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Friedhelm Sandbrink
- Department of Neurology, Washington DC Veterans Affairs Medical Center, Washington, DC, United States
- Department of Neurology, George Washington University, Washington, DC, United States
| | - Kenneth Schmader
- Department of Medicine-Geriatrics, Center for the Study of Aging, Duke University Medical Center, and Geriatrics Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, United States
| | - Lee Simon
- SDG, LLC, Cambridge, MA, United States
| | | | - Christin Veasley
- Chronic Pain Research Alliance, North Kingstown, RI, United States
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Attal N, Bouhassira D, Colvin L. Advances and challenges in neuropathic pain: a narrative review and future directions. Br J Anaesth 2023; 131:79-92. [PMID: 37210279 DOI: 10.1016/j.bja.2023.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023] Open
Abstract
Over the past few decades, substantial advances have been made in neuropathic pain clinical research. An updated definition and classification have been agreed. Validated questionnaires have improved the detection and assessment of acute and chronic neuropathic pain; and newer neuropathic pain syndromes associated with COVID-19 have been described. The management of neuropathic pain has moved from empirical to evidence-based medicine. However, appropriately targeting current medications and the successful clinical development of drugs acting on new targets remain challenging. Innovative approaches to improving therapeutic strategies are required. These mainly encompass rational combination therapy, drug repurposing, non-pharmacological approaches (such as neurostimulation techniques), and personalised therapeutic management. This narrative review reports historical and current perspectives regarding the definitions, classification, assessment, and management of neuropathic pain and explores potential avenues for future research.
Collapse
Affiliation(s)
- Nadine Attal
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France.
| | - Didier Bouhassira
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Lesley Colvin
- University of Dundee, Ninewells Medical School, Ninewells Hospital, Dundee, UK
| |
Collapse
|
24
|
Levy RM, Mekhail N, Abd-Elsayed A, Abejón D, Anitescu M, Deer TR, Eldabe S, Goudman L, Kallewaard JW, Moens M, Petersen EA, Pilitsis JG, Pope JE, Poree L, Raslan AM, Russo M, Sayed D, Staats PS, Taylor RS, Thomson S, Verrills P, Duarte RV. Holistic Treatment Response: An International Expert Panel Definition and Criteria for a New Paradigm in the Assessment of Clinical Outcomes of Spinal Cord Stimulation. Neuromodulation 2023; 26:1015-1022. [PMID: 36604242 DOI: 10.1016/j.neurom.2022.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Treatment response to spinal cord stimulation (SCS) is focused on the magnitude of effects on pain intensity. However, chronic pain is a multidimensional condition that may affect individuals in different ways and as such it seems reductionist to evaluate treatment response based solely on a unidimensional measure such as pain intensity. AIM The aim of this article is to add to a framework started by IMMPACT for assessing the wider health impact of treatment with SCS for people with chronic pain, a "holistic treatment response". DISCUSSION Several aspects need consideration in the assessment of a holistic treatment response. SCS device data and how it relates to patient outcomes, is essential to improve the understanding of the different types of SCS, improve patient selection, long-term clinical outcomes, and reproducibility of findings. The outcomes to include in the evaluation of a holistic treatment response need to consider clinical relevance for patients and clinicians. Assessment of the holistic response combines two key concepts of patient assessment: (1) patients level of baseline (pre-treatment) unmet need across a range of health domains; (2) demonstration of patient-relevant improvements in these health domains with treatment. The minimal clinical important difference (MCID) is an established approach to reflect changes after a clinical intervention that are meaningful for the patient and can be used to identify treatment response to each individual domain. A holistic treatment response needs to account for MCIDs in all domains of importance for which the patient presents dysfunctional scores pre-treatment. The number of domains included in a holistic treatment response may vary and should be considered on an individual basis. Physiologic confirmation of therapy delivery and utilisation should be included as part of the evaluation of a holistic treatment response and is essential to advance the field of SCS and increase transparency and reproducibility of the findings.
Collapse
Affiliation(s)
- Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| | - Nagy Mekhail
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology and Pain Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David Abejón
- Multidisciplinary Pain Management Unit, Hospital Universitario Quirónsalud, Madrid, Spain
| | | | - Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium; STIMULUS research group, Vrije Universiteit Brussel, Brussels, Belgium; Research Foundation-Flanders, Brussels, Belgium
| | - Jan W Kallewaard
- Department of Anaesthesiology and Pain Management, Rijnstate Hospital, Velp, the Netherlands; Department of Anesthesiology and Pain Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium; STIMULUS research group, Vrije Universiteit Brussel, Brussels, Belgium; Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Julie G Pilitsis
- Department of Clinical Neurosciences, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Lawrence Poree
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Marc Russo
- Hunter Pain Specialists, Broadmeadow, New South Wales, Australia
| | - Dawood Sayed
- The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Rod S Taylor
- College of Medicine and Health, University of Exeter, Exeter, UK; MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, University of Glasgow, Glasgow, UK
| | - Simon Thomson
- Department of Pain Medicine and Neuromodulation, Mid & South Essex University Hospitals, Essex, UK
| | - Paul Verrills
- Metro Pain Group, Melbourne, New South Wales, Australia
| | - Rui V Duarte
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia; Liverpool Reviews and Implementation Group, Department of Health Data Science, University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Poree L, Foster A, Staats PS. Device profile of the Evoke physiologic closed-loop spinal cord stimulation system for the treatment of chronic intractable pain: overview of its safety and efficacy. Expert Rev Med Devices 2023; 20:885-898. [PMID: 37691581 DOI: 10.1080/17434440.2023.2255520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION The Evoke® spinal cord stimulation (SCS) device enables the closed-loop feedback of dynamically measured evoked compound action potentials (ECAPs) to adjust stimulation amplitude for every stimulation pulse to maintain the stimulation output level near a targeted ECAP amplitude. No other commercially available SCS device presently uses physiologic feedback from the spinal cord to adjust stimulation. Clinicians should be familiar with the differences in devices and with the latest technologies to provide optimized patient care. AREAS COVERED In this device profile, the Evoke system is described and the system capabilities are differentiated from other available SCS devices. A systematic review was conducted based on best practice guidance to identify all available evidence on the safety and efficacy of the Evoke SCS system. EXPERT OPINION The Evoke SCS system offers unique capabilities as a means to optimize therapy delivery tailored to each individual patient. Data through 24-months follow-up show statistically significant, clinically meaningful, ample, consistent, and strong evidence of the safety and efficacy of the Evoke system for the treatment of chronic intractable pain.
