1
|
Amin R, Hossaeini Marashi SM, Reza Noori SM, Alavi Z, Dehghani E, Maleki R, Safdarian M, Rocky A, Berizi E, Amin Alemohammad SM, Zamanpour S, Ali Noori SM. Medical, pharmaceutical, and nutritional applications of 3D-printing technology in diabetes. Diabetes Metab Syndr 2024; 18:103002. [PMID: 38615569 DOI: 10.1016/j.dsx.2024.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
AIMS Despite numerous studies covering the various features of three-dimensional printing (3D printing) technology, and its applications in food science and disease treatment, no study has yet been conducted to investigate applying 3D printing in diabetes. Therefore, the present study centers on the utilization and impact of 3D printing technology in relation to the nutritional, pharmaceutical, and medicinal facets of diabetes management. It highlights the latest advancements, and challenges in this field. METHODS In this review, the articles focusing on the application and effect of 3D printing technology on medical, pharmaceutical, and nutritional aspects of diabetes management were collected from different databases. RESULT High precision of 3D printing in the placement of cells led to accurate anatomic control, and the possibility of bio-printing pancreas and β-cells. Transdermal drug delivery via 3D-printed microneedle (MN) patches was beneficial for the management of diabetes disease. 3D printing supported personalized medicine for Diabetes Mellitus (DM). For instance, it made it possible for pharmaceutical companies to manufacture unique doses of medications for every diabetic patient. Moreover, 3D printing allowed the food industry to produce high-fiber and sugar-free products for the individuals with DM. CONCLUSIONS In summary, applying 3D printing technology for diabetes management is in its early stages, and needs to be matured and developed to be safely used for humans. However, its rapid progress in recent years showed a bright future for the treatment of diabetes.
Collapse
Affiliation(s)
- Reza Amin
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Sayed Mahdi Hossaeini Marashi
- College of Engineering, Design and Physical Sciences Michael Sterling Building (MCST 055), Brunel University London, Uxbridge, UB8 3PH, United Kingdom; School of Physics, Engineering and Computer Science, Centre for Engineering Research, University of Hertfordshire, Mosquito Way, Hatfield AL10 9EU, United Kingdom
| | - Seyyed Mohammad Reza Noori
- Department of Medical Imaging and Radiation Sciences, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Alavi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elaheh Dehghani
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Maleki
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Rocky
- Department of Electrical and Computer Engineering, University of Windsor, Canada
| | - Enayat Berizi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Setayesh Zamanpour
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Deputy of Food and Drug, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Martin D, Alberti P, Demartines N, Phillips M, Casey J, Sutherland A. Whole-Organ Pancreas and Islets Transplantations in UK: An Overview and Future Directions. J Clin Med 2023; 12:3245. [PMID: 37176684 PMCID: PMC10179530 DOI: 10.3390/jcm12093245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Whole-organ pancreas and islets transplantations are two therapeutic options to treat type 1 diabetic patients resistant to optimised medical treatment in whom severe complications develop. Selection of the best option for β-cell replacement depends on several factors such as kidney function, patient comorbidities, and treatment goals. For a patient with end-stage kidney disease, the treatment of choice is often a simultaneous transplant of the pancreas and kidney (SPK). However, it remains a major surgical procedure in patients with multiple comorbidities and therefore it is important to select those who will benefit from it. Additionally, in view of the organ shortage, new strategies to improve outcomes and reduce immune reactions have been developed, including dynamic organ perfusion technologies, pancreas bioengineering, and stem cell therapies. The purpose of this article is to review the indications, surgical techniques, outcomes, and future directions of whole-organ pancreas and islets transplantations.
Collapse
Affiliation(s)
- David Martin
- Department of Visceral Surgery and Transplantation, University Hospital CHUV, University of Lausanne (UNIL), 1015 Lausanne, Switzerland;
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - Piero Alberti
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - Nicolas Demartines
- Department of Visceral Surgery and Transplantation, University Hospital CHUV, University of Lausanne (UNIL), 1015 Lausanne, Switzerland;
| | - Melanie Phillips
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - John Casey
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| | - Andrew Sutherland
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK (M.P.); (J.C.); (A.S.)
| |
Collapse
|
3
|
Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater 2023; 18. [PMID: 36720168 DOI: 10.1088/1748-605x/acb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source. We differentiated human pluripotent stem cells (hPSC) toward pancreatic progenitor (PP) lineage and repopulated decellularized organ scaffolds with these hPSC-PP cells. We observed that hPSCs cultured and differentiated as aggregates are more suitable for organ repopulation than isolated single cell suspension. However, recellularization with hPSC-PP aggregates require a more extensive vascular support, which was found to be superior in decellularized liver over the decellularized pancreas scaffolds. Upon continued culture for nine days with chemical induction in the bioreactor, the seeded hPSC-PP aggregates demonstrated extensive and uniform cellular repopulation and viability throughout the thickness of the liver scaffolds. Furthermore, the decellularized liver scaffolds was supportive of the endocrine cell fate of the engrafted cells. Our novel strategy to engineer endocrine pancreas construct is expected to find potential applications in preclinical testing, drug discovery and diabetes therapy.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Thomas Richardson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
The microenvironment of silk/gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton's jelly-derived mesenchymal cells into islet-like cells. Gene 2022; 833:146586. [PMID: 35597530 DOI: 10.1016/j.gene.2022.146586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
The use of umbilical cord-derived mesenchymal stem cells along with three-dimensional (3D) scaffolds in pancreatic tissue engineering can be considered as a treatment for diabetes. This study aimed to investigate the differentiation of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into pancreatic islet-insulin producing cells (IPCs) on silk/gelatin nanofibers as a 3D scaffold. Mesenchymal markers were evaluated at the mesenchymal stem cells (MSCs) level by flow cytometry. WJ-MSCs were then cultured on 3D scaffolds and treated with a differential medium. Immunocytochemical assays showed efficient differentiation of WJ-MSCs into IPCs. Also, Real-time PCR results showed a significant increase in the expression of pancreatic genes in the 3D culture group compared to the two-dimensional (2D) culture group. Despite these cases, the secretion of insulin and C-peptide in response to different concentrations of glucose in the 3D group was significantly higher than in the 2D culture. The results of our study showed that silk/gelatin scaffold with WJ-MSCs could be a good option in the production of IPCs in regenerative medicine and pancreatic tissue engineering.
