1
|
Lloyd GM, Long B, Quintin S, Sorrentino ZA, Gorion KMM, Bell BM, Carrillo D, Sullivan P, Borchelt D, Giasson BI. Carboxyl truncation of α-synuclein occurs early and is influenced by human APOE genotype in transgenic mouse models of α-synuclein pathogenesis. Acta Neuropathol Commun 2023; 11:119. [PMID: 37482615 PMCID: PMC10363304 DOI: 10.1186/s40478-023-01623-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023] Open
Abstract
Post-translational modifications to the carboxyl (C) terminus domain of α-synuclein can play an important role in promoting the pathologic aggregation of α-synuclein. Various cleavages that diminish this highly charged, proline-rich region can result in exposure of hydrophobic, aggregation-prone regions, thereby accelerating the aggregation kinetics of α-synuclein into misfolded, pathologic forms. C-terminally truncated forms of α-synuclein are abundant in human diseased brains compared to controls, suggesting a role in disease pathogenesis. Factors that alter the homeostatic proteolytic processing of α-synuclein may ultimately tip the balance towards a progressive disease state. Apolipoprotein E (APOE) has been implicated in the acceleration of cognitive impairment in patients with Lewy body diseases. The APOE4 isoform has been found to cause dysregulation in the endosomal-lysosomal pathway, which could result in altered α-synuclein degradation as a potential mechanism for promoting its pathologic misfolding. Herein, we investigate the spatiotemporal accumulation of C-terminally truncated α-synuclein in a seeded and progressive mouse model of synucleinopathy. Furthermore, we study how this process is influenced in the context of mice that are altered to express either the human APOE3 or APOE4 isoforms. We found that specific C-terminal truncation of α-synuclein occurs at early stages of pathogenesis. We also found that proteolytic processing of this domain differs across various brain regions and is influenced by the presence of different human APOE isoforms. Our data demonstrate an early pathogenic role for C-terminally truncated α-synuclein, and highlight the influence of APOE isoforms in modulating its impact.
Collapse
Affiliation(s)
- Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brooke Long
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Stephan Quintin
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kimberly-Marie M Gorion
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brach M Bell
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Denise Carrillo
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Patrick Sullivan
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - David Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Yu D, Zarate N, White A, Coates D, Tsai W, Nanclares C, Cuccu F, Yue JS, Brown TG, Mansky RH, Jiang K, Kim H, Nichols-Meade T, Larson SN, Gundry K, Zhang Y, Tomas-Zapico C, Lucas JJ, Benneyworth M, Öz G, Cvetanovic M, Araque A, Gomez-Pastor R. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in huntington's disease. Acta Neuropathol Commun 2022; 10:83. [PMID: 35659303 PMCID: PMC9164558 DOI: 10.1186/s40478-022-01379-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene for which no therapies are available. HTT mutation causes protein misfolding and aggregation, preferentially affecting medium spiny neurons (MSNs) of the basal ganglia. Transcriptional perturbations in synaptic genes and neuroinflammation are key processes that precede MSN dysfunction and motor symptom onset. Understanding the interplay between these processes is crucial to develop effective therapeutic strategies to treat HD. We investigated the role of protein kinase CK2α', a kinase upregulated in MSNs in HD and previously associated with Parkinson's disease (PD), in the regulation of neuroinflammation and synaptic function in HD. We used the heterozygous knock-in zQ175 HD mouse model and compared that to zQ175 mice lacking one allele of CK2α' (zQ175:CK2α'(±)). CK2α' haploinsufficiency in zQ175 mice resulted in decreased levels of pro-inflammatory cytokines, HTT aggregation, astrogliosis and transcriptional alterations of synaptic genes related to glutamatergic signaling. zQ175:CK2α'(±) mice also presented increased frequency of striatal miniature excitatory postsynaptic currents (mEPSCs), an indicator of synaptic activity, and improved motor coordination compared to zQ175 mice. Neuropathological and phenotypic changes mediated by CK2α' were connected to alpha-synuclein (α-syn) dysregulation and correlated with differences in α-syn serine 129 phosphorylation (pS129-α-syn), a post-translational modification involved in α-synucleinopathy and shown to be regulated by CK2 in PD. pS129-α-syn was increased in the nuclei of MSNs in zQ175 mice and in the striatum of patients with HD, and it decreased in zQ175:CK2α'(±) mice. Collectively, our data established a novel connection between CK2α', neuroinflammation and synaptic gene dysregulation with synucleinopathy in HD and suggested common molecular mechanisms of neurodegeneration between HD and PD. Our results also support CK2α' inhibition as a potential therapeutic strategy to modulate neuronal function and neuroprotection in HD.
Collapse
Affiliation(s)
- Dahyun Yu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Nicole Zarate
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - De’jah Coates
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Wei Tsai
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Carmen Nanclares
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Francesco Cuccu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Johnny S. Yue
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Mounds View High School, Arden Hills, MN USA
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Kevin Jiang
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Tessa Nichols-Meade
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Sarah N. Larson
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Katherine Gundry
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN USA
| | - Cristina Tomas-Zapico
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Jose J. Lucas
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Benneyworth
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Gülin Öz
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Marija Cvetanovic
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Alfonso Araque
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| |
Collapse
|
4
|
Unique seeding profiles and prion-like propagation of synucleinopathies are highly dependent on the host in human α-synuclein transgenic mice. Acta Neuropathol 2022; 143:663-685. [PMID: 35488930 DOI: 10.1007/s00401-022-02425-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022]
Abstract
α-synuclein (αSyn) is an intrinsically disordered protein which can undergo structural transformations, resulting in the formation of stable, insoluble fibrils. αSyn amyloid-type nucleation can be induced by misfolded 'seeds' serving as a conformational template, tantamount to the prion-like mechanism. Accumulation of αSyn inclusions is a key feature of dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and are found as additional pathology in Alzheimer's disease (AD) such as AD with amygdala predominant Lewy bodies (AD/ALB). While these disorders accumulate the same pathological protein, they exhibit heterogeneity in clinical and histological features; however, the mechanism(s) underlying this variability remains elusive. Accruing data from human autopsy studies, animal inoculation modeling, and in vitro characterization experiments, have lent credence to the hypothesis that conformational polymorphism of the αSyn amyloid-type fibril structure results in distinct "strains" with categorical infectivity traits. Herein, we directly compare the seeding abilities and outcome of human brain lysates from these diseases, as well as recombinant preformed human αSyn fibrils by the intracerebral inoculation of transgenic mice overexpressing either human wild-type αSyn or human αSyn with the familial A53T mutation. Our study has revealed that the initiating inoculum heavily dictates the phenotypic and pathological course of disease. Interestingly, we have also established relevant host-dependent distinctions between propagation profiles, including burden and spread of inclusion pathology throughout the neuroaxis, as well as severity of neurological symptoms. These findings provide compelling evidence supporting the hypothesis that diverse prion-type conformers may explain the variability seen in synucleinopathies.
Collapse
|
5
|
Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo. Acta Neuropathol 2022; 144:881-910. [PMID: 36121476 PMCID: PMC9547791 DOI: 10.1007/s00401-022-02491-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90.
