1
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
2
|
Gandhi AK, Huang YH, Sun ZYJ, Kim WM, Kondo Y, Hanley T, Beauchemin N, Blumberg RS. Structural aspects of CEACAM1 interactions. Eur J Clin Invest 2024; 54 Suppl 2:e14357. [PMID: 39555955 DOI: 10.1111/eci.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a membrane protein that plays an important role in a variety of immune and non-immune functions. Such functions are regulated by its activity as a homophilic ligand but also through its ability to interact as a heterophilic ligand with various host proteins. These include CEACAM5, T cell immunoglobulin-mucin like protein-3 (TIM-3) and, potentially, protein death protein 1 (PD-1). Furthermore, CEACAM1 is targeted by various pathogens to allow them to invade a host and bypass an effective immune response. Clinically, CEACAM1 plays an important role in infectious diseases, autoimmunity and cancer. In this review, we describe the structural basis for CEACAM1 interactions as a homophilic and heterophilic ligand. We discuss the regulation of its monomeric, dimeric and oligomeric states in cis and trans binding as well as the consequences for eliciting downstream signalling activities. Furthermore, we explore the potential role of avidity in determining CEACAM1's activities.
Collapse
Affiliation(s)
- Amit K Gandhi
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Walter M Kim
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasuyuki Kondo
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Götz L, Rueckschloss U, Najjar SM, Ergün S, Kleefeldt F. Carcinoembryonic antigen-related cell adhesion molecule 1 in cancer: Blessing or curse? Eur J Clin Invest 2024; 54 Suppl 2:e14337. [PMID: 39451132 DOI: 10.1111/eci.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, also CD66a), a transmembrane glycoprotein of the immunoglobulin superfamily, is a pivotal mediator of various physiological and pathological processes, including oncologic disorders. However, its precise role in tumorigenicity is contradictory discussed by several clinical studies. This review aims to elucidate the clinical significance of CEACAM1 in different cancer entities focusing on tumour formation, progression and metastasis as well as on CEACAM1-mediated treatment resistance. Furthermore, we discuss the contribution of CEACAM1 to cancer immunity and modulation of the inflammatory microenvironment and finally provide a comprehensive review of treatment regimens targeting this molecule.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Irvine Hall, Ohio University, Athens, Ohio, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
4
|
Gheorghe G, Diaconu CC, Mambet C, Bleotu C, Ionescu VA, Diaconu CC. Comparative analysis of leptin and carcinoembryonic antigen-related cell adhesion molecule 1 plasma expression in pancreatic cancer and chronic pancreatitis patients. Heliyon 2024; 10:e37410. [PMID: 39296050 PMCID: PMC11408808 DOI: 10.1016/j.heliyon.2024.e37410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Compared to the general population, patients with chronic pancreatitis have an up to 12-fold higher risk of developing pancreatic cancer. The aim of our study was the identification of potential proteomic biomarkers to contribute to the detection of pancreatic cancer among patients with chronic pancreatitis. We initially performed a proteomic screening analysis of 105 analytes on plasma pools. To validate this finding, we quantitatively determined leptin concentrations in individual plasma samples using the ELISA technique. Additionally, we explored the plasma expression of CEACAM1, an important regulator of leptin expression in various cancer cells using the same method. The preliminary semi-quantitative proteomic analysis identified leptin as the only protein with substantially higher expression in patients with pancreatic cancer compared to those with chronic pancreatitis. Subsequently, by quantitative ELISA, we determined a higher median leptin concentration in the plasma of patients with pancreatic cancer compared to those with chronic pancreatitis. The statistical significance was maintained regardless of other variables like BMI or gender. Additionally, we explored the plasma expression of CEACAM1, an important regulator of leptin expression in various cancer cells, in order to provide insights into the complex mechanisms underlying pancreatic cancer and chronic pancreatits. CEACAM1 concentrations were higher in the plasma of the patients with pancreatic cancer than in those with chronic pancreatitis. However, we did not find a statistically significant correlation between leptin and CEACAM1 expression variation in the two study groups, with CEACAM1 concentration also dependent on other parameters such as BMI, gender, and serum triglyceride level. In conclusion, leptin seems to be a biomarker that can contribute to differentiate patients with pancreatic cancer from patients with chronic pancreatitis.
Collapse
Affiliation(s)
- Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Cristina Mambet
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304, Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474, Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402, Bucharest, Romania
| |
Collapse
|
5
|
Dai S, Kong H, Ja Y, Bao L, Wang C, Qin L. Expression of the laminin genes family and its relationship to prognosis in pancreatic carcinoma. Arab J Gastroenterol 2024; 25:306-314. [PMID: 39039002 DOI: 10.1016/j.ajg.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/16/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND AND STUDY AIMS Laminin is an extracellular matrix molecule that is the major component of the basement membrane and plays a key role in regulating various processes. However, the association between the laminin gene family and the prognosis of pancreatic carcinoma has not been systematically investigated. PATIENTS AND METHODS The role of the laminin gene family in pancreatic cancer was evaluated using data from the TCGA database. The effects of different expressions of members of the laminin gene family on pancreatic cancer survival were compared, and their primary cellular roles were examined. The effects of different expressions of positive family genes on proliferation, metastasis, and invasion, as well as EMT and ferroptosis in pancreatic cancer, were also examined. RESULTS Based on univariate and multifactorial analysis of pancreatic cancer patients, LAMA3 was identified as an independent prognostic factor for overall survival in pancreatic cancer. LAMA3 was found to be enriched in the actin cytoskeleton, P53 signaling pathway, adhesion molecule junctions, pentose phosphate pathway, and regulatory differences in the cell cycle and focal adhesion. Additionally, high expression of LAMA3 was found to promote cancer proliferation, invasion, and metastasis, facilitate the EMT process, and inhibit ferroptosis. CONCLUSIONS Our results identified LAMA3 was associated with the prognosis of patients with pancreatic cancer and may serve as a prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- ShengJie Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Ja
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqi Bao
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengchao Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Pan X, Zhang Z, Yun Y, Zhang X, Sun Y, Zhang Z, Wang H, Yang X, Tan Z, Yang Y, Xie H, Bogdanov B, Zmaga G, Senyushkin P, Wei X, Song Y, Su M. Machine Learning-Assisted High-Throughput Identification and Quantification of Protein Biomarkers with Printed Heterochains. J Am Chem Soc 2024; 146:19239-19248. [PMID: 38949598 DOI: 10.1021/jacs.4c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.
Collapse
Affiliation(s)
- Xiangyu Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yang Yun
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Zhang
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Zixuan Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yaqi Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Bogdan Bogdanov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Georgii Zmaga
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Pavel Senyushkin
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Xuemei Wei
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| |
Collapse
|
7
|
Ma RX, Wei JR, Hu YW. Characteristics of Carcinoembryonic Antigen-Related Cell Adhesion Molecules and Their Relationship to Cancer. Mol Cancer Ther 2024; 23:939-948. [PMID: 38490257 DOI: 10.1158/1535-7163.mct-23-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAM), such as carcinoembryonic antigen (CEA) and the oncofetal glycoprotein family, are tumor markers. The CEACAMs consist of 12 different human CEACAMs and 5 different murine CEACAMs. The CEACAM family of proteins participates in multiple biological processes that include the immune response, angiogenesis, and cancer. CEACAMs play a significant role in cancer initiation and development. Increasing evidence suggests that family members may be new cancer biomarkers and targets in that CEACEAMs tend to be aberrantly expressed and therefore may have potential diagnostic and therapeutic importance. This review systematically summarizes the biogenesis, biological properties, and functions of CEACAMs, with a focus on their relationship with cancer and potential clinical application. As our knowledge of the relationships among CEACAMs and cancer increases, and as our understanding of the involved molecular mechanisms improves, new therapeutic strategies will evolve for cancer prevention and treatment of patients with cancer.
Collapse
Affiliation(s)
- Ru-Xue Ma
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Jian-Rui Wei
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Yan-Wei Hu
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Savage SR, Wang Y, Chen L, Jewell S, Newton C, Dou Y, Li QK, Bathe OF, Robles AI, Omenn GS, Thiagarajan M, Zhang H, Hostetter G, Zhang B. Frozen tissue coring and layered histological analysis improves cell type-specific proteogenomic characterization of pancreatic adenocarcinoma. Clin Proteomics 2024; 21:7. [PMID: 38291365 PMCID: PMC10826052 DOI: 10.1186/s12014-024-09450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. METHODS We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. RESULTS Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. CONCLUSIONS Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.
Collapse
Affiliation(s)
- Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Scott Jewell
- Van Andel Institute, Grand Rapids, MI, 49503, USA
| | | | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, 20850, USA
| | - Gilbert S Omenn
- Department of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Lih TM, Cao L, Minoo P, Omenn GS, Hruban RH, Chan DW, Bathe OF, Zhang H. Detection of Pancreatic Ductal Adenocarcinoma-Associated Proteins in Serum. Mol Cell Proteomics 2024; 23:100687. [PMID: 38029961 PMCID: PMC10792492 DOI: 10.1016/j.mcpro.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, partly because it is frequently identified at an advanced stage, when surgery is no longer feasible. Therefore, early detection using minimally invasive methods such as blood tests may improve outcomes. However, studies to discover molecular signatures for the early detection of PDAC using blood tests have only been marginally successful. In the current study, a quantitative glycoproteomic approach via data-independent acquisition mass spectrometry was utilized to detect glycoproteins in 29 patient-matched PDAC tissues and sera. A total of 892 N-linked glycopeptides originating from 141 glycoproteins had PDAC-associated changes beyond normal variation. We further evaluated the specificity of these serum-detectable glycoproteins by comparing their abundance in 53 independent PDAC patient sera and 65 cancer-free controls. The PDAC tissue-associated glycoproteins we have identified represent an inventory of serum-detectable PDAC-associated glycoproteins as candidate biomarkers that can be potentially used for the detection of PDAC using blood tests.