Collapse
|
5
|
Hwang DG, Jo Y, Kim M, Yong U, Cho S, Choi YM, Kim J, Jang J. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication 2021; 14. [PMID: 34479233 DOI: 10.1088/1758-5090/ac23ac] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022]
Abstract
Islet transplantation is a promising treatment for type 1 diabetes. However, treatment failure can result from loss of functional cells associated with cell dispersion, low viability, and severe immune response. To overcome these limitations, various islet encapsulation approaches have been introduced. Among them, macroencapsulation offers the advantages of delivering and retrieving a large volume of islets in one system. In this study, we developed a hybrid encapsulation system composed of a macroporous polymer capsule with stagger-type membrane and assemblable structure, and a nanoporous decellularized extracellular matrix (dECM) hydrogel containing pancreatic islet-like aggregates using 3D bioprinting technique. The outer part (macroporous polymer capsule) was designed to have an interconnected porous architecture, which allows insulin-producingβ-cells encapsulated in the hybrid encapsulation system to maintain their cellular behaviors, including viability, cell proliferation, and insulin-producing function. The inner part (nanoporous dECM hydrogel), composed of the 3D biofabricated pancreatic islet-like aggregates, was simultaneously placed into the macroporous polymer capsule in one step. The developed hybrid encapsulation system exhibited biocompatibilityin vitroandin vivoin terms of M1 macrophage polarization. Furthermore, by controlling the printing parameters, we generated islet-like aggregates, improving cell viability and functionality. Moreover, the 3D bioprinted pancreatic islet-like aggregates exhibited structural maturation and functional enhancement associated with intercellular interaction occurring at theβ-cell edges. In addition, we also investigated the therapeutic potential of a hybrid encapsulation system by integrating human pluripotent stem cell-derived insulin-producing cells, which are promising to overcome the donor shortage problem. In summary, these results demonstrated that the 3D bioprinting approach facilitates the fabrication of a hybrid islet encapsulation system with multiple materials and potentially improves the clinical outcomes by driving structural maturation and functional improvement of cells.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seungyeon Cho
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jaewook Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Docherty FM, Sussel L. Islet Regeneration: Endogenous and Exogenous Approaches. Int J Mol Sci 2021; 22:ijms22073306. [PMID: 33804882 PMCID: PMC8037662 DOI: 10.3390/ijms22073306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Both type 1 and type 2 diabetes are characterized by a progressive loss of beta cell mass that contributes to impaired glucose homeostasis. Although an optimal treatment option would be to simply replace the lost cells, it is now well established that unlike many other organs, the adult pancreas has limited regenerative potential. For this reason, significant research efforts are focusing on methods to induce beta cell proliferation (replication of existing beta cells), promote beta cell formation from alternative endogenous cell sources (neogenesis), and/or generate beta cells from pluripotent stem cells. In this article, we will review (i) endogenous mechanisms of beta cell regeneration during steady state, stress and disease; (ii) efforts to stimulate endogenous regeneration and transdifferentiation; and (iii) exogenous methods of beta cell generation and transplantation.
Collapse
|
7
|
Abstract
The field of tissue engineering has advanced over the past decade, but the largest impact on human health should be achieved with the transition of engineered solid organs to the clinic. The number of patients suffering from solid organ disease continues to increase, with over 100 000 patients on the U.S. national waitlist and approximately 730 000 deaths in the United States resulting from end-stage organ disease annually. While flat, tubular, and hollow nontubular engineered organs have already been implanted in patients, in vitro formation of a fully functional solid organ at a translatable scale has not yet been achieved. Thus, one major goal is to bioengineer complex, solid organs for transplantation, composed of patient-specific cells. Among the myriad of approaches attempted to engineer solid organs, 3D bioprinting offers unmatched potential. This review highlights the structural complexity which must be engineered at nano-, micro-, and mesostructural scales to enable organ function. We showcase key advances in bioprinting solid organs with complex vascular networks and functioning microstructures, advances in biomaterials science that have enabled this progress, the regulatory hurdles the field has yet to overcome, and cutting edge technologies that bring us closer to the promise of engineered solid organs.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
White AM, Shamul JG, Xu J, Stewart S, Bromberg JS, He X. Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomater Sci Eng 2019; 6:2543-2562. [PMID: 33299929 DOI: 10.1021/acsbiomaterials.9b01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with immune protection/isolation. To overcome biological barriers of islet transplantation, encapsulation strategies have been developed and robustly investigated. While islet encapsulation can prevent the need for immunosuppressants, these approaches have not shown much success in clinical trials due to a lack of long-term insulin production. Multiple engineering strategies have been used to improve encapsulation and post-transplantation islet survival. In addition, more efficient islet cryopreservation methods have been designed to facilitate the scaling-up of islet transplantation. Other islet sources have been identified including porcine islets and stem cell-derived islet-like aggregates. Overall, islet-laden capsule transplantation has greatly improved over the past 30 years and is moving towards becoming a clinically feasible treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Pancreatic islet cell transplantation is currently the only curative cell therapy for type 1 diabetes mellitus. However, its potential to treat many more patients is limited by several challenges. The emergence of 3D bioprinting technology from recent advances in 3D printing, biomaterials, and cell biology has provided the means to overcome these challenges. RECENT FINDINGS 3D bioprinting allows for the precise fabrication of complex 3D architectures containing spatially distributed cells, biomaterials (bioink), and bioactive factors. Different strategies to capitalize on this ability have been investigated for the 3D bioprinting of pancreatic islets. In particular, with co-axial bioprinting technology, the co-printability of islets with supporting cells such as endothelial progenitor cells and regulatory T cells, which have been shown to accelerate revascularization of islets and improve the outcome of various transplantations, respectively, has been achieved. 3D bioprinting of islets for generation of an artificial pancreas is a newly emerging field of study with a vast potential to improve islet transplantation.
Collapse
Affiliation(s)
- Juewan Kim
- Department of Molecular & Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Kyungwon Kang
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher J Drogemuller
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterial Science, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia.
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
10
|
Guo M, Han S, Liu Y, Guo W, Zhao Y, Liu F, Shi X, Ding G, Wang Q. Inhibition of allogeneic islet graft rejection by VISTA-conjugated liposome. Biochem Biophys Res Commun 2019; 516:914-920. [PMID: 31272717 DOI: 10.1016/j.bbrc.2019.05.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
The Ig superfamily member V-domain Ig-containing suppressor of T-cell activation (VISTA) is a negative regulator with broad-spectrum activities and has reported that blockade of VISTA or combination with other negative checkpoint receptors sufficiently break tumor tolerance. However, it remains unclear whether VISTA could induce allogeneic T-cell hyporesponsiveness and inhibit allograft rejection. Here we found VISTA treatment significantly inhibited lymphocyte proliferation and activation in allogeneic MLR assay through impairing SYK-VAV pathway. Interestingly, though neither VISTA protein nor VISTA-Fc fusion protein administration exerted satisfactory immunosuppressive effect on allograft survival due to their short half-life in circulation, this problem was solved by conjugating VISTA protein on liposome by biotin-streptavidin system, which markedly prolonged its circulating half-life to 60 h. With islet transplant model, administration of VISTA-conjugated liposome could markedly prolong allograft survival by inhibition of SYK-VAV pathway, thus maintained the normal blood glucose level of recipients during treatment period. The results indicate VISTA is a promising therapeutic target to treat allograft rejection of islet transplantation.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China; Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shu Han
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenyuan Guo
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuanyu Zhao
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fang Liu
- Experimental Teaching Center of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Xiaomin Shi
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guoshan Ding
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Quanxing Wang
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
11
|
Ma SN, Yuan YH, Guo XR, Li DS. Subcapsular Implantation of Pancreatic Islets in Syngeneic, Allogeneic, and Xenogeneic Mice. Transplant Proc 2017; 48:2821-2825. [PMID: 27788824 DOI: 10.1016/j.transproceed.2016.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Reliable and reproducible transplantation is essential to the success of a number of particular investigations. Renal subcapsule is the most selected site for islet transplantation mainly owing to its easy access, readiness for retrieval, and possibility of reimplantation. METHODS Syngeneic, allogeneic, and xenogeneic islets were transplanted into kidney capsules of Balb/C and C57BL/6J mice, and the blood glucose levels of the experimental animals were periodically monitored. Detailed procedures on mouse diabetic model and islet implantation are described. RESULTS The values of blood glucose measured under varied transplant circumstances are presented, covering syngeneic, allogeneic, and xenogeneic islet transplantations. The methodology is straightforward and has been proven to be practicable and reproducible. CONCLUSIONS The parallel observations in different transplant situations provide a valuable contribution to and useful information for diabetes-related studies.