Collapse
|
6
|
Sano K, Iwasaki Y, Yamashita Y, Irie K, Hosokawa M, Satoh K, Mishima K. Tyrosine 136 phosphorylation of α-synuclein aggregates in the Lewy body dementia brain: involvement of serine 129 phosphorylation by casein kinase 2. Acta Neuropathol Commun 2021; 9:182. [PMID: 34772466 PMCID: PMC8590312 DOI: 10.1186/s40478-021-01281-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
Serine 129 (S129) phosphorylation of α-synuclein (αSyn) is a central feature of Lewy body (LB) disease pathology. Although the neighboring tyrosine residues Y125, Y133, and Y136 are also phosphorylation sites, little is known regarding potential roles of phosphorylation cross-talk between these sites and its involvement in the pathogenesis of LB disease. Here, we found that αSyn aggregates are predominantly phosphorylated at Y136 in the Lewy body dementia brain, which is mediated by unexpected kinase activity of Casein kinase 2 (CK2). Aggregate formation with S129 and Y136 phosphorylation of recombinant αSyn (r-αSyn) were induced by CK2 but abolished by replacement of S129 with alanine (S129A) in vitro. Mutation of Y136 to alanine (Y136A) promoted aggregate formation and S129 phosphorylation of r-αSyn by CK2 in vitro. Introduction of Y136A r-αSyn oligomers into cultured cells exhibited increased levels of aggregates with S129 phosphorylation compared to wild-type r-αSyn oligomers. In addition, aggregate formation with S129 phosphorylation induced by introduction of wild-type r-αSyn oligomers was significantly attenuated by CK2 inhibition, which resulted in an unexpected increase in Y136 phosphorylation in cultured cells. Our findings suggest the involvement of CK2-related αSyn Y136 phosphorylation in the pathogenesis of LB disease and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kazunori Sano
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195 Japan
| | - Yuta Yamashita
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Keiichi Irie
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Masato Hosokawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523 Japan
| | - Kenichi Mishima
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| |
Collapse
|
7
|
CK1BP Reduces α-Synuclein Oligomerization and Aggregation Independent of Serine 129 Phosphorylation. Cells 2021; 10:cells10112830. [PMID: 34831053 PMCID: PMC8616157 DOI: 10.3390/cells10112830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The pathological accumulation of α-Synuclein (α-Syn) is the hallmark of neurodegenerative α-synucleinopathies, including Parkinsons's disease (PD). In contrast to the mostly non-phosphorylated soluble α-Syn, aggregated α-Syn is usually phosphorylated at serine 129 (S129). Therefore, S129-phosphorylation is suspected to interfere with α-Syn aggregation. Among other kinases, protein kinase CK1 (CK1) is known to phosphorylate α-Syn at S129. We overexpressed CK1 binding protein (CK1BP) to inhibit CK1 kinase activity. Using Bimolecular Fluorescence Complementation (BiFC) in combination with biochemical methods, we monitored the S129 phosphorylation and oligomerization of α-Syn in HEK293T cells. We found that CK1BP reduced the overall protein levels of α-Syn. Moreover, CK1BP concomitantly reduced S129 phosphorylation, oligomerization and the amount of insoluble α-Syn. Analyzing different α-Syn variants including S129 mutations, we show that the effects of CK1BP on α-Syn accumulation were independent of S129 phosphorylation. Further analysis of an aggregating polyglutamine (polyQ) protein confirmed a phosphorylation-independent decrease in aggregation. Our results imply that the inhibition of CK1 activity by CK1BP might exert beneficial effects on NDDs in general. Accordingly, CK1BP represents a promising target for the rational design of therapeutic approaches to cease or at least delay the progression of α-synucleinopathies.
Collapse
|
8
|
Elfarrash S, Jensen NM, Ferreira N, Schmidt SI, Gregersen E, Vestergaard MV, Nabavi S, Meyer M, Jensen PH. Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein. PLoS One 2021; 16:e0252635. [PMID: 34613964 PMCID: PMC8494365 DOI: 10.1371/journal.pone.0252635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022] Open
Abstract
Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies. As a key constituent of Lewy pathology, more than 90% of α-syn in Lewy bodies is phosphorylated at serine-129 (pS129) and hence, it is used extensively as a marker for α-syn pathology. However, the exact role of pS129 remains controversial and the kinase(s) responsible for the phosphorylation have yet to be determined. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using an ex vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble pS129 level in the nuclei. The same finding was replicated in an in vivo mouse model of templated α-syn aggregation and in human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129-phosphorylation of the soluble physiological fraction of α-syn. We also demonstrated that reduction of nuclear pS129 following PLK2 inhibition for a short time before sample collection improves the signal-to-noise ratio when quantifying pS129 aggregate pathology.
Collapse
Affiliation(s)
- Sara Elfarrash
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- MERC–Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- * E-mail: (SE); (PHJ)
| | - Nanna Møller Jensen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sissel Ida Schmidt
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Vibeke Vestergaard
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sadegh Nabavi
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, BRIDGE–Brain Research Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail: (SE); (PHJ)
| |
Collapse
|
9
|
Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021; 12:661117. [PMID: 34335440 PMCID: PMC8319954 DOI: 10.3389/fneur.2021.661117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
Collapse
Affiliation(s)
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Ferreira N, Gram H, Sorrentino ZA, Gregersen E, Schmidt SI, Reimer L, Betzer C, Perez-Gozalbo C, Beltoja M, Nagaraj M, Wang J, Nowak JS, Dong M, Willén K, Cholak E, Bjerregaard-Andersen K, Mendez N, Rabadia P, Shahnawaz M, Soto C, Otzen DE, Akbey Ü, Meyer M, Giasson BI, Romero-Ramos M, Jensen PH. Multiple system atrophy-associated oligodendroglial protein p25α stimulates formation of novel α-synuclein strain with enhanced neurodegenerative potential. Acta Neuropathol 2021; 142:87-115. [PMID: 33978813 PMCID: PMC8217051 DOI: 10.1007/s00401-021-02316-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.
Collapse
|
11
|
Manzanza NDO, Sedlackova L, Kalaria RN. Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 2021; 13:690293. [PMID: 34248606 PMCID: PMC8267936 DOI: 10.3389/fnagi.2021.690293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.
Collapse
Affiliation(s)
- Nelson de Oliveira Manzanza
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucia Sedlackova
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front Pharmacol 2021; 12:665031. [PMID: 34220504 PMCID: PMC8248808 DOI: 10.3389/fphar.2021.665031] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Assem Mamurova
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ainur Seilkhan
- Educational program, Geography, Environment and Service sector, Abai Kazakh National Pedagogical University, Kazakhstan, Almaty, Kazakhstan.,Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bagila Abdullayeva
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wie J, Liu Z, Song H, Tropea TF, Yang L, Wang H, Liang Y, Cang C, Aranda K, Lohmann J, Yang J, Lu B, Chen-Plotkin AS, Luk KC, Ren D. A growth-factor-activated lysosomal K + channel regulates Parkinson's pathology. Nature 2021; 591:431-437. [PMID: 33505021 DOI: 10.1038/s41586-021-03185-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenjiang Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Haikun Song
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huanhuan Wang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yuling Liang
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chunlei Cang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey Lohmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Weston LJ, Stackhouse TL, Spinelli KJ, Boutros SW, Rose EP, Osterberg VR, Luk KC, Raber J, Weissman TA, Unni VK. Genetic deletion of Polo-like kinase 2 reduces alpha-synuclein serine-129 phosphorylation in presynaptic terminals but not Lewy bodies. J Biol Chem 2021; 296:100273. [PMID: 33428941 PMCID: PMC7948797 DOI: 10.1016/j.jbc.2021.100273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of alpha-synuclein at serine-129 is an important marker of pathologically relevant, aggregated forms of the protein in several important human diseases, including Parkinson's disease, Dementia with Lewy bodies, and Multiple system atrophy. Although several kinases have been shown to be capable of phosphorylating alpha-synuclein in various model systems, the identity of the kinase that phosphorylates alpha-synuclein in the Lewy body remains unknown. One member of the Polo-like kinase family, PLK2, is a strong candidate for being the Lewy body kinase. To examine this possibility, we have used a combination of approaches, including biochemical, immunohistochemical, and in vivo multiphoton imaging techniques to study the consequences of PLK2 genetic deletion on alpha-synuclein phosphorylation in both the presynaptic terminal and preformed fibril-induced Lewy body pathology in mouse cortex. We find that PLK2 deletion reduces presynaptic terminal alpha-synuclein serine-129 phosphorylation, but has no effect on Lewy body phosphorylation levels. Serine-129 mutation to the phosphomimetic alanine or the unphosphorylatable analog aspartate does not change the rate of cell death of Lewy inclusion-bearing neurons in our in vivo multiphoton imaging paradigm, but PLK2 deletion does slow the rate of neuronal death. Our data indicate that inhibition of PLK2 represents a promising avenue for developing new therapeutics, but that the mechanism of neuroprotection by PLK2 inhibition is not likely due to reducing alpha-synuclein serine-129 phosphorylation and that the true Lewy body kinase still awaits discovery.
Collapse
Affiliation(s)
- Leah J Weston
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Teresa L Stackhouse
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kateri J Spinelli
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney W Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Elizabeth P Rose
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA; Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Valerie R Osterberg
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Vivek K Unni
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA; OHSU Parkinson Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
15
|
Wu Q, Shaikh MA, Meymand ES, Zhang B, Luk KC, Trojanowski JQ, Lee VMY. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol 2020; 140:831-849. [PMID: 33021680 DOI: 10.1007/s00401-020-02227-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein (αSyn) preformed fibrils (PFF) induce endogenous αSyn aggregation leading to reduced synaptic transmission. Neuronal activity modulates release of αSyn; however, whether neuronal activity regulates the spreading of αSyn pathology remains elusive. Here, we established a hippocampal slice culture system from wild-type (WT) mice and found that both Ca2+ influx and the uptake of αSyn PFF were higher in the CA3 than in the CA1 sub-region. Pharmacologically enhancing neuronal activity substantially increased αSyn pathology in αSyn PFF-treated hippocampal or midbrain slice cultures and accelerated dopaminergic neuron degeneration. Consistently, neuronal hyperactivity promoted PFF trafficking along axons/dendrites within microfluidic chambers. Unexpectedly, enhancing neuronal activity in LRRK2 G2019S mutant slice cultures further increased αSyn pathology, especially with more Lewy body (LB) forming than in WT slice cultures. Finally, following injection of αSyn PFF and chemogenetic modulators into the dorsal striatum of WT mice, both motor behavior and αSyn pathology were exacerbated likely by enhancing neuronal activity, since they were ameliorated by reducing neuronal activity. Thus, a greater understanding of the impact of neuronal activity on αSyn aggregation and spreading, as well as dopaminergic neuronal vulnerability, may provide new therapeutic strategies for patients with LB disease (LBD).
