1
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
2
|
Thio CLP, Shao JS, Luo CH, Chang YJ. Decoding innate lymphoid cells and innate-like lymphocytes in asthma: pathways to mechanisms and therapies. J Biomed Sci 2025; 32:48. [PMID: 40355861 PMCID: PMC12067961 DOI: 10.1186/s12929-025-01142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Asthma is a chronic inflammatory lung disease driven by a complex interplay between innate and adaptive immune components. Among these, innate lymphoid cells (ILCs) and innate-like lymphocytes have emerged as crucial players in shaping the disease phenotype. Within the ILC family, group 2 ILCs (ILC2s), in particular, contribute significantly to type 2 inflammation through their rapid production of cytokines such as IL-5 and IL-13, promoting airway eosinophilia and airway hyperreactivity. On the other hand, innate-like lymphocytes such as invariant natural killer T (iNKT) cells can play either pathogenic or protective roles in asthma, depending on the stimuli and lung microenvironment. Regulatory mechanisms, including cytokine signaling, metabolic and dietary cues, and interactions with other immune cells, play critical roles in modulating their functions. In this review, we highlight current findings on the role of ILCs and innate-like lymphocytes in asthma development and pathogenesis. We also examine the underlying mechanisms regulating their function and their interplay with other immune cells. Finally, we explore current therapies targeting these cells and their effector cytokines for asthma management.
Collapse
Affiliation(s)
- Christina Li-Ping Thio
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
| | - Jheng-Syuan Shao
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Chia-Hui Luo
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
3
|
Chatterjee P, Brahma S, Cresswell P, Bandyopadhyay S. CD1d-iNKT Axis in Infectious Diseases: Lessons Learned From the Past. Scand J Immunol 2025; 101:e70024. [PMID: 40243400 DOI: 10.1111/sji.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
CD1d is an antigen-presenting molecule that presents lipid or glycolipid antigens to iNKT cells, a distinct subset of T lymphocytes characterised by their innate-like properties and restricted use of Vα, Jα and Vβ segments. The CD1d-iNKT axis represents an interesting aspect of the immune system with significant potential for therapeutic interventions against infectious diseases. Upon recognition of lipid antigens, iNKT cells initiate rapid and potent immune responses, releasing a diverse array of cytokines such as IL-4, IL-13, IFN-γ etc. that profoundly influence immune reactions against various pathogens, including bacteria and parasites, bridging innate and adaptive immunity. We identify and describe the key features of lipidic antigens and their derivatives that determine the nature of their antigenicity. Furthermore, modulating CD1d-driven iNKT cell responses by an array of lipid and glycolipid antigens holds promise as adjunctive therapy to existing antimicrobial treatments. Understanding the complexities of the CD1d-iNKT axis and exploiting its therapeutic potential in the case of infectious diseases could lead to innovative immunotherapeutic strategies, ushering in a new era of immunotherapy against pathogenic insults.
Collapse
Affiliation(s)
- Priyajit Chatterjee
- University Science Instrument Centre, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhranil Brahma
- Department of Zoology, Iswar Chandra Vidyasagar College, Belonia, South Tripura, Tripura, India
| | - Peter Cresswell
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
4
|
Jia R, Guo H, Lu A, Zhang C, Qi Y, Wang D, He W, Wang Q, Cheng Z, Gao Y, Lu G, Wang L, Zhai X, Xu J, Zhang X, Wang Y, Zhou Y. Immunological landscape of children with Mycoplasma pneumoniae pneumonia in the post-COVID-19 era reveals distinctive severity indicators. Respir Res 2025; 26:103. [PMID: 40097989 PMCID: PMC11917007 DOI: 10.1186/s12931-025-03189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND There is a recent global surge in Mycoplasma pneumoniae pneumonia (MPP). However, the key immune factors that contribute to the advancement of the disease remain unknown. Hence, we conducted this study to uncover the immunological profile in children affected by MPP. METHODS This study enrolled children visiting Children's Hospital of Fudan University from December 2023 to April 2024, including 34 healthy controls, 51 severe MPP (S-MPP), 27 non-severe MPP (NS-MPP), and 34 non-MPP pneumonia (NMP) cases. Their blood samples were analyzed using flow cytometry, multi-cytokine assays, and antibody detection methods. RESULTS Compared with NMP cases, MPP cases displayed higher frequencies of natural killer T cells, classical monocytes, and monocytic myeloid-derived suppressor cells. Notably, both T helper type 1 and activated regulatory T cells were more abundant in MPP cases, particularly in S-MPP, whereas CD8 + T cells displayed an exhaustion phenotype. The proportion of naïve B cells was reduced, while functional B cells, including memory B cells and plasmablasts, increased in S-MPP. 12 out of 95 clinical laboratory indicators and 3 out of 48 cytokines significantly differed between S-MPP and NS-MPP. Finally, we performed logistic and LASSO regression analyses and developed a predictive model for S-MPP that incorporates naïve B cell percentage from flow cytometry, cholinesterase from clinical laboratory tests, and interleukin 18 from the cytokine assay. CONCLUSIONS These results clarify the immunological features in pediatric MPP cases, and identify novel markers for severe cases, providing insights for early diagnosis and immunological management in affected children.
Collapse
Affiliation(s)
- Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Haiyan Guo
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission (NHC), Fudan University, Shanghai, China
| | - Aizhen Lu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Caiyan Zhang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuanyuan Qi
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Dingmei Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Wen He
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Qing Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Zimei Cheng
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yajing Gao
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, National Health Commission (NHC), Fudan University, Shanghai, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Libo Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China.
| | - Yufeng Zhou
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
- The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Neonatal Diseases, National Health Commission (NHC), Fudan University, Shanghai, China.
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), Xiamen, China.
| |
Collapse
|
5
|
Singer M, Valerin J, Zhang Z, Zhang Z, Dayyani F, Yaghmai V, Choi A, Imagawa D, Abi-Jaoudeh N. Promising Cellular Immunotherapy for Colorectal Cancer Using Classical Dendritic Cells and Natural Killer T Cells. Cells 2025; 14:166. [PMID: 39936958 PMCID: PMC11817869 DOI: 10.3390/cells14030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality around the world. Despite advances in surgery, chemotherapy, and targeted therapies, the prognosis for patients with metastatic or advanced CRC remains poor. Immunotherapies comprising immune checkpoint inhibitors showed disappointing responses in metastatic CRC (mCRC). However, cellular immunotherapy, specifically using classical dendritic cells (cDCs), may hold unique promise in immune recognition for CRC antigens. cDCs are substantial players in immune recognition and are instrumental in orchestrating innate and adaptive immune responses by processing and presenting tumor antigens to effector cells. Natural killer T (NKT) cells are insufficiently studied but unique effector cells because of their ability to bridge innate and adaptive immune reactions and the crosstalk with dendritic cells in cancer. This review explores the therapeutic potential of using both cDCs and NKT cells as a synergistic therapy in CRC, focusing on their biological roles, strategies for harnessing their capabilities, clinical applications, and the challenges within the tumor microenvironment. Both cDCs and NKT cells can be used as a new effective approach for cell-based therapies in cancers to provide a new hope for CRC patients that are challenging to treat.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Jennifer Valerin
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - Zhuoli Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Zigeng Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Farshid Dayyani
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - Vahid Yaghmai
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - April Choi
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - David Imagawa
- Department of Surgery, University of California Irvine, Orange, CA 92697, USA
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
6
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
7
|
Liong S, Liong F, Mohsenipour M, Hill-Yardin EL, Miles MA, Selemidis S. Early-Life Respiratory Syncytial Virus (RSV) Infection Triggers Immunological Changes in Gut-Associated Lymphoid Tissues in a Sex-Dependent Manner in Adulthood. Cells 2024; 13:1728. [PMID: 39451246 PMCID: PMC11506009 DOI: 10.3390/cells13201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Severe respiratory syncytial virus (RSV) infection during early life has been linked to gut dysbiosis, which correlates with increased disease severity and a higher risk of developing asthma later in life. However, the impact of such early-life RSV infections on intestinal immunity in adulthood remains unclear. Herein, we show that RSV infection in 3-week-old mice induced persistent differential natural killer (NK) and T cell profiles within the lungs and gastrointestinal (GI) lymphoid tissues (GALT) in adulthood. Notably, male mice exhibited more pronounced RSV-induced changes in immune cell populations in both the lungs and GALT, while female mice displayed greater resilience. Importantly, early-life RSV infection was associated with the chronic downregulation of CD69-expressing T lymphocytes, particularly T regulatory cells in Peyer's patches, which could have a significant impact on T cell functionality and immune tolerance. We propose that RSV infection in early life is a trigger for the breakdown in immune tolerance at mucosal surfaces, with potential implications for airways allergic disease, food allergies, and other GI inflammatory diseases.