Collapse
Affiliation(s)
- S-N Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Y-H Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - X-R Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - D-S Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China.
| |
Collapse
|
12
|
Beer RL, Parsons MJ, Rovira M. Centroacinar cells: At the center of pancreas regeneration. Dev Biol 2016; 413:8-15. [PMID: 26963675 DOI: 10.1016/j.ydbio.2016.02.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals.
Collapse
Affiliation(s)
- Rebecca L Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
13
|
β-Galactoside-mediated tissue organization during islet reconstitution. Regen Ther 2016; 3:11-14. [PMID: 31245467 PMCID: PMC6581812 DOI: 10.1016/j.reth.2016.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023] Open
Abstract
We have previously reported that multi-cellular heteroaggregates comprising murine pancreatic α (αTC1.6) and β (MIN6-m9) cell lines spontaneously acquired islet-like architecture and displayed higher insulin secretion rates. However, the mechanisms of self-organization remain unclear. The objective of this study is to examine the possibility that a sugar chain participates in the mutual recognition of the cells during reconstitution of the islet-like structure in vitro. Using a lectin-binding assay, we identified Erythrina cristagalli agglutinin (ECA), which particularly recognizes the β-galactoside structure on the surfaces of MIN6-m9 cells. The self-organization of αTC1.6 and MIN6-m9 was obstructed using ECA-bound MIN6-m9 cells. Lactose neutralized the ECA's inhibitory effect on the autonomous rearrangement of αTC1.6 and MIN6-m9 cells, indicating that the inhibition of cell arrangement by ECA was mediated via β-galactoside. We concluded that a β-galactoside sugar chain was central to the reconstitution of the pancreatic islet-like architecture in vitro.
Collapse
Key Words
- ConA, concanavalin A
- DMEM, Dulbecco's Modified Eagle's Medium
- ECA, Erythrina cristagalli agglutinin
- FITC, fluorescein isothiocyanate
- Islet reconstitution
- Islet-like structure
- LCA, Lens culinaris agglutinin, α-d-mannosyl group
- Lectin
- MAA, Maackia amurensis agglutinin
- MC, methylcellulose
- RCA, Ricinus communis agglutinin
- SSA, Sambucus sieboldiana agglutinin
- Sugar chain
- UEA, Ulex europaeus agglutinin
- WGA, wheat germ agglutinin
- β-Galactoside
Collapse
|
14
|
Mejía-León ME, Barca AMCDL. Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution. Nutrients 2015; 7:9171-84. [PMID: 26561831 PMCID: PMC4663589 DOI: 10.3390/nu7115461] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is the second most frequent autoimmune disease in childhood. The long-term micro- and macro-vascular complications of diabetes are associated with the leading causes of disability and even mortality in young adults. Understanding the T1D etiology will allow the design of preventive strategies to avoid or delay the T1D onset and to help to maintain control after developing. T1D development involves genetic and environmental factors, such as birth delivery mode, use of antibiotics, and diet. Gut microbiota could be the link between environmental factors, the development of autoimmunity, and T1D. In this review, we will focus on the dietary factor and its relationship with the gut microbiota in the complex process involved in autoimmunity and T1D. The molecular mechanisms involved will also be addressed, and finally, evidence-based strategies for potential primary and secondary prevention of T1D will be discussed.
Collapse
Affiliation(s)
- María E Mejía-León
- Department Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Ana M Calderón de la Barca
- Department Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
15
|
KASOJU N, KUBIES D, FÁBRYOVÁ E, KŘÍŽ J, KUMOREK MM, STICOVÁ E, RYPÁČEK F. In Vivo Vascularization of Anisotropic Channeled Porous Polylactide-Based Capsules for Islet Transplantation: The Effects of Scaffold Architecture and Implantation Site. Physiol Res 2015; 64:S75-84. [DOI: 10.33549/physiolres.933138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The replacement of pancreatic islets for the possible treatment of type 1 diabetes is limited by the extremely high oxygen demand of the islets. To this end, here we hypothesize to create a novel extra-hepatic highly-vascularized bioartificial cavity using a porous scaffold as a template and using the host body as a living bioreactor for subsequent islet transplantation. Polylactide-based capsular-shaped anisotropic channeled porous scaffolds were prepared by following the unidirectional thermally-induced phase separation technique, and were implanted under the skin and in the greater omentum of Brown Norway rats. Polyamide mesh-based isotropic regular porous capsules were used as the controls. After 4weeks, the implants were excised and analyzed by histology. The hematoxylin and eosin, as well as Masson's trichrome staining, revealed a) low or no infiltration of giant inflammatory cells in the implant, b) minor but insignificant fibrosis around the implant, c) guided infiltration of host cells in the test capsule in contrast to random cell infiltration in the control capsule, and d) relatively superior cell infiltration in the capsules implanted in the greater omentum than in the capsules implanted under the skin. Furthermore, the anti-CD31 immunohistochemistry staining revealed numerous vessels at the implant site, but mostly on the external surface of the capsules. Taken together, the current study, the first of its kind, is a significant step-forward towards engineering a bioartificial microenvironment for the transplantation of islets.
Collapse
Affiliation(s)
- N. KASOJU
- Department of Biomaterials and Bioanalogous Polymer Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - D. KUBIES
- Department of Biomaterials and Bioanalogous Polymer Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - J. KŘÍŽ
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | |
Collapse
|
16
|
Wang G, Rajpurohit SK, Delaspre F, Walker SL, White DT, Ceasrine A, Kuruvilla R, Li RJ, Shim JS, Liu JO, Parsons MJ, Mumm JS. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass. eLife 2015; 4:e08261. [PMID: 26218223 PMCID: PMC4534842 DOI: 10.7554/elife.08261] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022] Open
Abstract
Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.
Collapse
Affiliation(s)
- Guangliang Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Surendra K Rajpurohit
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - Fabien Delaspre
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Steven L Walker
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - David T White
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - Alexis Ceasrine
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Ruo-jing Li
- Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
| | - Joong S Shim
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jun O Liu
- Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
- Department of Oncology, Johns Hopkins University, Baltimore, United States
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Jeff S Mumm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| |
Collapse
|
17
|
Rheinheimer J, Bauer AC, Silveiro SP, Estivalet AAF, Bouças AP, Rosa AR, Souza BMD, Oliveira FSD, Cruz LA, Brondani LA, Azevedo MJ, Lemos NE, Carlessi R, Assmann TS, Gross JL, Leitão CB, Crispim D. Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:161-70. [PMID: 25993680 DOI: 10.1590/2359-3997000000030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with chronic complications that lead to high morbidity and mortality rates in young adults of productive age. Intensive insulin therapy has been able to reduce the likelihood of the development of chronic diabetes complications. However, this treatment is still associated with an increased incidence of hypoglycemia. In patients with "brittle T1DM", who have severe hypoglycemia without adrenergic symptoms (hypoglycemia unawareness), islet transplantation may be a therapeutic option to restore both insulin secretion and hypoglycemic perception. The Edmonton group demonstrated that most patients who received islet infusions from more than one donor and were treated with steroid-free immunosuppressive drugs displayed a considerable decline in the initial insulin independence rates at eight years following the transplantation, but showed permanent C-peptide secretion, which facilitated glycemic control and protected patients against hypoglycemic episodes. Recently, data published by the Collaborative Islet Transplant Registry (CITR) has revealed that approximately 50% of the patients who undergo islet transplantation are insulin independent after a 3-year follow-up. Therefore, islet transplantation is able to successfully decrease plasma glucose and HbA1c levels, the occurrence of severe hypoglycemia, and improve patient quality of life. The goal of this paper was to review the human islet isolation and transplantation processes, and to describe the establishment of a human islet isolation laboratory at the Endocrine Division of the Hospital de Clínicas de Porto Alegre - Rio Grande do Sul, Brazil.