Collapse
Affiliation(s)
- T Mamie Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Liwei Cao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Parham Minoo
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
10
|
Götz L, Rueckschloss U, Balk G, Pfeiffer V, Ergün S, Kleefeldt F. The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. Front Immunol 2023; 14:1295232. [PMID: 38077351 PMCID: PMC10704240 DOI: 10.3389/fimmu.2023.1295232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Gözde Balk
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
11
|
YANG HONG, LI WAN, REN LIWEN, YANG YIHUI, ZHANG YIZHI, GE BINBIN, LI SHA, ZHENG XIANGJIN, LIU JINYI, ZHANG SEN, DU GUANHUA, TANG BO, WANG HONGQUAN, WANG JINHUA. Progress on diagnostic and prognostic markers of pancreatic cancer. Oncol Res 2023; 31:83-99. [PMID: 37304241 PMCID: PMC10208033 DOI: 10.32604/or.2023.028905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic cancer is a malignant disease characterized by low survival and high recurrence rate, whose patients are mostly at the stage of locally advanced or metastatic disease when first diagnosed. Early diagnosis is particularly important because prognostic/predictive markers help guide optimal individualized treatment regimens. So far, CA19-9 is the only biomarker for pancreatic cancer approved by the FDA, but its effectiveness is limited by low sensitivity and specificity. With recent advances in genomics, proteomics, metabolomics, and other analytical and sequencing technologies, the rapid acquisition and screening of biomarkers is now possible. Liquid biopsy also occupies a significant place due to its unique advantages. In this review, we systematically describe and evaluate the available biomarkers that have the greatest potential as vital tools in diagnosing and treating pancreatic cancer.
Collapse
Affiliation(s)
- HONG YANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - WAN LI
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - LIWEN REN
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - YIHUI YANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - YIZHI ZHANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - BINBIN GE
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - SHA LI
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - XIANGJIN ZHENG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - JINYI LIU
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - SEN ZHANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - GUANHUA DU
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - BO TANG
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - HONGQUAN WANG
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - JINHUA WANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
12
|
Firpo MA, Boucher KM, Bleicher J, Khanderao GD, Rosati A, Poruk KE, Kamal S, Marzullo L, De Marco M, Falco A, Genovese A, Adler JM, De Laurenzi V, Adler DG, Affolter KE, Garrido-Laguna I, Scaife CL, Turco MC, Mulvihill SJ. Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma. JCO Clin Cancer Inform 2023; 7:e2200160. [PMID: 36913644 PMCID: PMC10530881 DOI: 10.1200/cci.22.00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE We determined whether a large, multianalyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS We defined a biologically relevant subspace of blood analytes on the basis of previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, and 182 early-stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects on the basis of their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects. RESULTS A classification model was trained on 669 subjects (358 healthy, 159 benign, and 152 early-stage PDAC). Model evaluation on a hold-out test set of 168 subjects (103 healthy, 35 benign, and 30 early-stage PDAC) yielded an area under the receiver operating characteristic curve (AUC) of 0.920 for classification of PDAC from non-PDAC (benign and healthy controls) and an AUC of 0.944 for PDAC versus healthy controls. The algorithm was then validated in 146 subsequent cases presenting with pancreatic disease (73 benign pancreatic disease and 73 early- and late-stage PDAC cases) and 40 healthy control subjects. The validation set yielded an AUC of 0.919 for classification of PDAC from non-PDAC and an AUC of 0.925 for PDAC versus healthy controls. CONCLUSION Individually weak serum biomarkers can be combined into a strong classification algorithm to develop a blood test to identify patients who may benefit from further testing.
Collapse
Affiliation(s)
- Matthew A. Firpo
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Kenneth M. Boucher
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT
| | - Josh Bleicher
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Gayatri D. Khanderao
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Alessandra Rosati
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Katherine E. Poruk
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Sama Kamal
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Liberato Marzullo
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Margot De Marco
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Antonia Falco
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Armando Genovese
- University Hospital “San Giovanni di Dio e Ruggi D'Aragona,” Salerno, Italy
| | - Jessica M. Adler
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Vincenzo De Laurenzi
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine and Biotechnology, University G d'Annunzio and CeSI-MeT, Chieti, Italy
| | - Douglas G. Adler
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Kajsa E. Affolter
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT
| | - Ignacio Garrido-Laguna
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT
| | - Courtney L. Scaife
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - M. Caterina Turco
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Sean J. Mulvihill
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
13
|
Special Issue: Diagnostic and Predictive Tissue Markers in G.I. Cancers. Cancers (Basel) 2023; 15:cancers15041329. [PMID: 36831671 PMCID: PMC9953972 DOI: 10.3390/cancers15041329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The compelling advancements in systemic targeted therapies for cancer drastically changed the role of histopathological analyses in recent decades [...].
Collapse
|
14
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
15
|
Sharma N, Srivastava S. Diagnosis of Pancreatic Cancer Using miRNA30e Biosensor. Interdiscip Sci 2022; 14:804-813. [PMID: 35781212 DOI: 10.1007/s12539-022-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
This work describes miRNA-based electrochemical biosensor for detection of miRNA30e, a pancreatic cancer biomarker. The screen-printed gold electrode was functionalized using cysteine hydrochloride followed by immobilization of synthesized colloidal gold nanorods (10-12 nm diameter and 25-65 nm length). The gold nanorods modified electrode surface was amino functionalized for covalent attachment of single-stranded DNA probe against miRNA30e (miR30e). This platform was utilized for electrochemical measurements and response analysis of target miRNA30e. Electrochemical impedance spectroscopic measurements showed very poor sensitivity (13.51 Ω/µg/mL/cm2) using charge transfer resistance calibration plots. Cyclic voltammetry and differential pulse voltammetry-based miR30e quantification showed decreasing current response with increasing concentration of miR30e with detection range of 0.1 fg/mL-0.1 µg/mL (14.9 aM-14.9 nM). The sensitivity of DPV sensing (104.4 µA/µg/mL/cm2) was found to be 1.3 times higher than that of CV-based quantification (79.6 µA/µg/mL/cm2). miRNA-based biosensors have the potential of replacing current invasive, time consuming and technically difficult diagnostic procedures. Furthermore, the lower limit of detection of 14.9 aM miRNA30e makes it a promising tool for detection of cancer at early stages and hence increasing survival rate.
Collapse
Affiliation(s)
- Namita Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, India.
| |
Collapse
|
16
|
Knocking Out of CEACAM1 Can Reduce Oxidative Stress and Promote Cell Proliferation in the HPMVECs under Hypoxia. J Immunol Res 2022; 2022:1748793. [PMID: 35812245 PMCID: PMC9259375 DOI: 10.1155/2022/1748793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
Pulmonary hypertension (PH) induced by hypoxia is common in clinical practice and often suggests a poor prognosis. The oxidative stress and proliferation of pulmonary vascular endothelial cells caused by hypoxia are the major mechanisms involved in the pathophysiology of PH. It has been reported in recent years that the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes angiogenesis. In this study, normal human pulmonary microvascular endothelial cells (HPMVECs) and HPMVECs with stable knockout of CEACAM1 by CRISPR-Cas9 were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to induce hypoxic conditions. JC-1, ROS, and cell cycle profile were analyzed for each cell line and controls, using flow cytometry. A tube formation assay was used to detect angiogenesis, along with expression levels of CEACAM1, TNF-α, VEGF, VEGFR-2, p-P38/P38, and CyclinD1 proteins (to distinguish profiles of angiogenic growth and cell proliferation). We observed increased expression of CEACAM1 in HPMVECs after OGD/R, while ROS production was reduced and mitochondrial membrane potential was increased after OGD/R in CEACAM1−/− HPMVECs. Furthermore, we observed increased cell division in CEACAM−/− HPMVECs, accompanied by enhanced angiogenesis and reduced TNF-α protein expression and increased VEGF, VEGFR-2, and CyclinD1 expression. Together, these data suggest that upregulation of CEACAM1 in HPMVECs under hypoxic conditions may damage cells by increasing oxidative stress and inhibiting cell proliferation.