Collapse
Affiliation(s)
- Lawrence Poree
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA, USA
| | - Allison Foster
- Foster Medical Communications Ltd, Auckland, New Zealand
| | | |
Collapse
|
26
|
Heros R, Patterson D, Huygen F, Skaribas I, Schultz D, Wilson D, Fishman M, Falowski S, Moore G, Kallewaard JW, Dehghan S, Kyani A, Mansouri M. Objective wearable measures and subjective questionnaires for predicting response to neurostimulation in people with chronic pain. Bioelectron Med 2023; 9:13. [PMID: 37340467 PMCID: PMC10283222 DOI: 10.1186/s42234-023-00115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Neurostimulation is an effective therapy for treating and management of refractory chronic pain. However, the complex nature of pain and infrequent in-clinic visits, determining subject's long-term response to the therapy remains difficult. Frequent measurement of pain in this population can help with early diagnosis, disease progression monitoring, and evaluating long-term therapeutic efficacy. This paper compares the utilization of the common subjective patient-reported outcomes with objective measures captured through a wearable device for predicting the response to neurostimulation therapy. METHOD Data is from the ongoing international prospective post-market REALITY clinical study, which collects long-term patient-reported outcomes from 557 subjects implanted by Spinal Cord Stimulator (SCS) or Dorsal Root Ganglia (DRG) neurostimulators. The REALITY sub-study was designed for collecting additional wearables data on a subset of 20 participants implanted with SCS devices for up to six months post implantation. We first implemented a combination of dimensionality reduction algorithms and correlation analyses to explore the mathematical relationships between objective wearable data and subjective patient-reported outcomes. We then developed machine learning models to predict therapy outcome based on the subject's response to the numerical rating scale (NRS) or patient global impression of change (PGIC). RESULTS Principal component analysis showed that psychological aspects of pain were associated with heart rate variability, while movement-related measures were strongly associated with patient-reported outcomes related to physical function and social role participation. Our machine learning models using objective wearable data predicted PGIC and NRS outcomes with high accuracy without subjective data. The prediction accuracy was higher for PGIC compared with the NRS using subjective-only measures primarily driven by the patient satisfaction feature. Similarly, the PGIC questions reflect an overall change since the study onset and could be a better predictor of long-term neurostimulation therapy outcome. CONCLUSIONS The significance of this study is to introduce a novel use of wearable data collected from a subset of patients to capture multi-dimensional aspects of pain and compare the prediction power with the subjective data from a larger data set. The discovery of pain digital biomarkers could result in a better understanding of the patient's response to therapy and their general well-being.
Collapse
Affiliation(s)
| | | | - Frank Huygen
- Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Michael Fishman
- Center for Interventional Pain and Spine, Lancaster, PA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Shanthanna H, Eldabe S, Provenzano DA, Bouche B, Buchser E, Chadwick R, Doshi TL, Duarte R, Hunt C, Huygen FJPM, Knight J, Kohan L, North R, Rosenow J, Winfree CJ, Narouze S. Evidence-based consensus guidelines on patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain. Reg Anesth Pain Med 2023; 48:273-287. [PMID: 37001888 PMCID: PMC10370290 DOI: 10.1136/rapm-2022-104097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Spinal cord stimulation (SCS) has demonstrated effectiveness for neuropathic pain. Unfortunately, some patients report inadequate long-term pain relief. Patient selection is emphasized for this therapy; however, the prognostic capabilities and deployment strategies of existing selection techniques, including an SCS trial, have been questioned. After approval by the Board of Directors of the American Society of Regional Anesthesia and Pain Medicine, a steering committee was formed to develop evidence-based guidelines for patient selection and the role of an SCS trial. Representatives of professional organizations with clinical expertize were invited to participate as committee members. A comprehensive literature review was carried out by the steering committee, and the results organized into narrative reports, which were circulated to all the committee members. Individual statements and recommendations within each of seven sections were formulated by the steering committee and circulated to members for voting. We used a modified Delphi method wherein drafts were circulated to each member in a blinded fashion for voting. Comments were incorporated in the subsequent revisions, which were recirculated for voting to achieve consensus. Seven sections with a total of 39 recommendations were approved with 100% consensus from all the members. Sections included definitions and terminology of SCS trial; benefits of SCS trial; screening for psychosocial characteristics; patient perceptions on SCS therapy and the use of trial; other patient predictors of SCS therapy; conduct of SCS trials; and evaluation of SCS trials including minimum criteria for success. Recommendations included that SCS trial should be performed before a definitive SCS implant except in anginal pain (grade B). All patients must be screened with an objective validated instrument for psychosocial factors, and this must include depression (grade B). Despite some limitations, a trial helps patient selection and provides patients with an opportunity to experience the therapy. These recommendations are expected to guide practicing physicians and other stakeholders and should not be mistaken as practice standards. Physicians should continue to make their best judgment based on individual patient considerations and preferences.
Collapse
Affiliation(s)
| | - Sam Eldabe
- James Cook University Hospital, Middlesbrough, UK
| | | | | | - Eric Buchser
- Pain Management and Neuromodulation Centre, EHC, Morges, Switzerland
- Pain, EHC, Morges, Switzerland
| | | | - Tina L Doshi
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rui Duarte
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Christine Hunt
- Anesthesiology - Pain Medicine, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | | | - Judy Knight
- Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| | - Lynn Kohan
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Richard North
- Neurosurgery, Anesthesiology and Critical Care Medicine (ret.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Samer Narouze
- Center for Pain Medicine, Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
28
|
Thomson S, Kallewaard JW, Gatzinsky K. Spinal Cord Burst Stimulation vs Placebo Stimulation for Patients With Chronic Radicular Pain After Lumbar Spine Surgery. JAMA 2023; 329:847. [PMID: 36917057 DOI: 10.1001/jama.2022.24742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Simon Thomson
- Mid and South Essex University Hospitals NHS Trust, Basildon, England
| | | | - Kliment Gatzinsky
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
29
|
Hohenschurz-Schmidt D, Draper-Rodi J, Vase L, Scott W, McGregor A, Soliman N, MacMillan A, Olivier A, Cherian CA, Corcoran D, Abbey H, Freigang S, Chan J, Phalip J, Nørgaard Sørensen L, Delafin M, Baptista M, Medforth NR, Ruffini N, Skøtt Andresen S, Ytier S, Ali D, Hobday H, Santosa AANAA, Vollert J, Rice AS. Blinding and sham control methods in trials of physical, psychological, and self-management interventions for pain (article I): a systematic review and description of methods. Pain 2023; 164:469-484. [PMID: 36265391 PMCID: PMC9916059 DOI: 10.1097/j.pain.0000000000002723] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/17/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Blinding is challenging in randomised controlled trials of physical, psychological, and self-management therapies for pain, mainly because of their complex and participatory nature. To develop standards for the design, implementation, and reporting of control interventions in efficacy and mechanistic trials, a systematic overview of currently used sham interventions and other blinding methods was required. Twelve databases were searched for placebo or sham-controlled randomised clinical trials of physical, psychological, and self-management treatments in a clinical pain population. Screening and data extraction were performed in duplicate, and trial features, description of control methods, and their similarity to the active intervention under investigation were extracted (protocol registration ID: CRD42020206590). The review included 198 unique control interventions, published between 2008 and December 2021. Most trials studied people with chronic pain, and more than half were manual therapy trials. The described control interventions ranged from clearly modelled based on the active treatment to largely dissimilar control interventions. Similarity between control and active interventions was more frequent for certain aspects (eg, duration and frequency of treatments) than others (eg, physical treatment procedures and patient sensory experiences). We also provide an overview of additional, potentially useful methods to enhance blinding, as well as the reporting of processes involved in developing control interventions. A comprehensive picture of prevalent blinding methods is provided, including a detailed assessment of the resemblance between active and control interventions. These findings can inform future developments of control interventions in efficacy and mechanistic trials and best-practice recommendations.