Collapse
Affiliation(s)
- Qihui Wu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Muhammad A Shaikh
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Emily S Meymand
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA.
| |
Collapse
|
16
|
Trejo-Lopez JA, Sorrentino ZA, Riffe CJ, Prokop S, Dickson DW, Yachnis AT, Giasson BI. Generation and Characterization of Novel Monoclonal Antibodies Targeting p62/sequestosome-1 Across Human Neurodegenerative Diseases. J Neuropathol Exp Neurol 2020; 79:407-418. [PMID: 32106300 DOI: 10.1093/jnen/nlaa007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Human neurodegenerative diseases can be characterized as disorders of protein aggregation. As a key player in cellular autophagy and the ubiquitin proteasome system, p62 may represent an effective immunohistochemical target, as well as mechanistic operator, across neurodegenerative proteinopathies. In this study, 2 novel mouse-derived monoclonal antibodies 5G3 and 2A5 raised against residues 360-380 of human p62/sequestosome-1 were characterized via immunohistochemical application upon human tissues derived from cases of C9orf72-expansion spectrum diseases, Alzheimer disease, progressive supranuclear palsy, Lewy body disease, and multiple system atrophy. 5G3 and 2A5 reliably highlighted neuronal dipeptide repeat, tau, and α-synuclein inclusions in a distribution similar to a polyclonal antibody to p62, phospho-tau antibodies 7F2 and AT8, and phospho-α-synuclein antibody 81A. However, antibodies 5G3 and 2A5 consistently stained less neuropil structures, such as tau neuropil threads and Lewy neurites, while 2A5 marked fewer glial inclusions in progressive supranuclear palsy. Both 5G3 and 2A5 revealed incidental astrocytic tau immunoreactivity in cases of Alzheimer disease and Lewy body disease with resolution superior to 7F2. Through their unique ability to highlight specific types of pathological deposits in neurodegenerative brain tissue, these novel monoclonal p62 antibodies may provide utility in both research and diagnostic efforts.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease
| | - Zachary A Sorrentino
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease.,McKnight Brain Institute.,Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | | | | | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience.,McKnight Brain Institute
| |
Collapse
|
17
|
S-Nitrosylation of G protein-coupled receptor kinase 6 and Casein kinase 2 alpha modulates their kinase activity toward alpha-synuclein phosphorylation in an animal model of Parkinson's disease. PLoS One 2020; 15:e0232019. [PMID: 32343709 PMCID: PMC7188290 DOI: 10.1371/journal.pone.0232019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/06/2020] [Indexed: 01/02/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder which is mostly sporadic but familial-linked PD (FPD) cases have also been found. The first reported gene mutation that linked to PD is α-synuclein (α-syn). Studies have shown that mutations, increased expression or abnormal processing of α-syn can contribute to PD, but it is believed that multiple mechanisms are involved. One of the contributing factors is post-translational modification (PTM), such as phosphorylation of α-syn at serine 129 by G-protein-coupled receptor kinases (GRKs) and casein kinase 2α (CK2α). Another known important contributing factor to PD pathogenesis is oxidative and nitrosative stress. In this study, we found that GRK6 and CK2α can be S-nitrosylated by nitric oxide (NO) both in vitro and in vivo. S-nitrosylation of GRK6 and CK2α enhanced their kinase activity towards the phosphorylation of α-syn at S129. In an A53T α-syn transgenic mouse model of PD, we found that increased GRK6 and CK2α S-nitrosylation were observed in an age dependent manner and it was associated with an increased level of pSer129 α-syn. Treatment of A53T α-syn transgenic mice with Nω-Nitro-L-arginine (L-NNA) significantly reduced the S-nitrosylation of GRK6 and CK2α in the brain. Finally, deletion of neuronal nitric oxide synthase (nNOS) in A53T α-syn transgenic mice reduced the levels of pSer129 α-syn and α-syn in an age dependent manner. Our results provide a novel mechanism of how NO through S-nitrosylation of GRK6 and CK2α can enhance the phosphorylation of pSer129 α-syn in an animal model of PD.
Collapse
|
18
|
Hernandez SM, Tikhonova EB, Karamyshev AL. Protein-Protein Interactions in Alpha-Synuclein Biogenesis: New Potential Targets in Parkinson's Disease. Front Aging Neurosci 2020; 12:72. [PMID: 32256340 PMCID: PMC7092629 DOI: 10.3389/fnagi.2020.00072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder defined by a loss of dopamine-producing neurons in the substantia nigra in the brain. It is associated with cytosolic inclusions known as Lewy bodies. The major component of Lewy bodies is aggregated alpha-synuclein. The molecular mechanism of alpha-synuclein aggregation is not known. Our conceptual model is that alpha-synuclein aggregates due to a dysregulation of its interactions with other protein partners that are required for its biogenesis. In this mini review article, we identified alpha-synuclein interactions using both current literature and predictive pathway analysis. Alterations of these interactions may be crucial elements for the molecular mechanism of the protein aggregation and related pathology in the disease. Identification of alpha-synuclein interactions provides valuable tools to understand PD pathology and find new pharmacological targets for disease treatment.
Collapse
Affiliation(s)
- Sarah M Hernandez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
19
|
Lloyd GM, Trejo-Lopez JA, Xia Y, McFarland KN, Lincoln SJ, Ertekin-Taner N, Giasson BI, Yachnis AT, Prokop S. Prominent amyloid plaque pathology and cerebral amyloid angiopathy in APP V717I (London) carrier - phenotypic variability in autosomal dominant Alzheimer's disease. Acta Neuropathol Commun 2020; 8:31. [PMID: 32164763 PMCID: PMC7068954 DOI: 10.1186/s40478-020-0891-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
The discovery of mutations associated with familial forms of Alzheimer's disease (AD), has brought imperative insights into basic mechanisms of disease pathogenesis and progression and has allowed researchers to create animal models that assist in the elucidation of the molecular pathways and development of therapeutic interventions. Position 717 in the amyloid precursor protein (APP) is a hotspot for mutations associated with autosomal dominant AD (ADAD) and the valine to isoleucine amino acid substitution (V717I) at this position was among the first ADAD mutations identified, spearheading the formulation of the amyloid cascade hypothesis of AD pathogenesis. While this mutation is well described in multiple kindreds and has served as the basis for the generation of widely used animal models of disease, neuropathologic data on patients carrying this mutation are scarce. Here we present the detailed clinical and neuropathologic characterization of an APP V717I carrier, which reveals important novel insights into the phenotypic variability of ADAD cases. While age at onset, clinical presentation and widespread parenchymal beta-amyloid (Aβ) deposition are in line with previous reports, our case also shows widespread and severe cerebral amyloid angiopathy (CAA). This patient also presented with TDP-43 pathology in the hippocampus and amygdala, consistent with limbic predominant age-related TDP-43 proteinopathy (LATE). The APOE ε2/ε3 genotype may have been a major driver of the prominent vascular pathology seen in our case. These findings highlight the importance of neuropathologic examinations of genetically determined AD cases and demonstrate striking phenotypic variability in ADAD cases.