Collapse
Affiliation(s)
- Jakeline Rheinheimer
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Andrea C Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Sandra P Silveiro
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Aline A F Estivalet
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana P Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Annelise R Rosa
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bianca M de Souza
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda S de Oliveira
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavínia A Cruz
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Letícia A Brondani
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mirela J Azevedo
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália E Lemos
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rodrigo Carlessi
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Taís S Assmann
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jorge L Gross
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cristiane B Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Abstract
Both pancreas and islet transplantations are therapeutic options for complicated type 1 diabetes. Until recent years, outcomes of islet transplantation have been significantly inferior to those of whole pancreas. Islet transplantation is primarily performed alone in patients with severe hypoglycemia, and recent registry reports have suggested that results of islet transplantation alone in this indication may be about to match those of pancreas transplant alone in insulin independence. Figures of 50% insulin independence at 5 years for either procedure have been cited. In this article, we address the question whether islet transplantation has indeed bridged the gap with whole pancreas. Looking at the evidence to answer this question, we propose that although pancreas may still be more efficient in taking recipients off insulin than islets, there are in fact numerous "gaps" separating both procedures that must be taken into the equation. These "gaps" relate to organ utilization, organ allocation, indication for transplantation, and morbidity. In-depth analysis reveals that islet transplantation, in fact, has an edge on whole pancreas in some of these aspects. Accordingly, attempts should be made to bridge these gaps from both sides to achieve the same level of success with either procedure. More realistically, it is likely that some of these gaps will remain and that both procedures will coexist and complement each other, to ensure that β cell replacement can be successfully implemented in the greatest possible number of patients with type 1 diabetes.
Collapse
|
19
|
Andres A, Livingstone S, Kin T, Campbell PM, Senior PA, Kneteman NM, Bigam D, Shapiro AMJ. Islet-after-failed-pancreas and pancreas-after-failed islet transplantation: Two complementary rescue strategies to control diabetes. Islets 2015; 7:e1126036. [PMID: 26854597 PMCID: PMC4878259 DOI: 10.1080/19382014.2015.1126036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
For selected patients with type 1 diabetes, β-cell replacement is the treatment of choice, either by islet transplantation (ITX) or whole pancreas transplantation (PTX). When either modality fails, current practice is to consider retransplantation, or return to exogenous insulin. We investigate outcomes with PTX after failed ITX (PAI), and ITX after failed PTX (IAP). All patients receiving PAI or IAP at a single institution were identified. Donor and recipient variables were documented, including transplant outcomes analyzed for insulin requirement and metabolic control. Five subjects were listed for PAI, and 2 received transplants. Of the 4 listed for IAP, 3 have received transplants. The mean waitlist time was 4.5 ± 4.1 y for PAI and 0.35 ±0 .4 y for IAP (p = 0.08). Metabolic control was excellent after PAI, with 2/2 insulin-independent. After IAP, 1/2 achieved insulin independence and good metabolic control after 2 islet infusions. The third could not receive 2(nd) infusion and presented c-peptide levels < 0.1 nmol/L. Both strategies are feasible. The outcomes after PAI in our center must be offset by much longer waitlist time due to the sensitization status of these patients. Data from multicentre experience will allow more robust comparative outcomes to be made, the current observations being restricted to a limited patient set.
Collapse
Affiliation(s)
- Axel Andres
- Department of Surgery; University of Alberta; Edmonton, Alberta, Canada
| | - Scott Livingstone
- Department of Surgery; University of Alberta; Edmonton, Alberta, Canada
| | - Tatsuya Kin
- Department of Surgery; University of Alberta; Edmonton, Alberta, Canada
| | | | - Peter A Senior
- Department of Medicine; University of Alberta; Edmonton, Alberta, Canada
| | - Norman M Kneteman
- Department of Surgery; University of Alberta; Edmonton, Alberta, Canada
| | - David Bigam
- Department of Surgery; University of Alberta; Edmonton, Alberta, Canada
| | - A M James Shapiro
- Department of Surgery; University of Alberta; Edmonton, Alberta, Canada
- Department of Medicine; University of Alberta; Edmonton, Alberta, Canada
- Canadian National Transplant Research Program (CNTRP); Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Gunawardana SC. Benefits of healthy adipose tissue in the treatment of diabetes. World J Diabetes 2014; 5:420-430. [PMID: 25126390 PMCID: PMC4127579 DOI: 10.4239/wjd.v5.i4.420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin. Insulin deficiency is either absolute due to destruction or failure of pancreatic β cells, or relative due to decreased sensitivity of peripheral tissues to insulin. The primary lesion being related to insulin, treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin. These therapies have their own limitations and complications, some of which can be life-threatening. For example, exogenous insulin administration can lead to fatal hypoglycemic episodes; islet/pancreas transplantation requires life-long immunosuppressive therapy; and anti-diabetic drugs have dangerous side effects including edema, heart failure and lactic acidosis. Thus the need remains for better safer long term treatments for diabetes. The ultimate goal in treating diabetes is to re-establish glucose homeostasis, preferably through endogenously generated hormones. Recent studies increasingly show that extra-pancreatic hormones, particularly those arising from adipose tissue, can compensate for insulin, or entirely replace the function of insulin under appropriate circumstances. Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism. While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines, healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties, which can complement and/or compensate for the function of insulin. Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes, and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin. Although specific adipokines may correct diabetes, administration of individual adipokines still carries risks similar to those of insulin monotherapy. Thus a better approach is to achieve glucose homeostasis with endogenously-generated adipokines through transplantation or regeneration of healthy adipose tissue. Our recent studies on mouse models show that type 1 diabetes can be reversed without insulin through subcutaneous transplantation of embryonic brown adipose tissue, which leads to replenishment of recipients’ white adipose tissue; increase of a number of beneficial adipokines; and fast and long-lasting euglycemia. Insulin-independent glucose homeostasis is established through a combination of endogenously generated hormones arising from the transplant and/or newly-replenished white adipose tissue. Transplantation of healthy white adipose tissue is reported to alleviate type 2 diabetes in rodent models on several occasions, and increasing the content of endogenous brown adipose tissue is known to combat obesity and type 2 diabetes in both humans and animal models. While the underlying mechanisms are not fully documented, the beneficial effects of healthy adipose tissue in improving metabolism are increasingly reported, and are worthy of attention as a powerful tool in combating metabolic disease.
Collapse
|
21
|
Anti-TCR mAb induces peripheral tolerance to alloantigens and delays islet allograft rejection in autoimmune diabetic NOD mice. Transplantation 2014; 97:1216-24. [PMID: 24854475 DOI: 10.1097/tp.0000000000000120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Clinical application of islet transplantation to treat type 1 diabetes has been limited by islet allograft destruction by both allogeneic and autoimmune diabetogenic T-cell responses. The current study aims at determining whether an anti-T-cell receptor (TCR) monoclonal antibody (mAb) has potential as a novel and potent induction immunotherapy for islet transplantation. METHODS We have investigated the therapeutic efficacy and mechanisms of action of anti-TCR therapy in four different murine models, which comprise either allo- or autoimmune responses alone or both together. RESULTS T-cell response to islet allografts was potently abrogated by a brief treatment with an anti-TCRβ mAb (clone H57-597), resulting in long-term survival of BALB/c islet allografts in streptozotocin-induced diabetic B6 mice. Moreover, transient anti-TCR treatment permanently prevented BALB/c skin allograft rejection on Rag1 B6 recipients that were reconstituted with Foxp3 cell-depleted B6 splenocytes, but did not impair the reconstituted cells' ability to reject the later transplanted C3H skin allografts (transplanted at 120 days after BALB/c skin grafting). Transient anti-TCR treatment was also able to completely prevent diabetes onset in NOD.SCID.γc mice that were transferred with lymphocytes from diabetic NOD mice. Next, transient anti-TCR treatment significantly prolonged the survival of transplanted BALB/c islets in overtly diabetic NOD mice, which comprise both allogeneic and autoimmune diabetogenic T-cell responses to the transplanted islets. CONCLUSIONS Overall, anti-TCR mAb induced peripheral tolerance to specific alloantigens even in the absence of Foxp3-expressing natural regulatory T cells. These findings reveal the potential for using TCR-targeting mAbs as induction immunotherapy for islet transplantation.
