1
|
Mohammadmoradi S, Driehaus ER, Alfar HR, Joshi S, Whiteheart SW. VAMP8 Deficiency Attenuates AngII-Induced Abdominal Aortic Aneurysm Formation via Platelet Reprogramming and Enhanced ECM Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.635525. [PMID: 39975169 PMCID: PMC11838444 DOI: 10.1101/2025.02.03.635525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND As vascular sentries, platelets, and their ability to release a host of bioactive molecules, are critical for vascular homeostasis as well as hemostasis. Despite data linking platelet activation to abdominal aortic aneurysms (AAA) and rupture, the underlying mechanisms remain poorly understood. This study addresses the hypothesis that VAMP8, the primary v-SNARE controlling platelet exocytosis, contributes to AAA formation. METHODS AND RESULTS In an AngII-infused hypercholesterolemic mouse model, we observed significant platelet consumption, indicated by decreased platelet counts at both acute (5-day) and chronic (28-day) time points. Platelets accumulated at sites of elastin degradation and within false lumens of the abdominal aorta after 28 days of AngII infusion. Bulk RNA sequencing analysis of washed platelets and their releasates after 5 days of AngII infusion revealed significant transcriptomic changes, suggesting rapid reprogramming of platelet function. Parallel RNA-seq analysis of suprarenal aortic tissue highlighted changes in genes associated with extracellular matrix (ECM) organization, inflammation, and platelet signaling, linking platelets to vascular remodeling suggesting a "platelet-aorta axis". Laser speckle imaging in a FeCl₃ injury model confirmed that VAMP8 deficiency impaired platelet function, resulting in delayed thrombosis. In vivo experiments demonstrated that VAMP8⁻/⁻ mice were protected against AngII-induced AAA and aortic rupture. Aortic diameter analysis further revealed that VAMP8 deficiency significantly attenuated AngII-driven aortic pathology. RNA-seq analysis of platelets and aortic tissue suggests that loss of VAMP8 affects expression of genes controlling ECM degradation and aortic wall stability consistent with the protective effect of VAMP8 loss on AAA. CONCLUSION Short-term AngII infusion appears to reprogram the platelet transcriptome, which may affect the aorta and contribute to AAA formation. Controlling cargo release from platelets via VAMP8 deficiency results in profound attenuation of aortic aneurysms. This introduces a novel paradigm for understanding the impact of reprogrammed platelet cargo secretion and function in aortopathies. Highlights Platelet transcriptome is altered at early aneurysmal stage.VAMP8 deficiency attenuates aortic aneurysms, potentially via enhanced ECM stability.VAMP8 deficiency significantly alters various genes contributing to aortic wall structure and stability in both platelets and suprarenal aortic tissue.
Collapse
|
2
|
Coenen DM, Alfar HR, Whiteheart SW. Platelet endocytosis and α-granule cargo packaging are essential for normal skin wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636051. [PMID: 39975047 PMCID: PMC11838500 DOI: 10.1101/2025.02.01.636051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The high prevalence of chronic wounds, i.e., 2.5-3% of the US population, causes a large social and financial burden. Physiological wound healing is a multi-step process that involves different cell types and growth factors. Platelet-rich plasma or platelet-derived factors have been used to accelerate wound repair, but their use has been controversial with mixed results. Thus, a detailed functional understanding of platelet functions in wound healing beyond hemostasis is needed. This study investigated the importance of platelet α-granule cargo packaging and endocytosis in a dorsal full-thickness excisional skin wound model using mice with defects in α-granule cargo packaging (Nbeal2 -/- mice) and endocytosis (platelet-specific Arf6 -/- and VAMP2/3 Δ mice). We found that proper kinetic and morphological healing of dorsal skin wounds in mice requires both de novo as well as endocytosed platelet α-granule cargo. Histological and morphometric analyses of cross-sectional wound sections illustrated that mice with defects in α-granule cargo packaging or platelet endocytosis had delayed (epi)dermal regeneration in both earlier and advanced healing. This was reflected by reductions in wound collagen and muscle/keratin content, delayed scab formation and/or resolution, re-epithelialization, and cell migration and proliferation. Molecular profiling analysis of wound extracts showed that the impact of platelet function extends beyond hemostasis to the inflammation, proliferation, and tissue remodeling phases via altered expression of several bioactive molecules, including IL-1β, VEGF, MMP-9, and TIMP-1. These findings provide a basis for advances in clinical wound care through a better understanding of key mechanistic processes and cellular interactions in (patho)physiological wound healing. Key points De novo and endocytosed platelet α-granule cargo support physiological skin wound healing Platelet function in wound healing extends to the inflammation, proliferation, and tissue remodeling phases.
Collapse
|
3
|
Faria PCL, Resende RS, Cardoso AM. Metastasis and angiogenesis in cervical cancer: key aspects of purinergic signaling in platelets and possible therapeutic targets. Purinergic Signal 2024; 20:607-616. [PMID: 38753131 PMCID: PMC11554953 DOI: 10.1007/s11302-024-10020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/09/2024] [Indexed: 11/13/2024] Open
Abstract
Cervical cancer ranks as the fourth most common and fatal cancer among women worldwide. Studies have demonstrated a strong association between purinergic platelet signaling and tumor progression in this type of cancer. The literature shows that neoplastic cells, when in the bloodstream, secrete adenosine triphosphate (ATP) and adenosine nucleotide diphosphate (ADP) that act on their corresponding platelet P2Y and P2X receptors. The interaction of these nucleotides with their receptors results in platelet activation and degranulation, ensuing several consequences, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, matrix metalloproteinases, ADP, and ATP. These molecules play essential roles in angiogenesis and tumor metastasis in cervical cancer. Several purinergic receptors are found in endothelial cells. Their activation, especially P2Y2, by the nucleotides released by platelets can induce relaxation of the endothelial barrier and consequent extravasation of tumor cells, promoting the development of metastases. Cancer cells that enter the bloodstream during the metastatic process are also subject to high shear stress and immune surveillance. In this context, activated platelets bind to circulating tumor cells and protect them against shear stress and the host's immune system, especially against natural killer cells, facilitating their spread throughout the body. Furthermore, activation of the P2Y12 receptor present on the platelet surface promotes the release of VEGF, the main inducer of angiogenesis in cervical cancer, in addition to increasing the concentration of several other pro-angiogenic molecules. Therefore, this review will address the role of platelet purinergic signaling in tumor progression of cervical cancer and propose possible therapeutic targets.
Collapse
Affiliation(s)
- Paula C L Faria
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Rackel S Resende
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Andréia M Cardoso
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
4
|
Ye R, Zhu Z, Gu T, Cao D, Jiang K, Dai Q, Xing K, Jiang Y, Zhou S, Cai P, Leong DT, Yu M, Song J. Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant. Nat Commun 2024; 15:5557. [PMID: 38956415 PMCID: PMC11219873 DOI: 10.1038/s41467-024-49933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Rui Ye
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyu Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Tianyi Gu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Dengjie Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Dai
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yifan Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Siyi Zhou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Ping Cai
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
5
|
Wang H, Zhu Y, Liu H, Liang T, Wei Y. Advances in Drug Discovery Targeting Lysosomal Membrane Proteins. Pharmaceuticals (Basel) 2023; 16:ph16040601. [PMID: 37111358 PMCID: PMC10145713 DOI: 10.3390/ph16040601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lysosomes are essential organelles of eukaryotic cells and are responsible for various cellular functions, including endocytic degradation, extracellular secretion, and signal transduction. There are dozens of proteins localized to the lysosomal membrane that control the transport of ions and substances across the membrane and are integral to lysosomal function. Mutations or aberrant expression of these proteins trigger a variety of disorders, making them attractive targets for drug development for lysosomal disorder-related diseases. However, breakthroughs in R&D still await a deeper understanding of the underlying mechanisms and processes of how abnormalities in these membrane proteins induce related diseases. In this article, we summarize the current progress, challenges, and prospects for developing therapeutics targeting lysosomal membrane proteins for the treatment of lysosomal-associated diseases.