Collapse
Affiliation(s)
- Grace M Lloyd
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Jorge A Trejo-Lopez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Yuxing Xia
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah J Lincoln
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Anthony T Yachnis
- Department of Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Pathology, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Sorrentino ZA, Xia Y, Gorion KM, Hass E, Giasson BI. Carboxy-terminal truncations of mouse α-synuclein alter aggregation and prion-like seeding. FEBS Lett 2020; 594:1271-1283. [PMID: 31912891 DOI: 10.1002/1873-3468.13728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
α-synuclein (αsyn) forms pathologic inclusions in several neurodegenerative diseases termed synucleinopathies. The inclusions are comprised of αsyn fibrils harboring prion-like properties. Prion-like activity of αsyn has been studied by intracerebral injection of fibrils into mice, where the presence of a species barrier requires the use of mouse αsyn. Post-translational modifications to αsyn such as carboxy (C)-terminal truncation occur in synucleinopathies, and their implications for prion-like aggregation and seeding are under investigation. Herein, C-truncated forms of αsyn found in human disease are recapitulated in mouse αsyn to study their seeding activity in vitro, in HEK293T cells, in neuronal-glial culture, and in nontransgenic mice. The results show that C-truncation of mouse αsyn accelerates aggregation of αsyn but alters prion-like seeding of inclusion formation.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kimberly-Marie Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ethan Hass
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Vidal-Martinez G, Segura-Ulate I, Yang B, Diaz-Pacheco V, Barragan JA, De-Leon Esquivel J, Chaparro SA, Vargas-Medrano J, Perez RG. FTY720-Mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases GDNF expression in Multiple System Atrophy mouse models. Exp Neurol 2019; 325:113120. [PMID: 31751571 DOI: 10.1016/j.expneurol.2019.113120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
Multiple system atrophy (MSA) is a fatal disorder with no effective treatment. MSA pathology is characterized by α-synuclein (aSyn) accumulation in oligodendrocytes, the myelinating glial cells of the central nervous system (CNS). aSyn accumulation in oligodendrocytes forms the pathognomonic glial cytoplasmic inclusions (GCIs) of MSA. MSA aSyn pathology is also associated with motor and autonomic dysfunction, including an impaired ability to sweat. MSA patients have abnormal CNS expression of glial-cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Our prior studies using the parent compound FTY720, a food and drug administration (FDA) approved immunosuppressive for multiple sclerosis, reveal that FTY720 protects parkinsonian mice by increasing BDNF. Our FTY720-derivative, FTY720-Mitoxy, is known to increase expression of oligodendrocyte BDNF, GDNF, and nerve growth factor (NGF) but does not reduce levels of circulating lymphocytes as it is not phosphorylated so cannot modulate sphingosine 1 phosphate receptors (S1PRs). To preclinically assess FTY720-Mitoxy for MSA, we used mice expressing human aSyn in oligodendrocytes under a 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. CNP-aSyn transgenic (Tg) mice develop motor dysfunction between 7 and 9 mo, and progressive GCI pathology. Using liquid chromatography-mass spectrometry (LC-MS/MS) and enzymatic assays, we confirmed that FTY720-Mitoxy was stable and active. Vehicle or FTY720-Mitoxy (1.1 mg/kg/day) was delivered to wild type (WT) or Tg littermates from 8.5-11.5 mo by osmotic pump. We behaviorally assessed their movement by rotarod and sweat production by starch‑iodine test. Postmortem tissues were evaluated by qPCR for BDNF, GDNF, NGF and GDNF-receptor RET mRNA and for aSyn, BDNF, GDNF, and Iba1 protein by immunoblot. MicroRNAs (miRNAs) were also assessed by qPCR. FTY720-Mitoxy normalized movement, sweat function and soleus muscle mass in 11.5 mo Tg MSA mice. FTY720-Mitoxy also increased levels of brain GDNF and reduced brain miR-96-5p, a miRNA that acts to decrease GDNF expression. Moreover, FTY720-Mitoxy blocked aSyn pathology measured by sequential protein extraction and immunoblot, and microglial activation assessed by immunohistochemistry and immunoblot. In the 3-nitropropionic acid (3NP) toxin model of MSA, FTY720-Mitoxy protected movement and mitochondria in WT and CNP-aSyn Tg littermates. Our data confirm potent in vivo protection by FTY720-Mitoxy, supporting its further evaluation as a potential therapy for MSA and related synucleinopathies.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ismael Segura-Ulate
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Barbara Yang
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Valeria Diaz-Pacheco
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jose A Barragan
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jocelyn De-Leon Esquivel
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Stephanie A Chaparro
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Javier Vargas-Medrano
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ruth G Perez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America.
| |
Collapse
|
22
|
Sacino AN, Prokop S, Walsh MA, Adamson J, Subramony SH, Krans A, Todd PK, Giasson BI, Yachnis AT. Fragile X-associated tremor ataxia syndrome with co-occurrent progressive supranuclear palsy-like neuropathology. Acta Neuropathol Commun 2019; 7:158. [PMID: 31665069 PMCID: PMC6820960 DOI: 10.1186/s40478-019-0818-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Co-occurrence of multiple neuropathologic changes is a common phenomenon, most prominently seen in Alzheimer's disease (AD) and Parkinson's disease (PD), complicating clinical diagnosis and patient management. Reports of co-occurring pathological processes are emerging in the group of genetically defined repeat-associated non-AUG (RAN)-translation related diseases. Here we report a case of Fragile X-associated tremor-ataxia syndrome (FXTAS) with widespread and abundant nuclear inclusions of the RAN-translation related FMRpolyG-peptide. In addition, we describe prominent neuronal and glial tau pathology representing changes seen in progressive supranuclear palsy (PSP). The highest abundance of the respective pathological changes was seen in distinct brain regions indicating an incidental, rather than causal correlation.
Collapse
|
23
|
Uemura N, Uemura MT, Lo A, Bassil F, Zhang B, Luk KC, Lee VMY, Takahashi R, Trojanowski JQ. Slow Progressive Accumulation of Oligodendroglial Alpha-Synuclein (α-Syn) Pathology in Synthetic α-Syn Fibril-Induced Mouse Models of Synucleinopathy. J Neuropathol Exp Neurol 2019; 78:877-890. [PMID: 31504665 PMCID: PMC6934438 DOI: 10.1093/jnen/nlz070] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synucleinopathies are composed of Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Alpha-synuclein (α-Syn) forms aggregates mainly in neurons in PD and DLB, while oligodendroglial α-Syn aggregates are characteristic of MSA. Recent studies have demonstrated that injections of synthetic α-Syn preformed fibrils (PFFs) into the brains of wild-type (WT) animals induce intraneuronal α-Syn aggregates and the subsequent interneuronal transmission of α-Syn aggregates. However, injections of α-Syn PFFs or even brain lysates of patients with MSA have not been reported to induce oligodendroglial α-Syn aggregates, raising questions about the pathogenesis of oligodendroglial α-Syn aggregates in MSA. Here, we report that WT mice injected with mouse α-Syn (m-α-Syn) PFFs develop neuronal α-Syn pathology after short postinjection (PI) intervals on the scale of weeks, while oligodendroglial α-Syn pathology emerges after longer PI intervals of several months. Abundant oligodendroglial α-Syn pathology in white matter at later time points is reminiscent of MSA. Furthermore, comparison between young and aged mice injected with m-α-Syn PFFs revealed that PI intervals rather than aging correlate with oligodendroglial α-Syn aggregation. These results provide novel insights into the pathological mechanisms of oligodendroglial α-Syn aggregation in MSA.
Collapse
Affiliation(s)
- Norihito Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Maiko T Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Angela Lo
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fares Bassil
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bin Zhang
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelvin C Luk
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Virginia M -Y Lee
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - John Q Trojanowski
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Dhillon JKS, Trejo-Lopez JA, Riffe C, McFarland NR, Hiser WM, Giasson BI, Yachnis AT. Dissecting α-synuclein inclusion pathology diversity in multiple system atrophy: implications for the prion-like transmission hypothesis. J Transl Med 2019; 99:982-992. [PMID: 30737468 PMCID: PMC7209695 DOI: 10.1038/s41374-019-0198-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of insoluble, aggregated α-synuclein (αS) pathological inclusions. Multiple system atrophy (MSA) presents with extensive oligodendroglial αS pathology and additional more limited neuronal inclusions while most of the other synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies (DLB), develop αS pathology primarily in neuronal cell populations. αS biochemical alterations specific to MSA have been described but thorough examination of these unique and disease-specific protein deposits is further warranted especially given recent findings implicating the prion-like nature of synucleinopathies perhaps with distinct strain-like properties. Taking advantage of an extensive panel of antibodies that target a wide range of epitopes within αS, we investigated the distinct properties of the various types of αS inclusion present in MSA brains with comparison to DLB. Brain biochemical fractionation followed by immunoblotting revealed that the immunoreactive profiles were significantly more consistent for DLB than for MSA. Furthermore, epitope-specific immunohistochemistry varied greatly between different types of MSA αS inclusions and even within different brain regions of individual MSA brains. These studies highlight the importance of using a battery of antibodies for adequate appreciation of the various pathology in this distinct synucleinopathy. In addition, it can be posited that if the spread of pathology in MSA undergoes prion-like mechanisms, "strains" of αS aggregated conformers must be inherently unstable and readily mutable, perhaps resulting in a more stochastic progression process.