Collapse
Affiliation(s)
- Stella Liong
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Felicia Liong
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| |
Collapse
|
8
|
Wilkin C, Piette J, Legrand-Poels S. Unravelling metabolic factors impacting iNKT cell biology in obesity. Biochem Pharmacol 2024; 228:116436. [PMID: 39029630 DOI: 10.1016/j.bcp.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Obesity and related diseases have reached epidemic proportions and continue to rise. Beyond creating an economical burden, obesity and its co-morbidities are associated with shortened human life expectancy. Despite major advances, the underlying mechanisms of obesity remain not fully elucidated. Recently, several studies have highlighted that various immune cells are metabolically reprogrammed in obesity, thereby profoundly affecting the immune system. This sheds light on a new field of interest: the impact of obesity-related systemic metabolic changes affecting immune system that could lead to immunosurveillance loss. Among immune cells altered by obesity, invariant Natural Killer T (iNKT) cells have recently garnered intense focus due to their ability to recognize lipid antigen. While iNKT cells are well-described to be affected by obesity, how and to what extent immunometabolic factors (e.g., lipids, glucose, cytokines, adipokines, insulin and free fatty acids) can drive iNKT cells alterations remains unclear, but represent an emerging field of research. Here, we review the current knowledge on iNKT cells in obesity and discuss the immunometabolic factors that could modulate their phenotype and activity.
Collapse
Affiliation(s)
- Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium.
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
9
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Choi Y, Saron WA, O'Neill A, Senanayake M, Wilder-Smith A, Rathore AP, St John AL. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J Clin Invest 2024; 134:e169251. [PMID: 39088280 PMCID: PMC11405039 DOI: 10.1172/jci169251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
NKT cells are innate-like T cells, recruited to the skin during viral infection, yet their contributions to long-term immune memory to viruses are unclear. We identified granzyme K, a product made by cytotoxic cells including NKT cells, as linked to induction of Th1-associated antibodies during primary dengue virus (DENV) infection in humans. We examined the role of NKT cells in vivo using DENV-infected mice lacking CD1d-dependent (CD1ddep) NKT cells. In CD1d-KO mice, Th1-polarized immunity and infection resolution were impaired, which was dependent on intrinsic NKT cell production of IFN-γ, since it was restored by adoptive transfer of WT but not IFN-γ-KO NKT cells. Furthermore, NKT cell deficiency triggered immune bias, resulting in higher levels of Th2-associated IgG1 than Th1-associated IgG2a, which failed to protect against a homologous DENV rechallenge and promoted antibody-dependent enhanced disease during secondary heterologous infections. Similarly, Th2 immunity, typified by a higher IgG4/IgG3 ratio, was associated with worsened human disease severity during secondary infections. Thus, CD1ddep NKT cells establish Th1 polarity during the early innate response to DENV, which promotes infection resolution, memory formation, and long-term protection from secondary homologous and heterologous infections in mice, with consistent associations observed in humans. These observations illustrate how early innate immune responses during primary infections can influence secondary infection outcomes.
Collapse
Affiliation(s)
- Youngjoo Choi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Wilfried Aa Saron
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Aled O'Neill
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Manouri Senanayake
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Lady Ridgeway Children's Hospital, Colombo, Sri Lanka
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore
| |
Collapse
|
11
|
Suek N, Young T, Fu J. Immune cell profiling in intestinal transplantation. Hum Immunol 2024; 85:110808. [PMID: 38762429 PMCID: PMC11283363 DOI: 10.1016/j.humimm.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Since the first published case study of human intestinal transplantation in 1967, there have been significant studies of intestinal transplant immunology in both animal models and humans. An improved understanding of the profiles of different immune cell subsets is critical for understanding their contributions to graft outcomes. While different studies have focused on the contribution of one or a few subsets to intestinal transplant, no study has integrated these data for a comprehensive overview of immune dynamics after intestinal transplant. Here, we provide a systematic review of the literature on different immune subsets and discuss their roles in intestinal transplant outcomes on multiple levels, focusing on chimerism and graft immune reconstitution, clonal alloreactivity, and cell phenotype. In Sections 1, 2 and 3, we lay out a shared framework for understanding intestinal transplant, focusing on the mechanisms of rejection or tolerance in the context of mucosal immunology and illustrate the unique role of the bidirectional graft-versus-host (GvH) and host-versus-graft (HvG) alloresponse. In Sections 4, 5 and 6, we further expand upon these concepts as we discuss the contribution of different cell subsets to intestinal transplant. An improved understanding of intestinal transplantation immunology will bring us closer to maximizing the potential of this important treatment.
Collapse
Affiliation(s)
- Nathan Suek
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tyla Young
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
12
|
Burgos-Molina AM, Téllez Santana T, Redondo M, Bravo Romero MJ. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int J Mol Sci 2024; 25:6188. [PMID: 38892375 PMCID: PMC11172443 DOI: 10.3390/ijms25116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation drives the growth of colorectal cancer through the dysregulation of molecular pathways within the immune system. Infiltration of immune cells, such as macrophages, into tumoral regions results in the release of proinflammatory cytokines (IL-6; IL-17; TNF-α), fostering tumor proliferation, survival, and invasion. Tumors employ various mechanisms to evade immune surveillance, effectively 'cloaking' themselves from detection and subsequent attack. A comprehensive understanding of these intricate molecular interactions is paramount for advancing novel strategies aimed at modulating the immune response against cancer.