Collapse
Affiliation(s)
- Hongna Wang
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Yidong Zhu
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Huiyan Liu
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Tianxiang Liang
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
| | - Yongjie Wei
- Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou 510095, China
- Key Laboratory for Cell Homeostasis, Cancer Research of Guangdong Higher Education Institutes, Guangzhou 510095, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510095, China
| |
Collapse
|
6
|
Lee SY, Thow SY, Abdullah S, Ng MH, Mohamed Haflah NH. Advancement of Electrospun Nerve Conduit for Peripheral Nerve Regeneration: A Systematic Review (2016-2021). Int J Nanomedicine 2022; 17:6723-6758. [PMID: 36600878 PMCID: PMC9805954 DOI: 10.2147/ijn.s362144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/05/2022] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerve injury (PNI) is a worldwide problem which hugely affects the quality of patients' life. Nerve conduits are now the alternative for treatment of PNI to mimic the gold standard, autologous nerve graft. In that case, with the advantages of electrospun micro- or nano-fibers nerve conduit, the peripheral nerve growth can be escalated, in a better way. In this systematic review, we focused on 39 preclinical studies of electrospun nerve conduit, which include the in vitro and in vivo evaluation from animal peripheral nerve defect models, to provide an update on the progress of the development of electrospun nerve conduit over the last 5 years (2016-2021). The physical characteristics, biocompatibility, functional and morphological outcomes of nerve conduits from different studies would be compared, to give a better strategy for treatment of PNI.
Collapse
Affiliation(s)
- Shin Yee Lee
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Soon Yong Thow
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Shalimar Abdullah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Min Hwei Ng
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Nor Hazla Mohamed Haflah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur,Correspondence: Nor Hazla Mohamed Haflah, Department of Orthopedic & Traumatology’s Faculty of Medicine, UKM, Cheras, Kuala Lumpur, Tel +6012-3031316, Email
| |
Collapse
|
7
|
Bouhamdani N, Comeau D, Turcotte S. A Compendium of Information on the Lysosome. Front Cell Dev Biol 2021; 9:798262. [PMID: 34977038 PMCID: PMC8714965 DOI: 10.3389/fcell.2021.798262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, lysosomes were considered as mere waste bags for cellular constituents. Thankfully, studies carried out in the past 15 years were brimming with elegant and crucial breakthroughs in lysosome research, uncovering their complex roles as nutrient sensors and characterizing them as crucial multifaceted signaling organelles. This review presents the scientific knowledge on lysosome physiology and functions, starting with their discovery and reviewing up to date ground-breaking discoveries highlighting their heterogeneous functions as well as pending questions that remain to be answered. We also review the roles of lysosomes in anti-cancer drug resistance and how they undergo a series of molecular and functional changes during malignant transformation which lead to tumor aggression, angiogenesis, and metastases. Finally, we discuss the strategy of targeting lysosomes in cancer which could lead to the development of new and effective targeted therapies.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
8
|
Stefaniuk CM, Schlegelmilch J, Meyerson HJ, Harding CV, Maitta RW. Initial assessment of α-synuclein structure in platelets. J Thromb Thrombolysis 2021; 53:950-953. [PMID: 34797472 PMCID: PMC9117560 DOI: 10.1007/s11239-021-02607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Over the last few years data from our group have indicated that α-synuclein is important in development of immune cells as well as potentially erythrocytes and platelets. The latter is important since this protein may work as negative regulator of granule release. Thus, we sought to begin to understand the structure of this protein in platelets. Flow cytometric analysis of this protein using region-specific (N-terminus, central region and C-terminus) monoclonal antibodies was performed. Antibody to the central region gave the strongest shift among all three antibodies, with the C-terminus having intermediate shift and N-terminus minimal shift. Western blotting using the same antibodies showed similar binding of all antibodies to α-synuclein. These results suggest a similar arrangement of this protein in platelets as seen in neurons. Future studies ought to look at the role that each protein region plays in platelets.
Collapse
Affiliation(s)
- Catherine M Stefaniuk
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - June Schlegelmilch
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Howard J Meyerson
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Clifford V Harding
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert W Maitta
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA. .,Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
9
|
Peñas-Martínez J, Barrachina MN, Cuenca-Zamora EJ, Luengo-Gil G, Bravo SB, Caparrós-Pérez E, Teruel-Montoya R, Eliseo-Blanco J, Vicente V, García Á, Martínez-Martínez I, Ferrer-Marín F. Qualitative and Quantitative Comparison of Plasma Exosomes from Neonates and Adults. Int J Mol Sci 2021; 22:ijms22041926. [PMID: 33672065 PMCID: PMC7919666 DOI: 10.3390/ijms22041926] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles that contain nucleic acids, lipids and metabolites, and play a critical role in health and disease as mediators of intercellular communication. The majority of extracellular vesicles in the blood are platelet-derived. Compared to adults, neonatal platelets are hyporeactive and show impaired granule release, associated with defects in Soluble N-ethylmaleimide-sensitive fusion Attachment protein REceptor (SNARE) proteins. Since these proteins participate in biogenesis of exosomes, we investigated the potential differences between newborn and adult plasma-derived exosomes. Plasma-derived exosomes were isolated by ultracentrifugation of umbilical cord blood from full-term neonates or peripheral blood from adults. Exosome characterization included size determination by transmission electron microscopy and quantitative proteomic analysis. Plasma-derived exosomes from neonates were significantly smaller and contained 65% less protein than those from adults. Remarkably, 131 proteins were found to be differentially expressed, 83 overexpressed and 48 underexpressed in neonatal (vs. adult) exosomes. Whereas the upregulated proteins in plasma exosomes from neonates are associated with platelet activation, coagulation and granule secretion, most of the underexpressed proteins are immunoglobulins. This is the first study showing that exosome size and content change with age. Our findings may contribute to elucidating the potential “developmental hemostatic mismatch risk” associated with transfusions containing plasma exosomes from adults.
Collapse
Affiliation(s)
- Julia Peñas-Martínez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
| | - María N. Barrachina
- Platelet Proteomics Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela e Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.N.B.); (Á.G.)
| | - Ernesto José Cuenca-Zamora
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
| | - Ginés Luengo-Gil
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Departamento de Dermatología, Estomatología, Radiología y Medicina Física, Hospital General Universitario Santa Lucía, Universidad de Murcia, IMIB-Arrixaca, 30202 Cartagena, Spain
| | - Susana Belén Bravo
- Servicio de Proteomica, e Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital ClínicoUniversitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Eva Caparrós-Pérez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
| | - Raúl Teruel-Montoya
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
- U-765-CIBERER, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - José Eliseo-Blanco
- Servicio de Obstetricia y Ginecología, Hospital Clínico Virgen de la Arrixaca, 30120 Murcia, Spain;
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
- U-765-CIBERER, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Ángel García
- Platelet Proteomics Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela e Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.N.B.); (Á.G.)
| | - Irene Martínez-Martínez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
- U-765-CIBERER, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Correspondence: (I.M.-M.); (F.F.-M.); Tel.: +34-968341990 (I.M-M. & F.F.-M.)
| | - Francisca Ferrer-Marín
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, 30003 Murcia, Spain; (J.P.-M.); (E.J.C.-Z.); (G.L.-G.); (E.C.-P.); (R.T.-M.); (V.V.)
- U-765-CIBERER, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Grado de Medicina, Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
- Correspondence: (I.M.-M.); (F.F.-M.); Tel.: +34-968341990 (I.M-M. & F.F.-M.)
| |
Collapse
|
10
|
Zhou Y, Hu M, Chen X, Wang S, Li J, Sa L, Li L, Huang J, Cheng H, Hu H. Migfilin supports hemostasis and thrombosis through regulating platelet αIIbβ3 outside-in signaling. Haematologica 2020; 105:2608-2618. [PMID: 33131250 PMCID: PMC7604612 DOI: 10.3324/haematol.2019.232488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/18/2019] [Indexed: 11/28/2022] Open
Abstract
Elucidating the regulation mechanism of integrin αIIbβ3 is key to understand platelet biology and thrombotic diseases. Previous in vitro studies have implicated a role of migfilin in the support of platelet αIIbβ3 activation, however, contribution of migfilin to thrombosis and hemostasis in vivo and a detailed mechanism of migfilin in platelets are not known. In this study, with migfilin deletion (migfilin-/-) mice, we report that migfilin is a pivotal positive regulator of hemostasis and thrombosis. Migfilin-/- mice showed a nearly doubled tail-bleeding time and a prolonged occlusion time in Fecl3-induced mesenteric arteriolar thrombosis. Migfilin deficiency impedes platelet thrombi formation on collagen surface and impairs platelet aggregation and dense-granule secretion. Supported by characteristic functional readings and phosphorylation status of distinctive signaling molecules in the bidirectional signaling processes of αIIbβ3, the functional defects of migfilin-/- platelets appear to be mechanistically associated with a compromised outside-in signaling, rather than inside-out signaling. A synthesized cell-permeable migfilin peptide harboring filamin A binding sequence rescued the defective function and phosphorylation of signaling molecules of migfilin-/- platelets. Finally, migfilin does not influence the binding of filamin A and β3 subunit of αIIbβ3 in resting platelets, but hampers the re-association of filamin A and β3 during the conduct of outside-in signaling, suggesting that migfilin functions through regulating the interaction dynamics of αIIbβ3 and filamin A in platelets. Our study enhances the current understanding of platelet integrin αIIbβ3-mediated outside-in signaling and proves that migfilin is an important regulator for platelet activation, hemostasis and thrombosis.
