1
|
Mo J, Ding Y, Yang J, Zheng Z, Lu J, Luo H, Wang J, Lin F, Chen J, Li Q, Zheng X, Zha L. Milk Exosomes From Gestational Diabetes Mellitus Parturients Demonstrate Weaker Ability to Promote Intestinal Development in Offspring. Mol Nutr Food Res 2025:e70026. [PMID: 40207769 DOI: 10.1002/mnfr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
This study aims to investigate whether human milk exosomes from gestational diabetes mellitus (GDM-EXO) and healthy (HEA-EXO) parturients differ in regulating intestinal development in offspring. The differential miRNAs associated with intestinal development in GDM-EXO and HEA-EXO were verified by using qPCR and their relationships with gut microbiota (GM) in infants were analyzed. C57BL/6J mice were gavaged with 50 mg/kg·BW HEA-EXO or GDM-EXO. The intestinal morphology, gut barriers, ZO-1 and Occludin, and GM were determined by histological staining, Western blotting, and 16S rDNA amplicon sequencing, respectively. Hsa-miR-19b-3p, hsa-miR-148a-3p, and hsa-miR-320a-3p were upregulated, and hsa-miR-429 was decreased in GDM-EXO compared to HEA-EXO. The GDM parturients' infants had increased intestinal Coriobacteriaceae, Clostridiaceae, Erysipelotrichaceae, Erysipelatoclostridiaceae, and fewer Lactobacillaceae than the healthy parturient's infants. The four differential miRNAs in GDM-EXO all correlated with the infants' GM. GDM-EXO- and HEA-EXO-fed mice had greater villus lengths, villus length-to-crypt depth ratios, goblet cell numbers, elevated ZO-1 and Occludin, and lower crypt depths than control mice. HEA-EXO-fed mice had better intestinal morphology and gut barrier integrity than GDM-EXO-fed mice. GDM-EXO-fed mice had significantly decreased Lachnospiraceae and Oscillospiraceae than HEA-EXO-fed mice. GDM-EXO demonstrate weaker ability to promote intestinal development in offspring than HEA-EXO.
Collapse
Affiliation(s)
- Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yudi Ding
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Junyi Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiazhi Lu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xiangyi Zheng
- Department of Health Management Medicine, Guangzhou Panyu District Health Management Center (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou, Guangdong, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
2
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and adult human intestinal enteroids are morphologically and functionally distinct. mBio 2024; 15:e0131624. [PMID: 38953637 PMCID: PMC11323560 DOI: 10.1128/mbio.01316-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We then validated differences in key pathways through functional studies and determined whether these cultures recapitulate known features of the infant intestinal epithelium. RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell, and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex vivo model to advance studies of infant-specific diseases and drug discovery for this population. IMPORTANCE Tissue or biopsy stem cell-derived human intestinal enteroids are increasingly recognized as physiologically relevant models of the human gastrointestinal epithelium. While enteroids from adults and fetal tissues have been extensively used for studying many infectious and non-infectious diseases, there are few reports on enteroids from infants. We show that infant enteroids exhibit both transcriptomic and morphological differences compared to adult cultures. They also differ in functional responses to barrier disruption and innate immune responses to infection, suggesting that infant and adult enteroids are distinct model systems. Considering the dramatic changes in body composition and physiology that begin during infancy, tools that appropriately reflect intestinal development and diseases are critical. Infant enteroids exhibit key features of the infant gastrointestinal epithelium. This study is significant in establishing infant enteroids as age-appropriate models for infant intestinal physiology, infant-specific diseases, and responses to pathogens.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and Adult Human Intestinal Enteroids are Morphologically and Functionally Distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541350. [PMID: 37292968 PMCID: PMC10245709 DOI: 10.1101/2023.05.19.541350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background & Aims Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Golf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, TX
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
4
|
Rubio CA, Vieth M, Lang-Schwarz C. The frequency of dysplastic branching crypts in colorectal polypoid tubular adenomas. Int J Exp Pathol 2023; 104:100-106. [PMID: 36734673 PMCID: PMC10182366 DOI: 10.1111/iep.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Dysplastic crypt branching (DCB) was recently found in ulcerative colitis-associated dysplasia. The aim was to assess the frequency and the branching phenotype of DCB in polypoid colorectal tubular adenomas (TA). A total of 3956 DCB were found in the 139 TA: 98% were in asymmetric branching (DCAB) and the remaining 2% in symmetric branching (DCSB). A linear correlation was found between DCB frequency and the increasing digital size in TA (p < .05). Using a digital ruler, adenomas were divided into small TA (<5 mm) and larger TA (≥5 mm). The difference between the frequency of DCB in small TA (n = 75) vs. larger TA (n = 64), was significant (p < .05). DCB frequency was not influenced by age, gender or TA localization. In the normal colorectal mucosa (≈2 m2 ), only occasional CSB is found and no CAB. And yet, multiple DCB (mean 16.7 DCB), mostly DCAB, was found in small TA, occupying <5 mm of the mucosal area. In larger TA, as many as 42.1 DCB (mean), mostly DCAB, occurred in merely 7.8 mm (mean) of the colon mucosa. Thus it is suggested that DCB is a standard histologic element of TA. The natural expansion of the adenomatous tissue in larger TA appears to be follow on from newly produced, mostly DCAB, by DCSB and by the accumulation of their dysplastic offspring's progenies. The findings strongly suggest that DCB is a central microstructure in the histological events unfolding in polypoid colorectal TA.
Collapse
Affiliation(s)
- Carlos A Rubio
- Department of Pathology, Karolinska Institute, University Hospital, Stockholm, Sweden
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Corinna Lang-Schwarz
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| |
Collapse
|
5
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
6
|
Dysplastic crypts in asymmetric branching found in ulcerative colitis-associated dysplasia. Pathol Res Pract 2022; 240:154178. [DOI: 10.1016/j.prp.2022.154178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
7
|
Abstract
The vertebrate intestine experiences a range of intrinsically generated and external forces during both development and adult homeostasis. It is increasingly understood how the coordination of these forces shapes the intestine through organ-scale folding and epithelial organization into crypt-villus compartments. Moreover, accumulating evidence shows that several cell types in the adult intestine can sense and respond to forces to regulate key cellular processes underlying adult intestinal functions and self-renewal. In this way, transduction of forces may direct both intestinal homeostasis as well as adaptation to external stimuli, such as food ingestion or injury. In this review, we will discuss recent insights from complementary model systems into the force-dependent mechanisms that establish and maintain the unique architecture of the intestine, as well as its homeostatic regulation and function throughout adult life.
Collapse
|
8
|
Rubio CA, Schmidt PT, Lang-Schwarz C, Vieth M. Branching crypts in inflammatory bowel disease revisited. J Gastroenterol Hepatol 2022; 37:440-445. [PMID: 34750862 DOI: 10.1111/jgh.15734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Histologic sections from patients with inflammatory bowel disease (IBD) usually exhibit crypts with architectural distortions and branching crypts. It has been postulated that crypt branching should be assessed only in well-oriented, upright crypts. However, those crypts are mostly found in sections from colectomy specimens and colon mucosectomies. Sections from endoscopic biopsies are fortuitously cut in a horizontal plane, a procedure mostly revealing cross-cut crypt rings. In endoscopic biopsies from UC patients we previously detected cross-cut crypts heralding the crest domain of branching crypts. Recently, the scrutiny of biopsies from IBD patients revealed that branching-crest domains concurred either with crypts in symmetric branching, typified by twin, amalgamating back-to-back isometrics crypt-rings, or with crypts in asymmetric branching, characterized by ≥2 amalgamating anisometric crypt-rings; both symmetric and asymmetric branching-crest domains were encased by a thin muscularis mucosae. Quantitative studies in biopsies from Swedish and German patients with IBD showed that crypts in asymmetric branching outnumbered those in symmetric branching. Because crypt-branching seldom occurs in the normal colon in adults and considering that colon crypts typically divide once or twice during a lifetime, the accruing of asymmetric branching crypts in IBD biopsies emerges as a significant histologic parameter. Although the biological significance of asymmetric crypt-branching in IBD remains at present elusive, their occurrence deserves to be further investigated. The future policy will be to include in our pathologic reports, the number of crypts in asymmetric branching, in order to monitor their frequency in prospective surveillance biopsies in patients with IBD.