Collapse
|
22
|
Fourtounas C. Transplant options for patients with type 2 diabetes and chronic kidney disease. World J Transplant 2014; 4:102-110. [PMID: 25032099 PMCID: PMC4094945 DOI: 10.5500/wjt.v4.i2.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/20/2014] [Accepted: 05/14/2014] [Indexed: 02/05/2023] Open
Abstract
Chronic kidney disease (CKD) has become a real epidemic around the world, mainly due to ageing and diabetic nephropathy. Although diabetic nephropathy due to type 1 diabetes mellitus (T1DM) has been studied more extensively, the vast majority of the diabetic CKD patients suffer from type 2 diabetes mellitus (T2DM). Renal transplantation has been established as a first line treatment for diabetic nephropathy unless there are major contraindications and provides not only a better quality of life, but also a significant survival advantage over dialysis. However, T2DM patients are less likely to be referred for renal transplantation as they are usually older, obese and present significant comorbidities. As pre-emptive renal transplantation presents a clear survival advantage over dialysis, all T2DM patients with CKD should be referred for early evaluation by a transplant center. The transplant center should have enough time in order to examine their eligibility focusing on special issues related with diabetic nephropathy and explore the best options for each patient. Living donor kidney transplantation should always be considered as the first line treatment. Otherwise, the patient should be listed for deceased donor kidney transplantation. Recent progress in transplantation medicine has improved the "transplant menu" for T2DM patients with diabetic nephropathy and there is an ongoing discussion about the place of simultaneous pancreas kidney (SPK) transplantation in well selected patients. The initial hesitations about the different pathophysiology of T2DM have been forgotten due to the almost similar short- and long-term results with T1DM patients. However, there is still a long way and a lot of ethical and logistical issues before establishing SPK transplantation as an ordinary treatment for T2DM patients. In addition recent advances in bariatric surgery may offer new options for severely obese T2DM patients with CKD. Nevertheless, the existing data for T2DM patients with advanced CKD are rather scarce and bariatric surgery should not be considered as a cure for diabetic nephropathy, but only as a bridge for renal transplantation.
Collapse
|
23
|
Abstract
Interventions in endocrinology make a huge impact on life of patients with endocrine diseases. This brief communication discusses the role played by both medical and surgical interventions in practice of endocrinology. Endocrinology is branch of medicine where treatment is as close to ideal as possible. For people with hormone deficiencies, medical intervention in form of replacement with hormones generated by recombinant technologies is a perfectly natural treatment. Hormone excess is also being evaluated and treated with exceedingly precise surgical interventions with minimal morbidity.
Collapse
Affiliation(s)
- Rajiv Singla
- Consultant, Endocrinology and Diabetes, The Kalpavriksh Superspeciality Clinic, Dwarka, Delhi, India
| | - Sweta Singla
- Consultant, Neurology and Sleep, The Kalpavriksh Superspeciality Clinic, Dwarka, Delhi, India
| |
Collapse
|
24
|
|
25
|
Abstract
The lack of transplantable pancreatic islets is a serious problem that affects the treatment of patients with type 1 diabetes mellitus. Beta cells can be induced from various sources of stem or progenitor cells, including induced pluripotent stem cells in the near future; however, the reconstitution of islets from β cells in culture dishes is challenging. The generation of highly functional islets may require three-dimensional spherical cultures that resemble intact islets. This review discusses recent advances in the reconstitution of islets. Several factors affect the reconstitution of pseudoislets with higher functions, such as architectural similarity, cell-to-cell contact, and the production method. The actual transplantation of naked or encapsulated pseudoislets and islet-like cell clusters from various stem cell sources is also discussed. Advancing our understanding of the methods used to reconstitute pseudoislets should expand the range of potential strategies available for developing de novo islets for therapeutic applications.
Collapse
Affiliation(s)
- Nobuhiko Kojima
- Graduate School of Nanobioscience; Yokohama City University; Yokohama, Japan
| |
Collapse
|
26
|
Lee J, Sugiyama T, Liu Y, Wang J, Gu X, Lei J, Markmann JF, Miyazaki S, Miyazaki JI, Szot GL, Bottino R, Kim SK. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife 2013; 2:e00940. [PMID: 24252877 PMCID: PMC3826580 DOI: 10.7554/elife.00940] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI:http://dx.doi.org/10.7554/eLife.00940.001 Diabetes mellitus is a disease that can lead to dangerously high blood sugar levels, causing numerous complications such as heart disease, glaucoma, skin disorders, kidney disease, and nerve damage. In healthy individuals, beta cells in the pancreas produce a hormone called insulin, which stimulates cells in the liver, muscles and fat to take up glucose from the blood. However, this process is disrupted in people with diabetes, who either have too few pancreatic beta cells (type 1 diabetes) or do not respond appropriately to insulin (type 2 diabetes). All patients with type 1 diabetes, and some with type 2, must inject themselves regularly with insulin, but this does not always fully control the disease. Some type 1 patients have been successfully treated with beta cells transplanted from deceased donors, but there are not enough donor organs available for this to become routine. Thus, intensive efforts worldwide are focused on generating insulin-producing cells in the lab from human stem cells. However, the cells produced in this way can give rise to tumors. Now, Lee et al. have shown that duct cells, which make up about 30% of the human pancreas, can be converted into cells capable of producing and secreting insulin. Ductal cells obtained from donor pancreases were first separated from the remaining tissue and grown in cell culture. Viruses were then used to introduce genes that reprogrammed the ductal cells so that they acquired the ability to make, process and store insulin, and to release it in response to glucose—hallmark features of functional beta cells. As well as providing a potential source of cells for use in transplant or cell conversion therapies for diabetes, the ability to grow and maintain human pancreatic ductal cells in culture may make it easier to study other diseases that affect the pancreas, including pancreatitis, cystic fibrosis, and adenocarcinoma. DOI:http://dx.doi.org/10.7554/eLife.00940.002
Collapse
Affiliation(s)
- Jonghyeob Lee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Elkhafif NM, Borot S, Morel P, Demuylder-Mischler S, Giovannoni L, Toso C, Bosco D, Berney T. Endocrine secretory reserve and proinsulin processing in recipients of islet of langerhans versus whole pancreas transplants. Diabetes Care 2013; 36:3726-31. [PMID: 24041681 PMCID: PMC3816861 DOI: 10.2337/dc12-2710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE β-Cells have demonstrated altered proinsulin processing after islet transplantation. We compare β-cell metabolic responses and proinsulin processing in pancreas and islet transplant recipients with respect to healthy control subjects. RESEARCH DESIGN AND METHODS We studied 15 islet and 32 pancreas transplant recipients. Islet subjects were subdivided into insulin-requiring (IR-ISL, n = 6) and insulin-independent (II-ISL, n = 9) groups. Ten healthy subjects served as control subjects. Subjects were administered an intravenous arginine stimulation test, and insulin, C-peptide, total proinsulin, intact proinsulin, and proinsulin fragment levels were determined from serum samples. Acute insulin response (AIR) and proinsulin processing rates were calculated. RESULTS We found that basal insulin and C-peptide levels were higher in the pancreas group than in all other groups. II-ISL patients had basal insulin and C-peptide levels similar to healthy control subjects. The IR-ISL group had significantly lower AIRs than all other groups. Basal processing rates were higher in the pancreas and II-ISL groups than in healthy control subjects and the IR-ISL group. After arginine stimulation, all groups had elevated processing rates, with the exception of the IR-ISL group. CONCLUSIONS Our data suggest that II-ISL transplant recipients can maintain basal metabolic parameters similar to healthy control subjects at the cost of a higher rate of proinsulin processing. IR-ISL transplant recipients, on the other hand, demonstrate both lower insulin response and lower basal rates of proinsulin processing even after arginine stimulation.