Collapse
Affiliation(s)
- Yangfan Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Mengjiao Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Xiaoyan Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Shuai Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Jingke Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Lina Sa
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Li Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, and Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Hu Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis. Int J Mol Sci 2020; 21:ijms21176150. [PMID: 32858930 PMCID: PMC7504402 DOI: 10.3390/ijms21176150] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
While platelet function has traditionally been described in the context of maintaining vascular integrity, recent evidence suggests that platelets can modulate inflammation in a much more sophisticated and nuanced manner than previously thought. Some aspects of this expanded repertoire of platelet function are mediated via expression of Toll-like receptors (TLRs). TLRs are a family of pattern recognition receptors that recognize pathogen-associated and damage-associated molecular patterns. Activation of these receptors is crucial for orchestrating and sustaining the inflammatory response to both types of danger signals. The TLR family consists of 10 known receptors, and there is at least some evidence that each of these are expressed on or within human platelets. This review presents the literature on TLR-mediated platelet activation for each of these receptors, and the existing understanding of platelet-TLR immune modulation. This review also highlights unresolved methodological issues that potentially contribute to some of the discrepancies within the literature, and we also suggest several recommendations to overcome these issues. Current understanding of TLR-mediated platelet responses in influenza, sepsis, transfusion-related injury and cardiovascular disease are discussed, and key outstanding research questions are highlighted. In summary, we provide a resource—a “researcher’s toolkit”—for undertaking further research in the field of platelet-TLR biology.
Collapse
|
12
|
Samadian H, Ehterami A, Sarrafzadeh A, Khastar H, Nikbakht M, Rezaei A, Chegini L, Salehi M. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study. Int J Biol Macromol 2020; 150:380-388. [PMID: 32057876 DOI: 10.1016/j.ijbiomac.2020.02.102] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/02/2023]
Abstract
Peripheral nerve injury (PNI) is a devastating condition that may result in loss of sensory function, motor function, or both. In the present study, we construct an electrospun nerve guide conduit (NGC) based on polycaprolactone (PCL) and gelatin filled with citicoline bearing platelet-rich plasma (PRP) gel as a treatment for PNI. The NGCs fabricated from PCL/Gel polymeric blend using the electrospinning technique. The characterizations demonstrated that the fabricated nanofibers were straight with the diameter of 708 ± 476 nm, the water contact angle of 78.30 ± 2.52°, the weight loss of 41.60 ± 6.94% during 60 days, the tensile strength of 5.31 ± 0.97 MPa, and the young's modulus of 3.47 ± 0.10 GPa. The in vitro studies revealed that the PCL/Gel/PRP/Citi NGC was biocompatible and hemocompatible. The in vivo studies conducted on sciatic nerve injury in rats showed that the implantation of PCL/Gel/PRP/Citi NGC induced regeneration of nerve tissue, demonstrated with histopathological assessments. Moreover, the sciatic function index (SFI) value of -30.3 ± 3.5 and hot plate latency time of 6.10 ± 1.10 s revealed that the PCL/Gel/PRP/Citi NGCs recovered motor and sensory functions. Our findings implied that the fabricated NGC exhibited promising physicochemical and biological activates favorable for PNI treatment.
Collapse
Affiliation(s)
- Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Arash Sarrafzadeh
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mohammad Nikbakht
- Department of Medical Nanotechnology, School of Advanced Technology in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Chegini
- International Medicine Department, Aja University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
13
|
Kudriaeva AA, Sokolov AV, Belogurov AAJ. Stochastics of Degradation: The Autophagic-Lysosomal System of the Cell. Acta Naturae 2020; 12:18-32. [PMID: 32477595 PMCID: PMC7245954 DOI: 10.32607/actanaturae.10936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autophagy is a conservative and evolutionarily ancient process that enables the
transfer of various cellular compounds, organelles, and potentially dangerous
cellular components to the lysosome for their degradation. This process is
crucial for the recycling of energy and substrates, which are required for
cellular biosynthesis. Autophagy not only plays a major role in the survival of
cells under stress conditions, but is also actively involved in maintaining
cellular homeostasis. It has multiple effects on the immune system and cellular
remodeling during organism development. The effectiveness of autophagy is
ensured by a controlled interaction between two organelles – the
autophagosome and the lysosome. Despite significant progress in the description
of the molecular mechanisms underlying autophagic-lysosomal system (ALS)
functioning, many fundamental questions remain. Namely, the specialized
functions of lysosomes and the role of ALS in the pathogenesis of human
diseases are still enigmatic. Understanding of the mechanisms that are
triggered at all stages of autophagic- lysosomal degradation, from the
initiation of autophagy to the terminal stage of substrate destruction in the
lysosome, may result in new approaches that could help better uderstand ALS
and, therefore, selectively control cellular proteostasis.
Collapse
Affiliation(s)
- A. A. Kudriaeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. V. Sokolov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. A. Jr. Belogurov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
- Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
14
|
Kerris EWJ, Hoptay C, Calderon T, Freishtat RJ. Platelets and platelet extracellular vesicles in hemostasis and sepsis. J Investig Med 2019; 68:813-820. [PMID: 31843956 DOI: 10.1136/jim-2019-001195] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Platelets, cell fragments traditionally thought of as important only for hemostasis, substantially and dynamically contribute to the immune system's response to infection. In addition, there is increasing evidence that externally active platelet entities, including platelet granules and platelet extracellular vesicles (PEVs), play a role not only in hemostasis, but also in inflammatory actions previously ascribed to platelets themselves. Given the functions of platelets and PEVs during inflammation and infection, their role in sepsis is being investigated. Sepsis is a condition marked by the dysregulation of the body's normal activation of the immune system in response to a pathogen. The mechanisms for controlling infection locally become detrimental to the host if they are applied systemically. Similar to cells traditionally ascribed to the immune system, including neutrophils, lymphocytes, and macrophages, platelets are instrumental in helping a host clear an infection, but are also implicated in the uncontrolled amplification of the immune response that leads to sepsis. Clearly, the function of platelets is more complicated than its simple structure and primary role in hemostasis initially suggest. This review provides an overview of platelet and platelet extracellular vesicle structure and function, highlighting the complex role platelets and PEVs play in the body in the context of infection and sepsis.
Collapse
Affiliation(s)
- Elizabeth W J Kerris
- Division of Critical Care Medicine, Children's National Hospital, Washington, DC, USA.,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Claire Hoptay
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Thais Calderon
- Department of Medical Education, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.,Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
15
|
Soslau G. Extracellular adenine compounds within the cardiovascular system: Their source, metabolism and function. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2020.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Stefaniuk CM, Hong H, Harding CV, Maitta RW. α-Synuclein concentration increases over time in plasma supernatant of single donor platelets. Eur J Haematol 2018; 101:10.1111/ejh.13152. [PMID: 30055066 PMCID: PMC6349522 DOI: 10.1111/ejh.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES In platelets, α-synuclein is important in calcium-dependent granule release. Notably, cells release α-synuclein in setting of cell damage or death. Therefore, we investigated α-synuclein levels in plasma of single donor platelet (SDP) units during storage. METHODS Aliquots were obtained from same SDP units for 7 days from day of donation. Additionally, randomly sampled SDP units at same storage time points were also assayed by enzyme-linked immunosorbent assay. RESULTS α-Synuclein in SDP plasma increased continuously over time at each assayed time point. Significant increases were measured on day 3 (11.7 ± 9.6 ng/mL, P = 0.025), day 5 (15.3 ± 5.9 ng/mL, P = 0.002), and highest on day 7 (23.7 ± 5.6 ng/mL, P < 0.0001) compared to day 0 (1.1 ± 0.8 ng/mL). Similar significant results were obtained in randomly sampled SDP units at same corresponding time points. Flow cytometry showed that platelets had strong expression of α-synuclein and lacked expression of other synucleins. CONCLUSIONS Increases of α-synuclein during SDP storage is a steady and continuous process that increases with time. Our findings indicate that α-synuclein may represent a biomarker of platelet biological state during storage. Further research will be needed to determine how α-synuclein increases correlate with platelets' function.