Collapse
Affiliation(s)
- Carlos A Rubio
- Department of Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Medicine, Karolinska Institute and Ersta Hospital, Stockholm, Sweden
| | | | - Michael Vieth
- Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| |
Collapse
|
9
|
Gleeson JP, Fein KC, Whitehead KA. Oral delivery of peptide therapeutics in infants: Challenges and opportunities. Adv Drug Deliv Rev 2021; 173:112-124. [PMID: 33774115 PMCID: PMC8178217 DOI: 10.1016/j.addr.2021.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
The vast majority of drugs are not designed or developed for pediatric and infant populations. Peptide drugs, which have become increasingly relevant in the past several decades, are no exception. Unfortunately, nearly all of the 60+ approved peptide drugs are formulated for injection, a particularly unfriendly mode of administration for infants. Although three peptide drugs were recently approved for oral formulations, this major advance in peptide drug delivery is available only for adults. In this review, we consider the current challenges and opportunities for the oral formulation of peptide therapeutics, specifically for infant populations. We describe the strategies that enable oral protein delivery and the potential impact of infant physiology on those strategies. We also detail the limited but encouraging progress towards 1) adapting conventional drug development and delivery approaches to infants and 2) designing novel infant-centric formulations. Together, these efforts underscore the feasibility of oral peptide delivery in infants and provide motivation to increase attention paid to this underserved area of drug delivery and formulation.
Collapse
Affiliation(s)
- John P Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
10
|
Tallapragada NP, Cambra HM, Wald T, Keough Jalbert S, Abraham DM, Klein OD, Klein AM. Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell 2021; 28:1516-1532.e14. [PMID: 33915079 DOI: 10.1016/j.stem.2021.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
How stem cells self-organize to form structured tissues is an unsolved problem. Intestinal organoids offer a model of self-organization as they generate stem cell zones (SCZs) of typical size even without a spatially structured environment. Here we examine processes governing the size of SCZs. We improve the viability and homogeneity of intestinal organoid cultures to enable long-term time-lapse imaging of multiple organoids in parallel. We find that SCZs are shaped by fission events under strong control of ion channel-mediated inflation and mechanosensitive Piezo-family channels. Fission occurs through stereotyped modes of dynamic behavior that differ in their coordination of budding and differentiation. Imaging and single-cell transcriptomics show that inflation drives acute stem cell differentiation and induces a stretch-responsive cell state characterized by large transcriptional changes, including upregulation of Piezo1. Our results reveal an intrinsic capacity of the intestinal epithelium to self-organize by modulating and then responding to its mechanical state.
Collapse
Affiliation(s)
- Naren P Tallapragada
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hailey M Cambra
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Wald
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha Keough Jalbert
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Diana M Abraham
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Allon M Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Chapron BD, Chapron A, Leeder JS. Recent advances in the ontogeny of drug disposition. Br J Clin Pharmacol 2021; 88:4267-4284. [PMID: 33733546 DOI: 10.1111/bcp.14821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Developmental changes that occur throughout childhood have long been known to impact drug disposition. However, pharmacokinetic studies in the paediatric population have historically been limited due to ethical concerns arising from incorporating children into clinical trials. As such, much of the early work in the field of developmental pharmacology was reliant on difficult-to-interpret in vitro and in vivo animal studies. Over the last 2 decades, our understanding of the mechanistic processes underlying age-related changes in drug disposition has advanced considerably. Progress has largely been driven by technological advances in mass spectrometry-based methods for quantifying proteins implicated in drug disposition, and in silico tools that leverage these data to predict age-related changes in pharmacokinetics. This review summarizes our current understanding of the impact of childhood development on drug disposition, particularly focusing on research of the past 20 years, but also highlighting select examples of earlier foundational research. Equally important to the studies reviewed herein are the areas that we cannot currently describe due to the lack of research evidence; these gaps provide a map of drug disposition pathways for which developmental trends still need to be characterized.
Collapse
Affiliation(s)
- Brian D Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Alenka Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Schools of Medicine and Pharmacy, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
12
|
Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ 2021; 28:95-107. [PMID: 33208888 PMCID: PMC7852609 DOI: 10.1038/s41418-020-00665-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium harbors a remarkable adaptability to undergo injury-induced repair. A key part of the regenerative response is the transient reprogramming of epithelial cells into a fetal-like state, which drives uniform proliferation, tissue remodeling, and subsequent restoration of the homeostatic state. In this review, we discuss how Wnt and YAP signaling pathways control the intestinal repair response and the transitioning of cell states, in comparison with the process of intestinal development. Furthermore, we highlight how organoid-based applications have contributed to the characterization of the mechanistic principles and key players that guide these developmental and regenerative events.
Collapse
Affiliation(s)
- Joep Sprangers
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Irene C Zaalberg
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Vyhlidal CA, Chapron BD, Ahmed A, Singh V, Casini R, Shakhnovich V. Effect of Crohn's Disease on Villous Length and CYP3A4 Expression in the Pediatric Small Intestine. Clin Transl Sci 2020; 14:729-736. [PMID: 33278326 PMCID: PMC7993283 DOI: 10.1111/cts.12938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Changes in absorptive capacity and first‐pass metabolism in the small intestine affect oral drug bioavailability. Characterization of such changes as a consequence of inflammation is important for developing physiologically‐based pharmacokinetic (PBPK) models for inflammatory bowel disease. We sought to elucidate the impact of small intestinal Crohn’s disease (CD) on villous length and CYP3A4 expression in children. Freshly frozen duodenal and terminal ileum (TI) biopsies from 107 children (1–19 years) with and without CD were evaluated for active inflammation. Villous length and CYP3A4 mRNA/protein expression were compared among regions of active and inactive inflammation in CD and controls. A twofold reduction in villous length was observed in inflamed duodena and ilia of children with CD, but in the absence of regional inflammation, villi in CD were comparable in length to controls. Expression of CYP3A4 mRNA correlated significantly with villous length in the TI (P = 0.0003), with a trend observed in the duodenum that did not reach statistical significance. In the presence of active inflammation, a significant decrease in CYP3A protein expression was confirmed in the duodenum, where protein expression also correlated significantly with villous length across diagnoses (P < 0.0001). Our findings suggest that previous observations of decreased CYP3A4 expression and function in inflamed intestine may not be due solely to downregulation by inflammatory cytokines, but also to villous blunting and subsequent loss of surface area for protein expression. This information is relevant for PBPK model development and could aid with dose adjustment decisions for oral CYP3A4 substrates administered during CD flare (e.g., budesonide).