Collapse
|
28
|
Abstract
Pancreas transplants are performed in multiple centres across the UK with good graft survival rates. This places an increasing demand on radiology services, particularly as the complication rates are not insignificant. The imaging appearances of pancreas transplants and their complications can be difficult to interpret. This review provides an illustrative journey through the anatomical appearances of a graft and the imaging appearances of complications, as a reference tool for radiologists.
Collapse
Affiliation(s)
- A Yates
- Department of Radiology, University Hospital of Wales, Cardiff, UK.
| | | | | | | |
Collapse
|
29
|
Research status and prospect of stem cells in the treatment of diabetes mellitus. SCIENCE CHINA-LIFE SCIENCES 2013; 56:306-12. [DOI: 10.1007/s11427-013-4469-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/08/2013] [Indexed: 02/06/2023]
|
30
|
Hu MJ, Ruan GP, Yao X, Ruan GH, Wang JX, Pang RQ, Cai XM, Zhu XQ, He J, Pan XH. Induced autologous stem cell transplantation for treatment of rabbit type 1 diabetes. Cell Biol Int 2013; 37:624-32. [PMID: 23483723 DOI: 10.1002/cbin.10083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 11/08/2022]
Abstract
We have examined the effects of induced autologous stem cells on blood sugar levels in a rabbit model of type 1 diabetes. Rabbit skin fibroblasts were induced to dedifferentiate into multipotent stem cells, and were transplanted into the treatment group via the pancreatic artery. After the fibroblasts had been induced for 72 h, some of them became multipotent stem cells. Four weeks after cell transplantation, blood glucose levels of the induced stem cell treatment group were significantly lower. The plasma insulin and plasma C-peptide levels of the treated group were significantly increased (P < 0.05). The shape and number of islets was different. In the control group, induced cell treatment group and non-induced cell treatment group. In the control group, islet β-cell nucleoli were obvious, and cell volumes were larger with more abundant cytoplasm. The rough endoplasmic reticulum was well-developed and a large number of secretory granules could be seen within the cytoplasm. In the induced cell treatment group, islet β cells were scattered, and their nuclei were oval and slightly irregular in shape. The cytoplasm of these cells contained a nearly normal number of secretory granules. In the non-induced cell treatment group, islet β-cells were atrophied and cell volumes were reduced. Cytoplasmic endocrine granules were significantly reduced or absent. In conclusion, treatment with induced multipotent stem cells can reduce blood sugar levels, improve islet cell function, and repair damaged pancreas in a rabbit model of type 1 diabetes.
Collapse
Affiliation(s)
- Mei-Jun Hu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ramachandran K, Williams SJ, Huang HH, Novikova L, Stehno-Bittel L. Engineering Islets for Improved Performance by Optimized Reaggregation in a Micromold. Tissue Eng Part A 2013; 19:604-12. [DOI: 10.1089/ten.tea.2012.0553] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Karthik Ramachandran
- Bioengineering Program, University of Kansas, Lawrence, Kansas
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - S. Janette Williams
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Han-Hung Huang
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Lesya Novikova
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
32
|
Gastrointestinal Tract and Endocrine System. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
33
|
Abstract
The chronic metabolic disorder diabetes mellitus is a fast-growing global problem with huge social, health, and economic consequences. It is estimated that in 2010 there were globally 285 million people (approximately 6.4% of the adult population) suffering from this disease. This number is estimated to increase to 430 million in the absence of better control or cure. An ageing population and obesity are two main reasons for the increase. Furthermore it has been shown that almost 50% of the putative diabetics are not diagnosed until 10 years after onset of the disease, hence the real prevalence of global diabetes must be astronomically high. This chapter introduces the types of diabetes and diabetic complications such as impairment of immune system, periodontal disease, retinopathy, nephropathy, somatic and autonomic neuropathy, cardiovascular diseases and diabetic foot. Also included are the current management and treatments, and emerging therapies.
Collapse
|
34
|
Boggi U, Vistoli F, Egidi FM, Marchetti P, De Lio N, Perrone V, Caniglia F, Signori S, Barsotti M, Bernini M, Occhipinti M, Focosi D, Amorese G. Transplantation of the pancreas. Curr Diab Rep 2012; 12:568-79. [PMID: 22828824 DOI: 10.1007/s11892-012-0293-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreas transplantation consistently induces insulin-independence in beta-cell-penic diabetic patients, but at the cost of major surgery and life-long immunosuppression. One year after grafting, patient survival rate now exceeds 95 % across recipient categories, while insulin independence is maintained in some 85 % of simultaneous pancreas and kidney recipients and in nearly 80 % of solitary pancreas transplant recipients. The half-life of the pancreas graft currently averages 16.7 years, being the longest among extrarenal grafts, and substantially matching the one of renal grafts from deceased donors. The difference between expected (100 %) and actual insulin-independence rate is mostly explained by technical failure in the postoperative phase, and rejection in the long-term period. Death with a functioning graft remains a further major issue, especially in uremic patients who have undergone prolonged periods of dialysis. Refinements in graft preservation, surgical techniques, immunosuppression, and prophylactic treatments are expected to further improve the results of pancreas transplantation.
Collapse
Affiliation(s)
- Ugo Boggi
- Division of General and Transplant Surgery, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Type 1 diabetes (T1D) is a serious disease with increasing incidence worldwide, with fatal consequences if untreated. Traditional therapies require direct or indirect insulin replacement, which involves numerous limitations and complications. While insulin is the major regulator of blood glucose, recent reports demonstrate the ability of several extra-pancreatic hormones to decrease blood glucose and improve metabolic homeostasis. Such hormones mainly include adipokines originating from adipose tissue (AT), while specific factors from the gut and liver also contribute to glucose homeostasis. Correction of T1D with adipokines is progressively becoming a realistic option, with the potential to overcome many problems associated with insulin replacement. Several recent studies demonstrate insulin-independent reversal or amelioration of T1D through administration of specific adipokines. Our recent work demonstrates the ability of healthy AT to compensate for the function of endocrine pancreas in long-term correction of T1D. This review discusses the potential of AT-related therapies for T1D as viable alternatives to insulin replacement.
Collapse
Affiliation(s)
- Subhadra C Gunawardana
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
Zhou YN, Zhu CY, Li JP. Co-transplantation of islets and umbilical cord mesenchymal stem cells improves graft activity and function in rats. Shijie Huaren Xiaohua Zazhi 2012; 20:2601-2607. [DOI: 10.11569/wcjd.v20.i27.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of co-transplantation of islets and umbilical cord mesenchymal stem cells (UCMSCs) on graft activity and function in rats.