Collapse
Affiliation(s)
- Jess-Karan S. Dhillon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Jorge A. Trejo-Lopez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA.,Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Cara Riffe
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Nikolaus R. McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA.,Department of Neurology, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Wesley M. Hiser
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.,Corresponding author: Benoit I. Giasson () or Anthony Yachnis ()
| | - Anthony T. Yachnis
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA.,Corresponding author: Benoit I. Giasson () or Anthony Yachnis ()
| |
Collapse
|
25
|
Javadpour P, Dargahi L, Ahmadiani A, Ghasemi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol Life Sci 2019; 76:2277-2297. [PMID: 30874837 PMCID: PMC11105459 DOI: 10.1007/s00018-019-03063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases-phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
FTY720 Improves Behavior, Increases Brain Derived Neurotrophic Factor Levels and Reduces α-Synuclein Pathology in Parkinsonian GM2+/- Mice. Neuroscience 2019; 411:1-10. [PMID: 31129200 DOI: 10.1016/j.neuroscience.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.
Collapse
|
27
|
Dhillon JKS, Trejo-Lopez JA, Riffe C, Levites Y, Sacino AN, Borchelt DR, Yachnis AY, Giasson BI. Comparative analyses of the in vivo induction and transmission of α-synuclein pathology in transgenic mice by MSA brain lysate and recombinant α-synuclein fibrils. Acta Neuropathol Commun 2019; 7:80. [PMID: 31109378 PMCID: PMC6526622 DOI: 10.1186/s40478-019-0733-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
α-synuclein (αS) is the major component of several types of brain pathological inclusions that define neurodegenerative diseases termed synucleinopathies. Central nervous system (CNS) inoculation studies using either in vitro polymerized αS fibrils or in vivo derived lysates containing αS aggregates to induce the progressive spread of αS inclusion pathology in animal disease models have supported the notion that αS mediated progressive neurodegeneration can occur by a prion-like mechanism. We have previously shown that neonatal brain inoculation with preformed αS fibrils in hemizygous M20+/− transgenic mice expressing wild type human αS and to a lesser extent in non-transgenic mice can result in a concentration-dependent progressive induction of CNS αS pathology. Recent studies using brain lysates from patients with multiple system atrophy (MSA), characterized by αS inclusion pathology in oligodendrocytes, indicate that these may be uniquely potent at inducing αS pathology with prion-like strain specificity. We demonstrate here that brain lysates from MSA patients, but not control individuals, can induce αS pathology following neonatal brain inoculation in transgenic mice expressing A53T human αS (M83 line), but not in transgenic expressing wild type human αS (M20 line) or non-transgenic mice within the timeframe of the study design. Further, we show that neuroanatomical and immunohistochemical properties of the pathology induced by MSA brain lysates is very similar to what is produced by the neonatal brain injection of preformed human αS fibrils in hemizygous M83+/− transgenic mice. Collectively, these findings reinforce the idea that the intrinsic traits of the M83 mouse model dominates over any putative prion-like strain properties of MSA αS seeds that can induce pathology.
Collapse
|
28
|
Acharya R, Chakraborty M, Chakraborty J. Prospective treatment of Parkinson's disease by a siRNA-LDH nanoconjugate. MEDCHEMCOMM 2019; 10:227-233. [PMID: 30881611 DOI: 10.1039/c8md00501j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/08/2018] [Indexed: 12/24/2022]
Abstract
In the world, among the neurodegenerative diseases, Parkinson's is the second most common disease. Although several medications are available in the market, this disease still remains incurable and only the symptoms are controlled to a certain extent with severe side effects. For these reasons we decided to search for a novel therapeutic measure. The objective of this publication was to find a therapeutic procedure to cure this devastating disease. In this study, a biocompatible, easily permeable, cationic nanoparticle-layered double hydroxide was synthesized. Within the layers of these nanoparticles we intercalated α synuclein siRNA, which helps to silence the α synuclein gene. After the intercalation, which was optimized at a 1 : 40 ratio of siRNA : (LDH), we studied its stability in blood by a RNase protection test and serum protection assay. Both proved that LDH was an excellent nanocarrier that can protect intercalated molecules within its layers. After that, several cellular studies were performed by FACS to evaluate its biocompatibility after intercalation and cellular internalization. Results of the biocompatibility studies found it to be nontoxic and in the cellular internalization study, 51.55% of cells were taken into the nanoconjugate and confocal microscopy supported the data from FACS. Lastly, ELISA was performed to discover protein levels in the control, overexpressed, and treated groups of the SH-SY5Y cell line. These results verified that this nanoconjugate is a protective treatment procedure for Parkinson's disease.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bioscience and Engineering , Jadavpur University , 188, Raja S.C.Mullick Road , Kolkata 700 032 , India . ; Tel: +91 8017071353
| | - Monisha Chakraborty
- School of Bioscience and Engineering , Jadavpur University , 188, Raja S.C.Mullick Road , Kolkata 700 032 , India . ; Tel: +91 8017071353
| | - Jui Chakraborty
- CSIR-Central Glass and Ceramic Research Institute , 196 Raja S. C. Mullick Road, Jadavpur , Kolkata-700 032 , India
| |
Collapse
|
29
|
Gil-Tommee C, Vidal-Martinez G, Annette Reyes C, Vargas-Medrano J, Herrera GV, Martin SM, Chaparro SA, Perez RG. Parkinsonian GM2 synthase knockout mice lacking mature gangliosides develop urinary dysfunction and neurogenic bladder. Exp Neurol 2019; 311:265-273. [PMID: 30393144 PMCID: PMC6319267 DOI: 10.1016/j.expneurol.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/14/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder that reduces a patients' quality of life by the relentless progression of motor and non-motor symptoms. Among the non-motor symptoms is a condition called neurogenic bladder that is associated with detrusor muscle underactivity or overactivity occurring from neurologic damage. In Parkinson's disease, Lewy-body-like protein aggregation inside neurons typically contributes to pathology. This is associated with dopaminergic neuron loss in substantia nigra pars compacta (SNc) and in ventral tegmental area (VTA), both of which play a role in micturition. GM1 gangliosides are mature glycosphingolipids that enhance normal myelination and are reduced in Parkinson's brain. To explore the role of mature gangliosides in vivo, we obtained GM2 Synthase knockout (KO) mice, which develop parkinsonian pathology including a loss of SNc dopaminergic neurons, which we reconfirmed. However, bladder function and innervation have never been assessed in this model. We compared GM2 Synthase KO and wild type (WT) littermates' urination patterns from 9 to 19 months of age by counting small and large void spots produced during 1 h tests. Because male and female mice had different patterns, we evaluated data by sex and genotype. Small void spots were significantly increased in 12-16 month GM2 Synthase KO females, consistent with overactive bladder. Similarly, at 9-12 month GM2 KO males tended to have more small void spots than WT males. As GM2 Synthase KO mice aged, both females and males had fewer small and large void spots, consistent with detrusor muscle underactivity. Ultrasounds confirmed bladder enlargement in GM2 Synthase KO mice compared to WT mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed significant dopaminergic loss in GM2 Synthase KO VTA and SNc, and a trend toward TH loss in the GM2 KO periaqueductal gray (PAG) micturition centers. Levels of the nerve growth factor precursor, proNGF, were significantly increased in GM2 Synthase KO bladders and transmission electron micrographs showed atypical myelination of pelvic ganglion innervation in GM2 Synthase KO bladders. Cumulatively, our findings provide the first evidence that mature ganglioside loss affects micturition center TH neurons as well as proNGF dysregulation and abnormal innervation of the bladder. Thus, identifying therapies that will counteract these effects should be beneficial for those suffering from Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Carolina Gil-Tommee
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - C Annette Reyes
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Gloria V Herrera
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Silver M Martin
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Stephanie A Chaparro
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA..