Collapse
Affiliation(s)
- David Hohenschurz-Schmidt
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, Chelsea, London, United Kingdom
| | - Jerry Draper-Rodi
- Research Centre, University College of Osteopathy, London, United Kingdom
| | - Lene Vase
- Section for Psychology and Neuroscience, Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus C, Denmark
| | - Whitney Scott
- Health Psychology Section, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- INPUT Pain Management Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alison McGregor
- Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, Chelsea, London, United Kingdom
| | - Andrew MacMillan
- Research Centre, University College of Osteopathy, London, United Kingdom
| | - Axel Olivier
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Cybill Ann Cherian
- Chemical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Hilary Abbey
- Research Centre, University College of Osteopathy, London, United Kingdom
| | - Sascha Freigang
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Jessica Chan
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Lea Nørgaard Sørensen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Maite Delafin
- The Penn Clinic, Hertfordshire, Hatfield, United Kingdom
| | - Margarida Baptista
- Department of Psychology, Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Nuria Ruffini
- National Centre Germany, Foundation C.O.M.E. Collaboration, Berlin, Germany
| | | | | | - Dorota Ali
- Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Harriet Hobday
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, Chelsea, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Kiel, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Andrew S.C. Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, Chelsea, London, United Kingdom
| |
Collapse
|
30
|
Shirvalkar P, Poree L. How SAFE Is Real-world Use of Spinal Cord Stimulation Therapy for Chronic Pain? JAMA Neurol 2023; 80:10-11. [PMID: 36441541 DOI: 10.1001/jamaneurol.2022.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prasad Shirvalkar
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Francisco.,Department of Neurological Surgery, University of California, San Francisco.,Department of Neurology, University of California, San Francisco.,Weill Institute of Neurosciences, University of California, San Francisco
| | - Lawrence Poree
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Francisco
| |
Collapse
|
31
|
Lapa JDDS, da Cunha PHM, Teixeira MJ, Brito Medeiros VM, Fernandes AM, Silva de Morais AD, Graven-Nielsen T, Cury RG, Ciampi de Andrade D. Burst Transspinal Magnetic Stimulation Alleviates Nociceptive Pain in Parkinson Disease—A Pilot Phase II Double-Blind, Randomized Study. Neuromodulation 2022:S1094-7159(22)01331-9. [DOI: 10.1016/j.neurom.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
|
32
|
Impact of Long-Term Evoked Compound Action Potential Controlled Closed-Loop Spinal Cord Stimulation on Sleep Quality in Patients With Chronic Pain: An EVOKE Randomized Controlled Trial Study Subanalysis. Neuromodulation 2022:S1094-7159(22)01340-X. [DOI: 10.1016/j.neurom.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
|
33
|
Duarte RV, Nevitt S, Copley S, Maden M, de Vos CC, Taylor RS, Eldabe S. Systematic Review and Network Meta-analysis of Neurostimulation for Painful Diabetic Neuropathy. Diabetes Care 2022; 45:2466-2475. [PMID: 36150057 DOI: 10.2337/dc22-0932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Different waveforms of spinal cord stimulation (SCS) have now been evaluated for the management of painful diabetic neuropathy (PDN). However, no direct or indirect comparison between SCS waveforms has been performed to date. PURPOSE To conduct a systematic review and network meta-analysis to evaluate the effectiveness of SCS for PDN. DATA SOURCES MEDLINE, CENTRAL, Embase, and WikiStim were searched from inception until December 2021. STUDY SELECTION Randomized controlled trials (RCTs) of SCS for PDN were included. DATA EXTRACTION Pain intensity, proportion of patients achieving at least a 50% reduction in pain intensity, and health-related quality of life (HRQoL) data were extracted. DATA SYNTHESIS Significant reductions in pain intensity were observed for low-frequency SCS (LF-SCS) (mean difference [MD] -3.13 [95% CI -4.19 to -2.08], moderate certainty) and high-frequency SCS (HF-SCS) (MD -5.20 [95% CI -5.77 to -4.63], moderate certainty) compared with conventional medical management (CMM) alone. There was a significantly greater reduction in pain intensity on HF-SCS compared with LF-SCS (MD -2.07 [95% CI -3.26 to -0.87], moderate certainty). Significant differences were observed for LF-SCS and HF-SCS compared with CMM for the outcomes proportion of patients with at least 50% pain reduction and HRQoL (very low to moderate certainty). No significant differences were observed between LF-SCS and HF-SCS (very low to moderate certainty). LIMITATIONS Limited number of RCTs and no head-to-head RCTs conducted. CONCLUSIONS Our findings confirm the pain relief and HRQoL benefits of the addition of SCS to CMM for patients with PDN. However, in the absence of head-to-head RCT evidence, the relative benefits of HF-SCS compared with LF-SCS for patients with PDN remain uncertain.