Collapse
Affiliation(s)
- Antonio Manuel Burgos-Molina
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| | - Teresa Téllez Santana
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Maximino Redondo
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain
| | - María José Bravo Romero
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| |
Collapse
|
13
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Lee SW, Park HJ, Van Kaer L, Hong S. Role of CD1d and iNKT cells in regulating intestinal inflammation. Front Immunol 2024; 14:1343718. [PMID: 38274786 PMCID: PMC10808723 DOI: 10.3389/fimmu.2023.1343718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a subset of unconventional T cells that recognize glycolipid antigens in a CD1d-dependent manner, are crucial in regulating diverse immune responses such as autoimmunity. By engaging with CD1d-expressing non-immune cells (such as intestinal epithelial cells and enterochromaffin cells) and immune cells (such as type 3 innate lymphoid cells, B cells, monocytes and macrophages), iNKT cells contribute to the maintenance of immune homeostasis in the intestine. In this review, we discuss the impact of iNKT cells and CD1d in the regulation of intestinal inflammation, examining both cellular and molecular factors with the potential to influence the functions of iNKT cells in inflammatory bowel diseases such as Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Katsnelson EN, Spengler A, Domenico J, Couts KL, Loh L, Gapin L, McCarter MD, Tobin RP. Dysfunctional states of unconventional T-cell subsets in cancer. J Leukoc Biol 2024; 115:36-46. [PMID: 37837379 PMCID: PMC10843843 DOI: 10.1093/jleuko/qiad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
Unconventional T cells represent a promising therapeutic agent to overcome the current limitations of immunotherapies due to their universal T-cell receptors, ability to respond directly to cytokine stimulation, and capacity to recruit and modulate conventional immune cells in the tumor microenvironment. Like conventional T cells, unconventional T cells can enter a dysfunctional state, and the functional differences associated with this state may provide insight into the discrepancies observed in their role in antitumor immunity in various cancers. The exhaustive signature of unconventional T cells differs from conventional αβ T cells, and understanding the differences in the mechanisms underlying exhaustive differentiation in these cell types may aid in the discovery of new treatments to improve sustained antitumor responses. Ongoing clinical trials investigating therapies that leverage unconventional T-cell populations have shown success in treating hematologic malignancies and reducing the immunosuppressive tumor environment. However, several hurdles remain to extend these promising results into solid tumors. Here we discuss the current knowledge on unconventional T-cell function/dysfunction and consider how the incorporation of therapies that modulate unconventional T-cell exhaustion may aid in overcoming the current limitations of immunotherapy. Additionally, we discuss how components of the tumor microenvironment alter the functions of unconventional T cells and how these changes can affect tumor infiltration by lymphocytes and alter conventional T-cell responses.
Collapse
Affiliation(s)
- Elizabeth N Katsnelson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Andrea Spengler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Joanne Domenico
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Kasey L Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Liyen Loh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Martin D McCarter
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Richard P Tobin
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| |
Collapse
|
16
|
Minervina AA, Pogorelyy MV, Paysen S, Luening U, Degenhardt F, Franke A, Thomas PG, Rosati E. Crohn's-associated invariant T cells (CAITs) recognise small sulfonate molecules on CD1d. Gut 2023; 73:205-206. [PMID: 36428091 PMCID: PMC10715465 DOI: 10.1136/gutjnl-2022-328684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Anastasia A Minervina
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steffen Paysen
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Ulrich Luening
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, University Hospital Schleswig Holstein, Kiel, Germany
- Institute of Immunology, Christian-Albrecht University of Kiel, Kiel, Germany
| |
Collapse
|
17
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
18
|
Hassert M, Harty JT. Alt-RNAtive vaccines elicit anti-malarial T RM cells. Nat Immunol 2023; 24:1397-1398. [PMID: 37580607 DOI: 10.1038/s41590-023-01594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- Mariah Hassert
- Department of Pathology, University of Iowa-Carver College of Medicine, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, University of Iowa-Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
19
|
Liu L, Liu R, Wei C, Li D, Gao X. The role of IL-17 in lung cancer growth. Cytokine 2023; 169:156265. [PMID: 37348188 DOI: 10.1016/j.cyto.2023.156265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Interleukin 17 (IL-17) is an inflammatory cytokine with multiple roles in immune protection, immunopathology, and inflammation-related tumors. Lung cancer is inflammation-related cancer, and a large number of studies have shown that IL-17 contributes to the metastasis and progression of lung cancer. However, some studies have shown that IL17 inhibits the occurrence of lung cancer. At present, there is still some controversy about the role of IL17 in the occurrence and development of lung cancer. This review introduces the basic characteristics of IL-17 and focuses on its role in lung cancer, in order to provide a certain theoretical basis for the prevention, diagnosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Renli Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chaojie Wei
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Xiuzhu Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
20
|
Marron K, Harrity C. Correlation of peripheral blood and endometrial immunophenotyping in ART: is peripheral blood sampling useful? J Assist Reprod Genet 2023; 40:381-387. [PMID: 36574140 PMCID: PMC9935767 DOI: 10.1007/s10815-022-02696-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Using a comprehensive flow cytometric panel, simultaneously obtained mid-luteal immunophenotypes from peripheral blood and endometrium were compared and values correlated. Is a peripheral blood evaluation of reproductive immunophenotype status meritorious relative to local endometrial evaluation to directly assess the peri-implantation environment? METHODS Fifty-five patients had a mid-luteal biopsy to assess the local endometrial immunophenotype, while simultaneously providing a peripheral blood sample for analysis. Both samples were immediately assessed using a comprehensive multi-parameter panel, and lymphocyte subpopulations were described and compared. RESULTS Distinct lymphocyte proportions and percentage differences were noted across the two compartments, confirming the hypothesis that they are distinct environments. The ratio of CD4 + to CD8 + T cells were reversed between the two compartments, as were Th1 and Th2-type CD4 + T cell ratios. Despite these differences, some direct relationships were noted. Positive Pearson correlations were found between the levels of CD57 + expressing natural killer cells, CD3 + NK-T cells and CD4 + Th1 cells in both compartments. CONCLUSIONS Flow cytometric evaluation provides a rapid and objective analysis of lymphocyte subpopulations. Endometrial biopsies have become the gold standard technique to assess the uterine immunophenotype in adverse reproductive outcome, but there may still a place for peripheral blood evaluation in this context. The findings demonstrate significant variations in cellular proportions across the two regions, but some positive correlations are present. Immunological assessment of these specific peripheral blood lymphocyte subtypes may provide insight into patients with potential alterations of the uterine immune environment, without the risks and inconveniences associated with an invasive procedure.
Collapse
Affiliation(s)
- Kevin Marron
- Sims IVF Clinic, Clonskeagh Road, Clonskeagh, Dublin 14, Ireland.