Collapse
|
17
|
Pekarek L, Fraile-Martinez O, Garcia-Montero C, Saez MA, Barquero-Pozanco I, Del Hierro-Marlasca L, de Castro Martinez P, Romero-Bazán A, Alvarez-Mon MA, Monserrat J, García-Honduvilla N, Buján J, Alvarez-Mon M, Guijarro LG, Ortega MA. Clinical Applications of Classical and Novel Biological Markers of Pancreatic Cancer. Cancers (Basel) 2022; 14:1866. [PMID: 35454771 PMCID: PMC9029823 DOI: 10.3390/cancers14081866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
The incidence and prevalence of pancreatic adenocarcinoma have increased in recent years. Pancreatic cancer is the seventh leading cause of cancer death, but it is projected to become the second leading cause of cancer-related mortality by 2040. Most patients are diagnosed in an advanced stage of the disease, with very limited 5-year survival. The discovery of different tissue markers has elucidated the underlying pathophysiology of pancreatic adenocarcinoma and allowed stratification of patient risk at different stages and assessment of tumour recurrence. Due to the invasive capacity of this tumour and the absence of screening markers, new immunohistochemical and serological markers may be used as prognostic markers for recurrence and in the study of possible new therapeutic targets because the survival of these patients is low in most cases. The present article reviews the currently used main histopathological and serological markers and discusses the main characteristics of markers under development.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Ines Barquero-Pozanco
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura Del Hierro-Marlasca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Patricia de Castro Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Adoración Romero-Bazán
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
18
|
Kapszewicz M, Małecka-Wojciesko E. Simple Serum Pancreatic Ductal Adenocarcinoma (PDAC) Protein Biomarkers-Is There Anything in Sight? J Clin Med 2021; 10:jcm10225463. [PMID: 34830745 PMCID: PMC8619303 DOI: 10.3390/jcm10225463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023] Open
Abstract
A poor PDAC prognosis is due to a lack of effective treatment and late diagnosis. The early detection of PDAC could significantly decrease mortality and save lives. Idealbiomarkers for PDAC should be cost-effective, detectable in easily accessible biological material, and present in sufficient concentration in the earliest possible phase of the disease. This review addresses newly selected, simple protein biomarkers—new ones such as thrombospondin-2, insulin-linked binding protein 2, lysophosphatidic acid, and autotaxin and conventional ones such as Ca19-9, inflammatory factors, and coagulation factors. Their possible use in the early detection of PDAC, differentiation from benign diseases, prognosis, and treatment response prediction is discussed. We also address the usefulness of possible combinations of biomarkers in diagnostic panels.
Collapse
|
19
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
20
|
Nisar M, Paracha RZ, Arshad I, Adil S, Zeb S, Hanif R, Rafiq M, Hussain Z. Integrated Analysis of Microarray and RNA-Seq Data for the Identification of Hub Genes and Networks Involved in the Pancreatic Cancer. Front Genet 2021; 12:663787. [PMID: 34262595 PMCID: PMC8273913 DOI: 10.3389/fgene.2021.663787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PaCa) is the seventh most fatal malignancy, with more than 90% mortality rate within the first year of diagnosis. Its treatment can be improved the identification of specific therapeutic targets and their relevant pathways. Therefore, the objective of this study is to identify cancer specific biomarkers, therapeutic targets, and their associated pathways involved in the PaCa progression. RNA-seq and microarray datasets were obtained from public repositories such as the European Bioinformatics Institute (EBI) and Gene Expression Omnibus (GEO) databases. Differential gene expression (DE) analysis of data was performed to identify significant differentially expressed genes (DEGs) in PaCa cells in comparison to the normal cells. Gene co-expression network analysis was performed to identify the modules co-expressed genes, which are strongly associated with PaCa and as well as the identification of hub genes in the modules. The key underlaying pathways were obtained from the enrichment analysis of hub genes and studied in the context of PaCa progression. The significant pathways, hub genes, and their expression profile were validated against The Cancer Genome Atlas (TCGA) data, and key biomarkers and therapeutic targets with hub genes were determined. Important hub genes identified included ITGA1, ITGA2, ITGB1, ITGB3, MET, LAMB1, VEGFA, PTK2, and TGFβ1. Enrichment analysis characterizes the involvement of hub genes in multiple pathways. Important ones that are determined are ECM–receptor interaction and focal adhesion pathways. The interaction of overexpressed surface proteins of these pathways with extracellular molecules initiates multiple signaling cascades including stress fiber and lamellipodia formation, PI3K-Akt, MAPK, JAK/STAT, and Wnt signaling pathways. Identified biomarkers may have a strong influence on the PaCa early stage development and progression. Further, analysis of these pathways and hub genes can help in the identification of putative therapeutic targets and development of effective therapies for PaCa.
Collapse
Affiliation(s)
- Maryum Nisar
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iqra Arshad
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sabaoon Zeb
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rumeza Hanif
- Atta-ur-Rahman School of Applied Biosciences-ASAB, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mehak Rafiq
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zamir Hussain
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
21
|
Gupta N, Yelamanchi R. Pancreatic adenocarcinoma: A review of recent paradigms and advances in epidemiology, clinical diagnosis and management. World J Gastroenterol 2021; 27:3158-3181. [PMID: 34163104 PMCID: PMC8218366 DOI: 10.3748/wjg.v27.i23.3158] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the dreaded malignancies for both the patient and the clinician. The five-year survival rate of pancreatic adenocarcinoma (PDA) is as low as 2% despite multimodality treatment even in the best hands. As per the Global Cancer Observatory of the International Agency for Research in Cancer estimates of pancreatic cancer, by 2040, a 61.7% increase is expected in the total number of cases globally. With the widespread availability of next-generation sequencing, the entire genome of the tumors is being sequenced regularly, providing insight into their pathogenesis. As invasive PDA arises from pancreatic intraepithelial neoplasia and mucinous neoplasm and intraductal papillary neoplasm, screening for them can be beneficial as the disease is curable with resection at an early stage. Routine preoperative biliary drainage has no role in patients suffering from PDA with obstructive jaundice. If performed, metallic stents are preferred over plastic ones. Minimally invasive procedures are preferred to open procedures as they have less morbidity. The duct-to-mucosa technique for pancreaticojejunostomy is presently widely practiced. The role of intraperitoneal drains after surgery for PDA is controversial. Neoadjuvant chemoradiotherapy has been proven to have a significant role both in locally advanced as well as in resectable PDA. Many new regimens and drugs have been added in the arsenal of chemoradiotherapy for metastatic disease. The roles of immunotherapy and gene therapy in PDA are being investigated. This review article is intended to improve the understanding of the readers with respect to the latest updates of PDA, which may help to trigger new research ideas and make better management decisions.
Collapse
Affiliation(s)
- Nikhil Gupta
- Department of Surgery, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| | - Raghav Yelamanchi
- Department of Surgery, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| |
Collapse
|
22
|
Sohrabi E, Rezaie E, Heiat M, Sefidi-Heris Y. An Integrated Data Analysis of mRNA, miRNA and Signaling Pathways in Pancreatic Cancer. Biochem Genet 2021; 59:1326-1358. [PMID: 33813720 DOI: 10.1007/s10528-021-10062-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Although many genes and miRNAs have been reported for various cancers, pancreatic cancer's specific genes or miRNAs have not been studied precisely yet. Therefore, we have analyzed the gene and miRNA expression profile of pancreatic cancer data in the gene expression omnibus (GEO) database. The microarray-derived miRNAs and mRNAs were annotated by gene ontology (GO) and signaling pathway analysis. We also recognized mRNAs that were targeted by miRNA through the mirDIP database. An integrated analysis of the microarray revealed that only 6 out of 43 common miRNAs had significant differences in their expression profiles between the tumor and normal groups (P value < 0.05 and |log Fold Changes (logFC)|> 1). The hsa-miR-210 had upregulation, whereas hsa-miR-375, hsa-miR-216a, hsa-miR-217, hsa-miR-216b and hsa-miR-634 had downregulation in pancreatic cancer (PC). The analysis results also revealed 109 common mRNAs by microarray and mirDIP 4.1 databases. Pathway analysis showed that amoebiasis, axon guidance, PI3K-Akt signaling pathway, absorption and focal adhesion, adherens junction, platelet activation, protein digestion, human papillomavirus infection, extracellular matrix (ECM) receptor interaction, and riboflavin metabolism played important roles in pancreatic cancer. GO analysis revealed the significant enrichment in the three terms of biological process, cellular component, and molecular function, which were identified as the most important processes associated strongly with pancreatic cancer. In conclusion, DTL, CDH11, COL5A1, ITGA2, KIF14, SMC4, VCAN, hsa-mir-210, hsa-mir-217, hsa-mir-216a, hsa-mir-216b, hsa-mir-375 and hsa-mir-634 can be reported as the novel diagnostic or even therapeutic markers for the future studies. Also, the hsa-mir-107 and hsa-mir-125a-5p with COL5A1, CDH11 and TGFBR1 genes can be introduced as major miRNA and genes on the miRNA-drug-mRNA network. The new regulatory network created in our study could give a deeper knowledge of the pancreatic cancer.
Collapse
Affiliation(s)
- Ehsan Sohrabi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, P.O. Box 19395-5487, Tehran, Iran.