Collapse
Affiliation(s)
- Rui V Duarte
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, U.K
| | - Sarah Nevitt
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, U.K
| | - Sue Copley
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, U.K
| | - Michelle Maden
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, U.K
| | - Cecile C de Vos
- Department of Neurology and Neurosurgery, Medisch Spectrum Twente, Enschede, the Netherlands
- Centre for Pain Medicine, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Rod S Taylor
- MRC/CSO Social and Public Health Sciences Unit and Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, U.K
- College of Medicine and Health, University of Exeter, Exeter, U.K
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, U.K
| |
Collapse
|
34
|
Spinal Cord Stimulation in Failed Back Surgery Syndrome: An Integrative Review of Quantitative and Qualitative Studies. Neuromodulation 2022; 25:657-670. [DOI: 10.1016/j.neurom.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
|
35
|
Harland TA, Giridharan N, Hayek S, Russo MA, Pilitsis JG. What the International and North American Neuromodulation Societies Are Doing for You: The Benefits of Becoming a Member. Neuromodulation 2022; 25:645-647. [DOI: 10.1016/j.neurom.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
|
36
|
Kennedy N, Nelson S, Jerome RN, Edwards TL, Stroud M, Wilkins CH, Harris PA. Recruitment and retention for chronic pain clinical trials: a narrative review. Pain Rep 2022; 7:e1007. [PMID: 38304397 PMCID: PMC10833632 DOI: 10.1097/pr9.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid misuse is at a crisis level. In response to this epidemic, the National Institutes of Health has funded $945 million in research through the Helping to End Addiction Long-term (HEAL) Pain Management Initiative, including funding to the Vanderbilt Recruitment Innovation Center (RIC) to strategize methods to catalyze participant recruitment. The RIC, recognizing the challenges presented to clinical researchers in recruiting individuals experiencing pain, conducted a review of evidence in the literature on successful participant recruitment methods for chronic pain trials, in preparation for supporting the HEAL Pain trials. Study design as it affects recruitment was reviewed, with issues such as sufficient sample size, impact of placebo, pain symptom instability, and cohort characterization being identified as problems. Potential solutions found in the literature include targeted electronic health record phenotyping, use of alternative study designs, and greater clinician education and involvement. For retention, the literature reports successful strategies that include maintaining a supportive staff, allowing virtual study visits, and providing treatment flexibility within the trial. Community input on study design to identify potential obstacles to recruitment and retention was found to help investigators avoid pitfalls and enhance trust, especially when recruiting underrepresented minority populations. Our report concludes with a description of generalizable resources the RIC has developed or adapted to enhance recruitment and retention in the HEAL Pain studies. These resources include, among others, a Recruitment and Retention Plan Template, a Competing Trials Tool, and MyCap, a mobile research application that interfaces with Research Electronic Data Capture (REDCap).
Collapse
Affiliation(s)
- Nan Kennedy
- Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
| | - Sarah Nelson
- Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
| | - Rebecca N. Jerome
- Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
| | - Terri L. Edwards
- Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
| | - Mary Stroud
- Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
| | - Consuelo H. Wilkins
- Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
- Office of Health Equity, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul A. Harris
- Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
37
|
Dworkin RH, Anderson BT, Andrews N, Edwards RR, Grob CS, Ross S, Satterthwaite TD, Strain EC. If the doors of perception were cleansed, would chronic pain be relieved? Evaluating the benefits and risks of psychedelics. THE JOURNAL OF PAIN 2022; 23:1666-1679. [PMID: 35643270 DOI: 10.1016/j.jpain.2022.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Psychedelic substances have played important roles in diverse cultures, and ingesting various plant preparations to evoke altered states of consciousness has been described throughout recorded history. Accounts of the subjective effects of psychedelics typically focus on spiritual and mystical-type experiences, including feelings of unity, sacredness, and transcendence. Over the past two decades, there has been increasing interest in psychedelics as treatments for various medical disorders, including chronic pain. Although concerns about adverse medical and psychological effects contributed to their controlled status, contemporary knowledge of psychedelics suggests that risks are relatively rare when patients are carefully screened, prepared, and supervised. Clinical trial results have provided support for the effectiveness of psychedelics in different psychiatric conditions. However, there are only a small number of generally uncontrolled studies of psychedelics in patients with chronic pain (e.g., cancer pain, phantom limb pain, migraine, and cluster headache). Challenges in evaluating psychedelics as treatments for chronic pain include identifying neurobiologic and psychosocial mechanisms of action and determining which pain conditions to investigate. Truly informative proof-of-concept and confirmatory randomized clinical trials will require careful selection of control groups, efforts to minimize bias from unblinding, and attention to the roles of patient mental set and treatment setting. Perspective: There is considerable promise for the use of psychedelic therapy for pain, but evidence-based recommendations for the design of future studies are needed to ensure that the results of this research are truly informative.
Collapse
Affiliation(s)
- Robert H Dworkin
- Departments of Anesthesiology and Perioperative Medicine, Neurology, and Psychiatry, and Center for Health + Technology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| | - Brian T Anderson
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for the Neurosciences and Zuckerberg San Francisco General Hospital, San Francisco, CA, United States, and UC Berkeley Center for the Science of Psychedelics, Berkeley, CA, United States
| | - Nick Andrews
- Behavior Testing Core, Salk Institute of Biological Studies, La Jolla, CA, United States
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Charles S Grob
- Departments of Psychiatry and Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States, and UCLA School of Medicine, Los Angeles, CA, United States
| | - Stephen Ross
- Departments of Psychiatry and Child and Adolescent Psychiatry, and New York University Langone Center for Psychedelic Medicine, New York, NY, United States
| | - Theodore D Satterthwaite
- Department of Psychiatry, and Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric C Strain
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Goudman L, Rigoard P, Billot M, Duarte RV, Eldabe S, Moens M. Patient Selection for Spinal Cord Stimulation in Treatment of Pain: Sequential Decision-Making Model - A Narrative Review. J Pain Res 2022; 15:1163-1171. [PMID: 35478997 PMCID: PMC9035681 DOI: 10.2147/jpr.s250455] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the well-known efficacy of spinal cord stimulation (SCS) in chronic pain management, patient selection in clinical practice remains challenging. The aim of this review is to provide an overview of the factors that can influence the process of patient selection for SCS treatment. A sequential decision-making model is presented within a tier system that operates in clinical practice. The first level incorporates the underlying disease as a primary indication for SCS, country-related reimbursement rules, and SCS screening-trial criteria in combination with underlying psychological factors as initial selection criteria in evaluating patient eligibility for SCS. The second tier is aligned with the individualized approach within precision pain medicine, whereby individual goals and expectations and the potential need for preoperative optimizations are emphasized. Additionally, this tier relies on results from prediction models to provide an estimate of the efficacy of SCS in the long term. In the third tier, selection bias, MRI compatibility, and ethical beliefs are included, together with recent technological innovations, superiority of specific stimulation paradigms, and new feedback systems that could indirectly influence the decision-making of the physician. Both patients and physicians should be aware of the different aspects that influence patient selection in relation to SCS for pain management to make an independent decision on whether or not to initiate a treatment trajectory with SCS.