Collapse
Affiliation(s)
- Carrie A Vyhlidal
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Brian D Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Atif Ahmed
- Department of Pediatrics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, USA.,Division of Pathology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Vivekanand Singh
- Division of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rebecca Casini
- NorthShore University Health System, Skokie, Illinois, USA
| | - Valentina Shakhnovich
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri - Kansas City School of Medicine, Kansas City, Missouri, USA.,Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Mercy Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
14
|
Gleeson JP, Fein KC, Chaudhary N, Doerfler R, Newby AN, Whitehead KA. The enhanced intestinal permeability of infant mice enables oral protein and macromolecular absorption without delivery technology. Int J Pharm 2020; 593:120120. [PMID: 33249250 DOI: 10.1016/j.ijpharm.2020.120120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
Oral delivery of macromolecular drugs is the most patient-preferred route of administration because it is painless and convenient. Over the past 30 years, significant attention has been paid to oral protein delivery in adults. Unfortunately, there is an outstanding need for similar efforts in infants, a patient population with distinct intestinal physiology and treatment needs. Here, we assess the intestinal permeability of neonatal and infant mice to determine the feasibility of orally delivering peptide and protein drugs without permeation enhancers or other assistance. Using the non-everted gut sac model, we found that macromolecular permeability depended on molecular size, mouse age, and intestinal tissue type using model dextrans. For example, the apparent permeability of 70 kDa FITC-Dextran (FD70) in infant small intestinal tissue was 2-5-fold higher than in adult tissue. As mice aged, the expression of barrier-forming and pore-forming tight junction proteins increased and decreased, respectively. The in vivo oral absorption of 4 kDa FITC-Dextran (FD4) and FD70 was significantly higher in younger mice, and there was a fourfold increase in oral absorption of the 80 kDa protein lactoferrin compared to adults. Oral gavage of insulin (5 IU/kg) reduced blood glucose levels in infants by >20% at 2 and 3 h but had no effect in adults. Oral insulin had 35% and <1% of the pharmacodynamic effect of a 1 IU/kg subcutaneous dose in infants and adults, as measured by area above the curve. These data indicate that the uniquely leaky nature of the infantile intestine may support the oral delivery of biologics without the need for traditional oral delivery technology.
Collapse
Affiliation(s)
- John P Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Rose Doerfler
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexandra N Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
15
|
Rubio CA, Schmidt PT. Asymmetric crypt fission in sessile serrated lesions. J Clin Pathol 2020; 74:712-717. [PMID: 33046564 DOI: 10.1136/jclinpath-2020-207008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Sessile serrated lesions without dysplasia (SSL-ND) are epitomised by dilated crypts with epithelial serrations and architectural distortions portraying boot-shapes, L-shapes or inverted-T shapes. Recently, crypts in asymmetric fission were detected in SSL-ND. The purpose was to assess the frequency of crypts in asymmetric fission in a cohort of SSL-ND. METHODS The frequency of crypts in fission was assessed in 60 SSL-ND, the distribution of cell proliferation in 48 SSL-ND and the expression of maspin, a tumour-suppressor protein, in 29 SSL-ND. RESULTS Out of the 60 SSL-ND, 40 (66.7%) showed crypts in fission: 39 (65%) SSL-ND had crypts in asymmetric fission and one SSL-ND (1.7%), in symmetric fission (p<0.05). Of 1495 crypts recorded in the 60 SSL-ND, 73 (4.9%) were in asymmetric fission but only one (0.06%), in symmetric fission (p<0.05). Out of the 48 Ki67-immunostained SSL-ND,15 (31%) showed randomly distributed proliferating cell-domains. All 29 SSL-ND revealed maspin-upregulation (including crypts in asymmetric and symmetric fission). In contrast, the normal colon mucosa showed occasional single crypts in symmetric fission, proliferating cell-domains limited to the lower thirds of the crypts, absence of crypts in asymmetric fission and remained maspin negative. CONCLUSIONS SSL-ND thrive with crypts in asymmetric fission displaying randomly distributed proliferating cell-domains and maspin-upregulation. These histo-biological aberrations disclose pathological cryptogenesis and suggest possibly unfolding somatic mutations in SSL-ND. The present findings may open new vistas on the parameters pertinent to the susceptibility of SSL-ND to develop dysplasia and carcinoma.
Collapse
Affiliation(s)
- Carlos A Rubio
- Department of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Peter T Schmidt
- Medicine (Solna), Karolinska Institute and Ersta Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Dudhwala ZM, Hammond PD, Howarth GS, Cummins AG. Intestinal stem cells promote crypt fission during postnatal growth of the small intestine. BMJ Open Gastroenterol 2020; 7:e000388. [PMID: 32586946 PMCID: PMC7319781 DOI: 10.1136/bmjgast-2020-000388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Wnt-β-catenin signalling is essential for intestinal stem cells. Our aim was to investigate the relationship between intestinal stem cells and crypt fission which peaks during infancy. DESIGN Duodenal biopsies were obtained during endoscopy to assess the severity of reflux oesophagitis of 15 infants, children and teenagers, which would not affect the duodenum. Samples of small intestine were also obtained from rats 7-72 days of life. Crypt fission was assessed using microdissection of 100 whole crypts and recording the percentage of bifid crypts. Intestinal LGR5+ stem cells were identified by in situ hybridisation. Rats were treated with Dickkopf to block Wnt-β-catenin signalling. RESULTS Crypt fission peaked during infancy before declining after 3-4 years in humans and after 21 days of life in rats. Occasional mitotic figures were seen in bifid crypts during early fission. Stem cells were elevated for a greater period during infancy and childhood in humans. Clustering of Paneth cells was present around the stem cells at the crypt base. Dickkopf reduced the number of stem cells and crypt fission to 45% and 29%, respectively, of control values, showing dependence of both crypt fission and Lgr5+ stem cells on Wnt signalling. However, Dickkopf did not decrease mitotic count per crypt, indicating a difference in signalling between stem cells and their progeny in the transit amplifying zone. CONCLUSION Crypt fission peaks during infancy and is dependent on intestinal stem cells. This is relatively hidden by 'a cloak of invisibility' due to the low proliferation of stem cells.
Collapse
Affiliation(s)
- Zenab Mustansir Dudhwala
- Gastroenterology, Basil Hetzel Institute for Translational Health Research, Woodville South, South Australia, Australia
- Surgery, The University of Adelaide - North Terrace Campus, Adelaide, South Australia, Australia
| | - Paul D Hammond
- Gastroenterology, Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia
| | - Gordon S Howarth
- Gastroenterology, Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia
- Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adrian Gerard Cummins
- Surgery, The University of Adelaide - North Terrace Campus, Adelaide, South Australia, Australia
- Gastroenterology, Basil Hetzel Institute for Medical Research, Woodville South, South Australia, Australia
| |
Collapse
|
17
|
Boman BM, Guetter A, Boman RM, Runquist OA. Autocatalytic Tissue Polymerization Reaction Mechanism in Colorectal Cancer Development and Growth. Cancers (Basel) 2020; 12:cancers12020460. [PMID: 32079164 PMCID: PMC7072410 DOI: 10.3390/cancers12020460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 01/12/2023] Open
Abstract
The goal of our study was to measure the kinetics of human colorectal cancer (CRC) development in order to identify aberrant mechanisms in tissue dynamics and processes that contribute to colon tumorigenesis. The kinetics of tumor development were investigated using age-at-tumor diagnosis (adenomas and CRCs) of familial adenomatous coli (FAP) patients and sporadic CRC patients. Plots of age-at-tumor diagnosis data as a function of age showed a distinct sigmoidal-shaped curve that is characteristic of an autocatalytic reaction. Consequently, we performed logistics function analysis and found an excellent fit (p < 0.05) of the logistic equation to the curves for age-at-tumor diagnoses. These findings indicate that the tissue mechanism that becomes altered in CRC development and growth involves an autocatalytic reaction. We conjecture that colonic epithelium normally functions as a polymer of cells which dynamically maintains itself in a steady state through an autocatalytic polymerization mechanism. Further, in FAP and sporadic CRC patients, mutation in the adenomatous polyposis coli (APC) gene increases autocatalytic tissue polymerization and induces tumor tissues to autocatalyze their own progressive growth, which drives tumor development in the colon.