| | - Conor Harrity
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
21
|
Rosati E, Rios Martini G, Pogorelyy MV, Minervina AA, Degenhardt F, Wendorff M, Sari S, Mayr G, Fazio A, Dowds CM, Hauser C, Tran F, von Schönfels W, Pochhammer J, Salnikova MA, Jaeckel C, Gigla JB, Sabet SS, Hübenthal M, Schiminsky E, Schreiber S, Rosenstiel PC, Scheffold A, Thomas PG, Lieb W, Bokemeyer B, Witte M, Aden K, Hendricks A, Schafmayer C, Egberts JH, Mamedov IZ, Bacher P, Franke A. A novel unconventional T cell population enriched in Crohn's disease. Gut 2022; 71:2194-2204. [PMID: 35264446 PMCID: PMC9554086 DOI: 10.1136/gutjnl-2021-325373] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE One of the current hypotheses to explain the proinflammatory immune response in IBD is a dysregulated T cell reaction to yet unknown intestinal antigens. As such, it may be possible to identify disease-associated T cell clonotypes by analysing the peripheral and intestinal T-cell receptor (TCR) repertoire of patients with IBD and controls. DESIGN We performed bulk TCR repertoire profiling of both the TCR alpha and beta chains using high-throughput sequencing in peripheral blood samples of a total of 244 patients with IBD and healthy controls as well as from matched blood and intestinal tissue of 59 patients with IBD and disease controls. We further characterised specific T cell clonotypes via single-cell RNAseq. RESULTS We identified a group of clonotypes, characterised by semi-invariant TCR alpha chains, to be significantly enriched in the blood of patients with Crohn's disease (CD) and particularly expanded in the CD8+ T cell population. Single-cell RNAseq data showed an innate-like phenotype of these cells, with a comparable gene expression to unconventional T cells such as mucosal associated invariant T and natural killer T (NKT) cells, but with distinct TCRs. CONCLUSIONS We identified and characterised a subpopulation of unconventional Crohn-associated invariant T (CAIT) cells. Multiple evidence suggests these cells to be part of the NKT type II population. The potential implications of this population for CD or a subset thereof remain to be elucidated, and the immunophenotype and antigen reactivity of CAIT cells need further investigations in future studies.
Collapse
Affiliation(s)
- Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Gabriela Rios Martini
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anastasia A Minervina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Soner Sari
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Gabriele Mayr
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Christel Marie Dowds
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Charlotte Hauser
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Witigo von Schönfels
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Julius Pochhammer
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Maria A Salnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Charlot Jaeckel
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Johannes Boy Gigla
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Department of Dermatology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Esther Schiminsky
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Philip C Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank POPGEN, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bernd Bokemeyer
- Interdisciplinary Crohn Colitis Centre Minden, Minden, Germany
| | - Maria Witte
- Department of General Surgery, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Alexander Hendricks
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
- Department of General Surgery, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
- Department of General Surgery, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Jan-Hendrick Egberts
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- CEITEC, Masaryk University, Brno, Czech Republic
- Dmitry Rogachev National Research Center of Pediatric Hematology, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russian Federation
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
22
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
23
|
Arjomand Fard N, Armstrong H, Perry T, Wine E. Appendix and Ulcerative Colitis: a Key to Explaining the Pathogenesis and Directing Novel Therapies? Inflamm Bowel Dis 2022; 29:151-160. [PMID: 35749298 PMCID: PMC9825289 DOI: 10.1093/ibd/izac106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 02/05/2023]
Abstract
The vermiform appendix is generally considered a redundant organ, but recent evidence suggests that the appendix could contribute to the pathogenesis of inflammatory bowel diseases, in particular ulcerative colitis (UC), and may even have a therapeutic role; however, mechanisms of the appendix involvement remain unclear. Here, we highlight current evidence on the link between the appendix and UC and consider plausible therapeutic implications. A literature search was conducted using PubMed and PubMed Central from inception to Nov 2021 using the terms "Appendix", "UC", "Appendix & UC," "Appendectomy", and "Peri-appendicular patch," including only articles published in English. Reference lists from the selected studies were manually searched and reviewed to gather additional related reports. Inflammation around the appendix ("peri-appendicular patch") has been frequently observed in UC patients without other cecal involvement, and this inflammation can even precede the onset of UC. Epidemiologic studies propose that appendectomy reduces the risk of developing UC or even the risk of flare after UC is diagnosed, although this remains controversial. We reviewed studies showing altered host-microbe interactions in the appendix in UC, which suggest that the appendix could act as a priming site for disease via alterations in the immune response and changes in microbiota carried distally to the colon. In summary, recent literature suggests a possible role for microbes and immune cells within the appendix; however, the role of the appendix in the pathogenesis of UC remains unclear. Further research could clarify the therapeutic potential related to this organ.
Collapse
Affiliation(s)
- Nazanin Arjomand Fard
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada,Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Heather Armstrong
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada,Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, Room 4-577, 11405 87th Ave, Edmonton, AB T6G 1C9, Canada,Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Troy Perry
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada,Department of Surgery, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Eytan Wine
- Address correspondence to: Dr. Eytan Wine, Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, Room 4-577, 11405 87th Ave, Edmonton, AB T6G 1C9, Canada ()
| |
Collapse
|
24
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Schmitt H, Neurath MF, Atreya R. Role of the IL23/IL17 Pathway in Crohn's Disease. Front Immunol 2021; 12:622934. [PMID: 33859636 PMCID: PMC8042267 DOI: 10.3389/fimmu.2021.622934] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) is a chronic relapsing disorder of the gastrointestinal tract and represents one of the main entities of inflammatory bowel disease (IBD). CD affects genetically susceptible patients that are influenced by environmental factors and the intestinal microbiome, which results in excessive activation of the mucosal immune system and aberrant cytokine responses. Various studies have implicated the pro-inflammatory cytokines IL17 and IL23 in the pathogenesis of CD. IL23 is a member of the IL12 family of cytokines and is able to enhance and affect the expansion of pathogenic T helper type 17 (Th17) cells through various mechanisms, including maintenance of Th17 signature genes, upregulation of effector genes or suppression of repressive factors. Moreover, IL17 and IL23 signaling is able to induce a cascade of pro-inflammatory molecules like TNF, IFNγ, IL22, lymphotoxin, IL1β and lipopolysaccharide (LPS). Here, IL17A and TNF are known to mediate signaling synergistically to drive expression of inflammatory genes. Recent advances in understanding the immunopathogenetic mechanisms underlying CD have led to the development of new biological therapies that selectively intervene and inhibit inflammatory processes caused by pro-inflammatory mediators like IL17 and IL23. Recently published data demonstrate that treatment with selective IL23 inhibitors lead to markedly high response rates in the cohort of CD patients that failed previous anti-TNF therapy. Macrophages are considered as a main source of IL23 in the intestine and are supposed to play a key role in the molecular crosstalk with T cell subsets and innate lymphoid cells in the gut. The following review focuses on mechanisms, pathways and specific therapies in Crohn's disease underlying the IL23/IL17 pathway.
Collapse
Affiliation(s)
- Heike Schmitt
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Markus F. Neurath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
26
|
Heinrichs D, Brandt EF, Fischer P, Köhncke J, Wirtz TH, Guldiken N, Djudjaj S, Boor P, Kroy D, Weiskirchen R, Bucala R, Wasmuth HE, Strnad P, Trautwein C, Bernhagen J, Berres ML. Unexpected Pro-Fibrotic Effect of MIF in Non-Alcoholic Steatohepatitis Is Linked to a Shift in NKT Cell Populations. Cells 2021; 10:252. [PMID: 33525493 PMCID: PMC7918903 DOI: 10.3390/cells10020252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with anti-fibrotic properties in toxic liver injury models and anti-steatotic functions in non-alcoholic fatty liver disease (NAFLD) attributed to the CD74/AMPK signaling pathway. As NAFLD progression is associated with fibrosis, we studied MIF function during NAFLD-associated liver fibrogenesis in mice and men by molecular, histological and immunological methods in vitro and in vivo. After NASH diet feeding, hepatic Mif expression was strongly induced, an effect which was absent in Mif∆hep mice. In contrast to hepatotoxic fibrosis models, NASH diet-induced fibrogenesis was significantly abrogated in Mif-/- and Mif∆hep mice associated with a reduced accumulation of the pro-fibrotic type-I NKT cell subpopulation. In vitro, MIF skewed the differentiation of NKT cells towards the type-I subtype. In line with the murine results, expression of fibrosis markers strongly correlated with MIF, its receptors, and markers of NKT type-I cells in NASH patients. We conclude that MIF expression is induced during chronic metabolic injury in mice and men with hepatocytes representing the major source. In NAFLD progression, MIF contributes to liver fibrogenesis skewing NKT cell polarization toward a pro-fibrotic phenotype highlighting the complex, context-dependent role of MIF during chronic liver injury.