Collapse
Affiliation(s)
- Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, 1090, Belgium,STIMULUS Consortium (Research and Teaching Neuromodulation VUB/UZ Brussel), Vrije Universiteit Brussel, Brussels, 1090, Belgium,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium,Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, 1090, Belgium,Research Foundation — Flanders (FWO), Brussels, 1090, Belgium,Correspondence: Lisa Goudman, Department of Neurosurgery, Universitair Ziekenhuis Brussel, 101 Laarbeeklaan, Jette1090, Belgium, Tel +32-2-477-5514, Fax +32-2-477-5570, Email
| | - Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, 86021, France,Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, Poitiers, 86021, France,Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Chasseneuil-du-Poitou, 86360, France
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, 86021, France
| | - Rui V Duarte
- Liverpool Reviews and Implementation Group, Department of Health Data Science, University of Liverpool, Liverpool, L69 3BX, UK
| | - Sam Eldabe
- Pain Clinic, James Cook University Hospital, Middlesbrough, TS4 3BW, UK
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, 1090, Belgium,STIMULUS Consortium (Research and Teaching Neuromodulation VUB/UZ Brussel), Vrije Universiteit Brussel, Brussels, 1090, Belgium,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium,Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, 1090, Belgium,Department of Radiology, Universitair Ziekenhuis Brussel, Jette, 1090, Belgium
| |
Collapse
|
39
|
Deer TR, Falowski SM, Moore GA, Hutcheson JK, Peña I, Candido K, Cornidez EG, zu Fraunberg VU, Blomme B, Capobianco RA. Passive Recharge Burst Spinal Cord Stimulation Provides Sustainable Improvements in Pain and Psychosocial Function: 2-year Results From the TRIUMPH Study. Spine (Phila Pa 1976) 2022; 47:548-556. [PMID: 34812195 PMCID: PMC8912964 DOI: 10.1097/brs.0000000000004283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective, international, multicenter, single-arm, post-market study. OBJECTIVE The aim of this study was to assess long-term safety and effectiveness of spinal cord stimulation using a passive recharge burst stimulation design for chronic intractable pain in the trunk and/or limbs. Herein we present 24-month outcomes from the TRIUMPH study (NCT03082261). SUMMARY OF BACKGROUND DATA Passive recharge burst spinal cord stimulation (B-SCS) uniquely mimics neuronal burst firing patterns in the nervous system and has been shown to modulate the affective and attentional components of pain processing. METHODS After a successful trial period, subjects received a permanent SCS implant and returned for follow-up at 6, 12, 18, and 24 months. RESULTS Significant improvements in physical, mental, and emotional functioning observed after 6 months of treatment were maintained at 2 years. Pain catastrophizing scale (PCS) scores dropped below the population norm. Health-related quality of life on EQ-5D improved across all domains and the mean index score was within one standard deviation of norm. Pain reduction (on NRS) was statistically significant (P < 0.001) at all timepoints. Patient reported pain relief, a stated percentage of improvement in pain, was consistent at all timepoints at 60%. Patients reported significant improvements across all measures including activity levels and impact of pain on daily life. At 24 months, 84% of subjects were satisfied and 90% would recommend the procedure. Subjects decreased their chronic pain medication intake for all categories; 38% reduced psychotropic and muscle relaxants, 46% reduced analgesic, anti-convulsant and NSAIDs, and 48% reduced opioid medication. Adverse events occurred at low rates without unanticipated events. CONCLUSION Early positive results with B-SCS were maintained long term. Evidence across multiple assessment tools show that B-SCS can alleviate pain intensity, psychological distress, and improve physical function and health-related quality of life.Level of Evidence: 3.
Collapse
Affiliation(s)
| | | | | | | | - Isaac Peña
- Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Ao Z, Cai H, Wu Z, Krzesniak J, Tian C, Lai YY, Mackie K, Guo F. Human Spinal Organoid-on-a-Chip to Model Nociceptive Circuitry for Pain Therapeutics Discovery. Anal Chem 2022; 94:1365-1372. [PMID: 34928595 PMCID: PMC11483356 DOI: 10.1021/acs.analchem.1c04641] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The discovery of new pain therapeutics targeting human nociceptive circuitry is an emerging, exciting, and rewarding field. However, current models for evaluating prospective new therapeutics [e.g., animals and two-dimensional (2D) in vitro cultures] fail to fully recapitulate the complexity of human nociceptive neuron and dorsal horn neuron biology, significantly limiting the development of novel pain therapeutics. Here, we report human spinal organoid-on-a-chip devices for modeling the biology and electrophysiology of human nociceptive neurons and dorsal horn interneurons in nociceptive circuitry. Our device can be simply made through the integration of a membrane with a three-dimensional (3D)-printed organoid holder. By combining air-liquid interface culture and spinal organoid protocols, our devices can differentiate human stem cells into human sensori-spinal-cord organoids with dorsal spinal cord interneurons and sensory neurons. By easily transferring from culture well plates to the multiple-electrode array (MEA) system, our device also allows the plug-and-play measurement of organoid activity for testing nociceptive modulators (e.g., mustard oil, capsaicin, velvet ant venom, etc.). Our organoid-on-a-chip devices are cost-efficient, scalable, easy to use, and compatible with conventional well plates, allowing the plug-and-play measurement of spinal organoid electrophysiology. By the integration of human sensory-spinal-cord organoids with our organoid-on-a-chip devices, our method may hold the promising potential to screen and validate novel therapeutics for human pain medicine discovery.