| |
Collapse
|
30
|
Ortuño-Lizarán I, Beach TG, Serrano GE, Walker DG, Adler CH, Cuenca N. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson's disease pathology severity. Mov Disord 2018; 33:1315-1324. [PMID: 29737566 PMCID: PMC6146055 DOI: 10.1002/mds.27392] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PD patients often have visual alterations, for example, loss of visual acuity, contrast sensitivity or motion perception, and diminished electroretinogram responses. PD pathology is mainly characterized by the accumulation of pathological α-synuclein deposits in the brain, but little is known about how synucleinopathy affects the retina. OBJECTIVE To study the correlation between α-synuclein deposits in the retina and brain of autopsied subjects with PD and incidental Lewy body disease. METHODS We evaluated the presence of phosphorylated α-synuclein in the retina of autopsied subjects with PD (9 subjects), incidental Lewy body disease (4 subjects), and controls (6 subjects) by immunohistochemistry and compared the retinal synucleinopathy with brain disease severity indicators. RESULTS Whereas controls did not show any phosphorylated α-synuclein immunoreactivity in their retina, all PD subjects and 3 of 4 incidental Lewy body disease subjects had phosphorylated α-synuclein deposits in ganglion cell perikarya, dendrites, and axons, some of them resembling brain Lewy bodies and Lewy neurites. The Lewy-type synucleinopathy density in the retina significantly correlated with Lewy-type synucleinopathy density in the brain, with the Unified Parkinson's disease pathology stage and with the motor UPDRS. CONCLUSION These data suggest that phosphorylated α-synuclein accumulates in the retina in parallel with that in the brain, including in early stages preceding development of clinical signs of parkinsonism or dementia. Therefore, the retina may provide an in vivo indicator of brain pathology severity, and its detection could help in the diagnosis and monitoring of disease progression. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| |
Collapse
|
31
|
Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT. Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Sci Data 2018; 5:180036. [PMID: 29533394 PMCID: PMC5848788 DOI: 10.1038/sdata.2018.36] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Patients with Alzheimer's disease (AD) and Parkinson's disease (PD) often have overlap in clinical presentation and brain neuropathology suggesting that these two diseases share common underlying mechanisms. Currently, the molecular pathways linking AD and PD are incompletely understood. Utilizing Tandem Mass Tag (TMT) isobaric labeling and synchronous precursor selection-based MS3 (SPS-MS3) mass spectrometry, we performed an unbiased quantitative proteomic analysis of post-mortem human brain tissues (n=80) from four different groups defined as controls, AD, PD, and co-morbid AD/PD cases across two brain regions (frontal cortex and anterior cingulate gyrus). In total, we identified 11 840 protein groups representing 10 230 gene symbols, which map to ~65% of the protein coding genes in brain. The utility of including two reference standards in each TMT 10-plex assay to assess intra- and inter-batch variance is also described. Ultimately, this comprehensive human brain proteomic dataset serves as a valuable resource for various research endeavors including, but not limited to, the identification of disease-specific protein signatures and molecular pathways that are common in AD and PD.
Collapse
Affiliation(s)
- Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marla Gearing
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J. Lah
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I. Levey
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
32
|
Abstract
α-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve terminals. Genetics and neuropathology studies link α-synuclein to Parkinson's disease (PD) and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger aggregates of α-synuclein defines multiple neurodegenerative diseases called synucleinopathies, but the mechanisms by which α-synuclein acts in neurodegeneration are unknown. Moreover, the normal cellular function of α-synuclein remains debated. In this perspective, we review the structural characteristics of α-synuclein, its developmental expression pattern, its cellular and subcellular localization, and its function in neurons. We also discuss recent progress on secretion of α-synuclein, which may contribute to its interneuronal spread in a prion-like fashion, and describe the neurotoxic effects of α-synuclein that are thought to be responsible for its role in neurodegeneration.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Thomas C Südhof
- Departments of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, California 94305
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
33
|
Manfredsson FP, Luk KC, Benskey MJ, Gezer A, Garcia J, Kuhn NC, Sandoval IM, Patterson JR, O'Mara A, Yonkers R, Kordower JH. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol Dis 2018; 112:106-118. [PMID: 29341898 DOI: 10.1016/j.nbd.2018.01.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Alpha-Synuclein (α-syn) is by far the most highly vetted pathogenic and therapeutic target in Parkinson's disease. Aggregated α-syn is present in sporadic Parkinson's disease, both in the central nervous system (CNS) and peripheral nervous system (PNS). The enteric division of the PNS is of particular interest because 1) gastric dysfunction is a key clinical manifestation of Parkinson's disease, and 2) Lewy pathology in myenteric and submucosal neurons of the enteric nervous system (ENS) has been referred to as stage zero in the Braak pathological staging of Parkinson's disease. The presence of Lewy pathology in the ENS and the fact that patients often experience enteric dysfunction before the onset of motor symptoms has led to the hypothesis that α-syn pathology starts in the periphery, after which it spreads to the CNS via interconnected neural pathways. Here we sought to directly test this hypothesis in rodents and non-human primates (NHP) using two distinct models of α-syn pathology: the α-syn viral overexpression model and the preformed fibril (PFF) model. Subjects (rat and NHP) received targeted enteric injections of PFFs or adeno-associated virus overexpressing the Parkinson's disease associated A53T α-syn mutant. Rats were evaluated for colonic motility monthly and sacrificed at 1, 6, or 12 months, whereas NHPs were sacrificed 12 months following inoculation, after which the time course and spread of pathology was examined in all animals. Rats exhibited a transient GI phenotype that resolved after four months. Minor α-syn pathology was observed in the brainstem (dorsal motor nucleus of the vagus and locus coeruleus) 1 month after PFF injections; however, no pathology was observed at later time points (nor in saline or monomer treated animals). Similarly, a histopathological analysis of the NHP brains revealed no pathology despite the presence of robust α-syn pathology throughout the ENS which persisted for the entirety of the study (12 months). Our study shows that induction of α-syn pathology in the ENS is sufficient to induce GI dysfunction. Moreover, our data suggest that sustained spread of α-syn pathology from the periphery to the CNS and subsequent propagation is a rare event, and that the presence of enteric α-syn pathology and dysfunction may represent an epiphenomenon.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States.
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; DO/PHD Physician Scientist Training Program, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Joanna Garcia
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Joseph R Patterson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Alana O'Mara
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Reid Yonkers
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Jeffrey H Kordower
- Dept. of Neurological Science, Rush University Medical Center, Chicago, IL, United States; Center on Neurodegeneration, Van Andel Research Institute, Grand Rapids, MI, United States
| |
Collapse
|
34
|
Tayebi N, Parisiadou L, Berhe B, Gonzalez AN, Serra-Vinardell J, Tamargo RJ, Maniwang E, Sorrentino Z, Fujiwara H, Grey RJ, Hassan S, Blech-Hermoni YN, Chen C, McGlinchey R, Makariou-Pikis C, Brooks M, Ginns EI, Ory DS, Giasson BI, Sidransky E. Glucocerebrosidase haploinsufficiency in A53T α-synuclein mice impacts disease onset and course. Mol Genet Metab 2017; 122:198-208. [PMID: 29173981 PMCID: PMC6007972 DOI: 10.1016/j.ymgme.2017.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Mutations in GBA1 encountered in Gaucher disease are a leading risk factor for Parkinson disease and associated Lewy body disorders. Many GBA1 mutation carriers, especially those with severe or null GBA1 alleles, have earlier and more progressive parkinsonism. To model the effect of partial glucocerebrosidase deficiency on neurological progression in vivo, mice with a human A53T α-synuclein (SNCAA53T) transgene were crossed with heterozygous null gba mice (gba+/-). Survival analysis of 84 mice showed that in gba+/-//SNCAA53T hemizygotes and homozygotes, the symptom onset was significantly earlier than in gba+/+//SNCAA53T mice (p-values 0.023-0.0030), with exacerbated disease progression (p-value <0.0001). Over-expression of SNCAA53T had no effect on glucocerebrosidase levels or activity. Immunoblotting demonstrated that gba haploinsufficiency did not lead to increased levels of either monomeric SNCA or insoluble high molecular weight SNCA in this model. Immunohistochemical analyses demonstrated that the abundance and distribution of SNCA pathology was also unaltered by gba haploinsufficiency. Thus, while the underlying mechanism is not clear, this model shows that gba deficiency impacts the age of onset and disease duration in aged SNCAA53T mice, providing a valuable resource to identify modifiers, pathways and possible moonlighting roles of glucocerebrosidase in Parkinson pathogenesis.
Collapse
Affiliation(s)
- Nahid Tayebi
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bahafta Berhe
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | | | | | | | | | - Zachary Sorrentino
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan McGlinchey
- Laboratory of Protein Conformation and Dynamics, NHLBI, NIH, Bethesda, MD. USA
| | - Chrissy Makariou-Pikis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mieu Brooks
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward I Ginns
- Lysosomal Disorders Treatment and Research Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
35
|
Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson's Disease. PARKINSONS DISEASE 2017; 2017:9164754. [PMID: 29333317 PMCID: PMC5733240 DOI: 10.1155/2017/9164754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
Parkinson's disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway (ALS) are altered in Parkinson's disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson's disease, will be analyzed in detail in this review.