Collapse
Affiliation(s)
- Daniel Heinrichs
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Elisa F. Brandt
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Petra Fischer
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Janine Köhncke
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Theresa H. Wirtz
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Nurdan Guldiken
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Sonja Djudjaj
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.D.); (P.B.)
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.D.); (P.B.)
| | - Daniela Kroy
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, 52074 Aachen, Germany;
| | - Richard Bucala
- Rheumatology Section of the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA;
| | - Hermann E. Wasmuth
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Pavel Strnad
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute of Stroke and Dementia Research, LMU Klinikum, Lud-wig-Maximilian-University (LMU), 81377 Munich, Germany;
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (D.H.); (E.F.B.); (P.F.); (J.K.); (T.H.W.); (N.G.); (D.K.); (H.E.W.); (P.S.); (C.T.)
| |
Collapse
|
27
|
Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J Immunol Res 2021; 2021:6633824. [PMID: 33506055 PMCID: PMC7808823 DOI: 10.1155/2021/6633824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, cell-mediated immune response in malignant neoplasms has become the focus in immunotherapy against cancer. However, in leukemia, most studies on the cytotoxic potential of T cells have concentrated only on T cells that recognize peptide antigens (Ag) presented by polymorphic molecules of the major histocompatibility complex (MHC). This ignores the great potential of unconventional T cell populations, which include gamma-delta T cells (γδ), natural killer T cells (NKT), and mucosal-associated invariant T cells (MAIT). Collectively, these T cell populations can recognize lipid antigens, specially modified peptides and small molecule metabolites, in addition to having several other advantages, which can provide more effective applications in cancer immunotherapy. In recent years, these cell populations have been associated with a repertoire of anti- or protumor responses and play important roles in the dynamics of solid tumors and hematological malignancies, thus, encouraging the development of new investigations in the area. This review focuses on the current knowledge regarding the role of unconventional T cell populations in the antitumor immune response in leukemia and discusses why further studies on the immunotherapeutic potential of these cells are needed.
Collapse
|
28
|
High-Dimensional Flow Cytometry Analysis of Regulatory Receptors on Human T Cells, NK Cells, and NKT Cells. Methods Mol Biol 2021; 2194:255-290. [PMID: 32926371 DOI: 10.1007/978-1-0716-0849-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of flow cytometry has witnessed rapid technological advancements in the last few decades. While the founding principles of fluorescent detection on cells (or particles) within a uniform fluid stream remains largely unchanged, the availability more sensitive cytometers with the ability to multiplex more and more florescent signals has resulted in very complex high-order assays. This results in the co-use of fluorophores with increased levels of emission overlap and/or spillover spreading than in years past and thus requires careful and well thought out planning for flow cytometry assay development. As an example, we present the development of a large 18-color (20 parameter) flow cytometry assay designed to take an in depth analysis of effector lymphocyte phenotypes, with careful attention to assay controls and panel design.
Collapse
|
29
|
de Lima Moreira M, Souter MNT, Chen Z, Loh L, McCluskey J, Pellicci DG, Eckle SBG. Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy 2020; 75:2477-2490. [PMID: 32181878 PMCID: PMC11056244 DOI: 10.1111/all.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Vic., Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | | | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
30
|
Immunological distinctions between nonalcoholic steatohepatitis and hepatocellular carcinoma. Exp Mol Med 2020; 52:1209-1219. [PMID: 32770081 PMCID: PMC8080649 DOI: 10.1038/s12276-020-0480-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, ranges from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), which is a more aggressive form characterized by hepatocyte injury, inflammation, and fibrosis. Increasing evidence suggests that NASH is a risk factor for hepatocellular carcinoma (HCC), which is the fifth most common cancer worldwide and the second most common cause of cancer-related death. Recent studies support a strong mechanistic link between the NASH microenvironment and HCC development. The liver has a large capacity to remove circulating pathogens and gut-derived microbial compounds. Thus, the liver is a central player in immunoregulation. Altered immune responses are tightly associated with the development of NASH and HCC. The objective of this study was to differentiate the roles of specific immune cell subsets in NASH and HCC pathogenesis. Clarifying the role of specific cells in the immune system in the transition from non-alcoholic fatty liver disease (NAFLD) to liver cancer will help to understand disease progression and may open avenues towards new preventive and therapeutic strategies. NAFLD is the most common chronic liver disease. Growing evidence suggests that its most aggressive form, non-alcoholic steatohepatitis (NASH), can promote the development of liver cancer, the second most common cause of cancer deaths worldwide. Chang-Woo Lee and colleagues at Sungkyunkwan University, Suwon, South Korea review the immunological distinction between NASH and liver cancer, focusing on the levels and activities of six key types of immune system cells. Chronic inflammation mediated by the immune system can create conditions for NAFLD, NASH and liver cancer to develop and worsen.
Collapse
|
31
|
Abstract
Intestinal fibrosis is a common outcome of inflammatory bowel diseases (IBDs), becoming clinically apparent in 40% of patients with Crohn's disease and 5% of those with ulcerative colitis. Effective pharmacological treatments aimed at controlling or reversing fibrosis progression are unavailable. Fibrosis is characterized by an excessive local accumulation of extracellular matrix proteins (mainly collagen), as a result of their increased production by activated myofibroblasts and/or their reduced degradation by specific matrix metalloproteinases. Initiation and progression of fibrosis are modulated by several pro- and anti-fibrogenic molecules. In recent years, the cytokine interleukin-17 (IL-17) has been integrated into the pathogenesis of fibrosis, although its precise contribution to IBD, and especially to its related intestinal fibrosis, remains controversial. Several data suggest both a pro-inflammatory and pro-fibrotic action and a protective function of the Th17/IL-17 immune response. A recent study has demonstrated that the treatment with anti-IL-17 antibody significantly alleviated 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colorectal fibrosis in mice by down-regulating the expression of collagen 3 and several pro-fibrogenic cytokines. Here, we describe and discuss the possible involvement of the Th17/IL-17 immune response in the initiation ad progression of intestinal fibrosis.