Collapse
Affiliation(s)
- Catherine M. Stefaniuk
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Hong Hong
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Clifford V. Harding
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Robert W. Maitta
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
17
|
Pryzdial ELG, Lee FMH, Lin BH, Carter RLR, Tegegn TZ, Belletrutti MJ. Blood coagulation dissected. Transfus Apher Sci 2018; 57:449-457. [PMID: 30049564 DOI: 10.1016/j.transci.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hemostasis is the physiological control of bleeding and is initiated by subendothelial exposure. Platelets form the primary vascular seal in three stages (localization, stimulation and aggregation), which are triggered by specific interactions between platelet surface receptors and constituents of the subendothelial matrix. As a secondary hemostatic plug, fibrin clot formation is initiated and feedback-amplified to advance the seal and stabilize platelet aggregates comprising the primary plug. Once blood leakage has been halted, the fibrinolytic pathway is initiated to dissolve the clot and restore normal blood flow. Constitutive and induced anticoagulant and antifibrinolytic pathways create a physiological balance between too much and too little clot production. Hemostatic imbalance is a major burden to global healthcare, resulting in thrombosis or hemorrhage.
Collapse
Affiliation(s)
- Edward L G Pryzdial
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Frank M H Lee
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bryan H Lin
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rolinda L R Carter
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tseday Z Tegegn
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mark J Belletrutti
- Pediatric Hematology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Law LA, Graham DK, Di Paola J, Branchford BR. GAS6/TAM Pathway Signaling in Hemostasis and Thrombosis. Front Med (Lausanne) 2018; 5:137. [PMID: 29868590 PMCID: PMC5954114 DOI: 10.3389/fmed.2018.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
The GAS6/TYRO3-AXL-MERTK (TAM) signaling pathway is essential for full and sustained platelet activation, as well as thrombus stabilization. Inhibition of this pathway decreases platelet aggregation, shape change, clot retraction, aggregate formation under flow conditions, and surface expression of activation markers. Transgenic mice deficient in GAS6, or any of the TAM family of receptors that engage this ligand, exhibit in vivo protection against arterial and venous thrombosis but do not demonstrate either spontaneous or prolonged bleeding compared to their wild-type counterparts. Comparable results are observed in wild-type mice treated with pharmacological inhibitors of the GAS6-TAM pathway. Thus, GAS6/TAM inhibition offers an attractive novel therapeutic option that may allow for a moderate reduction in platelet activation and decreased thrombosis while still permitting the primary hemostatic function of platelet plug formation.
Collapse
Affiliation(s)
- Luke A Law
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, United States
| | - Douglas K Graham
- Section of Hematology/Oncology, Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Jorge Di Paola
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, United States
| | - Brian R Branchford
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, United States
| |
Collapse
|
19
|
Karim ZA, Hensch NR, Qasim H, Alshbool FZ, Khasawneh FT. Role of IκB kinase β in regulating the remodeling of the CARMA1-Bcl10-MALT1 complex. Biochem Biophys Res Commun 2018; 500:268-274. [PMID: 29649481 DOI: 10.1016/j.bbrc.2018.04.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 01/26/2023]
Abstract
The current work investigates the notion that inducible clustering of signaling mediators of the IKK pathway is important for platelet activation. Thus, while the CARMA1, Bcl10, and MALT1 (CBM) complex is essential for triggering IKK/NF-κB activation upon platelet stimulation, the signals that elicit its formation and downstream effector activation remain elusive. We demonstrate herein that IKKβ is involved in membrane fusion, and serves as a critical protein kinase required for initial formation and the regulation of the CARMA1/MALT1/Bcl10/CBM complex in platelets. We also show that IKKβ regulates these processes via modulation of phosphorylation of Bcl10 and IKKγ polyubiquitination. Collectively, our data demonstrate that IKKβ regulates membrane fusion and the remodeling of the CBM complex formation.
Collapse
Affiliation(s)
- Zubair A Karim
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
| | - Nicole R Hensch
- The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Hanan Qasim
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Fatima Z Alshbool
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Fadi T Khasawneh
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| |
Collapse
|
20
|
Zhang J, Huang Y, Chen J, Zhu H, Whiteheart SW. Dynamic cycling of t-SNARE acylation regulates platelet exocytosis. J Biol Chem 2018; 293:3593-3606. [PMID: 29352103 PMCID: PMC5846156 DOI: 10.1074/jbc.ra117.000140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Interestingly, metabolic labeling studies showed incorporation of [3H]palmitate into the t-SNAREs increased although the protein levels were unchanged, suggesting that acylation turns over on the two t-SNAREs in resting platelets. Exogenously added fatty acids did compete with [3H]palmitate for t-SNARE labeling. To determine the effects of acylation, we measured aggregation, ADP/ATP release, as well as P-selectin exposure in platelets treated with the acyltransferase inhibitor cerulenin or the thioesterase inhibitor palmostatin B. We found that cerulenin pretreatment inhibited t-SNARE acylation and platelet function in a dose- and time-dependent manner whereas palmostatin B had no detectable effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin, suggesting that maintaining the acylation state is important for platelet function. Thus, our work shows that t-SNARE acylation is actively cycling in platelets and suggests that the enzymes regulating protein acylation could be potential targets to control platelet exocytosis in vivo.
Collapse
Affiliation(s)
- Jinchao Zhang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Yunjie Huang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Sidney W Whiteheart
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
21
|
Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S A 2018; 115:E1550-E1559. [PMID: 29386381 DOI: 10.1073/pnas.1720553115] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbβ3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The present review will provide an overview of several recent advances in the field of vascular thiol isomerase function. RECENT FINDINGS The initial observation that protein disulfide isomerase (PDI) functions in thrombus formation occurred approximately a decade ago. At the time, there was little understanding regarding how PDI or other vascular thiol isomerases contribute to thrombosis. Although this problem is far from solved, the past few years have seen substantial progress in several areas that will be reviewed in this article. The relationship between PDI structure and its function has been investigated and applied to identify domains of PDI that are critical for thrombus formation. The mechanisms that direct thiol isomerase storage and release from platelets and endothelium have been studied. New techniques including kinetic-based trapping have identified substrates that vascular thiol isomerases modify during thrombus formation. Novel inhibitors of thiol isomerases have been developed that are useful both as tools to interrogate PDI function and as potential therapeutics. Human studies have been conducted to measure circulating PDI in disease states and evaluate the effect of oral administration of a PDI inhibitor on ex-vivo thrombin generation. SUMMARY Current findings indicate that thiol isomerase-mediated disulfide bond modification in receptors and plasma proteins is an important layer of control of thrombosis and vascular function more generally.
Collapse
|
23
|
Lopes Pires ME, Clarke SR, Marcondes S, Gibbins JM. Lipopolysaccharide potentiates platelet responses via toll-like receptor 4-stimulated Akt-Erk-PLA2 signalling. PLoS One 2017; 12:e0186981. [PMID: 29136006 PMCID: PMC5685579 DOI: 10.1371/journal.pone.0186981] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS) from the cell envelope of Gram-negative bacteria is a principal cause of the symptoms of sepsis. LPS has been reported to modulate the function of platelets although the underlying mechanisms of LPS action in these cells remain unclear. Platelets express the Toll-like receptor 4 (TLR4) which serves as a receptor for LPS, although the potential role of TLR4 and associated cell signalling in controlling platelet responses to LPS has not been extensively explored. In this study, we therefore investigated the actions of LPS prepared from different strains of Escherichia coli on platelet function, the underlying signalling mechanisms, and the potential role of TLR4 in orchestrating these. We report that LPS increased the aggregation of washed platelets stimulated by thromboxane (U46619) or GPVI collagen receptor agonists, effects that were prevented by a TLR4 antagonist. Associated with this, LPS enhanced fibrinogen binding, P-selectin exposure and reactive oxygen species (ROS) release. Increase of ROS was found to be important for the actions of LPS on platelets, since these were inhibited in the presence of superoxide dismutase or catalase. The effects of LPS were associated with phosphorylation of Akt, ERK1/2 and PLA2 in stimulated platelets, and inhibitors of PI3-kinase, Akt and ERK1/2 reduced significantly LPS enhanced platelet function and associated ROS production. Furthermore, inhibition of platelet cyclooxygenase or the thromboxane receptor, revealed an important role for thromboxane A2. We therefore conclude that LPS increases human platelet activation through a TLR4-PI3K-Akt-ERK1/2-PLA2 -dependent pathway that is dependent on ROS and TXA2 formation.