Collapse
|
36
|
Beach TG, Corbillé AG, Letournel F, Kordower JH, Kremer T, Munoz DG, Intorcia A, Hentz J, Adler CH, Sue LI, Walker J, Serrano G, Derkinderen P. Multicenter Assessment of Immunohistochemical Methods for Pathological Alpha-Synuclein in Sigmoid Colon of Autopsied Parkinson's Disease and Control Subjects. JOURNAL OF PARKINSONS DISEASE 2017; 6:761-770. [PMID: 27589538 DOI: 10.3233/jpd-160888] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Conflicting results from studies of Lewy-type α-synucleinopathy (LTS) in colonic biopsies of subjects with Parkinson's disease (PD) prompted a two-part multicenter assessment. The first assessment, now published (Acta Neuropathol Commun 4 : 35, 2016), examined archived colonic biopsies and found that none of the tested methods was adequately sensitive or specific. OBJECTIVE As the amount of nervous tissue in typical colonic biopsies may be insufficient, and the clinical diagnosis of PD not completely accurate, the objective of the current study was to use instead full-thickness sections of sigmoid colon from autopsy-proven PD and normal subjects. METHODS Seven different immunohistochemical (IHC) methods were used, employing five different primary antibodies and four different combinations of epitope exposure and signal development protocols. Specific staining was defined as being restricted to morphological features consistent with neuronal elements. Stained slides from each subject were independently categorized as being positive or negative for LTS, and their density semi-quantitatively graded, by four raters blinded to diagnosis. RESULTS Agreement and mean diagnostic performance varied markedly between raters. With the two most accurate raters, 5 methods achieved diagnostic accuracies of 70% or greater; one method had 100% accuracy and 100% inter-rater agreement. The submucosa had the highest prevalence of pathological LTS staining, followed by the muscularis and mucosa. CONCLUSIONS The major conclusion of this study is that, when sufficient submucosa and LTS is present, and when specific staining is defined as being consistent with neuronal morphology, adequately-trained raters may reliably distinguish PD colon from control using suitable IHC methods.
Collapse
Affiliation(s)
| | - Anne-Gaëlle Corbillé
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France.,CHU Angers, Neurobiology and Neuropathology Laboratory, Angers, France.,Université of Angers, UPRES EA3143, Angers, France
| | - Franck Letournel
- CHU Angers, Neurobiology and Neuropathology Laboratory, Angers, France.,Université of Angers, UPRES EA3143, Angers, France
| | - Jeffrey H Kordower
- Center for Brain Repair, Department of Pathology, Rush Medical College, Chicago, IL, USA
| | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, Nord DTA, Biomarker and Clinical Imaging, Roche Innovation Center, F Hoffman-La Roche, Ltd., Basel
| | - David G Munoz
- Laboratory Medicine, St. Michael's Hospital, University of Toronto & Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | | | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Pascal Derkinderen
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| |
Collapse
|
37
|
Yang W, Wang X, Liu J, Duan C, Gao G, Lu L, Yu S, Yang H. PINK1 suppresses alpha-synuclein-induced neuronal injury: a novel mechanism in protein phosphatase 2A activation. Oncotarget 2017; 9:37-53. [PMID: 29416594 PMCID: PMC5787472 DOI: 10.18632/oncotarget.21554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Alpha-synuclein (α-Syn) and phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced putative kinase (PINK) 1 are proteins found in Lewy bodies, which are a pathological hallmark of Parkinson's disease (PD). PINK1 overexpression suppresses α-Syn-induced phenotypes and increases lifespan and health in an animal model of PD. It has been suggested that the two proteins regulate protein phosphatase (PP) 2A activity, but the underlying mechanisms and neuroprotective action of PP2A against PD-associated pathology are unknown. We found that α-Syn overexpression in SK-N-SH neuroblastoma cells and primary cortical neurons caused mitochondrial dysfunction and cell injury via phosphorylation of PP2A at Tyr307 and inhibition of its activity. Concomitant overexpression of PINK1 reversed this effect and restored the activity. The level of phospho-activated Src was increased in cells overexpressing α-Syn, which was reversed by co-expressing PINK1, suggesting that the latter suppressed α-Syn-induced PP2A inactivation by inhibiting Src activity. Calmodulin/Src complex formation was also enhanced in α-Syn-overexpressing cells, which was reversed by co-expression of PINK1 as a result of reduced mitochondrial Ca2+ releasing. Interestingly, the protective effects of PINK1 in α-Syn induced models were abolished by treatment with the PP2A inhibitor okadaic acid, indicating that PP2A is a target of PINK1. These findings indicate that PINK1 protects against α-Syn-induced neurodegeneration by promoting the dissociation of the calmodulin/Src complex and inhibiting Src, thereby enhancing PP2A activity. This was supported by the observation that PP2A activity was decreased in PD patients, which was negatively correlated with Hoehn and Yahr scores. Our results provide novel insight into the mechanisms underlying neurodegeneration in PD as well as possible avenues for therapeutic intervention in the treatment of this disease.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xue Wang
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Jia Liu
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Chunli Duan
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lingling Lu
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Neurobiology, Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
G2019S-LRRK2 Expression Augments α-Synuclein Sequestration into Inclusions in Neurons. J Neurosci 2017; 36:7415-27. [PMID: 27413152 DOI: 10.1523/jneurosci.3642-15.2016] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/26/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Pathologic inclusions define α-synucleinopathies that include Parkinson's disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinson's disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for neuroprotection. Here, we show that expression of G2019S-LRRK2 increases α-synuclein mobility and enhances aggregation of α-synuclein in primary cultured neurons and in dopaminergic neurons of the substantia nigra pars compacta, a susceptible brain region in PD. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, block the increased α-synuclein aggregation in G2019S-LRRK2-expressing neurons. These results demonstrate that α-synuclein inclusion formation in neurons can be blocked and that novel therapeutic compounds targeting this process by inhibiting LRRK2 kinase activity may slow progression of PD-associated pathology.
Collapse
|
39
|
Arawaka S, Sato H, Sasaki A, Koyama S, Kato T. Mechanisms underlying extensive Ser129-phosphorylation in α-synuclein aggregates. Acta Neuropathol Commun 2017; 5:48. [PMID: 28619113 PMCID: PMC5472914 DOI: 10.1186/s40478-017-0452-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/04/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is characterized neuropathologically by intracellular aggregates of fibrillar α-synuclein, termed Lewy bodies (LBs). Approximately 90% of α-synuclein deposited as LBs is phosphorylated at Ser129 in brains with PD. In contrast, only 4% of total α-synuclein is phosphorylated at Ser129 in brains with normal individuals. It is unclear why extensive phosphorylation occurs in the pathological process of PD. To address this issue, we investigated a mechanism and role of Ser129-phosphorylation in regulating accumulation of α-synuclein. In CHO cells, the levels of Ser129-phosphorylated soluble α-synuclein were maintained constantly to those of total α-synuclein in intracellular and extracellular spaces. In SH-SY5Y cells and rat primary cortical neurons, mitochondrial impairment by rotenone or MPP+ enhanced Ser129-phosphorylation through increased influx of extracellular Ca2+. This elevation was suppressively controlled by targeting Ser129-phosphorylated α-synuclein to the proteasome pathway. Rotenone-induced insoluble α-synuclein was also targeted by Ser129-phosphoryation to the proteasome pathway. Experiments with epoxomicin and chloroquine showed that proteasomal targeting of insoluble Ser129-phosphorylated α-synuclein was enhanced under lysosome inhibition and it reduced accumulation of insoluble total α-synuclein. However, in a rat AAV-mediated α-synuclein overexpression model, there was no difference in the number of total α-synuclein aggregates between A53T mutant and A53T plus S129A double mutant α-synuclein, although Ser129-phosphorylated α-synuclein-positive aggregates were increased in rats expressing A53T α-synuclein. These findings suggest that Ser129-phosphorylation occurs against stress conditions, which increases influx of extracellular Ca2+, and it prevents accumulation of insoluble α-synuclein by evoking proteasomal clearance complementary to lysosomal one. However, Ser129-phosphorylation may provide an ineffective signal for degradation-resistant aggregates, causing extensive phosphorylation in aggregates.
Collapse
|
40
|
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Mol Neurodegener 2017; 12:45. [PMID: 28592304 PMCID: PMC5463308 DOI: 10.1186/s13024-017-0186-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease.
Collapse
Affiliation(s)
- James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK. .,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia.