Collapse
Affiliation(s)
- Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Jonathan Krzesniak
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Yvonne Y. Lai
- Gill Center for Biomolecular Science, and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science, and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, Hunter CW, Rosen SM, Costandi SJ, Falowski SM, Burgher AH, Pope JE, Gilmore CA, Qureshi FA, Staats PS, Scowcroft J, McJunkin T, Carlson J, Kim CK, Yang MI, Stauss T, Pilitsis J, Poree L, Brounstein D, Gilbert S, Gmel GE, Gorman R, Gould I, Hanson E, Karantonis DM, Khurram A, Leitner A, Mugan D, Obradovic M, Ouyang Z, Parker J, Single P, Soliday N. Durability of Clinical and Quality-of-Life Outcomes of Closed-Loop Spinal Cord Stimulation for Chronic Back and Leg Pain: A Secondary Analysis of the Evoke Randomized Clinical Trial. JAMA Neurol 2022; 79:251-260. [PMID: 34998276 PMCID: PMC8742908 DOI: 10.1001/jamaneurol.2021.4998] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Importance Chronic pain is debilitating and profoundly affects health-related quality of life. Spinal cord stimulation (SCS) is a well-established therapy for chronic pain; however, SCS has been limited by the inability to directly measure the elicited neural response, precluding confirmation of neural activation and continuous therapy. A novel SCS system measures the evoked compound action potentials (ECAPs) to produce a real-time physiological closed-loop control system. Objective To determine whether ECAP-controlled, closed-loop SCS is associated with better outcomes compared with fixed-output, open-loop SCS at 24 months following implant. Design, Setting, and Participants The Evoke study was a double-blind, randomized, controlled, parallel arm clinical trial with 36 months of follow-up. Participants were enrolled from February 2017 to 2018, and the study was conducted at 13 US investigation sites. SCS candidates with chronic, intractable back and leg pain refractory to conservative therapy, who consented, were screened. Key eligibility criteria included overall, back, and leg pain visual analog scale score of 60 mm or more; Oswestry Disability Index score of 41 to 80; stable pain medications; and no previous SCS. Analysis took place from October 2020 to April 2021. Interventions ECAP-controlled, closed-loop SCS was compared with fixed-output, open-loop SCS. Main Outcomes and Measures Reported here are the 24-month outcomes of the trial, which include all randomized patients in the primary and safety analyses. The primary outcome was a reduction of 50% or more in overall back and leg pain assessed at 3 and 12 months (previously published). Results Of 134 randomized patients, 65 (48.5%) were female and the mean (SD) age was 55.2 (10.6) years. At 24 months, significantly more closed-loop than open-loop patients were responders (≥50% reduction) in overall pain (53 of 67 [79.1%] in the closed-loop group; 36 of 67 [53.7%] in the open-loop group; difference, 25.4% [95% CI, 10.0%-40.8%]; P = .001). There was no difference in safety profiles between groups (difference in rate of study-related adverse events: 6.0 [95% CI, -7.8 to 19.7]). Improvements were also observed in health-related quality of life, physical and emotional functioning, and sleep, in parallel with opioid reduction or elimination. Objective neurophysiological measurements substantiated the clinical outcomes and provided evidence of activation of inhibitory pain mechanisms. Conclusions and Relevance ECAP-controlled, closed-loop SCS, which elicited a more consistent neural response, was associated with sustained superior pain relief at 24 months, consistent with the 3- and 12-month outcomes.
Collapse
Affiliation(s)
| | - Robert M. Levy
- International Neuromodulation Society, Neuromodulation: Technology at the Neural Interface, San Francisco, California
| | - Timothy R. Deer
- The Spine and Nerve Center of The Virginias, Charleston, West Virginia
| | - Leonardo Kapural
- Carolinas Pain Institute, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sean Li
- Premier Pain Centers, Shrewsbury, New Jersey
| | | | | | - Steven M. Rosen
- Delaware Valley Pain and Spine Institute, Trevose, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lawrence Poree
- University of California at San Francisco, San Francisco
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Duarte RV, Bresnahan R, Copley S, Eldabe S, Thomson S, North RB, Baranidharan G, Levy RM, Taylor RS. Reporting Guidelines for Clinical Trial Protocols and Reports of Implantable Neurostimulation Devices: Protocol for the SPIRIT-iNeurostim and CONSORT-iNeurostim Extensions. Neuromodulation 2022; 25:1045-1049. [DOI: 10.1016/j.neurom.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
|
43
|
O'Connell NE, Ferraro MC, Gibson W, Rice AS, Vase L, Coyle D, Eccleston C. Implanted spinal neuromodulation interventions for chronic pain in adults. Cochrane Database Syst Rev 2021; 12:CD013756. [PMID: 34854473 PMCID: PMC8638262 DOI: 10.1002/14651858.cd013756.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Implanted spinal neuromodulation (SNMD) techniques are used in the treatment of refractory chronic pain. They involve the implantation of electrodes around the spinal cord (spinal cord stimulation (SCS)) or dorsal root ganglion (dorsal root ganglion stimulation (DRGS)), and a pulse generator unit under the skin. Electrical stimulation is then used with the aim of reducing pain intensity. OBJECTIVES To evaluate the efficacy, effectiveness, adverse events, and cost-effectiveness of implanted spinal neuromodulation interventions for people with chronic pain. SEARCH METHODS We searched CENTRAL, MEDLINE Ovid, Embase Ovid, Web of Science (ISI), Health Technology Assessments, ClinicalTrials.gov and World Health Organization International Clinical Trials Registry from inception to September 2021 without language restrictions, searched the reference lists of included studies and contacted experts in the field. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing SNMD interventions with placebo (sham) stimulation, no treatment or usual care; or comparing SNMD interventions + another treatment versus that treatment alone. We included participants ≥ 18 years old with non-cancer and non-ischaemic pain of longer than three months duration. Primary outcomes were pain intensity and adverse events. Secondary outcomes were disability, analgesic medication use, health-related quality of life (HRQoL) and health economic outcomes. DATA COLLECTION AND ANALYSIS Two review authors independently screened database searches to determine inclusion, extracted data and evaluated risk of bias for prespecified results using the Risk of Bias 2.0 tool. Outcomes were evaluated at short- (≤ one month), medium- four to eight months) and long-term (≥12 months). Where possible we conducted meta-analyses. We used the GRADE system to assess the certainty of evidence. MAIN RESULTS We included 15 unique published studies that randomised 908 participants, and 20 unique ongoing studies. All studies evaluated SCS. We found no eligible published studies of DRGS and no studies comparing SCS with no treatment or usual care. We rated