Collapse
Affiliation(s)
- Maria E. Lopes Pires
- School of Biological Science, Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, United Kingdom
| | - Simon R. Clarke
- School of Biological Science, Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, United Kingdom
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jonathan M. Gibbins
- School of Biological Science, Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
24
|
Lombard SE, Pollitt AY, Hughes CE, Di Y, Mckinnon T, O'callaghan CA, Watson SP. Mouse podoplanin supports adhesion and aggregation of platelets under arterial shear: A novel mechanism of haemostasis. Platelets 2017; 29:716-722. [PMID: 29090616 DOI: 10.1080/09537104.2017.1356919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The podoplanin-CLEC-2 axis is critical in mice for prevention of hemorrhage in the cerebral vasculature during mid-gestation. This raises the question as to how platelets are captured by podoplanin on neuroepithelial cells in a high shear environment. In this study, we demonstrate that mouse platelets form stable aggregates on mouse podoplanin at arterial shear through a CLEC-2 and Src kinase-dependent pathway. Adhesion and aggregation are also dependent on the platelet glycoprotein (GP) receptors, integrin αIIbβ3 and GPIb, and the feedback agonists ADP and thromboxane A2 (TxA2). CLEC-2 does not bind to von Willebrand factor (VWF) suggesting that the interaction with podoplanin is sufficient to both tether and activate platelets. Consistent with this, the surface plasmon resonance measurements reveal that mouse CLEC-2 binds to mouse podoplanin with nanomolar affinity. The present findings demonstrate a novel pathway of hemostasis in which podoplanin supports platelet capture and activation at arteriolar rates of shear.
Collapse
Affiliation(s)
- Stephanie E Lombard
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Alice Y Pollitt
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston , Birmingham , UK.,b Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading , Whiteknights , Reading , UK
| | - Craig E Hughes
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston , Birmingham , UK.,b Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading , Whiteknights , Reading , UK
| | - Ying Di
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Tom Mckinnon
- c Faculty of Medicine, Department of Medicine , London , UK
| | - Chris A O'callaghan
- d Henry Wellcome Building for Molecular Physiology , University of Oxford , Roosevelt Drive , Oxford , UK
| | - Steve P Watson
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Edgbaston , Birmingham , UK
| |
Collapse
|
25
|
Abstract
Platelet dense granules (DGs) are storage organelles for calcium ions, small organic molecules such as ADP and serotonin, and larger polyphosphates that are secreted upon platelet stimulation to enhance platelet activation, adhesion, and stabilization at sites of vascular damage. DGs are thought to fully mature within megakaryocytes (MKs) prior to platelet formation. Here we challenge this notion by exploiting vital fluorescent dyes to distinguish mildly acidic DGs from highly acidic compartments by microscopy in platelets and MKs. In isolated primary mouse platelets, compartments labeled by mepacrine - a fluorescent weak base that accumulates in DGs - are readily distinguishable from highly acidic compartments, likely lysosomes, that are labeled by the acidic pH indicator, LysoTracker, and from endolysosomes and alpha granules labeled by internalized and partially digested DQ™ BSA. By contrast, in murine fetal liver- and human CD34+ cell-derived MKs and the megakaryocytoid cell lines, MEG-01 and differentiated G1ME2, labeling by mepacrine overlapped nearly completely with labeling by LysoTracker and partially with labeling by DQ™ BSA. Mepacrine labeling in G1ME2-derived MKs was fully sensitive to proton ATPase inhibitors, but was only partially sensitive in platelets. These data indicate that mepacrine in MKs accumulates as a weak base in endolysosomes but is likely pumped into or retained in separate DGs in platelets. Fluorescent puncta that labeled uniquely for mepacrine were first evident in G1ME2-derived proplatelets, suggesting that DGs undergo a maturation step that initiates in the final stages of MK differentiation.
Collapse
|
26
|
Rare genetic variants in SMAP1, B3GAT2, and RIMS1 contribute to pediatric venous thromboembolism. Blood 2017; 129:783-790. [DOI: 10.1182/blood-2016-07-728840] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Key Points
Our study identified a region on chromosome 6 comprising the genes SMAP1, B3GAT2, and RIMS1 as novel susceptibility locus for pediatric VTE. Nonsynonymous variants in SMAP1 and RIMS1 are predicted as deleterious and may influence vesicle processing in blood cells.
Collapse
|
27
|
Baars T, Kahlert P, Baars A, Preibsch H, Rassaf T, Heusch G, Kleinbongard P. Influence of stent implantation on erythrocyte aggregation in human native coronary arteries and saphenous vein grafts. Microcirculation 2016; 23:637-645. [PMID: 27736045 DOI: 10.1111/micc.12326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/09/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Theodor Baars
- Institute for Pathophysiology; West German Heart and Vascular Centre Essen; University of Essen Medical School; Essen Germany
- Institute for Clinic of Cardiology; West German Heart and Vascular Centre Essen; University of Essen Medical School; Essen Germany
| | - Philipp Kahlert
- Institute for Clinic of Cardiology; West German Heart and Vascular Centre Essen; University of Essen Medical School; Essen Germany
| | - Albert Baars
- Department of Biomimetics; Hochschule of Bremen; City University of Applied Science; Bremen Germany
| | - Heike Preibsch
- Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Tienush Rassaf
- Institute for Clinic of Cardiology; West German Heart and Vascular Centre Essen; University of Essen Medical School; Essen Germany
| | - Gerd Heusch
- Institute for Pathophysiology; West German Heart and Vascular Centre Essen; University of Essen Medical School; Essen Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology; West German Heart and Vascular Centre Essen; University of Essen Medical School; Essen Germany
| |
Collapse
|
28
|
Abstract
Secretion is essential to many of the roles that platelets play in the vasculature, e.g., thrombosis, angiogenesis, and inflammation, enabling platelets to modulate the microenvironment at sites of vascular lesions with a myriad of bioactive molecules stored in their granules. Past studies demonstrate that granule cargo release is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins, which are required for granule-plasma membrane fusion. Several SNARE regulators, which control when, where, and how the SNAREs interact, have been identified in platelets. Additionally, platelet SNAREs are controlled by post-translational modifications, e.g., phosphorylation and acylation. Although there have been many recent insights into the mechanisms of platelet secretion, many questions remain: have we identified all the important regulators, does calcium directly control the process, and is platelet secretion polarized. In this review, we focus on the mechanics of platelet secretion and discuss how the secretory machinery functions in the pathway leading to membrane fusion and cargo release.
Collapse
Affiliation(s)
- Smita Joshi
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| | - Sidney W Whiteheart
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
29
|
Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood 2016; 128:2538-2549. [PMID: 27625359 DOI: 10.1182/blood-2016-03-705681] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022] Open
Abstract
Although granule secretion is pivotal in many platelet responses, the fusion routes of α and δ granule release remain uncertain. We used a 3D reconstruction approach based on electron microscopy to visualize the spatial organization of granules in unstimulated and activated platelets. Two modes of exocytosis were identified: a single mode that leads to release of the contents of individual granules and a compound mode that leads to the formation of granule-to-granule fusion, resulting in the formation of large multigranular compartments. Both modes occur during the course of platelet secretion. Single fusion events are more visible at lower levels of stimulation and early time points, whereas large multigranular compartments are present at higher levels of agonist and at later time points. Although α granules released their contents through both modes of exocytosis, δ granules underwent only single exocytosis. To define the underlying molecular mechanisms, we examined platelets from vesicle-associated membrane protein 8 (VAMP8) null mice. After weak stimulation, compound exocytosis was abolished and single exocytosis decreased in VAMP8 null platelets. Higher concentrations of thrombin bypassed the VAMP8 requirement, indicating that this isoform is a key but not a required factor for single and/or compound exocytosis. Concerning the biological relevance of our findings, compound exocytosis was observed in thrombi formed after severe laser injury of the vessel wall with thrombin generation. After superficial injury without thrombin generation, no multigranular compartments were detected. Our studies suggest that platelets use both modes of membrane fusion to control the extent of agonist-induced exocytosis.