Collapse
|
32
|
Lee C, Hong SN, Kim YH. A glycolipid adjuvant, 7DW8-5, provides a protective effect against colonic inflammation in mice by the recruitment of CD1d-restricted natural killer T cells. Intest Res 2020; 18:402-411. [PMID: 32248672 PMCID: PMC7609397 DOI: 10.5217/ir.2019.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 01/31/2023] Open
Abstract
Background/Aims The modulation of CD1d-restricted natural killer T (NKT) cells by glycolipids has been considered as a potential therapy against immunologic diseases, including inflammatory bowel disease. A recently identified a glycolipid analog, 7DW8-5, which is derived from α-galactosylceramide (α-GalCer), is as much as 100-fold more active at stimulating both human and mice NKT cells when compared to α-GalCer. We explored the effects of 7DW8-5 in mouse models of acute and chronic colitis. Methods We investigated the effects of 7DW8-5 on intestinal inflammation by assessing the effects of 7dW8-5 on a murine dextran sulfate sodium (DSS)-induced acute colitis model and a chronic colitis-associated tumor model. Results The acute DSS-induced colitis model showed a dose-dependent response to 7DW8-5, as mice administered 7DW8-5 showed a significant improvement in DSS-induced colitis based on their disease activity index, histologic analysis, and serum C-reactive protein levels, when compared to mice administered vehicle alone. However, DSS-induced colitis in CD1d-KO mice showed no response to 7DW8-5. A fluorescence-activating cell sorting analysis revealed an increase in NKT cells in colonic tissues of 7DW8-5-treated mice. RNA-seq and real-time quantitative polymerase chain reaction showed a significant increase in the expression of interleukin (IL)-4, IL-13, and interferon-gamma in 7DW8-5-treated mice. In addition, 7DW8-5 treatment reduced colitis-associated tumor development in an azoxymethane/DSS mouse model. Conclusions 7DW8-5 activates NKT cells through CD1d and provides a protective effect against intestinal inflammation in mice. Therefore, 7DW8-5 may be a promising therapeutic agent for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Chansu Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
VanderLaan PA, Reardon CA, Cabana VG, Wang CR, Getz GS. Invariant Natural Killer T-Cells and Total CD1d Restricted Cells Differentially Influence Lipid Metabolism and Atherosclerosis in Low Density Receptor Deficient Mice. Int J Mol Sci 2019; 20:ijms20184566. [PMID: 31540125 PMCID: PMC6770011 DOI: 10.3390/ijms20184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct subset of lymphocytes that bridge the innate and adaptive immune response and can be divided into type I invariant NKT cells (iNKT) and type II NKT cells. The objective of this study is to examine the effects of NKT cell on lipid metabolism and the initiation and progression of atherosclerosis in LDL receptor deficient (LDLR−/−) mice. Mice were fed an atherogenic diet for 4 or 8 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured. The selective absence of iNKT cells in Jα18−/−LDLR−/− mice led to an increase in plasma cholesterol levels in female mice. Transgenic Vα14tg/LDLR−/− mice with elevated numbers of iNKT cells had increased late atherosclerosis of the innominate artery, though absence of either iNKT cells or all NKT cells and other CD1d expressing cells had varying effects on atherosclerotic lesion burden in the ascending aortic arch and aortic root. These studies not only highlight the potential modulatory role played by NKT cells in atherosclerosis and lipid metabolism, but also raise the possibility that divergent roles may be played by iNKT and CD1d restricted cells such as type II NKT cells or other CD1d expressing cells.
Collapse
Affiliation(s)
- Paul A VanderLaan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, 633 Clark St, Evanston, IL 60208, USA.
| | - Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Allogeneic mesenchymal stromal cells for refractory luminal Crohn's disease: A phase I-II study. Dig Liver Dis 2018; 50:1251-1255. [PMID: 30195816 DOI: 10.1016/j.dld.2018.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
|
35
|
Marrero I, Maricic I, Feldstein AE, Loomba R, Schnabl B, Rivera-Nieves J, Eckmann L, Kumar V. Complex Network of NKT Cell Subsets Controls Immune Homeostasis in Liver and Gut. Front Immunol 2018; 9:2082. [PMID: 30254647 PMCID: PMC6141878 DOI: 10.3389/fimmu.2018.02082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/22/2018] [Indexed: 12/23/2022] Open
Abstract
The liver-gut immune axis is enriched in several innate immune cells, including innate-like unconventional and adaptive T cells that are thought to be involved in the maintenance of tolerance to gut-derived antigens and, at the same time, enable effective immunity against microbes. Two subsets of lipid-reactive CD1d-restricted natural killer T (NKT) cells, invariant NKT (iNKT) and type II NKT cells present in both mice and humans. NKT cells play an important role in regulation of inflammation in the liver and gut due to their innate-like properties of rapid secretion of a myriad of pro-inflammatory and anti-inflammatory cytokines and their ability to influence other innate cells as well as adaptive T and B cells. Notably, a bi-directional interactive network between NKT cells and gut commensal microbiota plays a crucial role in this process. Here, we briefly review recent studies related to the cross-regulation of both NKT cell subsets and how their interactions with other immune cells and parenchymal cells, including hepatocytes and enterocytes, control inflammatory diseases in the liver, such as alcoholic and non-alcoholic steatohepatitis, as well as inflammation in the gut. Overwhelming experimental data suggest that while iNKT cells are pathogenic, type II NKT cells are protective in the liver. Since CD1d-dependent pathways are highly conserved from mice to humans, a detailed cellular and molecular understanding of these immune regulatory pathways will have major implications for the development of novel therapeutics against inflammatory diseases of liver and gut.
Collapse
Affiliation(s)
- Idania Marrero
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Igor Maricic
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bernd Schnabl
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jesus Rivera-Nieves
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Vipin Kumar
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Singh AK, Tripathi P, Cardell SL. Type II NKT Cells: An Elusive Population With Immunoregulatory Properties. Front Immunol 2018; 9:1969. [PMID: 30210505 PMCID: PMC6120993 DOI: 10.3389/fimmu.2018.01969] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Natural killer T (NKT) cells are unique unconventional T cells that are reactive to lipid antigens presented on the non-polymorphic major histocompatibility class (MHC) I-like molecule CD1d. They have characteristics of both innate and adaptive immune cells, and have potent immunoregulatory roles in tumor immunity, autoimmunity, and infectious diseases. Based on their T cell receptor (TCR) expression, NKT cells are divided into two subsets, type I NKT cells with an invariant TCRα-chain (Vα24 in humans, Vα14 in mice) and type II NKT cells with diverse TCRs. While type I NKT cells are well-studied, knowledge about type II NKT cells is still limited, and it is to date only possible to identify subsets of this population. However, recent advances have shown that both type I and type II NKT cells play important roles in many inflammatory situations, and can sometimes regulate the functions of each other. Type II NKT cells can be both protective and pathogenic. Here, we review current knowledge on type II NKT cells and their functions in different disease settings and how these cells can influence immunological outcomes.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Natural killer T cells and ulcerative colitis. Cell Immunol 2018; 335:1-5. [PMID: 30638678 DOI: 10.1016/j.cellimm.2018.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is one of the two major forms of inflammatory bowel disease (IBD). Both innate immunity and adaptive immunity are aberrant in IBD. The pathogenesis of UC includes abnormal inflammation and immune responses of the digestive tract. Natural killer T (NKT) cells participate in the innate and adaptive immune responses, together with a vast array of cytokines. Recent studies suggested that IL-13, IL5 and IL-4 are involved in the occurrence and the development of UC. Manipulating NKT cells may be a potential strategy to reconstruct the abnormal immune responses in UC. In this review, we explore the roles of NKT cells and cytokines in UC. Additionally, neutralizing antibodies and inhibitors of cytokines produced by NKT cells or their receptors are also discussed as novel therapeutic choices for UC.