all results evaluated as being at high risk of bias overall. For all comparisons and outcomes where we found evidence, we graded the certainty of the evidence as low or very low, downgraded due to limitations of studies, imprecision and in some cases, inconsistency. Active stimulation versus placebo SCS versus placebo (sham) Results were only available at short-term follow-up for this comparison. Pain intensity Six studies (N = 164) demonstrated a small effect in favour of SCS at short-term follow-up (0 to 100 scale, higher scores = worse pain, mean difference (MD) -8.73, 95% confidence interval (CI) -15.67 to -1.78, very low certainty). The point estimate falls below our predetermined threshold for a clinically important effect (≥10 points). No studies reported the proportion of participants experiencing 30% or 50% pain relief for this comparison. Adverse events (AEs) The quality and inconsistency of adverse event reporting in these studies precluded formal analysis. Active stimulation + other intervention versus other intervention alone SCS + other intervention versus other intervention alone (open-label studies) Pain intensity Mean difference Three studies (N = 303) demonstrated a potentially clinically important mean difference in favour of SCS of -37.41 at short term (95% CI -46.39 to -28.42, very low certainty), and medium-term follow-up (5 studies, 635 participants, MD -31.22 95% CI -47.34 to -15.10 low-certainty), and no clear evidence for an effect of SCS at long-term follow-up (1 study, 44 participants, MD -7 (95% CI -24.76 to 10.76, very low-certainty). Proportion of participants reporting ≥50% pain relief We found an effect in favour of SCS at short-term (2 studies, N = 249, RR 15.90, 95% CI 6.70 to 37.74, I2 0% ; risk difference (RD) 0.65 (95% CI 0.57 to 0.74, very low certainty), medium term (5 studies, N = 597, RR 7.08, 95 %CI 3.40 to 14.71, I2 = 43%; RD 0.43, 95% CI 0.14 to 0.73, low-certainty evidence), and long term (1 study, N = 87, RR 15.15, 95% CI 2.11 to 108.91 ; RD 0.35, 95% CI 0.2 to 0.49, very low certainty) follow-up. Adverse events (AEs) Device related No studies specifically reported device-related adverse events at short-term follow-up. At medium-term follow-up, the incidence of lead failure/displacement (3 studies N = 330) ranged from 0.9 to 14% (RD 0.04, 95% CI -0.04 to 0.11, I2 64%, very low certainty). The incidence of infection (4 studies, N = 548) ranged from 3 to 7% (RD 0.04, 95%CI 0.01, 0.07, I2 0%, very low certainty). The incidence of reoperation/reimplantation (4 studies, N =5 48) ranged from 2% to 31% (RD 0.11, 95% CI 0.02 to 0.21, I2 86%, very low certainty). One study (N = 44) reported a 55% incidence of lead failure/displacement (RD 0.55, 95% CI 0.35, 0 to 75, very low certainty), and a 94% incidence of reoperation/reimplantation (RD 0.94, 95% CI 0.80 to 1.07, very low certainty) at five-year follow-up. No studies provided data on infection rates at long-term follow-up. We found reports of some serious adverse events as a result of the intervention. These included autonomic neuropathy, prolonged hospitalisation, prolonged monoparesis, pulmonary oedema, wound infection, device extrusion and one death resulting from subdural haematoma. Other No studies reported the incidence of other adverse events at short-term follow-up. We found no clear evidence of a difference in otherAEs at medium-term (2 studies, N = 278, RD -0.05, 95% CI -0.16 to 0.06, I2 0%) or long term (1 study, N = 100, RD -0.17, 95% CI -0.37 to 0.02) follow-up. Very limited evidence suggested that SCS increases healthcare costs. It was not clear whether SCS was cost-effective. AUTHORS' CONCLUSIONS We found very low-certainty evidence that SCS may not provide clinically important benefits on pain intensity compared to placebo stimulation. We found low- to very low-certainty evidence that SNMD interventions may provide clinically important benefits for pain intensity when added to conventional medical management or physical therapy. SCS is associated with complications including infection, electrode lead failure/migration and a need for reoperation/re-implantation. The level of certainty regarding the size of those risks is very low. SNMD may lead to serious adverse events, including death. We found no evidence to support or refute the use of DRGS for chronic pain.
Collapse
Affiliation(s)
- Neil E O'Connell
- Department of Health Sciences, Centre for Health and Wellbeing Across the Lifecourse, Brunel University London, Uxbridge, UK
| | - Michael C Ferraro
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - William Gibson
- School of Physiotherapy, The University of Notre Dame Australia, Fremantle, Australia
| | - Andrew Sc Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Lene Vase
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Doug Coyle
- Epidemiology and Community Medicine, Ottawa Health Research Institute, Ottawa, Canada
- Health Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical Sciences, Brunel University London, Uxbridge, UK
| | | |
Collapse
|
44
|
Johnson S, Marshall A, Hughes D, Holmes E, Henrich F, Nurmikko T, Sharma M, Frank B, Bassett P, Marshall A, Magerl W, Goebel A. Mechanistically informed non-invasive peripheral nerve stimulation for peripheral neuropathic pain: a randomised double-blind sham-controlled trial. J Transl Med 2021; 19:458. [PMID: 34742297 PMCID: PMC8572078 DOI: 10.1186/s12967-021-03128-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Induction of long-term synaptic depression (LTD) is proposed as a treatment mechanism for chronic pain but remains untested in clinical populations. Two interlinked studies; (1) A patient-assessor blinded, randomised, sham-controlled clinical trial and (2) an open-label mechanistic study, sought to examine therapeutic LTD for persons with chronic peripheral nerve injury pain. METHODS (1) Patients were randomised using a concealed, computer-generated schedule to either active or sham non-invasive low-frequency nerve stimulation (LFS), for 3 months (minimum 10 min/day). The primary outcome was average pain intensity (0-10 Likert scale) recorded over 1 week, at 3 months, compared between study groups. (2) On trial completion, consenting subjects entered a mechanistic study assessing somatosensory changes in response to LFS. RESULTS (1) 76 patients were randomised (38 per group), with 65 (31 active, 34 sham) included in the intention to treat analysis. The primary outcome was not significant, pain scores were 0.3 units lower in active group (95% CI - 1.0, 0.3; p = 0.30) giving an effect size of 0.19 (Cohen's D). Two non-device related serious adverse events were reported. (2) In the mechanistic study (n = 19) primary outcomes of mechanical pain sensitivity (p = 0.006) and dynamic mechanical allodynia (p = 0.043) significantly improved indicating reduced mechanical hyperalgesia. CONCLUSIONS Results from the RCT failed to reach significance. Results from the mechanistic study provide new evidence for effective induction of LTD in a clinical population. Taken together results add to mechanistic understanding of LTD and help inform future study design and approaches to treatment. Trial registration ISRCTN53432663.