Collapse
Affiliation(s)
- Bruce M. Boman
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19718, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arthur Guetter
- Department of Mathematics, Hamline University, Saint Paul, MN 55104, USA;
| | - Ryan M. Boman
- Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA
- CATX, Inc., Princeton, NJ 08542, USA
- Correspondence: ; Tel.: +267-303-9241
| | - Olaf A. Runquist
- Department of Chemistry, Hamline University, Saint Paul, MN 55104, USA;
| |
Collapse
|
18
|
Boone PG, Rochelle LK, Ginzel JD, Lubkov V, Roberts WL, Nicholls PJ, Bock C, Flowers ML, von Furstenberg RJ, Stripp BR, Agarwal P, Borowsky AD, Cardiff RD, Barak LS, Caron MG, Lyerly HK, Snyder JC. A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion. Nat Commun 2019; 10:5490. [PMID: 31792216 PMCID: PMC6889384 DOI: 10.1038/s41467-019-13330-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers.
Collapse
Affiliation(s)
- Peter G Boone
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lauren K Rochelle
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Veronica Lubkov
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Wendy L Roberts
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - P J Nicholls
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Cheryl Bock
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Mei Lang Flowers
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Richard J von Furstenberg
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Barry R Stripp
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pankaj Agarwal
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Robert D Cardiff
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Larry S Barak
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Marc G Caron
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua C Snyder
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
19
|
Yamazaki M, Fujii E, Watanabe T, Kato A, Suzuki M. Histopathological evaluation of crypt fission during intestinal development in neonatal mice. J Toxicol Pathol 2019; 33:39-46. [PMID: 32051665 PMCID: PMC7008202 DOI: 10.1293/tox.2019-0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/06/2019] [Indexed: 11/19/2022] Open
Abstract
Pathological evaluation of juvenile toxicity studies requires the understanding of normal tissue development at different ages. Here, we report the morphological features of the neonatal mouse intestine, focusing on crypt fission. Postnatal day (PND) 7 and 14 mice showed fewer crypts and less mature epithelial morphology compared to PND 21 and 28. Crypt fission occurred in three stages: 1) flattening of the crypt base into a skirt shape, 2) penetration of myofibroblasts into the crypt base center, and 3) complete separation of a single crypt into two daughter crypts. The ratio of crypt fission to total number of crypts was the highest at PND 14 and 7 in the jejunum and colon, respectively. Crypt fission, a key phenomenon for balance or imbalance in epithelial cell hierarchy, including stem and differentiated cells, is related to tissue injury repair and tumorigenesis. Therefore, examining crypt fission can provide valuable insights into current conditions of intestine.
Collapse
Affiliation(s)
- Masaki Yamazaki
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Etsuko Fujii
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.,Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takeshi Watanabe
- Chugai Research Institute for Medical Science, Inc, 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Atsuhiko Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Masami Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.,Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
20
|
Dudhwala ZM, Drew PA, Howarth GS, Moore D, Cummins AG. Active β-Catenin Signaling in the Small Intestine of Humans During Infancy. Dig Dis Sci 2019; 64:76-83. [PMID: 30382540 DOI: 10.1007/s10620-018-5286-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Wnt-β-catenin signaling is essential for homeostasis of intestinal stem cells in mice and is thought to promote intestinal crypt fission. AIMS The aim of this study was to investigate Wnt-β-catenin signaling in intestinal crypts of human infants. METHODS Duodenal biopsies from nine infants (mean, range 0.9 years, 0.3-2 years) and 11 adults (mean, range 43 years, 34-71 years) were collected endoscopically. Active β-catenin signaling was assessed by cytoplasmic and nuclear β-catenin, nuclear c-Myc, and cytoplasmic Axin-2 expression in the base of crypts. Tissues were stained by an immunoperoxidase staining technique and quantified as pixel energy using cumulative signal analysis. Data were expressed as mean ± SD and significance assessed by Student's t test. RESULTS Crypt fission was significantly higher in infants compared to adults (16 ± 8.6% versus 0.7 ± 0.6%, respectively, p < 0.0001). Expression of cytoplasmic and nuclear β-catenin was 1.8-fold (p < 0.0001) and 2.9-fold (p < 0.0001) higher in infants, respectively, while cytoplasmic Axin-2 was 3.1-fold (p < 0.0001) increased in infants. c-Myc expression was not significantly different between infants and adults. Expression was absent in Paneth cells but present in the transit amplifying zone of crypts. Crypt base columnar cells, which were intercalated between Paneth cells, expressed c-Myc. CONCLUSIONS Wnt-β-catenin signaling was active in crypt base columnar cells (i.e., intestinal stem cells) in human infants. This signaling could promote crypt fission during infancy. Wnt-β-catenin signaling likely acts in concert with other pathways to promote postnatal growth.
Collapse
Affiliation(s)
- Zenab M Dudhwala
- Gastroenterology Research Laboratory, Discipline of Medicine, University of Adelaide, and Basil Hetzel Institute for Translational Health Research, 37a Woodville Road, Woodville South, SA, 5011, Australia.
| | - Paul A Drew
- Solid Cancer Regulation Group, Discipline of Surgery, University of Adelaide, and the Basil Hetzel Institute for Translational Health Research, 37a Woodville Road, Woodville South, SA, 5011, Australia
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Gordon S Howarth
- Department of Gastroenterology, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - David Moore
- Department of Gastroenterology, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia
- Discipline of Paediatrics, University of Adelaide, 72 King William Road, North Adelaide, SA, 5006, Australia
| | - Adrian G Cummins
- Gastroenterology Research Laboratory, Discipline of Medicine, University of Adelaide, and Basil Hetzel Institute for Translational Health Research, 37a Woodville Road, Woodville South, SA, 5011, Australia
| |
Collapse
|
21
|
Dey I, Bradbury NA. Physiology of the Gut: Experimental Models for Investigating Intestinal Fluid and Electrolyte Transport. CURRENT TOPICS IN MEMBRANES 2018; 81:337-381. [PMID: 30243437 DOI: 10.1016/bs.ctm.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Once thought to be exclusively an absorptive tissue, the intestine is now recognized as an important secretory tissue, playing a key role in body ion and fluid homeostasis. Given the intestine's role in fluid homeostasis, it is not surprising that important clinical pathologies arise from imbalances in fluid absorption and secretion. Perhaps the most important examples of this can be seen in enterotoxigenic secretory diarrheas with extreme fluid secretion, and Cystic Fibrosis with little or no fluid secretion. A mechanistic understanding of the cellular pathways regulating ion and fluid transport has been obtained from a variety of approaches and model systems. These have ranged from the intact intestine to a single intestinal epithelial cell type. Although for many years a reductionist approach has held sway for investigating intestinal transport, the growing realization that physiologic processes should really be examined within a physiological context has seen a marked increase in studies using models that are essentially mini-intestines in a dish. The aim of this chapter is to provide a historical context for our understanding of intestinal ion and fluid transport, and to highlight the model systems that have been used to acquire this knowledge.