Collapse
|
38
|
Endo-Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology 2018; 159:1419-1432. [PMID: 29409022 DOI: 10.1210/en.2017-03141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Liver X receptor (LXR) α expression is mainly localized to metabolic tissues, such as the liver, whereas LXRβ is ubiquitously expressed. LXRα is activated by oxysterols and plays an important role in the regulation of lipid metabolism in metabolic tissues. In macrophages, LXRs stimulate reverse cholesterol transport and regulate immune responses. Although a high-cholesterol diet induces severe steatohepatitis in LXRα-knockout (KO) mice, the underlying mechanisms linking lipid metabolism and immune responses remain largely unknown. In this study, we investigated the role of LXRα in the pathogenesis of steatohepatitis by assessing the effects of a high-fat and high-cholesterol diet (HFCD) on hepatic immune cell proportion and function as well as lipid metabolism in wild-type (WT) and LXRα-KO mice. HFCD feeding induced severe steatohepatitis in LXRα-KO mice compared with WT mice. These mice had higher cholesterol levels in the plasma and the liver and dysregulated expression of LXR target and proinflammatory genes in both whole liver samples and isolated hepatic mononuclear cells. Flow cytometry showed an increase in CD68+CD11b+ Kupffer cells/macrophages and a decrease in invariant natural killer T cells in the liver of HFCD-fed LXRα-KO mice. These mice were more susceptible to lipopolysaccharide-induced liver injury and resistant to inflammatory responses against α-galactosylceramide or concanavalin-A treatment. The findings provide evidence for activation of bone marrow-derived Kupffer cells/macrophages and dysfunction of invariant natural killer T cells in LXRα-KO mouse liver. These findings indicate that LXRα regulates hepatic immune function along with lipid metabolism and protects against the pathogenesis of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Naoki Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
39
|
Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev 2018; 17:142-154. [PMID: 29180124 DOI: 10.1016/j.autrev.2017.11.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathogenesis of autoimmunity remains to be fully elucidated, although the contribution of genetic and environmental factors is generally recognized. Despite autoimmune conditions are principally due to T and B lymphocytes, NK cells also appear to play a role in the promotion and/or maintenance of altered adaptive immune responses or in peripheral tolerance mechanisms. Although NK cells are components of the innate immune system, they shows characteristics of the adaptive immune system, such as the expansion of pathogen-specific cells, the generation of long-lasting "memory" cells able to persist upon cognate antigen encounter, and the possibility to induce an increased secondary recall response to re-challenge. Human NK cells are generally identified as CD56+CD3-, conversely CD56+CD3+ cells represent a mixed population of NK-like T (NK T) cells and antigen-experienced T cells showing the up-regulation of several NK cell markers. CD56dim constitute about 90% of NK cells in the peripheral blood, they are mature and involved in cytotoxicity responses; CD56bright instead are more immature, mostly involved in cytokine production, having only a limited role in cytolytic responses, keen to leave the blood vessels as the principal population observed in lymph nodes. NK cells have been identified also in non-lymphoid tissues since, in pathologic conditions, they can quickly reach the target organs. A cross-talk between NK with dendritic cells and T cells is established throughout different receptor-ligand bindings. Several studies support the correlation between NK cell number and/or functional alterations, such as a defective cytotoxic activity and several autoimmune conditions. Among the different autoimmune pathologies and even within the same disease, NK cell function is significantly different either promoting or even protecting against the onset of the autoimmune condition. In this Review, we discuss recent literature supporting the role played by NK cells, as a bridge between innate and adaptive immunity, in the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Alessandra Fierabracci
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy.
| |
Collapse
|
40
|
Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol 2017; 314:L6-L16. [PMID: 28860146 DOI: 10.1152/ajplung.00344.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The IL-17 family of cytokines has emerged over the last two decades as a pleiotropic group of molecules that function in a wide variety of both beneficial and detrimental (pathological) processes, mainly in mucosal barrier tissue. The beneficial effects of IL-17 expression are especially important in the lung, where exposure to foreign agents is abundant. IL-17A plays an important role in protection from both extracellular bacteria and fungi, as well as viruses that infect cells of the mucosal tracts. IL-17 coregulated cytokines, such as IL-22, are involved in maintaining epithelial cell homeostasis and participate in epithelial cell repair/regeneration following inflammatory insults. Thus, the IL-17/IL-22 axis is important in both responding to, and recovering from, pathogens. However, aberrant expression or overexpression of IL-17 cytokines contributes to a number of pathological outcomes, including asthma, pneumonitis, and generation or exacerbation of pulmonary fibrosis. This review covers the good, bad, and ugly aspects of IL-17 in the lung.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
41
|
Grabarz F, Aguiar CF, Correa-Costa M, Braga TT, Hyane MI, Andrade-Oliveira V, Landgraf MA, Câmara NOS. Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis. Inflammopharmacology 2017; 26:491-504. [PMID: 28779430 DOI: 10.1007/s10787-017-0383-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Pulmonary fibrosis is a result of an abnormal wound healing in lung tissue triggered by an excessive accumulation of extracellular matrix proteins, loss of tissue elasticity, and debit of ventilatory function. NKT cells are a major source of Th1 and Th2 cytokines and may be crucial in the polarization of M1/M2 macrophages in pulmonary fibrogenesis. Although there appears to be constant scientific progress in that field, pulmonary fibrosis still exhibits no current cure. From these facts, we hypothesized that NKT cells could influence the development of pulmonary fibrosis via modulation of macrophage activation. Wild type (WT) and NKT type I cell-deficient mice (Jα18-/-) were subjected to the protocol of bleomycin-induced pulmonary fibrosis with or without treatment with NKT cell agonists α-galactosylceramide and sulfatide. The participation of different cell populations, collagen deposition, and protein levels of different cytokines involved in inflammation and fibrosis was evaluated. The results indicate a benign role of NKT cells in Jα18-/- mice and in wild-type α-galactosylceramide-sulfatide-treated groups. These animals presented lower levels of collagen deposition, fibrogenic molecules such as TGF-β and vimentin and improved survival rates. In contrast, WT mice developed a Th2-driven response augmenting IL-4, 5, and 13 protein synthesis and increased collagen deposition. Furthermore, the arginase-1 metabolic pathway was downregulated in wild-type NKT-activated and knockout mice indicating lower activity of M2 macrophages in lung tissue. Hence, our data suggest that NKT cells play a protective role in this experimental model by down modulating the Th2 milieu, inhibiting M2 polarization and finally preventing fibrosis.