Collapse
|
30
|
Abstract
Cardiovascular disease (CVD) is a preventable disease, which combines two general processes: chronic vascular inflammation and acute thrombosis. Both are amplified with positive feedback signals by n-6 eicosanoids derived from food-based n-6 highly unsaturated fatty acids (n-6 HUFA). This amplification is lessened by competing actions of n-3 HUFA. Death results from fatal interactions of the vascular wall with platelets and clotting proteins. The benefits of fish oil interventions are confounded by complex details in pharmacokinetics, pharmacodynamics, adverse events, timescale factors, topology, financial incentives and people's sense of cause and effect. Two basic aspects of n-3 HUFA that are overlooked in CVD dynamics are saturable, hyperbolic responses of the enzymes continually supplying n-6 HUFA and hard-to-control positive feedback receptor signals by excessive n-6 HUFA-based mediators. Multiple feedback loops in inflammation and thrombosis have diverse mediators, and reducing one mediator that occurs above its rate-limiting levels may not reduce the pathophysiology. Clinicians have developed some successful interventions that decrease CVD deaths in the form of secondary prevention. However, the current high CVD prevalence in the USA remains unchanged, and successful primary prevention of CVD remains uncertain. This review weighs the available evidence to help clinicians, the biomedical community and the public put the use of fish oil supplements into a balanced perspective.
Collapse
Affiliation(s)
- Bill Lands
- American Society for Nutrition, Rockville, MD, USA.
- American Association for the Advancement of Science, Washington, DC, USA.
- , 6100 Westchester Park Drive, #1219, College Park, MD, 20740, USA.
| |
Collapse
|
31
|
Dai B, Wu P, Xue F, Yang R, Yu Z, Dai K, Ruan C, Liu G, Newman PJ, Gao C. Integrin-αIIbβ3-mediated outside-in signalling activates a negative feedback pathway to suppress platelet activation. Thromb Haemost 2016; 116:918-930. [PMID: 27465472 DOI: 10.1160/th16-02-0096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
Integrin-αIIbβ3-mediated outside-in signalling is widely accepted as an amplifier of platelet activation; accumulating evidence suggests that outside-in signalling can, under certain conditions, also function as an inhibitor of platelet activation. The role of integrin-αIIbβ3-mediated outside-in signalling in platelet activation is disputable. We employed flow cytometry, aggregometry, immunoprecipitation, and immunoblotting to investigate the role of integrin-αIIbβ3-mediated outside-in signalling in platelet activation. Integrin αIIbβ3 inhibition enhances agonist-induced platelet ATP secretion. Human platelets lacking expression of αIIbβ3 exhibited more platelet ATP secretion than their wild-type counterparts. Moreover, integrin-αIIbβ3-mediated outside-in signals activate SHIP-1, which in turn mediates p-Akt dephosphorylation, leading to inactivation of PI3K/Akt signalling. Furthermore, 3AC (SHIP-1 inhibitor) inhibits platelet disaggregation, and promotes platelet ATP secretion. Upon ADP stimulation, Talin is recruited to αIIbβ3, and it is dissociated from αIIbβ3 when platelets disaggregate. In addition, treatment with RUC2, an inhibitor of αIIbβ3, which blocks αIIbβ3-mediated outside-in signalling, can markedly prevent the dissociation of talin from integrin. SHIP1 Inhibitor 3AC inhibits the dissociation of talin from integrin-β3. These results suggest that integrin-αIIbβ3-mediated outside-in signalling can serve as a brake to restrict unnecessary platelet activation by activated SHIP-1, which mediated the disassociation of talin from β3, leading to integrin inactivation and blocking of PI3K/Akt signalling to restrict platelet ATP secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter J Newman
- Peter J. Newman, PhD, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, 53711 WI, USA, E-mail:
| | - Cunji Gao
- Cunji Gao, PhD, Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 310058 Hangzhou, China, Tel: +86 571 882 066 00, Fax: +86 571 882 066 00, E-mail:
| |
Collapse
|
32
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
33
|
Heijnen H, van der Sluijs P. Platelet secretory behaviour: as diverse as the granules … or not? J Thromb Haemost 2015; 13:2141-51. [PMID: 26391322 DOI: 10.1111/jth.13147] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
Abstract
Platelets play a central role in the arrest of bleeding after damage to a blood vessel and in the development of thrombosis. Platelets rapidly respond after interaction with sub-endothelial components and release cargo from their storage granules. The three principal granule types of platelets are α-granules, dense granules and lysosomes. Timed release of granule contents and regulated expression of critical receptors are essential for maintenance of the platelet thrombus, yet also have important functions beyond hemostasis (i.e. inflammatory reactions and immune responses). α-granules store adhesive molecules such as von Willebrand factor and fibrinogen, growth factors and inflammatory and angiogenic mediators, which play crucial roles in inflammatory responses and tumor genesis. The α-granules comprise a group of subcellular compartments with a unique composition and ultrastructure. Recent studies have suggested that differential secretory kinetics of α-granule subtypes is responsible for a thematic release of adhesive and inflammatory mediators. In addition, new results indicate that activation-dependent synthesis and release of cytokines also contribute to the inflammatory role of platelets. We will discuss the various methods that platelets use to regulate secretory processes and how these relate to potential differential secretion patterns, thereby promoting adhesiveness and/or inflammatory functions. We will focus on the heterogenic granule population, open canalicular system (OCS) plasticity, the role of contractile and mechanobiological forces, and the fusogenic machinery.
Collapse
Affiliation(s)
- H Heijnen
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
34
|
Xu X, Sun B. Platelet granule secretion mechanisms: Are they modified in sepsis? Thromb Res 2015; 136:845-50. [DOI: 10.1016/j.thromres.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 12/31/2022]
|
35
|
Ambrosio AL, Boyle JA, Di Pietro SM. TPC2 mediates new mechanisms of platelet dense granule membrane dynamics through regulation of Ca2+ release. Mol Biol Cell 2015. [PMID: 26202466 PMCID: PMC4569316 DOI: 10.1091/mbc.e15-01-0058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TPC2 is a component of the platelet dense granule membrane and regulates the formation of perigranular Ca2+ nanodomains that correlate with “kiss-and-run” events and tubule connections. These membrane contacts allow material transfer between organelles and are likely involved in granule maturation. Platelet dense granules (PDGs) are acidic calcium stores essential for normal hemostasis. They develop from late endosomal compartments upon receiving PDG-specific proteins through vesicular trafficking, but their maturation process is not well understood. Here we show that two-pore channel 2 (TPC2) is a component of the PDG membrane that regulates PDG luminal pH and the pool of releasable Ca2+. Using a genetically encoded Ca2+ biosensor and a pore mutant TPC2, we establish the function of TPC2 in Ca2+ release from PDGs and the formation of perigranular Ca2+ nanodomains. For the first time, Ca2+ spikes around PDGs—or any organelle of the endolysosome family—are visualized in real time and revealed to precisely mark organelle “kiss-and-run” events. Further, the presence of membranous tubules transiently connecting PDGs is revealed and shown to be dramatically enhanced by TPC2 in a mechanism that requires ion flux through TPC2. “Kiss-and-run” events and tubule connections mediate transfer of membrane proteins and luminal content between PDGs. The results show that PDGs use previously unknown mechanisms of membrane dynamics and content exchange that are regulated by TPC2.
Collapse
Affiliation(s)
- Andrea L Ambrosio
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Judith A Boyle
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| |
Collapse
|
36
|
Dewitte A, Tanga A, Villeneuve J, Lepreux S, Ouattara A, Desmoulière A, Combe C, Ripoche J. New frontiers for platelet CD154. Exp Hematol Oncol 2015; 4:6. [PMID: 25763299 PMCID: PMC4355125 DOI: 10.1186/s40164-015-0001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | - Annabelle Tanga
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain ; Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3200 USA
| | | | - Alexandre Ouattara
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | | | - Christian Combe
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service de Néphrologie Transplantation Dialyse, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Jean Ripoche
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
37
|
Stegner D, Dütting S, Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 2015; 133 Suppl 2:S149-57. [PMID: 24862136 DOI: 10.1016/s0049-3848(14)50025-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer-associated mortality is frequently caused by metastasis, however, our understanding of this process remains incomplete and therapeutic options are limited. Metastasis is a dynamic multi-step process involving intravasation of tumor cells into the host's blood and lymphatic vessels, their dissemination within the circulation, and finally arrest and extravasation in a distant organ where they establish secondary tumors. It is generally conceived that platelets contribute to all steps of hematogenous tumor dissemination. In this review, we provide an overview of the current knowledge of the platelet receptors involved in tumor cell-induced platelet aggregation, an essential immune surveillance escape mechanism of circulating tumor cells. We discuss how platelets prevent immunological attack, contribute to tumor cell extravasation and thereby facilitate colonization of distant organs.