Collapse
Affiliation(s)
- Isha Dey
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
22
|
Guimarães M, Statelova M, Holm R, Reppas C, Symilllides M, Vertzoni M, Fotaki N. Biopharmaceutical considerations in paediatrics with a view to the evaluation of orally administered drug products - a PEARRL review. ACTA ACUST UNITED AC 2018; 71:603-642. [PMID: 29971768 DOI: 10.1111/jphp.12955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES In this review, the current biopharmaceutical approaches for evaluation of oral formulation performance in paediatrics are discussed. KEY FINDINGS The paediatric gastrointestinal (GI) tract undergoes numerous morphological and physiological changes throughout its development and growth. Some physiological parameters are yet to be investigated, limiting the use of the existing in vitro biopharmaceutical tools to predict the in vivo performance of paediatric formulations. Meals and frequencies of their administration evolve during childhood and affect oral drug absorption. Furthermore, the establishment of a paediatric Biopharmaceutics Classification System (pBCS), based on the adult Biopharmaceutics Classification System (BCS), requires criteria adjustments. The usefulness of computational simulation and modeling for extrapolation of adult data to paediatrics has been confirmed as a tool for predicting drug formulation performance. Despite the great number of successful physiologically based pharmacokinetic models to simulate drug disposition, the simulation of drug absorption from the GI tract is a complicating issue in paediatric populations. SUMMARY The biopharmaceutics tools for investigation of oral drug absorption in paediatrics need further development, refinement and validation. A combination of in vitro and in silico methods could compensate for the uncertainties accompanying each method on its own.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Marina Statelova
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Moira Symilllides
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
23
|
Bile salt dependent lipase promotes intestinal adaptation in rats with massive small bowel resection. Biosci Rep 2018; 38:BSR20180077. [PMID: 29669842 PMCID: PMC6435509 DOI: 10.1042/bsr20180077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023] Open
Abstract
Intestinal adaptation is important for the short bowel syndrome (SBS) patients. Growing evidence has suggested that bile salt dependent lipase (BSDL) not only has the lipolytic activity, but also the immune-modulating and pro-proliferative activities. The purpose of the present study was to investigate the effects of BSDL on intestinal adaptive growth and gut barrier function in a rat model of SBS. Twenty-four male Sprague-Dawley rats were randomly divided into three experimental groups: sham group (rats underwent bowel transection and re-anastomosis), SBS group (rats underwent 80% bowel resection), SBS-BSDL group (SBS rats orally administered BSDL). The animals were weighed daily. The intestinal morpho-histochemical changes and intestinal barrier function were determined 14 days after the operations. Meanwhile, the expressions of Wnt signaling molecules in enterocytes were also analyzed by immunohistochemistry and Western blot. The postoperative weight gain was faster in the SBS rats treated with BSDL than in the SBS/untreated group. The SBS rats treated with BSDL had significantly greater villus height, crypt depth, and enterocyte proliferation in their residual intestines, as compared with the SBS/untreated group. The recovery of intestinal barrier function was promoted and the expressions of tight-junction proteins were increased in the SBS rats treated with BSDL. Additionally, the data indicated that the proadaptive activities of BSDL might be mediated by Wnt signaling activation in the enterocytes. These observations suggested that enteral BSDL administration promoted intestinal adaptive growth and barrier repairing by activating Wnt signaling pathway in SBS rats.
Collapse
|
24
|
Syed S, Yeruva S, Herrmann J, Sailer A, Sadiq K, Iqbal N, Kabir F, Ahmed K, Qureshi S, Moore SR, Turner J, Ali SA. Environmental Enteropathy in Undernourished Pakistani Children: Clinical and Histomorphometric Analyses. Am J Trop Med Hyg 2018; 98:1577-1584. [PMID: 29611507 PMCID: PMC6086170 DOI: 10.4269/ajtmh.17-0306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite nutrition interventions, stunting thought to be secondary to underlying environmental enteropathy (EE) remains pervasive among infants residing in resource-poor countries and remains poorly characterized. From a birth cohort of 380 children, 65 malnourished infants received 12 weeks of nutritional supplementation with ready-to-use therapeutic food (RUTF). Eleven children with insufficient response to RUTF underwent upper endoscopy with duodenal biopsies, which were compared with U.S., age-matched specimens for healthy, celiac disease, non-celiac villous atrophy, non-celiac intraepithelial lymphocytosis, and graft-versus-host disease patients. Of the 11 children biopsied, EE was found in 10 (91%) with one subject with celiac disease. Morphometry demonstrated decreased villus-to-crypt (V:C) ratios in EE relative to healthy and non-celiac lymphocytosis patients. Environmental enteropathy villus volumes were significantly decreased relative to healthy controls. In EE, average CD3+ cells per 100 epithelial cells and per 1,000 µm2 of lamina propria and the number of lamina propria CD20+ B-cell aggregates were increased relative to all other groups. Our results indicate that V:C ratios are reduced in EE but are less severe than in celiac disease. Environmental enteropathy intraepithelial and lamina propria T lymphocytosis is of greater magnitude than that in celiac disease. The increases in lamina propria B and T lymphocytes suggest that non-cytolytic lymphocytic activation may be a more prominent feature of EE relative to celiac disease. These results provide new insights into shared yet distinct histological and immunological features of EE and celiac disease in children.
Collapse
Affiliation(s)
- Sana Syed
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pediatrics, University of Virginia, Charlottesville, Virginia.,Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan.,Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sunil Yeruva
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeremy Herrmann
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Sailer
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kumail Ahmed
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Shahida Qureshi
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Jerrold Turner
- Department of Pathology, University of Chicago, Chicago, Illinois.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - S Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
25
|
Abstract
Recent advances allow access to human cell-based intestinal organoids that recreate human physiology to levels not possible with conventional 2D cell cultures. Despite their huge potential, there are many challenges that remain. This review will cover recent bioengineering approaches to improve organoid maturation, scale up, reproducibility and analysis. The first section covers the advances in engineering the culture environment, followed by the section on tools for micro-manipulation and analysis of organoids. The last section reviews the computational models developed to guide the use of engineered materials and tools, and to interpret observed results as well. The ability to use organoids for discovery research, and the need to both exert exquisite experimental control and obtain quantitative measurements from organoid models means that the field is ripe for collaborative efforts between biologists, engineers, clinicians and industry.
Collapse
Affiliation(s)
- Ge-Ah Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos 2017; 38:209-230. [PMID: 27976409 PMCID: PMC5516238 DOI: 10.1002/bdd.2052] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
The dissolution, intestinal absorption and presystemic metabolism of a drug depend on its physicochemical characteristics but also on numerous physiological (e.g. gastrointestinal pH, volume, transit time, morphology) and biochemical factors (e.g. luminal enzymes and flora, intestinal wall enzymes and transporters). Over the past decade, evidence has accumulated indicating that these factors may differ in children and adults resulting in age-related changes in drug exposure and drug response. Thus, drug dosage may require adjustment for the pediatric population to ensure the desired therapeutic outcome and to avoid side-effects. Although tremendous progress has been made in understanding the effects of age on intestinal physiology and function, significant knowledge gaps remain. Studying and predicting pharmacokinetics in pediatric patients remains challenging due to ethical concerns associated with clinical trials in this vulnerable population, and because of the paucity of predictive in vitro and in vivo animal assays. This review details the current knowledge related to developmental changes determining intestinal drug absorption and pre-systemic metabolism. Supporting experimental approaches as well as physiologically based pharmacokinetic modeling are also discussed together with their limitations and challenges. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - François Bouzom
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - Chanteux Hugues
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - Anna-Lena Ungell
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| |
Collapse
|
27
|
Bloemendaal ALA, Buchs NC, George BD, Guy RJ. Intestinal stem cells and intestinal homeostasis in health and in inflammation: A review. Surgery 2016; 159:1237-48. [PMID: 26936524 DOI: 10.1016/j.surg.2016.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/06/2016] [Accepted: 01/23/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The human intestine is a complex group of organs, highly specialized in processing food and providing nutrients to the body. It is under constant threat from microbials and toxins and has therefore developed a number of protective mechanisms. One important mechanism is the constant shedding of epithelial cells into the lumen; another is the production and maintenance of a double-layered mucous boundary in which there is continuous sampling of the luminal microbiota and a persistent presence of antimicrobial enzymes. However, the gut needs commensal bacteria to effectively break down food into absorbable nutrients, which necessitates constant communication between the luminal bacteria and the intestinal immune cells in homeostasis. Disruption of homeostasis, for whatever reason, will give rise to (chronic) inflammation. DISCUSSION Both medical and surgical management of this disruption is discussed.