Collapse
Affiliation(s)
- Felipe Grabarz
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Cristhiane Favero Aguiar
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Matheus Correa-Costa
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Tárcio Teodoro Braga
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Meire I Hyane
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Vinícius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil
| | - Maristella Almeida Landgraf
- Laboratory of Hypertension, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Immunology Department, University of São Paulo, São Paulo, Brazil. .,Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil. .,Institute of Biomedical Sciences IV, University of São Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
42
|
Zamora-Chimal J, Hernández-Ruiz J, Becker I. NKT cells in leishmaniasis. Immunobiology 2017; 222:641-646. [DOI: 10.1016/j.imbio.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
43
|
Hung JT, Huang JR, Yu AL. Tailored design of NKT-stimulatory glycolipids for polarization of immune responses. J Biomed Sci 2017; 24:22. [PMID: 28335781 PMCID: PMC5364570 DOI: 10.1186/s12929-017-0325-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan. .,Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
44
|
de Andrés C, Fernández-Paredes L, Tejera-Alhambra M, Alonso B, Ramos-Medina R, Sánchez-Ramón S. Activation of Blood CD3 +CD56 +CD8 + T Cells during Pregnancy and Multiple Sclerosis. Front Immunol 2017; 8:196. [PMID: 28280497 PMCID: PMC5322280 DOI: 10.3389/fimmu.2017.00196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
A striking common feature of most autoimmune diseases is their female predominance, with at least twice as common among women than men in relapsing–remitting multiple sclerosis (MS), the prevailing MS clinical form with onset at childbearing age. This fact, together with the protective effect on disease activity during pregnancy, when there are many biological changes including high levels of estrogens and progesterone, puts sex hormones under the spotlight. The role of natural killer (NK) and NKT cells in MS disease beginning and course is still to be elucidated. The uterine NK (uNK) cells are the most predominant immune population in early pregnancy, and the number and function of uNK cells infiltrating the endometrium are sex-hormones’ dependent. However, there is controversy on the role of estrogen or progesterone on circulating NK (CD56dim and CD56bright) and NKT cells’ subsets. Here, we show a significantly increased activation of CD3+CD56+CD8+ cells in pregnant MS women (MSP) compared with non-pregnant MS women (NPMS) (p < 0.001) and even with respect to healthy pregnant women (HP, p < 0.001), remaining increased even after delivery. The dynamics of expression of early activation marker CD69 on CD3+CD56+CD8+ cells showed a progressive statistically significant increase along the gestation trimesters (T) and at postpartum (PP) with respect to NPMS (1T: p = 0.018; 2T: p = 0.004; 3T: p < 0.001; PP: p = 0.001). In addition, early activation expression of CD69 on CD3+CD56+CD8+ cells was higher in MSP than HP in the first two trimesters of gestation (p = 0.004 and p = 0.015, respectively). NPMS showed significantly increased cytotoxic/regulatory NK ratio compared with healthy controls (p < 0.001). On the other hand, gender studies showed no differences between MS women and men in NK and CD3+CD56+CD8+ cells’ subsets. Our findings may add on the understanding of the regulatory axis in MS during pregnancy. Further studies on specific CD8+ NKT cells function and their role in pregnancy beneficial effects on MS are warranted to move forward more effective MS treatments.
Collapse
Affiliation(s)
- Clara de Andrés
- Department of Neurology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | | | - Marta Tejera-Alhambra
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Bárbara Alonso
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Rocío Ramos-Medina
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
45
|
|
46
|
Tian Y, Sette A, Weiskopf D. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Front Immunol 2016; 7:531. [PMID: 28003809 PMCID: PMC5141332 DOI: 10.3389/fimmu.2016.00531] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
47
|
Neyt K, GeurtsvanKessel CH, Lambrecht BN. Double-negative T resident memory cells of the lung react to influenza virus infection via CD11c(hi) dendritic cells. Mucosal Immunol 2016; 9:999-1014. [PMID: 26376363 DOI: 10.1038/mi.2015.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/22/2015] [Indexed: 02/04/2023]
Abstract
Immunity to Influenza A virus (IAV) is controlled by conventional TCRαβ(+) CD4(+) and CD8(+) T lymphocytes, which mediate protection or cause immunopathology. Here, we addressed the kinetics, differentiation, and antigen specificity of CD4(-)CD8(-) double-negative (DN) T cells. DNT cells expressed intermediate levels of TCR/CD3 and could be further divided in γδ T cells, CD1d-reactive type I NKT cells, NK1.1(+) NKT-like cells, and NK1.1(-) DNT cells. NK1.1(-) DNT cells had a separate antigen-specific repertoire in the steady-state lung, and expanded rapidly in response to IAV infection, irrespectively of the severity of infection. Up to 10% of DNT cells reacted to viral nucleoprotein. Reinfection experiments with heterosubtypic IAV revealed that viral replication was a major trigger for recruitment. Unlike conventional T cells, the NK1.1(-) DNT cells were in a preactivated state, expressing memory markers CD44, CD11a, CD103, and the cytotoxic effector molecule FasL. DNT cells resided in the lung parenchyma, protected from intravascular labeling with CD45 antibody. The recruitment and maintenance of CCR2(+) CCR5(+) CXCR3(+) NK1.1(-) DNT cells depended on CD11c(hi) dendritic cells (DCs). Functionally, DNT cells controlled the lung DC subset balance, suggesting they might act as immunoregulatory cells. In conclusion, we identify activation of resident memory NK1.1(-) DNT cells as an integral component of the mucosal immune response to IAV infection.
Collapse
Affiliation(s)
- K Neyt
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - B N Lambrecht
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
49
|
Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 2016; 5:e60. [PMID: 26900473 PMCID: PMC4735066 DOI: 10.1038/cti.2015.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.
Collapse
|
50
|
Schrumpf E, Tan C, Karlsen TH, Sponheim J, Björkström NK, Sundnes O, Alfsnes K, Kaser A, Jefferson DM, Ueno Y, Eide TJ, Haraldsen G, Zeissig S, Exley MA, Blumberg RS, Melum E. The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology 2015; 62:1249-59. [PMID: 25855031 PMCID: PMC4589438 DOI: 10.1002/hep.27840] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/07/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED Cholangiocytes express antigen-presenting molecules, but it has been unclear whether they can present antigens. Natural killer T (NKT) cells respond to lipid antigens presented by the major histocompatibility complex class I-like molecule CD1d and are abundant in the liver. We investigated whether cholangiocytes express CD1d and present lipid antigens to NKT cells and how CD1d expression varies in healthy and diseased bile ducts. Murine and human cholangiocyte cell lines as well as human primary cholangiocytes expressed CD1d as determined by flow cytometry and western blotting. Murine cholangiocyte cell lines were able to present both exogenous and endogenous lipid antigens to invariant and noninvariant NKT cell hybridomas and primary NKT cells in a CD1d-dependent manner. A human cholangiocyte cell line, cholangiocarcinoma cell lines, and human primary cholangiocytes also presented exogenous CD1d-restricted antigens to invariant NKT cell clones. CD1d expression was down-regulated in the biliary epithelium of patients with late primary sclerosing cholangitis, primary biliary cirrhosis, and alcoholic cirrhosis compared to healthy controls. CONCLUSIONS Cholangiocytes express CD1d and present antigens to NKT cells and CD1d expression is down-regulated in diseased biliary epithelium, findings which show that the biliary epithelium can activate an important lymphocyte subset of the liver. This is a potentially important immune pathway in the biliary system, which may be capable of regulating inflammation in the context of biliary disease.
Collapse
Affiliation(s)
- Elisabeth Schrumpf
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Corey Tan
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tom H. Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jon Sponheim
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Laboratory of Immunohistochemistry and Immunopathology, Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Liver Immunology Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olav Sundnes
- Laboratory of Immunohistochemistry and Immunopathology, Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kristian Alfsnes
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Arthur Kaser
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Douglas M. Jefferson
- Department of Integrative Physiology and Pathobiology, Sackler School, Tufts University School of Medicine, Boston, MA, USA
| | - Yoshiyuki Ueno
- Division of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tor J. Eide
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Guttorm Haraldsen
- Laboratory of Immunohistochemistry and Immunopathology, Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sebastian Zeissig
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mark A. Exley
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Medical & Human Sciences, University of Manchester, Manchester, UK
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Espen Melum
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|