Collapse
Affiliation(s)
- Selina Johnson
- The Pain Management Programme, Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK. .,Pain Research Institute, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
| | - Anne Marshall
- Pain Research Institute, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Dyfrig Hughes
- Centre for Health Economics and Medicines Evaluation (CHEME) Department, Bangor University, Bangor, Wales, UK
| | - Emily Holmes
- Centre for Health Economics and Medicines Evaluation (CHEME) Department, Bangor University, Bangor, Wales, UK
| | - Florian Henrich
- Department of Neurophysiology, Mannheim Centre for Translational Neurosciences, Medical Faculty Mannheim, Ruprecht Karls-University Heidelberg, Heidelberg, Germany
| | - Turo Nurmikko
- The Pain Management Programme, Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK
| | - Manohar Sharma
- The Pain Management Programme, Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- The Pain Management Programme, Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK.,Pain Research Institute, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | | - Andrew Marshall
- The Pain Management Programme, Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK.,Pain Research Institute, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Walter Magerl
- Department of Neurophysiology, Mannheim Centre for Translational Neurosciences, Medical Faculty Mannheim, Ruprecht Karls-University Heidelberg, Heidelberg, Germany
| | - Andreas Goebel
- The Pain Management Programme, Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK.,Pain Research Institute, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
45
|
Gilligan C, Volschenk W, Russo M, Green M, Gilmore C, Mehta V, Deckers K, De Smedt K, Latif U, Georgius P, Gentile J, Mitchell B, Langhorst M, Huygen F, Baranidharan G, Patel V, Mironer E, Ross E, Carayannopoulos A, Hayek S, Gulve A, Van Buyten JP, Tohmeh A, Fischgrund J, Lad S, Ahadian F, Deer T, Klemme W, Rauck R, Rathmell J, Levy R, Heemels JP, Eldabe S. An implantable restorative-neurostimulator for refractory mechanical chronic low back pain: a randomized sham-controlled clinical trial. Pain 2021; 162:2486-2498. [PMID: 34534176 PMCID: PMC8442741 DOI: 10.1097/j.pain.0000000000002258] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
ABSTRACT Chronic low back pain can be caused by impaired control and degeneration of the multifidus muscles and consequent functional instability of the lumbar spine. Available treatment options have limited effectiveness and prognosis is unfavorable. We conducted an international randomized, double-blind, sham-controlled trial at 26 multidisciplinary centers to determine safety and efficacy of an implantable, restorative neurostimulator designed to restore multifidus neuromuscular control and facilitate relief of symptoms (clinicaltrials.gov identifier: NCT02577354). Two hundred four eligible participants with refractory mechanical (musculoskeletal) chronic LBP and a positive prone instability test indicating impaired multifidus control were implanted and randomized to therapeutic (N = 102) or low-level sham (N = 102) stimulation of the medial branch of the dorsal ramus nerve (multifidus nerve supply) for 30 minutes twice daily. The primary endpoint was the comparison of responder proportions (≥30% relief on the LBP visual analogue scale without analgesics increase) at 120 days. After the primary endpoint assessment, participants in the sham-control group switched to therapeutic stimulation and the combined cohort was assessed through 1 year for long-term outcomes and adverse events. The primary endpoint was inconclusive in terms of treatment superiority (57.1% vs 46.6%; difference: 10.4%; 95% confidence interval, -3.3% to 24.1%, P = 0.138). Prespecified secondary outcomes and analyses were consistent with a modest but clinically meaningful treatment benefit at 120 days. Improvements from baseline, which continued to accrue in all outcome measures after conclusion of the double-blind phase, were clinically important at 1 year. The incidence of serious procedure- or device-related adverse events (3.9%) compared favorably with other neuromodulation therapies for chronic pain.
Collapse
Affiliation(s)
- Christopher Gilligan
- Division of Pain Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | | | - Marc Russo
- Hunter Pain Specialists, Newcastle, Australia
| | | | - Christopher Gilmore
- Center for Clinical Research, Carolinas Pain Institute, Winston-Salem, NC, United States
| | - Vivek Mehta
- Barts Neuromodulation Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Kristiaan Deckers
- Department of Physical Medicine and Rehabilitation, GZA - Sint Augustinus Hospital, Wilrijk, Belgium
| | - Kris De Smedt
- Department of Neurosurgery, GZA - Sint Augustinus Hospital, Wilrijk, Belgium
| | - Usman Latif
- Department of Anesthesiology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Peter Georgius
- Sunshine Coast Clinical Research, Noosa Heads, Australia
| | | | | | | | - Frank Huygen
- Department of Anaesthesiology Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ganesan Baranidharan
- Leeds Pain and Neuromodulation Centre,Leeds Teaching Hopsitals NHS Trust, Leeds, United Kingdom
| | - Vikas Patel
- Department of Orthopedic Surgery, University of Colorado, Denver, CO, United States
| | - Eugene Mironer
- Carolinas Center for the Advanced Management of Pain, Spartanburg, NC, United States
| | - Edgar Ross
- Division of Pain Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Alexios Carayannopoulos
- Departments of Physical Medicine and Rehabilitation, Rhode Island Hospital, Brown University Medical School, Providence, RI, United States
| | - Salim Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, United States
| | - Ashish Gulve
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, United Kingdom
| | | | - Antoine Tohmeh
- Multicare Neuroscience Institute, Spokane, WA, United States
| | - Jeffrey Fischgrund
- Department of Orthopedic Surgery, Oakland University, Beaumont Hospital, Royal Oak, MI, United States
| | - Shivanand Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Farshad Ahadian
- Center for Pain Medicine, University of California, San Diego, CA, United States
| | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, United States
| | - William Klemme
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Richard Rauck
- Carolinas Pain Institute, Wake Forest University, Winston-Salem, NC, United States
| | - James Rathmell
- Division of Pain Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Robert Levy
- Anesthesia Pain Care Consultant, Tamarac, FL, United States
| | | | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, United Kingdom
| |
Collapse
|
46
|
Design and conduct of confirmatory chronic pain clinical trials. Pain Rep 2020; 6:e845. [PMID: 33511323 PMCID: PMC7837951 DOI: 10.1097/pr9.0000000000000854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
The purpose of this article is to provide readers with a basis for understanding the emerging science of clinical trials and to provide a set of practical, evidence-based suggestions for designing and executing confirmatory clinical trials in a manner that minimizes measurement error. The most important step in creating a mindset of quality clinical research is to abandon the antiquated concept that clinical trials are a method for capturing data from clinical practice and shifting to a concept of the clinical trial as a measurement system, consisting of an interconnected set of processes, each of which must be in calibration for the trial to generate an accurate and reliable estimate of the efficacy (and safety) of a given treatment. The status quo of inaccurate, unreliable, and protracted clinical trials is unacceptable and unsustainable. This article gathers aspects of study design and conduct under a single broad umbrella of techniques available to improve the accuracy and reliability of confirmatory clinical trials across traditional domain boundaries.
Collapse
|