Collapse
Affiliation(s)
- Alexander L A Bloemendaal
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom.
| | - Nicolas C Buchs
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - Bruce D George
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| | - Richard J Guy
- Colorectal Surgery Department, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
28
|
Pin C, Parker A, Gunning AP, Ohta Y, Johnson IT, Carding SR, Sato T. An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium. Integr Biol (Camb) 2015; 7:213-28. [PMID: 25537618 DOI: 10.1039/c4ib00236a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal crypt fission is a homeostatic phenomenon, observable in healthy adult mucosa, but which also plays a pathological role as the main mode of growth of some intestinal polyps. Building on our previous individual based model for the small intestinal crypt and on in vitro cultured intestinal organoids, we here model crypt fission as a budding process based on fluid mechanics at the individual cell level and extrapolated predictions for growth of the intestinal epithelium. Budding was always observed in regions of organoids with abundant Paneth cells. Our data support a model in which buds are biomechanically initiated by single stem cells surrounded by Paneth cells which exhibit greater resistance to viscoelastic deformation, a hypothesis supported by atomic force measurements of single cells. Time intervals between consecutive budding events, as simulated by the model and observed in vitro, were 2.84 and 2.62 days, respectively. Predicted cell dynamics was unaffected within the original crypt which retained its full capability of providing cells to the epithelium throughout fission. Mitotic pressure in simulated primary crypts forced upward migration of buds, which simultaneously grew into new protruding crypts at a rate equal to 1.03 days(-1) in simulations and 0.99 days(-1) in cultured organoids. Simulated crypts reached their final size in 4.6 days, and required 6.2 days to migrate to the top of the primary crypt. The growth of the secondary crypt is independent of its migration along the original crypt. Assuming unrestricted crypt fission and multiple budding events, a maximal growth rate of the intestinal epithelium of 0.10 days(-1) is predicted and thus approximately 22 days are required for a 10-fold increase of polyp size. These predictions are in agreement with the time reported to develop macroscopic adenomas in mice after loss of Apc in intestinal stem cells.
Collapse
Affiliation(s)
- Carmen Pin
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, NR4 7UA, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
McDonald SA, Graham TA, Lavery DL, Wright NA, Jansen M. The Barrett's Gland in Phenotype Space. Cell Mol Gastroenterol Hepatol 2015; 1:41-54. [PMID: 28247864 PMCID: PMC5301147 DOI: 10.1016/j.jcmgh.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023]
Abstract
Barrett's esophagus is characterized by the erosive replacement of esophageal squamous epithelium by a range of metaplastic glandular phenotypes. These glandular phenotypes likely change over time, and their distribution varies along the Barrett's segment. Although much recent work has addressed Barrett's esophagus from the genomic viewpoint-its genotype space-the fact that the phenotype of Barrett's esophagus is nonstatic points to conversion between phenotypes and suggests that Barrett's esophagus also exists in phenotype space. Here we explore this latter concept, investigating the scope of glandular phenotypes in Barrett's esophagus and how they exist in physical and temporal space as well as their evolution and their life history. We conclude that individual Barrett's glands are clonal units; because of this important fact, we propose that it is the Barrett's gland that is the unit of selection in phenotypic and indeed neoplastic progression. Transition between metaplastic phenotypes may be governed by neutral drift akin to niche turnover in normal and dysplastic niches. In consequence, the phenotype of Barrett's glands assumes considerable importance, and we make a strong plea for the integration of the Barrett's gland in both genotype and phenotype space in future work.
Collapse
Affiliation(s)
- Stuart A.C. McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Trevor A. Graham
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Danielle L. Lavery
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas A. Wright
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Marnix Jansen
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Boman BM, Fields JZ. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development. Front Oncol 2013; 3:244. [PMID: 24224156 PMCID: PMC3819610 DOI: 10.3389/fonc.2013.00244] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.
Collapse
Affiliation(s)
- Bruce M. Boman
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware, Newark, DE, USA
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
31
|
Fischer JM, Schepers AG, Clevers H, Shibata D, Liskay RM. Occult progression by Apc-deficient intestinal crypts as a target for chemoprevention. Carcinogenesis 2013; 35:237-46. [PMID: 23996931 DOI: 10.1093/carcin/bgt296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although Apc mutation is widely considered an initiating event in colorectal cancer, little is known about the earliest stages of tumorigenesis following sporadic Apc loss. Therefore, we have utilized a novel mouse model that facilitates the sporadic inactivation of Apc via frameshift reversion of Cre in single, isolated cells and subsequently tracks the fates of Apc-deficient intestinal cells. Our results suggest that consistent with Apc being a 'gatekeeper', loss of Apc early in life during intestinal growth leads to adenomas or increased crypt fission, manifested by fields of mutant but otherwise normal-appearing crypts. In contrast, Apc loss occurring later in life has minimal consequences, with mutant crypts being less prone to either increased crypt fission or adenoma formation. Using the stem cell-specific Lgr5-CreER mouse, we generated different sized fields of Apc-deficient crypts via independent recombination events and found that field size correlates with progression to adenoma. To evaluate this early stage prior to adenoma formation as a therapeutic target, we examined the chemopreventive effects of sulindac on Apc-deficient occult crypt fission. We found that sulindac treatment started early in life inhibits the morphologically occult spread of Apc-deficient crypts and thus reduces adenoma numbers. Taken together these results suggest that: (i) earlier Apc loss promotes increased crypt fission, (ii) a field of Apc-deficient crypts, which can form via occult crypt fission or independent neighboring events, is an important intermediate between loss of Apc and adenoma formation and (iii) normal-appearing Apc-deficient crypts are potential unappreciated targets for cancer screening and chemoprevention.
Collapse
Affiliation(s)
- Jared M Fischer
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
32
|
Aust G, Kerner C, Gonsior S, Sittig D, Schneider H, Buske P, Scholz M, Dietrich N, Oldenburg S, Karpus ON, Galle J, Amasheh S, Hamann J. Mice overexpressing CD97 in intestinal epithelial cells provide a unique model for mammalian postnatal intestinal cylindrical growth. Mol Biol Cell 2013; 24:2256-68. [PMID: 23676664 PMCID: PMC3708731 DOI: 10.1091/mbc.e13-04-0175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Postnatal enlargement of the mammalian intestine comprises cylindrical and luminal growth, associated with crypt fission and crypt/villus hyperplasia, respectively, which subsequently predominate before and after weaning. The bipartite adhesion G protein-coupled receptor CD97 shows an expression gradient along the crypt-villus axis in the normal human intestine. We here report that transgenic mice overexpressing CD97 in intestinal epithelial cells develop an upper megaintestine. Intestinal enlargement involves an increase in length and diameter but does not affect microscopic morphology, as typical for cylindrical growth. The megaintestine is acquired after birth and before weaning, independent of the genotype of the mother, excluding altered availability of milk constituents as driving factor. CD97 overexpression does not regulate intestinal growth factors, stem cell markers, and Wnt signaling, which contribute to epithelial differentiation and renewal, nor does it affect suckling-to-weaning transition. Consistent with augmented cylindrical growth, suckling but not adult transgenic mice show enlarged crypts and thus more crypt fissions caused by a transient increase of the crypt transit-amplifying zone. Intestinal enlargement by CD97 requires its seven-span transmembrane/cytoplasmic C-terminal fragment but not the N-terminal fragment binding partner CD55. In summary, ectopic expression of CD97 in intestinal epithelial cells provides a unique model for intestinal cylindrical growth occurring in breast-fed infants.