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Yousef Sefidi-Heris
- Division of Molecular Cell Biology, Department of Biology, Shiraz University, Shiraz, Iran
| |
Collapse
|
23
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
24
|
Han ZW, Lyv ZW, Cui B, Wang YY, Cheng JT, Zhang Y, Cai WQ, Zhou Y, Ma ZW, Wang XW, Peng XC, Cui SZ, Xiang Y, Yang M, Xin HW. The old CEACAMs find their new role in tumor immunotherapy. Invest New Drugs 2020; 38:1888-1898. [PMID: 32488569 DOI: 10.1007/s10637-020-00955-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) contain 12 family members(CEACAM1、CEACAM3、CEACAM4、CEACAM5、CEACAM6、CEACAM7、CEACAM8、CEACAM16、CEACAM18、CEACAM19、CEACAM20 and CEACAM21)and are expressed diversely in different normal and tumor tissues. CEA (CEACAM5) has been used as a tumor biomarker since 1965. Here we review the latest research and development of the structures, expression, and function of CEACAMs in normal and tumor tissues, and their application in the tumor diagnosis, prognosis, and treatment. We focus on recent clinical studies of CEA targeted cancer immunotherapies, including bispecific antibody (BsAb) for radio-immuno-therapy and imaging, bispecific T cell engager (BiTE) and chimeric antigen receptor T cells (CAR-T). We summarize the promising clinical relevance and challenges of these approaches and give perspective view for future research. This review has important implications in understanding the diversified biology of CEACAMs in normal and tumor tissues, and their new role in tumor immunotherapy.
Collapse
Affiliation(s)
- Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Zhi-Wu Lyv
- Department of Pathology, Lianjiang People's Hospital, Zhanjiang, Guangdong, 524400, China
| | - Bin Cui
- Department of Pathology, Lianjiang People's Hospital, Zhanjiang, Guangdong, 524400, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Zhao-Wu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
- Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Mo Yang
- The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, 11 Guangdong Province, 518107, People's Republic of China.
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China.
| |
Collapse
|
25
|
Luebke AM, Ricken W, Kluth M, Hube-Magg C, Schroeder C, Büscheck F, Möller K, Dum D, Höflmayer D, Weidemann S, Fraune C, Hinsch A, Wittmer C, Schlomm T, Huland H, Heinzer H, Graefen M, Haese A, Minner S, Simon R, Sauter G, Wilczak W, Meiners J. Loss of the adhesion molecule CEACAM1 is associated with early biochemical recurrence in TMPRSS2:ERG fusion-positive prostate cancers. Int J Cancer 2020; 147:575-583. [PMID: 32150281 DOI: 10.1002/ijc.32957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Altered expression of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been linked to adverse tumor features in various cancer types. To better understand the role of CEACAM1 in prostate cancer, we analyzed a tissue microarray containing tumor spots from 17,747 prostate cancer patients by means of immunohistochemistry. Normal prostate glands showed intense membranous CEACAM1 positivity. Immunostaining was interpretable in 13,625 cancers and was considered high in 28%, low in 43% and absent in 29% of tumors. Low and lost CEACAM1 expression was strongly linked to adverse tumor features including high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, positive surgical margin, a high number of genomic deletions and early biochemical recurrence (p < 0.0001 each). Subset analysis of molecularly defined cancer subsets revealed that these associations were strongest in V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion-positive cancers and that CEACAM1 loss was prognostic even in tumors harboring genomic deletions of the phosphatase and tensin homolog tumor suppressor (p < 0.0001). Multivariate analysis suggested that CEACAM1 analysis can provide independent prognostic information beyond established prognosis parameters at the stage of the initial biopsy when therapy decisions must be taken. In conclusion, loss of CEACAM1 expression predicts poor prognosis in prostate cancer and might provide clinically useful prognostic information particularly in cancers harboring the TMPRSS2:ERG fusion.
Collapse
Affiliation(s)
- Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Ricken
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Rayes RF, Vourtzoumis P, Bou Rjeily M, Seth R, Bourdeau F, Giannias B, Berube J, Huang YH, Rousseau S, Camilleri-Broet S, Blumberg RS, Beauchemin N, Najmeh S, Cools-Lartigue J, Spicer JD, Ferri LE. Neutrophil Extracellular Trap-Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 204:2285-2294. [PMID: 32169849 DOI: 10.4049/jimmunol.1900240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver and the lung, increasing their adhesion and metastasis following postoperative complications. Multiple studies have since shown that NETs play a role in tumor progression and metastasis. NETs are composed of nuclear DNA-derived web-like structures decorated with neutrophil-derived proteins. However, it is unknown which, if any, of these NET-affiliated proteins is responsible for inducing the metastatic phenotype. In this study, we identify the NET-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) as an essential element for this interaction. Indeed, blocking CEACAM1 on NETs, or knocking it out in a murine model, leads to a significant decrease in colon carcinoma cell adhesion, migration and metastasis. Thus, this work identifies NET-associated CEACAM1 as a putative therapeutic target to prevent the metastatic progression of colon carcinoma.
Collapse
Affiliation(s)
- Roni F Rayes
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Phil Vourtzoumis
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Marianne Bou Rjeily
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Rashmi Seth
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - France Bourdeau
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Betty Giannias
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Julie Berube
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Yu-Hwa Huang
- Department of Medicine, Harvard University, Boston, MA 02115
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Sophie Camilleri-Broet
- Department of Pathology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; and
| | | | - Nicole Beauchemin
- Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Sara Najmeh
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan Cools-Lartigue
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan D Spicer
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Lorenzo E Ferri
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada;
| |
Collapse
|
27
|
Weng CY, Hu XY, Wang YJ. Integrated analysis of gene expression, alteration and clinical significance of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. 3 Biotech 2020; 10:132. [PMID: 32154045 PMCID: PMC7036084 DOI: 10.1007/s13205-020-2122-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
Even though cell-cell adhesion molecule carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is extensively studied since the discovery, the role of CEACAM1 in different cancers is not completely clarified. In the present study, we examined CEACAM1 expression and its association with patient survival in various cancers by analysis of multiple databases. Oncomine database analysis revealed that CEACAM1 expression was upregulated in lung and pancreatic cancers, but downregulated in colorectal and head and neck cancers. PrognoScan and Kaplan‑Meier analyses showed that colorectal cancer patients as well as head and neck cancer patients with high CEACAM1 expression exhibited a higher overall survival rate. STRING analysis identified CEACAM3, CEACAM8, FN1, etc. as CEACAM1 interactors. Gene alteration analysis showed that CEACAM1 mutation predominantly occurred in the N-terminal. Coexpression analysis demonstrated that CEACAM1 had distinct coexpressed genes in different cancers, but KRT protein was consistently coexpressed with CEACAM1 in diverse cancer types. All the observations supported that CEACAM1 can serve as a diagnostic marker for some cancers, such as pancreatic cancer. And high CEACAM1 expression provides a better prognosis for some cancers, such as colorectal and head and neck cancers.
Collapse
Affiliation(s)
- Chun-Yue Weng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Xin-Yi Hu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Ya-Jun Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
28
|
Pan S, Brentnall TA, Chen R. Proteome alterations in pancreatic ductal adenocarcinoma. Cancer Lett 2020; 469:429-436. [PMID: 31734355 PMCID: PMC9017243 DOI: 10.1016/j.canlet.2019.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Proteins are the essential functional biomolecules profoundly implicated in all aspects of pancreatic tumorigenesis and its progression. While common genomic factors, such as KRAS, TP53, SMAD4, and CDKN2A have been well recognized in association of pancreatic ductal adenocarcinoma (PDAC), our understanding of functional changes at the proteome level merits further investigation. Malignance associated proteome alterations can be attributed to the convoluted outcomes from genetic, epigenetic and environmental factors in initiating and progressing PDAC, and may reflect on changes in protein expressional level, structure, localization, as well as post-translational modifications (PTMs) status. The study of localized or systemic proteome alterations in PDAC, as well as its precursor lesions, such as pancreatic intraepithelial neoplasia (PanIN) and mucinous pancreatic cystic neoplasm, would provide unique perspectives in elucidating functional molecular events underlying PDAC. While efforts have been made, challenges still exist to comprehensively integrate much of the proteomic discovery to the perspectives gained from genomic studies in the context of biomarker discovery. Novel approaches and data from well-defined longitudinal clinical studies and experimental models are needed to facilitate the study of PDAC and precursor lesions for early detection and intervention.
Collapse
|
29
|
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019; 213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.
Collapse
Affiliation(s)
- Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qiaobin Li
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Kwaku Baryeh
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Wanwei Qiu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Jing Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qingcai Yu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Dongqin Xu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Wenju Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueji Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China.
| | - Wei Chen
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota.
| |
Collapse
|
30
|
Wu H, Guo JC, Yang SH, Tien YW, Kuo SH. Postoperative Imaging and Tumor Marker Surveillance in Resected Pancreatic Cancer. J Clin Med 2019; 8:1115. [PMID: 31357636 PMCID: PMC6722558 DOI: 10.3390/jcm8081115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Pancreatic cancer is a catastrophic disease with high recurrence and death rates, even in early stages. Early detection and early treatment improve survival in many cancer types but have not yet been clearly documented to do so in pancreatic cancer. In this study, we assessed the benefit on survival resulting from different patterns of surveillance in daily practice after curative surgery of early pancreatic cancer. Methods: Patients with pancreatic ductal adenocarcinoma who had received curative surgery between January 2000 and December 2013 at our institute were retrospectively reviewed. Patients were classified into one of four groups, based on surveillance strategy: the symptom group, the imaging group, the marker group (carbohydrate antigen 19-9 and/or carcinoembryonic antigen), and the intense group (both imaging and tumor marker assessment). Overall survival (OS), relapse-free survival (RFS), and post-recurrence overall survival (PROS) were evaluated. Results: One hundred and eighty-one patients with documented recurrence or metastasis were included in our analysis. The median OS for patients in the symptom group, imaging group, marker group, and intense group were 21.4 months, 13.9 months, 20.5 months, and 16.5 months, respectively (p = 0.670). Surveillance with imaging, tumor markers, or both was not an independent risk factor for OS in univariate and multivariate analyses. There was no significant difference in median RFS (symptom group, 11.7 months; imaging group, 6.3 months; marker group, 9.3 months; intense group, 6.9 months; p = 0.259) or median PROS (symptom group, 6.9 months; imaging group, 7.5 months; marker group, 5.0 months; intense group, 7.8 months; p = 0.953) between the four groups. Multivariate analyses identified poor Eastern Cooperative Oncology Group Performance Status (ECOG PS) (≥1), primary tumor site (tail), and tumor grade (poor differentiation) were poor prognostic factors for OS. Conclusions: Surveillance with regular imaging, tumor marker, or both was not an independent risk factor for OS of pancreatic cancer patients who undergo curative tumor resection.