METHODS: Streptozotocin-induced diabetic Sprague-Dawley (SD) rats were divided into four groups, with (1) 500 islets, (2) 1 to 5×106 UCMSCs, (3) 500 islets and 1 to 5×106 UCMSCs; and (4) normal saline transplanted under the kidney capsule, respectively. All rats were evaluated for blood glucose, serum insulin, glucose tolerance, and the rate of normoglycaemia (blood glucose ≤ 11.1 mmol/L) up to postoperative day 28.
RESULTS: Blood glucose was lowest and serum insulin was highest in the islet+UCMSCs group relative to the islet only group (both P < 0.05). The rate of normoglycaemia was better in the co-transplantation group than in the islet only group (P < 0.05). However, there were no differences in the parameters detected between the sham operation group and UCMSCs alone group, and no normoglycemic rats were found in the UCMSCs alone group.
CONCLUSION: Co-transplantation of umbilical cord mesenchymal stem cells with islets is associated with enhanced islet graft activity and function.
Collapse
|
37
|
Dixon S, Tapping C, Walker J, Bratby M, Anthony S, Boardman P, Phillips-Hughes J, Uberoi R. The role of interventional radiology and imaging in pancreatic islet cell transplantation. Clin Radiol 2012; 67:923-31. [DOI: 10.1016/j.crad.2012.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/26/2012] [Accepted: 02/06/2012] [Indexed: 11/29/2022]
|
38
|
Acute hypoxia induces apoptosis of pancreatic β-cell by activation of the unfolded protein response and upregulation of CHOP. Cell Death Dis 2012; 3:e322. [PMID: 22695615 PMCID: PMC3388238 DOI: 10.1038/cddis.2012.66] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The success of pancreatic β-cells transplantation to treat type 1 diabetes has been hindered by massive β-cell dysfunction and loss of β-cells that follows the procedure. Hypoxia-mediated cell death has been considered one of the main difficulties that must be overcome for transplantation to be regarded as a reliable therapy. Here we have investigated the mechanisms underlying β-cell death in response to hypoxia (1% O2). Our studies show that mouse insulinoma cell line 6 (Min6) cells undergo apoptosis with caspase-3 activation occurring as early as 2 h following exposure to hypoxia. Hypoxia induces endoplasmic reticulum stress in Min6 cells leading to activation of the three branches of the unfolded protein response pathway. In response to hypoxia the pro-apoptotic transcription factor C/EBP homologous protein (CHOP) is upregulated. The important role of CHOP in the apoptotic process was highlighted by the rescue of Min6 cells from hypoxia-mediated apoptosis observed in CHOP-knockdown cells. Culturing isolated pancreatic mouse islets at normoxia showed intracellular hypoxia with accumulation of hypoxia-inducible factor-1α and upregulation of CHOP, the latter one occurring as early as 4 h after isolation. Finally, we observed that pancreatic islets of type 2 db/db diabetic mice were more hypoxic than their counterpart in normoglycemic animals. This finding indicates that hypoxia-mediated apoptosis may occur in type 2 diabetes.
Collapse
|
39
|
Balfoussia D, Yerrakalva D, Hamaoui K, Papalois V. Advances in machine perfusion graft viability assessment in kidney, liver, pancreas, lung, and heart transplant. EXP CLIN TRANSPLANT 2012; 10:87-100. [PMID: 22432750 DOI: 10.6002/ect.2011.0167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Solid organ transplant constitutes the definitive treatment for end-stage organ failure. Better organ preservation methods have enabled use of marginal grafts, thereby expanding the donor pool to meet the growing demand for organs. Static cold storage as a preservation method has been superseded largely by machine perfusion in kidney transplant, with work regarding its use in other organ transplants ongoing. We hope that machine perfusion will allow better graft preservation, and pretransplant assessment, and optimization. The most extensive laboratory, preclinical, and clinical research into machine perfusion organ preservation has focused on kidneys. Successful outcomes in its use in renal transplant have sparked interest for its development and application to the liver, pancreas, heart, and lungs. This article reviews the current state of machine perfusion in abdominal and thoracic organ transplant, focusing on the recent developments in assessing graft viability.
Collapse
Affiliation(s)
- Danai Balfoussia
- West London Renal and Transplant Centre, Hammersmith Hospital, Du Cane Road, London, W12 OHS, UK
| | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Surgical complications are a major disincentive to pancreas transplantation, despite the undisputed benefits of restored insulin independence. The da Vinci surgical system, a computer-assisted electromechanical device, provides the unique opportunity to test whether laparoscopy can reduce the morbidity of pancreas transplantation. METHODS Pancreas transplantation was performed by robot-assisted laparoscopy in three patients. The first patient received a pancreas after kidney transplant, the second a simultaneous pancreas kidney transplantation, and the third a pancreas transplant alone. Operations were carried out through an 11-mm optic port, two 8-mm operative ports, and a 7-cm midline incision. The latter was used to introduce the grafts, enable vascular cross-clamping, and create exocrine drainage into the jejunum. RESULTS The two solitary pancreas transplants required an operating time of 3 and 5 hr, respectively; the simultaneous pancreas kidney transplantation took 8 hr. Mean warm ischemia time of the pancreas graft was 34 min. All pancreatic transplants functioned immediately, and all recipients became insulin independent. The kidney graft, revascularized after 35 min of warm ischemia, also functioned immediately. No patient had complications during or after surgery. At the longer follow-up of 10, 8, and 6 months, respectively, all recipients are alive with normal graft function. CONCLUSIONS We have shown the feasibility of laparoscopic robot-assisted solitary pancreas and simultaneous pancreas and kidney transplantation. If the safety and feasibility of this procedure can be confirmed by larger series, laparoscopic robot-assisted pancreas transplantation could become a new option for diabetic patients needing beta-cell replacement.
Collapse
|
41
|
Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 2012; 29:14-23. [PMID: 21883442 DOI: 10.1111/j.1464-5491.2011.03433.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus--characterized by the permanent destruction of insulin-secreting β-cells--is responsive to cell-based treatments that replace lost β-cell populations. The current gold standard of pancreas transplantation provides only temporary independence from exogenous insulin and is fraught with complications, including increased mortality. Stem cells offer a number of theoretical advantages over current therapies. Our review will focus on the development of treatments involving tissue stem cells from bone marrow, liver and pancreatic cells, as well as the potential use of embryonic and induced pluripotent stem cells for Type 1 diabetes therapy. While the body of research involving stem cells is at once promising and inconsistent, bone marrow-derived mesenchymal stem cell transplantation seems to offer the most compelling evidence of efficacy. These cells have been demonstrated to increase endogenous insulin production, while partially mitigating the autoimmune destruction of newly formed β-cells. However, recently successful experiments involving induced pluripotent stem cells could quickly move them into the foreground of therapeutic research. We address the limitations encountered by present research and look toward the future of stem cell treatments for Type 1 diabetes.
Collapse
Affiliation(s)
- K J Godfrey
- Georgetown University School of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
42
|
Banga N, Hadjianastassiou VG, Mamode N, Calder F, Olsburgh J, Drage M, Sammartino C, Koffman G, Taylor J. Outcome of surgical complications following simultaneous pancreas-kidney transplantation. Nephrol Dial Transplant 2011; 27:1658-63. [PMID: 21903603 DOI: 10.1093/ndt/gfr502] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Simultaneous pancreas-kidney (SPK) transplantation carries a higher risk of surgical complications than kidney transplantation alone. We aimed to establish the incidence of surgical complications after SPK transplantation and determine the effect on graft and patient survival. METHODS Outcomes of all SPK transplants performed at our centre were compared between patients who experienced a surgical complication (SC group) and those who did not (NSC group). RESULTS Our centre performed 193 SPK transplants in a 15-year period; 44 patients (23%) experienced a surgical complication. One-year and 5-year pancreatic graft survival was 89 and 80%, respectively; this was lower in the SC group. There was no significant difference in patient or kidney graft survival between the SC and NSC groups at 5 years (92 and 83%, respectively.) CONCLUSION Surgical complications following SPK transplantation can cause significant morbidity and adversely affect pancreas graft survival, but do not affect long-term kidney or patient survival.