Collapse
Affiliation(s)
- Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cummins AG, Woenig JA, Donato RP, Proctor SJ, Howarth GS, Grover PK. Notch signaling promotes intestinal crypt fission in the infant rat. Dig Dis Sci 2013; 58:678-685. [PMID: 23053894 DOI: 10.1007/s10620-012-2422-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/19/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Growth of the small intestine in the infant rat is promoted by crypt fission and later by increased crypt cell proliferation. Notch signaling could promote crypt fission. Hes-1 is a Notch target gene. AIM We assessed the effect of Notch signaling on intestinal crypt fission and on growth of the intestine in the infant rat. METHODS Hes-1 expression was determined in the small intestine of litters of Hooded Wistar rats aged between 3 and 72 days. Hes-1 RNA expression was measured by quantitative RT-PCR. Four groups of rats (n = 8 or 9) were injected daily, ip, either with vehicle or with the Notch inhibitor DAPT at doses of 3, 10, and 30 mg/kg, from days 9 to 13 of life, and killed on day 14. A microdissection technique was used to measure crypt fission, mitotic count, and apoptotic count. Data were analyzed by ANOVA and by use of Dunnett's F test. RESULTS Hes-1 expression and crypt fission peaked on day 14. DAPT reduced Hes-1 immunostaining in proportion to dose. DAPT reduced villous area to 72 % (p < 0.01), 53 % (p < 0.001), and 38 % (p < 0.001) of control values for 3, 10 and 30 mg/kg doses, respectively, and reduced crypt fission to 53 % (p < 0.001) and 38 % (p < 0.001) of control values, respectively, for 10 and 30 mg/kg doses. Crypt mitotic count was not affected by any DAPT dose. DAPT at 10 and 30 mg/kg significantly increased apoptosis in crypts, by 6.5 and 4.8-fold, respectively. CONCLUSIONS We conclude that Notch signaling promotes crypt fission and growth of the intestine by maintaining low apoptosis of crypt cells.
Collapse
Affiliation(s)
- Adrian G Cummins
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, SA, 5011, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Fauser JK, Donato RP, Woenig JA, Proctor SJ, Trotta AP, Grover PK, Howarth GS, Penttila IA, Cummins AG. Wnt blockade with dickkopf reduces intestinal crypt fission and intestinal growth in infant rats. J Pediatr Gastroenterol Nutr 2012; 55:26-31. [PMID: 22193181 DOI: 10.1097/mpg.0b013e318246b42d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Intestinal crypt fission peaks during infancy. In human and experimental familial polyposis coli, increased crypt fission is due to activation of Wnt/β-catenin signalling, but the molecular basis of crypt fission during intestinal growth has not been examined. The aim of this project was to investigate whether crypt fission and intestinal growth are affected by experimental blockade of the Wnt/β-catenin signalling pathway. METHODS Hooded Wistar rats were given either the Wnt inhibitor, dickkopf (30 and 100 ng), daily or vehicle control intraperitoneally from days 11 to 15 and were killed at day 16. Intestinal morphometry was used to measure villous area, crypt area, percentage of crypt fission, and crypt mitotic count. Intestinal stem cells were assessed by expression of real time-polymerase chain reaction for Lgr5 (a stem cell marker), and the number of β-catenin-expressing crypts by immunostaining was determined after 100-ng dickkopf treatment. RESULTS Dickkopf at 30 and 100 ng/day reduced villous area to 71% (P = 0.013) and 29% (P < 0.0001), crypt area to 42% (P = 0.0026) and 30% (P = 0.0067), and crypt fission to 51% (P = 0.006) and 29% (P < 0.0001), respectively, of control values. Mitotic count per crypt did not change. Lgr5 RNA expression and the number of β-catenin-expressing crypts decreased in dickkopf-treated animals. CONCLUSIONS We conclude that intestinal crypt fission during infancy is mediated by Wnt signalling. It is possible that local treatment with Wnt agonists could be used to increase intestinal growth.
Collapse
Affiliation(s)
- Jane K Fauser
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu J, Walker NM, Cook MT, Ootani A, Clarke LL. Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine. Am J Physiol Cell Physiol 2012; 302:C1492-503. [PMID: 22403785 DOI: 10.1152/ajpcell.00392.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.
Collapse
Affiliation(s)
- Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
37
|
Dehmer JJ, Garrison AP, Speck KE, Dekaney CM, Van Landeghem L, Sun X, Henning SJ, Helmrath MA. Expansion of intestinal epithelial stem cells during murine development. PLoS One 2011; 6:e27070. [PMID: 22102874 PMCID: PMC3213109 DOI: 10.1371/journal.pone.0027070] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/09/2011] [Indexed: 01/17/2023] Open
Abstract
Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points.
Collapse
Affiliation(s)
- Jeffrey J. Dehmer
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aaron P. Garrison
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Karen E. Speck
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Christopher M. Dekaney
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Laurianne Van Landeghem
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xiaofei Sun
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Susan J. Henning
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Helmrath
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
38
|
Will OCC, Deheragoda M, Phillips RKS, Clark SK, Tomlinson IPM. The role of cell proliferation and crypt fission in adenoma aggressiveness: a comparison of ileoanal pouch and rectal adenomas in familial adenomatous polyposis. Colorectal Dis 2011; 13:387-392. [PMID: 20002690 PMCID: PMC4610058 DOI: 10.1111/j.1463-1318.2009.02159.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM In patients with familial adenomatous polyposis (FAP), ileoanal pouch cancer is rare whereas rectal cancer is common, despite polyp initiation at the two sites being similar at the molecular level. This study investigated whether the disparity in adenoma aggressiveness reflects underlying differences in histogenesis. METHOD Normal mucosal biopsies and 2-3 mm adenomas from patients with FAP were dissected into individual crypts. Crypt area, morphology, fission and mitoses were analysed for crypts from pouch, rectum and supra-anastomotic ileum. Immunohistochemistry of similar archival samples was performed for lysozyme, β-catenin and TP53 expression. RESULTS The morphology of normal crypts was similar at each site, although crypt area differed. The area of normal pouch crypts was intermediate between rectum and ileum. The area of adenomatous crypts of rectum and pouch was similar, but the latter had increased asymmetrical fission. Crypt mitoses were proportional to area in all tissues, but crypt fission was reduced in adenomatous crypts from the rectum compared with the pouch. Pouch adenomas retained lysozyme expression as seen in normal ileum. Nuclear β-catenin accumulation was similar, but TP53 expression was increased in rectal adenomas. CONCLUSION Diminutive polyps from rectum and pouch differ in morphology and proliferation. Aggressiveness in rectal polyps is not conferred by increased crypt proliferation, fission, or activation of the Wnt signalling pathway. Increased TP53 expression suggests other molecular mechanisms may be responsible. While crypt mitoses are proportional to crypt area, the threshold for fission may be site specific, indicating that tissue origin may influence histogenesis and thus malignant potential.