Collapse
Affiliation(s)
- Hsu Wu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Yun-Lin Branch, Yunlin, Taiwan
| | - Jhe-Cyuan Guo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
31
|
Zińczuk J, Zaręba K, Romaniuk W, Kamińska D, Nizioł M, Baszun M, Kędra B, Guzińska-Ustymowicz K, Pryczynicz A. Expression of Chosen Carcinoembryonic-Related Cell Adhesion Molecules in Pancreatic Intraepithelial Neoplasia (PanIN) Associated with Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma (PDAC). Int J Med Sci 2019; 16:583-592. [PMID: 31171910 PMCID: PMC6535664 DOI: 10.7150/ijms.32751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/23/2019] [Indexed: 12/29/2022] Open
Abstract
Aims: Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are members of the glycosylphosphatidylinositol (GPI)-linked immunoglobulin (Ig) superfamily and take part in regulation of cell adhesion, tumor suppression and angiogenesis. Overexpression of CEACAM 1, 5 and 6 is widely described in several gastrointestinal epithelial tumors. The aim of study was to evaluate the expression of CEACAM 1, CEACAM 5 and CEACAM 6 in the most common precursor lesions of pancreatic ductal adenocarcinoma -pancreatic intraepithelial neoplasia (PanIN). Methods and results: The study group consisted of 32 patients treated for chronic pancreatitis and 38 patients with pancreatic ductal adenocarcinoma who also had pancreatic intraepithelial neoplasia. The expression of CEACAM was performed by immunohistochemical method and evaluated using 3-point scale: 0 - lack of positive reaction in pancreatic intraepithelial neoplasia, 1 (weak and moderate) - reaction present in 1-30% epithelial cells in PanIN and 2 (strong) - reaction present in >30% epithelial cells in PanIN. Expression of CEACAM 1, 5 and 6 increased with increasing degree of advancement of PanIN. Differences in expression of CEACAM 1, 5 and 6 between normal pancreatic ducts and different degrees of PanIN were statistically significant (p<0.001). We observed relationship between CEACAM1 expression and localization of PanIN in different parts of the pancreas. Conclusions: CEACAM 1, CEACAM 5 and CEACAM 6 expression appears to be an early event in pancreatic carcinogenesis. Moreover, expression of CEACAM 1, 5 and 6 may represent a useful biomarker that may aid in the identification of precancerous lesions in the pancreas.
Collapse
Affiliation(s)
- Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15 St., 15-269 Białystok, Poland
| | - Konrad Zaręba
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Białystok, Poland
| | - Wioletta Romaniuk
- Department of Haematology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Białystok, Poland
| | - Dorota Kamińska
- Department of Laboratory Diagnostics, Independent Public Health Care Unit of the Provincial Hospital Jędrzej Śniadecki in Bialystok, Poland
| | - Marcin Nizioł
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13 St., 15-269 Białystok, Poland
| | - Magdalena Baszun
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13 St., 15-269 Białystok, Poland
| | - Bogusław Kędra
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Białystok, Poland
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13 St., 15-269 Białystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13 St., 15-269 Białystok, Poland
| |
Collapse
|
32
|
Lin J, Wu YJ, Liang X, Ji M, Ying HM, Wang XY, Sun X, Shao CH, Zhan LX, Zhang Y. Network-based integration of mRNA and miRNA profiles reveals new target genes involved in pancreatic cancer. Mol Carcinog 2018; 58:206-218. [PMID: 30294829 DOI: 10.1002/mc.22920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer is regarded as the most fatal and aggressive malignancy cancer due to its low 5-year survival rate and poor prognosis. The approaches of early diagnosis and treatment are limited, which makes it urgent to identify the complex mechanism of pancreatic oncogenesis. In this study, we used RNA-seq to investigate the transcriptomic (mRNA and miRNA) profiles of pancreatic cancer in paired tumor and normal pancreatic samples from ten patients. More than 1000 differentially expressed genes were identified, nearly half of which were also found to be differentially expressed in the majority of examined patients. Functional enrichment analysis revealed that these genes were significantly enriched in multicellular organismal and metabolic process, secretion, mineral transport, and intercellular communication. In addition, only 24 differentially expressed miRNAs were found, all of which have been reported to be associated with pancreatic cancer. Furthermore, an integrated miRNA-mRNA interaction network was generated using multiple resources. Based on the calculation of disease correlation scores developed here, several genes present in the largest connected subnetwork, such as albumin, ATPase H+ /K+ exchanging alpha polypeptide and carcinoembryonic antigen-related cell adhesion molecule 1, were considered as novel genes that play important roles in the development of pancreatic cancer. Overall, our data provide new insights into further understanding of key molecular mechanisms underlying pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Jie Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, P. R. China.,Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan-Jun Wu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xing Liang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Meng Ji
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Hui-Min Ying
- Department of Endocrinology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, P. R. China
| | - Xin-Yu Wang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xia Sun
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cheng-Hao Shao
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Li-Xing Zhan
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, P. R. China
| |
Collapse
|
33
|
Song J, Sokoll LJ, Pasay JJ, Rubin AL, Li H, Bach DM, Chan DW, Zhang Z. Identification of Serum Biomarker Panels for the Early Detection of Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev 2018; 28:174-182. [PMID: 30333219 DOI: 10.1158/1055-9965.epi-18-0483] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic cancer is a deadly disease for which available biomarkers, such as CA19-9, lack the desired sensitivity and specificity for early detection. Additional biomarkers are needed to improve both its sensitivity and specificity. METHODS Multiplex immunoassays were developed for selected biomarkers using a Bio-Plex 200 system, and analytical performance was optimized. All proteins were analyzed in sera of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC; n = 188) or benign pancreatic conditions (131) and healthy controls (89). The clinical performance of these markers was evaluated individually or in combination for their ability to complement CA19-9 for the early detection of pancreatic cancer. RESULTS A 6-plex immunoassay was developed with negligible cross-reactivity, wide dynamic range, recovery of 89% to 104%, and intra-assay and interassay precision of 10.2% to 19.6% and 13.7% to 29.3%, respectively. Individually, the best biomarkers to separate PDAC early stage from chronic pancreatitis or intraductal papillary mucinous neoplasm (IPMN) were CA19-9 and MIA or CA19-9 and MIC-1. Logistic regression modeling selected the two-marker panels that significantly improved the individual biomarker performance in discriminating PDAC early stage from chronic pancreatitis (AUCCA19-9+MIA = 0.86 vs. AUCCA19-9 = 0.81 or AUCMIA = 0.75 only, P < 0.05) or IPMN (AUCCA19-9+MIC-1 = 0.81 vs. AUCCA19-9 = 0.75 or AUCMIC-1 = 0.73 only, P < 0.05). It was observed that osteopontin (OPN) outperformed CA19-9 in separating IPMN from chronic pancreatitis (AUCOPN = 0.80 vs. AUCCA19-9 = 0.70, P < 0.01). CONCLUSIONS The biomarker panels evaluated by assays with high analytical performance demonstrated potential complementary values to CA19-9, warranting additional clinical validation to determine their role in early detection of pancreatic cancer. IMPACT The validated biomarker panels could lead to earlier intervention and better outcomes.