Collapse
Affiliation(s)
- Neal Banga
- Department of Transplantation, Guys and St Thomas’ NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Fu L, Lu YR, Guo ZG, Zhang ZD, Cheng JQ, Hu WM, Liu XB, Mai G, Zeng Y, Tian BL. Pancreas anatomy and surgical procedure for pancreatectomy in rhesus monkeys. J Med Primatol 2011; 40:376-82. [PMID: 21895681 DOI: 10.1111/j.1600-0684.2011.00499.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to investigate the pancreas anatomy and surgical procedure for harvesting pancreas for islet isolation while performing pancreatectomy to induce diabetes in rhesus monkeys. METHODS The necropsy was performed in three cadaveric monkeys. Two monkeys underwent the total pancreatectomy and four underwent partial pancreatectomy (70-75%). RESULTS The greater omentum without ligament to transverse colon, the cystic artery arising from the proper hepatic artery and the branches supplying the paries posterior gastricus from the splenic artery were observed. For pancreatectomy, resected pancreas can be used for islet isolation. Diabetes was not induced in the monkeys undergoing partial pancreatectomy (70-75%). CONCLUSIONS Pancreas anatomy in rhesus monkeys is not the same as in human. Diabetes can be induced in rhesus monkeys by total but not partial pancreatectomy (70-75%). Resected pancreas can be used for islet isolation while performing pancreatectomy to induce diabetes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu CY, Li JP. Cotransplantation of mesenchymal stem cells and islet in the treatment of type 1 diabetes mellitus: recent progress. Shijie Huaren Xiaohua Zazhi 2011; 19:2546-2550. [DOI: 10.11569/wcjd.v19.i24.2546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation for type 1 diabetes mellitus (T1DM) is limited by the lack of nutrients and presence of transplantation-associated inflammation. Most patients still need to be given a small dose of exogenous insulin in the following 3-5 years after islet transplantation. Cotransplantation of mesenchymal stem cells (MSCs) and islet holds great promise for the treatment of T1DM, because it can regulate the immune responses and overcome the shortage of trophic molecules. However, cotransplantation-associated tumorigenesis and the potential for metastasis in vivo should be also taken into consideration. In this review, we focus on the immunomodulatory properties, trophic effect and the potential side effects of cotransplantation of MSC and islet in the treatment of T1DM.
Collapse
|
45
|
Boggi U, Signori S, Vistoli F, Amorese G, Consani G, De Lio N, Perrone V, Croce C, Marchetti P, Cantarovich D, Mosca F. Current perspectives on laparoscopic robot-assisted pancreas and pancreas-kidney transplantation. Rev Diabet Stud 2011; 8:28-34. [PMID: 21720670 DOI: 10.1900/rds.2011.8.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreas transplant recipients continue to suffer high surgical morbidity. Current robotic technology provides a unique opportunity to test whether laparoscopy can improve the post-operative course of pancreas transplantation (PT). Current knowledge on robotic pancreas and renal transplantation was reviewed to determine feasibility and safety of robotic PT. Information available from literature was included in this review, together with personal experience including three PT, and two renal allotransplants. As of April 2011, the relevant literature provides two case reports on robotic renal transplantation. The author's experience consists of one further renal allotransplantation, two solitary PT, and one simultaneous pancreas-kidney transplantation. Information obtained at international conferences include several other renal allotransplants, but no additional PT. Preliminary data show that PT is feasible laparoscopically under robotic assistance, but raises concerns regarding the effects of increased warm ischemia time on graft viability. Indeed, during construction of vascular anastomoses, graft temperature progressively increases, since maintenance of a stable graft temperature is difficult to achieve laparoscopically. There is no proof that progressive graft warming produces actual damage to transplanted organs, unless exceedingly long. However, this important question is likely to elicit a vibrant discussion in the transplant community.
Collapse
Affiliation(s)
- Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Via Paradisa 2, 56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lackner C, Offner F, Nizze H. [Small intestine, pancreas and islet cell transplantation]. DER PATHOLOGE 2011; 32:135-43. [PMID: 21442442 DOI: 10.1007/s00292-010-1410-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The past decade has seen substantial improvements in patient and graft survival after intestinal transplantation. This improvement has been achieved by advances in donor and recipient selection, patient management, immunosuppression and surgical techniques. Intestinal transplantation is therefore considered a therapeutic option in the treatment of short bowel syndrome. Mile stones include the development of the calcineurin inhibitor Tacrolimus for immunosuppression as well as induction therapy using immune modulating substances like interleukin-2 receptor antagonists and antilymphocyte preparations. In addition to improvements in immunosuppression, antimicrobial prophylaxis and diagnosis of rejection, advances in surgical techniques have been crucial to achieving increased graft survival. Pancreas transplantation, generally with simultaneous kidney transplantation, is now available as a treatment option for patients with labile diabetes mellitus (usually type 1). Allogeneic islet transplantation was developed in the 1990s as a minimally invasive alternative to pancreas transplantation. Pancreatic islets are isolated enzymatically from the donor pancreas, in most cases infused into the portal vein and thus engrafted into the liver. Currently, technical and medical problems as well as high costs prevent the application of islet transplantation as a therapeutic option for a larger number of patients with diabetes mellitus.
Collapse
Affiliation(s)
- C Lackner
- Institut für Pathologie, Medizinische Universität Graz, Auenbruggerplatz 25, 8010, Graz, Österreich.
| | | | | |
Collapse
|
47
|
Abstract
IMPORTANCE OF THE FIELD β-Cell regeneration and β-cell preservation are two promising therapeutic approaches for the management of patients with type 1 diabetes (T1D). Stem cell-based strategies to address the problems of shortage in β cells, autoimmune and alloimmune responses have become an area of intense study. AREAS COVERED IN THIS REVIEW This review focuses on the progress that has been made in obtaining functional, insulin-producing cells from various types of stem/progenitor cells, including the current knowledge on the immunomodulatory roles of hematopoietic stem cell and multipotent stromal cell in the therapies for T1D. WHAT THE READER WILL GAIN A broad overview of recent advancements in this field is provided. The hurdles that remain in the path of using stem cell-based strategies for the treatment of T1D and possible approaches to overcome these challenges are discussed. TAKE HOME MESSAGE Stem cell-based strategies hold great promise for the treatment of T1D. In spite of the progress that has been made over the last decade, a number of obstacles and concerns need to be cleared before widespread clinical application is possible. In particular, the mechanism of ESC and iPSC-derived β-cell maturation in vivo is poorly understood.
Collapse
Affiliation(s)
- Yujie Wen
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, 40202
| | - Bo Chen
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, 40202
| | - Suzanne T. Ildstad
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, 40202
| |
Collapse
|
48
|
Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 2011; 63:47-68. [PMID: 21156190 PMCID: PMC3065652 DOI: 10.1016/j.addr.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transplanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is a novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantation. Chemically synthesized small interferring RNA (siRNA), vector based short hairpin RNA (shRNA), and their critical design elements (such as sequences, promoters, and backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|