Collapse
Affiliation(s)
- David Stegner
- University of Würzburg Chair of Vascular Medicine University Hospital and Rudolf Virchow Center for Experimental Biomedicine Würzburg, Germany
| | - Sebastian Dütting
- University of Würzburg Chair of Vascular Medicine University Hospital and Rudolf Virchow Center for Experimental Biomedicine Würzburg, Germany
| | - Bernhard Nieswandt
- University of Würzburg Chair of Vascular Medicine University Hospital and Rudolf Virchow Center for Experimental Biomedicine Würzburg, Germany.
| |
Collapse
|
38
|
Abstract
Platelets are anucleated blood cells derived from megakaryocytes, and although they are essential for proper hemostasis, their function extends to physiologic processes such as tissue repair, wound remodeling, and antimicrobial host defense, or pathologic conditions such as thrombosis, atherosclerosis, chronic inflammatory diseases, and cancer. Recently, we demonstrated that two structurally divergent members of the galectin family, galectin-1 and galectin-8, are potent platelet agonists. The emergence of galectins as soluble mediators capable of triggering platelet activation opens a new field of research that will provide further insights into the mechanisms linking inflammatory responses to thrombus formation and could expand our view of the role of platelets much beyond hemostasis to their pathophysiologic role during inflammation and cancer. The present article details the various protocols and reagents currently used in our laboratory to study the role of galectins in human platelet function.
Collapse
Affiliation(s)
- Maria A Romaniuk
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX/CONICET), National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires, 1425, Argentina
| | | | | |
Collapse
|
39
|
Defective release of α granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models. Blood 2014; 125:1623-32. [PMID: 25477496 DOI: 10.1182/blood-2014-07-586727] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding diathesis, and other variable symptoms. The bleeding diathesis has been attributed to δ storage pool deficiency, reflecting the malformation of platelet dense granules. Here, we analyzed agonist-stimulated secretion from other storage granules in platelets from mouse HPS models that lack adaptor protein (AP)-3 or biogenesis of lysosome-related organelles complex (BLOC)-3 or BLOC-1. We show that α granule secretion elicited by low agonist doses is impaired in all 3 HPS models. High agonist doses or supplemental adenosine 5'-diphosphate (ADP) restored normal α granule secretion, suggesting that the impairment is secondary to absent dense granule content release. Intravital microscopy following laser-induced vascular injury showed that defective hemostatic thrombus formation in HPS mice largely reflected reduced total platelet accumulation and affirmed a reduced area of α granule secretion. Agonist-induced lysosome secretion ex vivo was also impaired in all 3 HPS models but was incompletely rescued by high agonist doses or excess ADP. Our results imply that (1) AP-3, BLOC-1, and BLOC-3 facilitate protein sorting to lysosomes to support ultimate secretion; (2) impaired secretion of α granules in HPS, and to some degree of lysosomes, is secondary to impaired dense granule secretion; and (3) diminished α granule and lysosome secretion might contribute to pathology in HPS.
Collapse
|
40
|
Aoui C, Prigent A, Sut C, Tariket S, Hamzeh-Cognasse H, Pozzetto B, Richard Y, Cognasse F, Laradi S, Garraud O. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci 2014; 15:22342-22364. [PMID: 25479079 PMCID: PMC4284712 DOI: 10.3390/ijms151222342] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors.
Collapse
Affiliation(s)
- Chaker Aoui
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
- French Blood Establishment, EFS Auvergne-Loire, Saint-Etienne 42023, France
| | - Antoine Prigent
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
- French Blood Establishment, EFS Auvergne-Loire, Saint-Etienne 42023, France
| | - Caroline Sut
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
| | - Sofiane Tariket
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
| | - Hind Hamzeh-Cognasse
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
| | - Bruno Pozzetto
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
| | - Yolande Richard
- INSERMu1016, Institut Cochin, Departement “Infection, Immunity and Inflammation”, Paris 75014, France; E-Mail:
- CNRS-UMR8104, Cochin Institute, Paris 75014, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris 75270, France
| | - Fabrice Cognasse
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
- French Blood Establishment, EFS Auvergne-Loire, Saint-Etienne 42023, France
| | - Sandrine Laradi
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
- French Blood Establishment, EFS Auvergne-Loire, Saint-Etienne 42023, France
| | - Olivier Garraud
- Immunity of Mucosa and Pathogen Agents Group (GIMAP-EA3064), University of Lyon, Saint-Etienne 42023, France; E-Mails: (A.P.); (C.S.); (S.T.); (H.H-C.); (B.P.); (S.L.); (O.G.)
- Institut National de Transfusion Sanguine (INTS), Paris 75739, France
| |
Collapse
|
41
|
Granule-mediated release of sphingosine-1-phosphate by activated platelets. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1581-9. [PMID: 25158625 DOI: 10.1016/j.bbalip.2014.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an intracellularly generated bioactive lipid essential for development, vascular integrity, and immunity. These functions are mediated by S1P-selective cell surface G-protein coupled receptors. S1P signaling therefore requires extracellular release of this lipid. Several cell types release S1P and evidence for both plasma membrane transporter-mediated and vesicle-dependent secretion has been presented. Platelets are an important source of S1P and can release it in response to agonists generated at sites of vascular injury. S1P release from agonist-stimulated platelets was measured in the presence of a carrier molecule (albumin) using HPLC-MS/MS. The kinetics and agonist-dependence of S1P release were similar to that of other granule cargo e.g. platelet factor IV (PF4). Agonist-stimulated S1P release was defective in platelets from Unc13d(Jinx) (Munc13-4 null) mice demonstrating a critical role for regulated membrane fusion in this process. Consistent with this observation, platelets efficiently converted fluorescent NBD-sphingosine to its phosphorylated derivative which accumulated in granules. Fractionation of platelet organelles revealed the presence of S1P in both the plasma membrane and in α-granules. Resting platelets contained a second pool of constitutively releasable S1P that was more rapidly labeled by exogenously added sphingosine. Our studies indicate that platelets contain two pools of S1P that are released extracellularly: a readily-exchangeable, metabolically active pool of S1P, perhaps in the plasma membrane, and a granular pool that requires platelet activation and regulated exocytosis for release.
Collapse
|
42
|
Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat Commun 2014; 4:2657. [PMID: 24150174 DOI: 10.1038/ncomms3657] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/23/2013] [Indexed: 12/31/2022] Open
Abstract
Although it has long been known that patients with sepsis often have thrombocytopenia and that septic patients with severe thrombocytopenia have a poor prognosis and higher mortality, the role of platelets in the pathogenesis of sepsis is poorly understood. Here we report a protective role of platelets in septic shock. We show that experimental thrombocytopenia induced by intraperitoneal injection of an anti-glycoprotein Ibα monoclonal antibody increases mortality and aggravates organ failure, whereas transfusion of platelets reduces mortality in lipopolysaccharide-induced endotoxemia and a bacterial infusion mouse sepsis model. Plasma concentrations of proinflammatory cytokines TNF-α and IL-6 are elevated by thrombocytopenia and decreased by platelet transfusion in septic mice. Furthermore, we identify that platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the COX1/PGE₂/EP4-dependent pathway. Thus, these findings demonstrate a previously unappreciated role for platelets in septic shock and suggest that platelet transfusion may be effective in treating severely septic patients.