Collapse
Affiliation(s)
- Jin Song
- Department of Pathology, Center for Biomarker Discovery and Translation, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Lori J Sokoll
- Department of Pathology, Center for Biomarker Discovery and Translation, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jered J Pasay
- Department of Pathology, Center for Biomarker Discovery and Translation, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Abigail L Rubin
- Department of Pathology, Center for Biomarker Discovery and Translation, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanying Li
- Department of Pathology, Center for Biomarker Discovery and Translation, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dylan M Bach
- Department of Pathology, School of Medicine, University of California, Irvine, California
| | - Daniel W Chan
- Department of Pathology, Center for Biomarker Discovery and Translation, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhen Zhang
- Department of Pathology, Center for Biomarker Discovery and Translation, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Calinescu A, Turcu G, Nedelcu RI, Brinzea A, Hodorogea A, Antohe M, Diaconu C, Bleotu C, Pirici D, Jilaveanu LB, Ion DA, Badarau IA. On the Dual Role of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) in Human Malignancies. J Immunol Res 2018; 2018:7169081. [PMID: 30406153 PMCID: PMC6204181 DOI: 10.1155/2018/7169081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein belonging to the carcinoembryonic antigen (CEA) family that is expressed on a wide variety of cells and holds a complex role in inflammation through its alternate splicing and generation of various isoforms, mediating intricate mechanisms of modulation and dysregulation. Initially regarded as a tumor suppressor as its expression shows considerable downregulation within the epithelia in the early phases of many solid cancers, CEACAM1 has been linked lately to the progression of malignancy and metastatic spread as various papers point to its role in tumor progression, angiogenesis, and invasion. We reviewed the literature and discussed the various expression patterns of CEACAM1 in different types of tumors, describing its structure and general biologic functions and emphasizing the most significant findings that link this molecule to poor prognosis. The importance of understanding the role of CEACAM1 in cell transformation stands not only in this adhesion molecule's value as a prognostic factor but also in its promising premise as a potential new molecular target that could be exploited as a specific cancer therapy.
Collapse
Affiliation(s)
- Andreea Calinescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Dermatology 1 Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Gabriela Turcu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Dermatology 1 Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Derma 360° Clinic, 011273 Bucharest, Romania
| | - Roxana I. Nedelcu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Derma 360° Clinic, 011273 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Balș, 021105 Bucharest, Romania
| | - Alice Brinzea
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Balș, 021105 Bucharest, Romania
| | - Anastasia Hodorogea
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Dermatology 1 Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Mihaela Antohe
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Derma 360° Clinic, 011273 Bucharest, Romania
| | - Carmen Diaconu
- Stefan Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Stefan Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Daniel Pirici
- University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lucia B. Jilaveanu
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT 208028, USA
| | - Daniela A. Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana A. Badarau
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
35
|
Vuijk FA, Hilling DE, Mieog JSD, Vahrmeijer AL. Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescent-guided surgery in colorectal and pancreatic cancer. J Surg Oncol 2018; 118:315-323. [PMID: 30216455 PMCID: PMC6175076 DOI: 10.1002/jso.25139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022]
Abstract
Sentinel lymph node procedures for gastric cancer resections using indocyanine green (ICG) linked to Nanocoll outperformed normal ICG but did not provide information on possible lymph node metastasis. Carcinoembryonic antigen targeted fluorescent imaging using SGM‐101 was successful in both pancreatic and colorectal cancer. A large phase III multicentre trial will soon be initiated in colorectal cancer patients.
Collapse
Affiliation(s)
- Floris A Vuijk
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
36
|
Zheng J, Hernandez JM, Doussot A, Bojmar L, Zambirinis CP, Costa-Silva B, van Beek EJ, Mark MT, Molina H, Askan G, Basturk O, Gonen M, Kingham TP, Allen PJ, D’Angelica MI, DeMatteo RP, Lyden D, Jarnagin WR. Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreatic cancer. HPB (Oxford) 2018; 20:597-604. [PMID: 29339034 PMCID: PMC6779041 DOI: 10.1016/j.hpb.2017.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/27/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exosomes are nanovesicles that have been shown to mediate carcinogenesis in pancreatic ductal adenocarcinoma (PDAC). Given the direct communication of pancreatic duct fluid with the tumor and its relative accessibility, we aimed to determine the feasibility of isolating and characterizing exosomes from pancreatic duct fluid. METHODS Pancreatic duct fluid was collected from 26 patients with PDAC (n = 13), intraductal papillary mucinous neoplasm (IPMN) (n = 8) and other benign pancreatic diseases (n = 5) at resection. Exosomes were isolated by serial ultracentrifugation, proteins were identified by mass spectrometry, and their expression was evaluated by immunohistochemistry. RESULTS Exosomes were isolated from all specimens with a mean concentration of 5.9 ± 1 × 108 particles/mL and most frequent size of 138 ± 9 nm. Among the top 35 proteins that were significantly associated with PDAC, multiple carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) and extracellular matrix (ECM) proteins were identified. Interestingly, CEACAM 1/5 expression by immunohistochemistry was seen only on tumor epithelia whereas tenascin C positivity was restricted to stroma, suggesting that both tumor and stromal cells contributed to exosomes. CONCLUSION This is the first study showing that exosome isolation is feasible from pancreatic duct fluid, and that exosomal proteins may be utilized to diagnose patients with PDAC.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alexandre Doussot
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Bojmar
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Bruno Costa-Silva
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Elke J.A.H. van Beek
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Gokce Askan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T. Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter J. Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ronald P. DeMatteo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - William R. Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Corresponding author: William R. Jarnagin, MD, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue C-891, New York, NY 10065, Phone: 212-639-3624; Fax: 917-432-2387,
| |
Collapse
|
37
|
Han ZM, Huang HM, Sun YW. Effect of CEACAM-1 knockdown in human colorectal cancer cells. Oncol Lett 2018; 16:1622-1626. [PMID: 30008845 PMCID: PMC6036324 DOI: 10.3892/ol.2018.8835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) is the major antigen of the CD66 cluster of granulocyte differentiation antigens. The present study aimed to assess the biological function of CEACAM-1 on the growth of human colorectal cancer (CRC) cells in vitro. Treatment of cultured CRC HCT-8 cells with CEACAM-1-specific siRNA successfully downregulated CEACAM-1 expression by 61% compared with control cells. The effects of CEACAM-1 downregulation on HCT-8 cell proliferation and apoptosis were then assessed via Cell Counting kit-8 assay and flow cytometry, respectively. The results demonstrated that siRNA-induced CEACAM-1 downregulation significantly inhibited proliferation and increased apoptosis, but had no significant effect on cell cycle progression in HCT-8 cells. Together, these results suggest that CEACAM-1 activity is critical to CRC growth, and thus, CEACAM-1 may be a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Zhong-Min Han
- Department of Medical Technology, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 450052, P.R. China
| | - He-Mei Huang
- Department of Medical Technology, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 450052, P.R. China
| | - Yong-Wu Sun
- Department of Medical Technology, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
38
|
Mayerle J, Kalthoff H, Reszka R, Kamlage B, Peter E, Schniewind B, González Maldonado S, Pilarsky C, Heidecke CD, Schatz P, Distler M, Scheiber JA, Mahajan UM, Weiss FU, Grützmann R, Lerch MM. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut 2018; 67:128-137. [PMID: 28108468 PMCID: PMC5754849 DOI: 10.1136/gutjnl-2016-312432] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current non-invasive diagnostic tests can distinguish between pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC)) and chronic pancreatitis (CP) in only about two thirds of patients. We have searched for blood-derived metabolite biomarkers for this diagnostic purpose. DESIGN For a case-control study in three tertiary referral centres, 914 subjects were prospectively recruited with PDAC (n=271), CP (n=282), liver cirrhosis (n=100) or healthy as well as non-pancreatic disease controls (n=261) in three consecutive studies. Metabolomic profiles of plasma and serum samples were generated from 477 metabolites identified by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. RESULTS A biomarker signature (nine metabolites and additionally CA19-9) was identified for the differential diagnosis between PDAC and CP. The biomarker signature distinguished PDAC from CP in the training set with an area under the curve (AUC) of 0.96 (95% CI 0.93-0.98). The biomarker signature cut-off of 0.384 at 85% fixed specificity showed a sensitivity of 94.9% (95% CI 87.0%-97.0%). In the test set, an AUC of 0.94 (95% CI 0.91-0.97) and, using the same cut-off, a sensitivity of 89.9% (95% CI 81.0%-95.5%) and a specificity of 91.3% (95% CI 82.8%-96.4%) were achieved, successfully validating the biomarker signature. CONCLUSIONS In patients with CP with an increased risk for pancreatic cancer (cumulative incidence 1.95%), the performance of this biomarker signature results in a negative predictive value of 99.9% (95% CI 99.7%-99.9%) (training set) and 99.8% (95% CI 99.6%-99.9%) (test set). In one third of our patients, the clinical use of this biomarker signature would have improved diagnosis and treatment stratification in comparison to CA19-9.