Collapse
Affiliation(s)
- O. C. C. Will
- The Polyposis Registry, St Mark’s Hospital, Harrow, UK
,London Research Institute, Cancer Research UK, London, UK
| | - M. Deheragoda
- London Research Institute, Cancer Research UK, London, UK
,Department of Histopathology, University College Hospital, London, UK
| | | | - S. K. Clark
- The Polyposis Registry, St Mark’s Hospital, Harrow, UK
| | | |
Collapse
|
39
|
Abstract
OBJECTIVES The Marsh classification is a semiquantitative method for the diagnosis and monitoring of changes in duodenal biopsies in celiac disease. We have explored the possibility that quantitative changes in villous area and crypt length (morphometry) may provide better information on changes in duodenal morphology, particularly after the introduction of a gluten-free diet. METHODS We measured villous height, apical and basal villous widths, and crypt length in 57 adults with celiac disease and 83 control subjects. Villous area was calculated as a trapezoid approximation. Serial changes in villous area and crypt length were determined at regular intervals for up to 4 years after the introduction of a gluten-free diet. Morphometric changes were also correlated with Marsh grade, self-reported adherence to a gluten-free diet, and changes in celiac serology. RESULTS The gluten-free diet resulted in a progressive increase in villous area and a progressive decrease in crypt length. Morphometric improvement reached a plateau after 6-12 months with mean villous area attaining a value approximately half that of control subjects. Morphometric data were more sensitive than Marsh grade. Improvement in morphometric indices was significantly associated with the disappearance of anti-endomysial IgA antibody but not with dietary compliance. CONCLUSIONS Morphometry is a sensitive way to document changes in duodenal biopsies in celiac disease. In adults treated with a gluten-free diet, it is uncommon for villous area to return to values observed in control subjects, but morphometric improvement is associated with the disappearance of anti-endomysial IgA antibody.
Collapse
|
40
|
Liao Y, Lönnerdal B. Global microRNA characterization reveals that miR-103 is involved in IGF-1 stimulated mouse intestinal cell proliferation. PLoS One 2010; 5:e12976. [PMID: 20886090 PMCID: PMC2944884 DOI: 10.1371/journal.pone.0012976] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs play extensive roles in cellular development. Analysis of the microRNA expression pattern during intestinal cell proliferation in early life is likely to unravel molecular mechanisms behind intestinal development and have implications for therapeutic intervention. In this study, we isolated mouse intestinal crypt cells, examined the differences in microRNA expression upon IGF-1 stimulated proliferation and identified miR-103 as a one of the key regulators. Mouse intestinal crypt cells were cultured and treated with IGF-1 for 24 h. MicroRNA microarray showed that multiple microRNAs are regulated by IGF-1, and miR-103 was the most sharply down-regulated. Expression of miR-103 in mouse intestinal crypt cells was confirmed by real-time Q-PCR. Sequence analyses showed that, among the 1040 predicted miR-103 target genes, CCNE1, CDK2, and CREB1 contain complementary sequences to the miR-103 seed region that are conserved between human and mouse. We further demonstrated that miR-103 controls the expression level of these three genes in mouse crypt cells by luciferase assay and immunoblotting assay. Taken together, our data suggest that in mouse intestinal crypt cells, miR-103 is part of the G1/S transition regulatory network, which targets CCNE1, CDK2, and CREB1 during IGF-1 stimulated proliferation.
Collapse
Affiliation(s)
- Yalin Liao
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Speck KE, Garrison AP, Rigby RJ, von Allmen DC, Lund PK, Helmrath MA. Inflammation enhances resection-induced intestinal adaptive growth in IL-10 null mice. J Surg Res 2009; 168:62-9. [PMID: 20074747 DOI: 10.1016/j.jss.2009.09.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/02/2009] [Accepted: 09/30/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND Surgical resection of the ileum, cecum, and proximal right colon (ICR) is common in the management of Crohn's disease, yet little is known about the effect of active inflammation on the adaptive response following intestinal loss. We recently developed a surgical model of ICR in germ-free (GF) IL-10 null mice that develop small intestinal inflammation only when mice undergo conventionalization with normal fecal microflora (CONV) before surgical intervention. In this study, we examined the effects of postsurgical small bowel inflammation on adaptive growth after ICR. METHODS GF 129SvEv IL-10 null mice, 8-10 wk old, were allocated to GF or CONV groups. Nonoperated GF and CONV mice provided baseline controls. Two wk later, GF and CONV mice were further allocated to ICR or sham operation. Small intestine and colon were harvested 7 d after surgery for histological analysis. RESULTS All mice within the gnotobiotic facility maintained GF status and did not develop small intestinal or colonic inflammation. CONV resulted in colitis in all groups, whereas small intestinal inflammation was only observed following ICR. Resection-induced small intestinal inflammation in CONV mice was associated with increases in proliferation, crypt depth, and villus height compared with GF mice after ICR. Resection-induced increases in crypt fission only occurred in CONV mice. CONCLUSION ICR-dependent small intestinal inflammation in CONV IL-10 null mice dramatically enhances early adaptive growth of the small intestine. Additional studies utilizing our model may provide clinical insight leading to optimal therapies in managing IBD patients after surgical resection.
Collapse
Affiliation(s)
- Karen E Speck
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
42
|
Garrison AP, Dekaney CM, von Allmen DC, Lund PK, Henning SJ, Helmrath MA. Early but not late administration of glucagon-like peptide-2 following ileo-cecal resection augments putative intestinal stem cell expansion. Am J Physiol Gastrointest Liver Physiol 2009; 296:G643-50. [PMID: 19118113 PMCID: PMC2660180 DOI: 10.1152/ajpgi.90588.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/27/2008] [Indexed: 01/31/2023]
Abstract
Expansion of intestinal progenitors and putative stem cells (pISC) occurs early and transiently following ileo-cecal resection (ICR). The mechanism controlling this process is not defined. We hypothesized that glucagon-like peptide-2 (GLP-2) would augment jejunal pISC expansion only when administered to mice immediately after ICR. Since recent reports demonstrated increases in intestinal insulin-like growth factor (IGF)-I following GLP-2 administration, we further hypothesized that increased intestinal IGF-I expression would correlate with pISC expansion following ICR. To assess this, GLP-2 or vehicle was administered to mice either immediately after resection (early) or before tissue harvest 6 wk following ICR (late). Histological analysis quantified proliferation and intestinal morphometrics. Serum levels of GLP-2 were measured by ELISA and jejunal IGF-I mRNA by qRT-PCR. Expansion of jejunal pISC was assessed by fluorescent-activated cell sorting of side population cells, immunohistochemistry for phosphorylated beta-catenin at serine 552 (a pISC marker), percent of crypt fission, and total numbers of crypts per jejunal circumference. We found that early but not late GLP-2 treatment after ICR significantly augmented pISC expansion. Increases in jejunal IGF-I mRNA correlated temporally with early pISC expansion and effects of GLP-2. Early GLP-2 increased crypt fission and accelerated adaptive increases in crypt number and intestinal caliber. GLP-2 increased proliferation and intestinal morphometrics in all groups. This study shows that, in mice, GLP-2 promotes jejunal pISC expansion only in the period immediately following ICR. This is associated with increased IGF-I and accelerated adaptive increases in mucosal mass. These data provide clinical rationale relevant to the optimal timing of GLP-2 in patients with intestinal failure.
Collapse
Affiliation(s)
- Aaron P Garrison
- University of North Carolina at Chapel Hill, Department of Surgery, G140 Physician's Office Bldg., CB #7223, Chapel Hill, NC 27599-7223, USA
| | | | | | | | | | | |
Collapse
|