Collapse
|
43
|
Mosawy S, Jackson DE, Woodman OL, Linden MD. Treatment with quercetin and 3',4'-dihydroxyflavonol inhibits platelet function and reduces thrombus formation in vivo. J Thromb Thrombolysis 2014; 36:50-7. [PMID: 23070586 DOI: 10.1007/s11239-012-0827-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Flavonols are polyphenolic compounds with reported cardiovascular benefits and have been shown to exhibit antiplatelet properties in vitro. While some studies have shown inhibition of platelet aggregation following dietary supplementation with flavonol rich foods, few studies have assessed the ability of flavonols to inhibit platelet mediated thrombus generation in vivo. Furthermore, the duration of benefit and the influence of different dosing regimens remain unclear. In this study we investigate the ability of two structurally related flavonols; quercetin (Que) and 3',4'-dihydroxyflavonol (DiOHF) to inhibit platelet aggregation, platelet granule exocytosis and vessel occlusion in a well characterized mouse model of platelet mediated arterial thrombosis. We investigated the effect of a single 6 mg/kg intravenous bolus and daily 6 mg/kg intraperitoneal doses over seven consecutive days. Carotid artery blood flow after injury was better maintained in mice treated with both Que and DiOHF when compared to the vehicle for both dosage regimens. This improved blood flow corresponded to inhibition of platelet aggregation and platelet dense granule exocytosis following chemical stimulation of PAR4. We therefore provide evidence of inhibition of platelet-mediated arterial thrombosis by flavonols in vivo, and demonstrate that this effect persists for at least 24 h after the last intraperitoneal dose. These data suggest a potential clinical role for flavonols as anti-platelet therapy.
Collapse
Affiliation(s)
- S Mosawy
- School of Medical Sciences, RMIT University, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
44
|
Golebiewska EM, Poole AW. Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms? Br J Haematol 2013; 165:204-216. [PMID: 24588354 PMCID: PMC4155865 DOI: 10.1111/bjh.12682] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Upon activation by extracellular matrix components or soluble agonists, platelets release in excess of 300 active molecules from intracellular granules. Those factors can both activate further platelets and mediate a range of responses in other cells. The complex microenvironment of a growing thrombus, as well as platelets' roles in both physiological and pathological processes, require platelet secretion to be highly spatially and temporally regulated to ensure appropriate responses to a range of stimuli. However, how this regulation is achieved remains incompletely understood. In this review we outline the importance of regulated secretion in thrombosis as well as in 'novel' scenarios beyond haemostasis and give a detailed summary of what is known about the molecular mechanisms of platelet exocytosis. We also discuss a number of theories of how different cargoes could be released in a tightly orchestrated manner, allowing complex interactions between platelets and their environment.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | | |
Collapse
|
45
|
Goggs R, Harper MT, Pope RJ, Savage JS, Williams CM, Mundell SJ, Heesom KJ, Bass M, Mellor H, Poole AW. RhoG protein regulates platelet granule secretion and thrombus formation in mice. J Biol Chem 2013; 288:34217-34229. [PMID: 24106270 PMCID: PMC3837162 DOI: 10.1074/jbc.m113.504100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Robert J Pope
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stuart J Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Mark Bass
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alastair W Poole
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
46
|
Andia I, Maffulli N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat Rev Rheumatol 2013; 9:721-30. [PMID: 24080861 DOI: 10.1038/nrrheum.2013.141] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a common disease involving joint damage, an inadequate healing response and progressive deterioration of the joint architecture. Autologous blood-derived products, such as platelet-rich plasma (PRP), are key sources of molecules involved in tissue repair and regeneration. These products can deliver a collection of bioactive molecules that have important roles in fundamental processes, including inflammation, angiogenesis, cell migration and metabolism in pathological conditions, such as OA. PRP has anti-inflammatory properties through its effects on the canonical nuclear factor κB signalling pathway in multiple cell types including synoviocytes, macrophages and chondrocytes. PRP contains hundreds of different molecules; cells within the joint add to this milieu by secreting additional biologically active molecules in response to PRP. The net results of PRP therapy are varied and can include angiogenesis, the production of local conditions that favour anabolism in the articular cartilage, or the recruitment of repair cells. However, the molecules found in PRP that contribute to angiogenesis and the protection of joint integrity need further clarification. Understanding PRP in molecular terms could help us to exploit its therapeutic potential, and aid the development of novel treatments and tissue-engineering approaches, for the different stages of joint degeneration.
Collapse
Affiliation(s)
- Isabel Andia
- Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Plaza Cruces S/N, 48903 Barakaldo, Spain
| | | |
Collapse
|
47
|
Mercado CP, Byrum S, Beggs ML, Ziu E, Singh P, Raj VR, Haun RS, Kilic F. Impact of elevated plasma serotonin on global gene expression of murine megakaryocytes. PLoS One 2013; 8:e72580. [PMID: 24013211 PMCID: PMC3754925 DOI: 10.1371/journal.pone.0072580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/12/2013] [Indexed: 12/26/2022] Open
Abstract
Background Serotonin (5-HT) is a biogenic amine that also acts as a mitogen and a developmental signal early in rodent embryogenesis. Genetic and pharmacological disruption of 5-HT signaling causes various diseases and disorders via mediating central nervous system, cardiovascular system, and serious abnormalities on a growing embryo. Today, neither the effective modulators on 5-HT signaling pathways nor the genes affected by 5-HT signal are well known yet. Methodology/Principal Findings In an attempt to identify the genes altered by 5-HT signaling pathways, we analyzed the global gene expression via the Illumina array platform using the mouse WG-6 v2.0 Expression BeadChip containing 45,281 probe sets representing 30,854 genes in megakaryocytes isolated from mice infused with 5-HT or saline. We identified 723 differentially expressed genes of which 706 were induced and 17 were repressed by elevated plasma 5-HT. Conclusions/Significance Hierarchical gene clustering analysis was utilized to represent relations between groups and clusters. Using gene ontology mining tools and canonical pathway analyses, we identified multiple biological pathways that are regulated by 5-HT: (i) cytoskeletal remodeling, (ii) G-protein signaling, (iii) vesicular transport, and (iv) apoptosis and survival. Our data encompass the first extensive genome-wide based profiling in the progenitors of platelets in response to 5-HT elevation in vivo.
Collapse
Affiliation(s)
- Charles P. Mercado
- Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Stephanie Byrum
- Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Marjorie L. Beggs
- Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Pharmacogenomics Core, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Endrit Ziu
- Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Preeti Singh
- Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Vinay R. Raj
- Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Pharmacogenomics Core, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Randy S. Haun
- Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Fusun Kilic
- Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 2013; 24:130-7. [PMID: 23810565 DOI: 10.1016/j.ccr.2013.05.008] [Citation(s) in RCA: 466] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/06/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022]
Abstract
Tumor cells can activate platelets, which in turn facilitate tumor cell survival and dissemination. The exact mechanisms by which platelets promote metastasis have remained unclear. Here, we show that adenine nucleotides released from tumor cell-activated platelets induce opening of the endothelial barrier to allow transendothelial migration of tumor cells and thereby promote cancer cell extravasation. We identified the endothelial P2Y2 receptor, which is activated by ATP, as the primary mediator of this effect. Mice deficient in P2Y2 or lacking ATP secretion from platelets show strongly reduced tumor cell metastasis. These findings demonstrate a mechanism by which platelets promote cancer cell metastasis and suggest the P2Y2 receptor and its endothelial downstream signaling mechanisms as a target for antimetastatic therapies.
Collapse
Affiliation(s)
- Dagmar Schumacher
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | | | | | | | | |
Collapse
|
49
|
Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14:283-96. [PMID: 23609508 DOI: 10.1038/nrm3565] [Citation(s) in RCA: 1227] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.
Collapse
|
50
|
Abstract
Platelet secretion plays a key role in thrombosis, thus the platelet secretory machinery offers a unique target to modulate hemostasis. We report the regulation of platelet secretion via phosphorylation of SNAP-23 at Ser95. Phosphorylation of this t-soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) occurs upon activation of known elements of the platelet signaling cascades (ie, phospholipase C, [Ca(2+)]i, protein kinase C) and requires IκB kinase (IKK)-β. Other elements of the nuclear factor κB/IκB cascade (ie, IKK-α,-β,-γ/NEMO and CARMA/MALT1/Bcl10 complex) are present in anucleate platelets and IκB is phosphorylated upon activation, suggesting that this pathway is active in platelets and implying a nongenomic role for IKK. Inhibition of IKK-β, either pharmacologically (with BMS-345541, BAY11-7082, or TPCA-1) or by genetic manipulation (platelet factor 4 Cre:IKK-β(flox/flox)), blocked SNAP-23 phosphorylation, platelet secretion, and SNARE complex formation; but, had no effect on platelet morphology or other metrics of platelet activation. Consistently, SNAP-23 phosphorylation enhanced membrane fusion of SNARE-containing proteoliposomes. In vivo studies with IKK inhibitors or platelet-specific IKK-β knockout mice showed that blocking IKK-β activity significantly prolonged tail bleeding times, suggesting that currently available IKK inhibitors may affect hemostasis.
Collapse
|