Collapse
Affiliation(s)
- Julia Mayerle
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany,Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, München, Germany
| | - Holger Kalthoff
- Section for Molecular Oncology, Institut for Experimental Cancer Research (IET), UKSH, Kiel, Germany
| | | | | | | | - Bodo Schniewind
- Section for Molecular Oncology, Institut for Experimental Cancer Research (IET), UKSH, Kiel, Germany
| | | | | | - Claus-Dieter Heidecke
- Department of General, Visceral, Thoracic and Vascular Surgery University Medicine Greifswald, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | - Marius Distler
- Clinic and Outpatient Clinic for Visceral-, Thorax- and Vascular Surgery, Medizinische Fakultät, TU Dresden, Dresden, Germany
| | - Jonas A Scheiber
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Ujjwal M Mahajan
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany,Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, München, Germany
| | - F Ulrich Weiss
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | | | - Markus M Lerch
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| |
Collapse
|
39
|
Evidence of Altered Glycosylation of Serum Proteins Prior to Pancreatic Cancer Diagnosis. Int J Mol Sci 2017; 18:ijms18122670. [PMID: 29232830 PMCID: PMC5751272 DOI: 10.3390/ijms18122670] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/29/2022] Open
Abstract
Biomarkers for the early detection of pancreatic cancer are urgently needed. The aim of this pilot study was to evaluate changes in serum N-glycoproteins and their glycosylation status prior to clinical presentation of pancreatic cancer that may be potential biomarkers. Prediagnosis serum samples pooled according to five time-to-diagnosis groups and a non-cancer control pool were digested with trypsin, labelled with mass tags, and subjected to titanium dioxide capture, deglycosylation, and 2D-LC-MS/MS profiling. Unbound peptides were profiled in parallel. Across the sample groups, 703 proteins were quantified and 426 putative sites of N-glycosylation were identified with evidence of several novel sites. Altered proteins with biomarker potential were predominantly abundant inflammatory response, coagulation, and immune-related proteins. Whilst glycopeptide profiles largely paralleled those of their parent proteins, there was evidence of altered N-glycosylation site occupancy or sialic acid content prior to diagnosis for some proteins, most notably of immunoglobulin gamma chains. α-1-Antitrypsin was tested as a biomarker, but found not to complement carbohydrate antigen 19-9 (CA19-9) in early detection of cancer. In conclusion, we provide preliminary evidence of altered glycosylation of several serum proteins prior to pancreatic cancer diagnosis, warranting further investigation of these proteins as early biomarkers. These changes may be largely driven by inflammatory processes that occur in response to tumour formation and progression.
Collapse
|
40
|
Abstract
Pancreatic cancers with poor prognosis are highly malignant, readily metastatic and of immune tolerance, mainly due to delayed detection. The metastatic progression and immune tolerance of pancreatic cancer is greatly attributed to the intercellular communication. However, exosomes are deemed to be the most important tool of intercellular communicators. Thus, we present a review of pancreatic cancer and exosomes in this article. We intensively summarize the progress of early pancreatic cancer and the relationship of the proliferation, progression and metastasis of pancreatic cancer and pancreatic cancer-derived exosomes, and propose new ideas of the study of pancreatic cancer.
Collapse
Affiliation(s)
- Chengfei Zhao
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
- Department of Pharmacy, Pharmacy and Medical Technology School, Putian University, Putian 351100, Fujian, China
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Feng Gao
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Qicai Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| |
Collapse
|
41
|
PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0126-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Single nucleotide polymorphisms in the angiogenic and lymphangiogenic pathways are associated with lymphedema caused by Wuchereria bancrofti. Hum Genomics 2017; 11:26. [PMID: 29122006 PMCID: PMC5679374 DOI: 10.1186/s40246-017-0121-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
Background Lymphedema (LE) is a chronic clinical manifestation of filarial nematode infections characterized by lymphatic dysfunction and subsequent accumulation of protein-rich fluid in the interstitial space—lymphatic filariasis. A number of studies have identified single nucleotide polymorphisms (SNPs) associated with primary and secondary LE. To assess SNPs associated with LE caused by lymphatic filariasis, a cross-sectional study of unrelated Ghanaian volunteers was designed to genotype SNPs in 285 LE patients as cases and 682 infected patients without pathology as controls. One hundred thirty-one SNPs in 64 genes were genotyped. The genes were selected based on their roles in inflammatory processes, angiogenesis/lymphangiogenesis, and cell differentiation during tumorigenesis. Results Genetic associations with nominal significance were identified for five SNPs in three genes: vascular endothelial growth factor receptor-3 (VEGFR-3) rs75614493, two SNPs in matrix metalloprotease-2 (MMP-2) rs1030868 and rs2241145, and two SNPs in carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM-1) rs8110904 and rs8111171. Pathway analysis revealed an interplay of genes in the angiogenic/lymphangiogenic pathways. Plasma levels of both MMP-2 and CEACAM-1 were significantly higher in LE cases compared to controls. Functional characterization of the associated SNPs identified genotype GG of CEACAM-1 as the variant influencing the expression of plasma concentration, a novel finding observed in this study. Conclusion The SNP associations found in the MMP-2, CEACAM-1, and VEGFR-3 genes indicate that angiogenic/lymphangiogenic pathways are important in LE clinical development. Electronic supplementary material The online version of this article (10.1186/s40246-017-0121-7) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Arabzadeh A, McGregor K, Breton V, Van Der Kraak L, Akavia UD, Greenwood CMT, Beauchemin N. EphA2 signaling is impacted by carcinoembryonic antigen cell adhesion molecule 1-L expression in colorectal cancer liver metastasis in a cell context-dependent manner. Oncotarget 2017; 8:104330-104346. [PMID: 29262644 PMCID: PMC5732810 DOI: 10.18632/oncotarget.22236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
We have shown that carcinoembryonic antigen cell adhesion molecule 1 long isoform (CEACAM1-L) expression in MC38 metastatic colorectal cancer (CRC) cells results in liver metastasis inhibition via CCL2 and STAT3 signaling. But other molecular mechanisms orchestrating CEACAM1-L-mediated metastasis inhibition remain to be defined. We screened a panel of mouse and human CRC cells and evaluated their metastatic outcome after CEACAM1 overexpression or downregulation. An unbiased transcript profiling and a phospho-receptor tyrosine kinase screen comparing MC38 CEACAM1-L-expressing and non-expressing (CT) CRC cells revealed reduced ephrin type-A receptor 2 (EPHA2) expression and activity. An EPHA2-specific inhibitor reduced EPHA2 downstream signaling in CT cells similar to that in CEACAM1-L cells with decreased proliferation and migration. Human CRC patients exhibiting high CEACAM1 in combination with low EPHA2 expression benefited from longer time to first recurrence/metastasis compared to those with high EPHA2 expression. With the added interaction of CEACAM6, we denoted that CEACAM1 high- and EPHA2 low-expressing patient samples with lower CEACAM6 expression also exhibited a longer time to first recurrence/metastasis. In HT29 human CRC cells, down-regulation of CEACAM1 along with CEA and CEACAM6 up-regulation led to higher metastatic burden. Overall, CEACAM1-L expression in poorly differentiated CRC can inhibit liver metastasis through cell context-dependent EPHA2-mediated signaling. However, CEACAM1’s role should be considered in the presence of other CEACAM family members.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Kevin McGregor
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Lauren Van Der Kraak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Uri David Akavia
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Celia M T Greenwood
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Departments of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Departments of Medicine and Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Meng Q, Shi S, Liang C, Liang D, Xu W, Ji S, Zhang B, Ni Q, Xu J, Yu X. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis. Onco Targets Ther 2017; 10:4591-4598. [PMID: 28979147 PMCID: PMC5608082 DOI: 10.2147/ott.s145708] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Carcinoembryonic antigen (CEA) is one of the most widely used tumor markers and is increased in 30%-60% of patients with pancreatic cancer. Although carbohydrate antigen 19-9 (CA19-9) is the most important serum biomarker in pancreatic cancer, the diagnostic and prognostic value of CEA is gradually being recognized. MATERIALS AND METHODS The MEDLINE, EMBASE, and Web of Science databases were searched for related literature published until January 2017. Diagnostic accuracy variables were pooled using the Meta-Disc software. The pooled hazard ratios (HRs) for prognostic data were calculated and analyzed using Stata software. RESULTS A total of 3,650 participants enrolled in 19 studies met our inclusion criteria. The pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of a CEA-based panel were 0.45 (95% confidence interval [CI], 0.41-0.50), 0.89 (95% CI, 0.86-0.91), 5.39 (95% CI, 3.16-9.18), and 0.55 (95% CI, 0.41-0.72), respectively. The area under the curve (AUC, 0.90) and Q-value (0.84) of the CEA-based panel indicated a significantly higher diagnostic accuracy compared with CEA or CA19-9 alone. Moreover, there was also a significant association between high levels of CEA and worse overall survival (HR, 1.43; 95% CI, 1.31-1.56). CONCLUSION Our meta-analysis indicated that elevated serum CEA level, as a vital supplementary to CA19-9, can play an important role in the clinical diagnosis of pancreatic cancer patients and predict poor prognosis.
Collapse
Affiliation(s)
- Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
45
|
Zhou M, Jin Z, Liu Y, He Y, Du Y, Yang C, Wang Y, Hu J, Cui L, Gao F, Cao M. Up-regulation of carcinoembryonic antigen-related cell adhesion molecule 1 in gastrointestinal cancer and its clinical relevance. Acta Biochim Biophys Sin (Shanghai) 2017; 49:737-743. [PMID: 28655144 PMCID: PMC7109844 DOI: 10.1093/abbs/gmx060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 11/24/2022] Open
Abstract
Serum carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is dysregulated in various malignant tumors and has been associated with tumor progression. However, the expression and regulatory mechanisms of serum CEACAM1 in gastrointestinal cancer are still unclear. The expression ratio of the CEACAM1-L and CEACAM1-S isoforms has seldom been investigated in gastrointestinal cancer. In this study, we intended to explore the expression and diagnostic value of CEACAM1 in gastrointestinal cancer. Serum CEACAM1 levels were measured by enzyme-linked immunosorbent assay. The protein expression and distribution of CEACAM1 in tumors were examined by immunohistochemical staining. The expression patterns and ratio of CEACAM1-L/S were analyzed by reverse transcription-polymerase chain reaction. The results showed that serum CEACAM1 levels were significantly higher in cancer patients than in healthy controls. CEACAM1 was found in secreted forms within the neoplastic glands, and its expression was more intense at the tumor invasion front. The CEACAM1-L/S (L:S) ratios were up-regulated during tumorigenesis. Our data suggest that the serum level of CEACAM1 may be used to discriminate gastrointestinal cancer patients from health controls.
Collapse
Affiliation(s)
- Muqing Zhou
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwen Liu
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiqing He
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yan Du
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cuixia Yang
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yingzhi Wang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiajie Hu
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lian Cui
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Gao
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Correspondence address. Tel: +86-21-64369181; E-mail: (F.G.)/Tel: +86-21-64368564; E-mail: (M.C.)
| | - Manlin Cao
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Correspondence address. Tel: +86-21-64369181; E-mail: (F.G.)/Tel: +86-21-64368564; E-mail: (M.C.)
| |
Collapse
|
46
|
Boogerd LSF, Vuijk FA, Hoogstins CES, Handgraaf HJM, van der Valk MJM, Kuppen PJK, Sier CFM, van de Velde CJH, Burggraaf J, Fariña-Sarasqueta A, Vahrmeijer AL. Correlation Between Preoperative Serum Carcinoembryonic Antigen Levels and Expression on Pancreatic and Rectal Cancer Tissue. BIOMARKERS IN CANCER 2017; 9:1179299X17710016. [PMID: 28579847 PMCID: PMC5437985 DOI: 10.1177/1179299x17710016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022]
Abstract
Carcinoembryonic antigen (CEA)-targeted imaging and therapeutic agents are being tested in clinical trials. If CEA overexpression in malignant tissue corresponds with elevated serum CEA, serum CEA could assist in selecting patients who may benefit from CEA-targeted agents. This study aims to assess the relationship between serum CEA and CEA expression in pancreatic (n = 20) and rectal cancer tissues (n = 35) using histopathology. According to local laboratory standards, a serum CEA >3 ng/mL was considered elevated. In pancreatic cancer patients a significant correlation between serum CEA and percentage of CEA-expressing tumor cells was observed (P = .04, ρ = .47). All 6 patients with homogeneous CEA expression in the tumor had a serum CEA >3 ng/mL. Most rectal cancer tissues (32/35) showed homogeneous CEA expression, independent of serum CEA levels. This study suggests that selection of pancreatic cancer patients for CEA-targeted agents via serum CEA appears adequate. For selection of rectal cancer patients, serum CEA levels are not informative.
Collapse
Affiliation(s)
- L S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - F A Vuijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C E S Hoogstins
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - H J M Handgraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - M J M van der Valk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands
| | - A Fariña-Sarasqueta
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
47
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
48
|
Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, Farren MR, Mace TA, Schmidt C, Liu Y, Deng D, Hwang RF, Zhou L, Moore T, Chatterjee D, Wang H, Leng X, Arlinghaus RB, Logsdon CD, Cruz-Monserrate Z. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment. Cancer Res 2017; 77:2647-2660. [PMID: 28249896 PMCID: PMC5441230 DOI: 10.1158/0008-5472.can-16-1986] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/16/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Lipocalin-2 (LCN2) promotes malignant development in many cancer types. LCN2 is upregulated in patients with pancreatic ductal adenocarcinoma (PDAC) and in obese individuals, but whether it contributes to PDAC development is unclear. In this study, we investigated the effects of Lcn2 depletion on diet-induced obesity, inflammation, and PDAC development. Mice with acinar cell-specific expression of KrasG12D were crossed with Lcn2-depleted animals and fed isocaloric diets with varying amounts of fat content. Pancreas were collected and analyzed for inflammation, pancreatic intraepithelial neoplasia (PanIN), and PDAC. We also used a syngeneic orthotopic PDAC mouse model to study tumor growth in the presence or absence of Lcn2 expression. In addition, to understand the mechanistic role of how LCN2 could be mediating PDAC, we studied LCN2 and its specific receptor solute carrier family 22 member 17 (SLC22A17) in human pancreatic cancer stellate cells (PSC), key mediators of the PDAC stroma. Depletion of Lcn2 diminished extracellular matrix deposition, immune cell infiltration, PanIN formation, and tumor growth. Notably, it also increased survival in both obesity-driven and syngeneic orthotopic PDAC mouse models. LCN2 modulated the secretion of proinflammatory cytokines in PSC of the PDAC tumor microenvironment, whereas downregulation of LCN2-specific receptor SLC22A17 blocked these effects. Our results reveal how LCN2 acts in the tumor microenvironment links obesity, inflammation, and PDAC development. Cancer Res; 77(10); 2647-60. ©2017 AACR.
Collapse
Affiliation(s)
- Sobeyda B Gomez-Chou
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Agnieszka Katarzyna Swidnicka-Siergiejko
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Gastroenterology and Internal Medicine, University of Bialystok, Bialystok, Poland
| | - Niharika Badi
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Myrriah Chavez-Tomar
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Tanios Bekaii-Saab
- Department of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Thomas A Mace
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Carl Schmidt
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yan Liu
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Defeng Deng
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Liran Zhou
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Todd Moore
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Deyali Chatterjee
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas.
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
49
|
Markel G, Imazio M, Koren-Morag N, Galore-Haskel G, Schachter J, Besser M, Cumetti D, Maestroni S, Altman A, Shoenfeld Y, Brucato A, Adler Y. CEACAM1 and MICA as novel serum biomarkers in patients with acute and recurrent pericarditis. Oncotarget 2017; 7:17885-95. [PMID: 26909604 PMCID: PMC4951257 DOI: 10.18632/oncotarget.7530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background The immune response plays a significant role in pericarditis, but the mechanisms of disease are poorly defined. Further, efficient monitoring and predictive clinical tools are unavailable. Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is an immune-inhibitory protein, while MHC class I chain related protein A (MICA) and B (MICB) have an immune-stimulating function. Methods and results Serum CEACAM1, MICA and MICB concentrations were measured by ELISA in ∼50 subjects of each group: acute pericarditis (AP), recurrent pericarditis (RP) and lupus (SLE) patients, metastatic melanoma patients as well as healthy donors. Serum CEACAM1 was dramatically elevated in AP and RP patients, but not in SLE patients, and displayed a highly accurate profile in ROC curve analyses. MICA and MICB were elevated in some pericarditis patients. All markers were enhanced in metastatic melanoma patients irrespective of neoplastic pericardial involvement. Etiology-guided analysis of RP patients showed that very low MICA levels were associated with idiopathic RP, while high MICA was associated with autoimmune and post-operative RP. Importantly, MICA was significantly associated with recurrences, independently of other potentially confounding parameters such as age, time of follow up or treatment modality. Conclusions Here we report for the first time on CEACAM1 as a potentially novel biomarker for pericarditis, as well as on MICA as an innovative prognostic marker in these patients. Determination of the roles of these immune factors, as well as their diagnostic and prognostic values should be determined in future prospective studies.
Collapse
Affiliation(s)
- Gal Markel
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Tel Hashomer, Israel.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Massimo Imazio
- Cardiology Department, Maria Vittoria Hospital, Torino, Italy
| | - Nira Koren-Morag
- Department of Epidemiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilli Galore-Haskel
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Tel Hashomer, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Tel Hashomer, Israel
| | - Michal Besser
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Tel Hashomer, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Arie Altman
- Internal Medicine B, Sheba Medical Center, Tel Hashomer, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Yehuda Adler
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel.,Cardiac Rehabilitation Institute, Sheba Medical Center, Tel Hashomer, Israel.,Department of Internal Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
50
|
Słotwiński R, Słotwińska SM. Diagnostic value of selected markers and apoptotic pathways for pancreatic cancer. Cent Eur J Immunol 2017; 41:392-403. [PMID: 28450803 PMCID: PMC5382885 DOI: 10.5114/ceji.2016.65139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer occupies the fourth place as a cause of death from cancer, and the mortality rate is similar to the number of newly detected cases. Due to the late diagnosis, only 5-6% of patients with pancreatic cancer survive for five years. Given that early diagnosis is critical for improving patients' survival rates, there is an urgent need for the discovery and validation of new biomarkers with sufficient sensitivity and specificity to help diagnose pancreatic cancer early. Detection of serum tumor markers (CA19-9, CEA, CA125 and CA242) is conducive to the early diagnosis of pancreatic cancer. The combination of miR-16, miR-196a and CA19-9 plasma level was more effective, especially in early tumor screening. Furthermore, recent studies reported that mainly miR-21, miR-155 and miR-196 were dysregulated in IPMN (intraductal papillary mucinous neoplasms) and PanIN (pancreatic intraepithelial neoplasia) lesions, suggesting their usefulness as early biomarkers of these diseases. The reduced rate of apoptosis plays a crucial role in carcinogenesis, and it is one of the most important characteristics acquired by pancreatic cancer cells, which protects them from attack by the immune system and reduces the effectiveness of pharmacological treatment. This review summarizes the data concerning the clinical utility of selected biomarkers in pancreatic cancer patients. The review mainly focuses on the genetic aspects of signaling pathway disorders associated with apoptosis in the pathogenesis and diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Robert Słotwiński
- Department of Surgical Research and Transplantology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Poland
| | | |
Collapse
|