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia
| | - Hannah Durham
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM U1171, CHU of Lille, Lille, France
| |
Collapse
|
41
|
Sorrentino ZA, Brooks MMT, Hudson V, Rutherford NJ, Golde TE, Giasson BI, Chakrabarty P. Intrastriatal injection of α-synuclein can lead to widespread synucleinopathy independent of neuroanatomic connectivity. Mol Neurodegener 2017; 12:40. [PMID: 28552073 PMCID: PMC5447308 DOI: 10.1186/s13024-017-0182-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background Prionoid transmission of α-synuclein (αSyn) aggregates along neuroanatomically connected projections is posited to underlie disease progression in α-synucleinopathies. Here, we specifically wanted to study whether this prionoid progression occurs via direct inter-neuronal transfer and, if so, would intrastriatal injection of αSyn aggregates lead to nigral degeneration. Methods To test prionoid transmission of αSyn aggregates along the nigro-striatal pathway, we injected amyloidogenic αSyn aggregates into two different regions of the striatum of adult human wild type αSyn transgenic mice (Line M20) or non-transgenic (NTG) mice and aged for 4 months. Results M20 mice injected in internal capsule (IC) or caudate putamen (CPu) regions of the striatum showed florid αSyn inclusion pathology distributed throughout the neuraxis, irrespective of anatomic connectivity. These αSyn inclusions were found in different cell types including neurons, astrocytes and even ependymal cells. On the other hand, intra-striatal injection of αSyn fibrils into NTG mice resulted in sparse αSyn pathology, mostly localized in the striatum and entorhinal cortex. Interestingly, NTG mice injected with preformed human αSyn fibrils showed no induction of αSyn inclusion pathology, suggesting the presence of a species barrier for αSyn fibrillar seeds. Modest levels of nigral dopaminergic (DA) neuronal loss was observed exclusively in substantia nigra (SN) of M20 cohorts injected in the IC, even in the absence of frank αSyn inclusions in DA neurons. None of the NTG mice or CPu-injected M20 mice showed DA neurodegeneration. Interestingly, the pattern and distribution of induced αSyn pathology corresponded with neuroinflammation especially in the SN of M20 cohorts. Hypermorphic reactive astrocytes laden with αSyn inclusions were abundantly present in the brains of M20 mice. Conclusions Overall, our findings show that the pattern and extent of dissemination of αSyn pathology does not necessarily follow expected neuroanatomic connectivity. Further, the presence of intra-astrocytic αSyn pathology implies that glial cells participate in αSyn transmission and possibly have a role in non-cell autonomous disease modification. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0182-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Mieu M T Brooks
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Current address: Department of Neuroscience, Mayo Clinic, Jacksonville, FL, -32224, USA
| | - Vincent Hudson
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Nicola J Rutherford
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
42
|
CK2-An Emerging Target for Neurological and Psychiatric Disorders. Pharmaceuticals (Basel) 2017; 10:ph10010007. [PMID: 28067771 PMCID: PMC5374411 DOI: 10.3390/ph10010007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Protein kinase CK2 has received a surge of attention in recent years due to the evidence of its overexpression in a variety of solid tumors and multiple myelomas as well as its participation in cell survival pathways. CK2 is also upregulated in the most prevalent and aggressive cancer of brain tissue, glioblastoma multiforme, and in preclinical models, pharmacological inhibition of the kinase has proven successful in reducing tumor size and animal mortality. CK2 is highly expressed in the mammalian brain and has many bona fide substrates that are crucial in neuronal or glial homeostasis and signaling processes across synapses. Full and conditional CK2 knockout mice have further elucidated the importance of CK2 in brain development, neuronal activity, and behavior. This review will discuss recent advances in the field that point to CK2 as a regulator of neuronal functions and as a potential novel target to treat neurological and psychiatric disorders.
Collapse
|
43
|
Robust Central Nervous System Pathology in Transgenic Mice following Peripheral Injection of α-Synuclein Fibrils. J Virol 2017; 91:JVI.02095-16. [PMID: 27852849 DOI: 10.1128/jvi.02095-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83+/+) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83+/-) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human βS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83+/- mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. IMPORTANCE The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson's disease (PD) and PD-related diseases. Similar characteristics have been observed between the infectious prion protein and αS, including its ability to spread from the peripheral nervous system and along neuroanatomical tracts within the central nervous system. In this study, we extend our previous results and investigate the efficiency of intravenous (i.v.), intraperitoneal (i.p.), and intramuscular (i.m.) routes of injection of αS fibrils and other protein controls. Our data reveal that injection of αS fibrils via these peripheral routes in αS-overexpressing mice are capable of inducing a robust αS pathology and in some cases cause paralysis. Furthermore, soluble, nonaggregated αS also induced αS pathology, albeit with much less efficiency. These findings further support and extend the idea of αS neuroinvasion from peripheral exposures.
Collapse
|
44
|
Inflammatory pre-conditioning restricts the seeded induction of α-synuclein pathology in wild type mice. Mol Neurodegener 2017; 12:1. [PMID: 28049533 PMCID: PMC5210310 DOI: 10.1186/s13024-016-0142-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/06/2016] [Indexed: 12/02/2022] Open
Abstract
Background Cell-to-cell transmission of α-synuclein (αSyn) is hypothesized to play an important role in disease progression in synucleinopathies. This process involves cellular uptake of extracellular amyloidogenic αSyn seeds followed by seeding of endogenous αSyn. Though it is well known that αSyn is an immunogenic protein that can interact with immune receptors, the role of innate immunity in regulating induction of αSyn pathology in vivo is unknown. Herein, we explored whether altering innate immune activation affects induction of αSyn pathology in wild type mice. Methods We have previously demonstrated that recombinant adeno-associated virus (AAV) mediated expression of the inflammatory cytokine, Interleukin (IL)-6, in neonatal wild type mice brains leads to widespread immune activation in the brain without overt neurodegeneration. To investigate how IL-6 expression affects induction of αSyn pathology, we injected mouse wild type αSyn fibrils in the hippocampus of AAV-IL-6 expressing mice. Control mice received AAV containing an Empty vector (EV) construct. Two separate cohorts of AAV-IL-6 and AAV-EV mice were analyzed in this study: 4 months or 2 months following intrahippocampal αSyn seeding. Results Here, we show that IL-6 expression resulted in widespread gliosis and concurrently reduced αSyn inclusion pathology induced by a single intra-hippocampal injection of exogenous amyloidogenic αSyn. The reduction in αSyn inclusion pathology in IL-6 expressing mice was time-dependent. Suppression of αSyn pathology was accompanied by reductions in both argyrophilic and p62 immunoreactive inclusions. Conclusions Our data supports a beneficial role of inflammatory priming of the CNS in wild type mice challenged with exogenous αSyn. A likely mechanism is efficient astroglial scavenging of exogenous αSyn, at least early in the disease process, and in the absence of human αSyn transgene overexpression. Given evidence that a pro-inflammatory environment may restrict seeding of αSyn pathology, this can be used to design anti-αSyn immunobiotherapies by harnessing innate immune function. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0142-z) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Sacino AN, Brooks MM, Chakrabarty P, Saha K, Khoshbouei H, Golde TE, Giasson BI. Proteolysis of α-synuclein fibrils in the lysosomal pathway limits induction of inclusion pathology. J Neurochem 2016; 140:662-678. [PMID: 27424880 DOI: 10.1111/jnc.13743] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Progression of α-synuclein inclusion pathology may occur through cycles of release and uptake of α-synuclein aggregates, which induce additional intracellular α-synuclein inclusion pathology. This process may explain (i) the presence of α-synuclein inclusion pathology in grafted cells in human brains, and (ii) the slowly progressive nature of most human α-synucleinopathies. It also provides a rationale for therapeutic targeting of extracellular aggregates to limit pathology spread. We investigated the cellular mechanisms underlying intraneuronal α-synuclein aggregation following exposure to exogenous preformed α-synuclein amyloid fibrils. Exogenous α-synuclein fibrils efficiently attached to cell membranes and were subsequently internalized and degraded within the endosomal/lysosomal system. However, internalized α-synuclein amyloid fibrils can apparently overwhelm the endosomal/lysosomal machinery leading to the induction of intraneuronal α-synuclein inclusions comprised of endogenous α-synuclein. Furthermore, the efficiency of inclusion formation was relatively low in these studies compared to studies using primary neuronal-glial cultures over-expressing α-synuclein. Our study indicates that under physiologic conditions, endosomal/lysosomal function acts as an endogenous barrier to the induction of α-synuclein inclusion pathology, but when compromised, it may lower the threshold for pathology induction/transmission. Cover Image for this issue: doi: 10.1111/jnc.13787.
Collapse
Affiliation(s)
- Amanda N Sacino
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Mieu M Brooks
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Kaustuv Saha
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| |
Collapse
|
46
|
Vidal-Martínez G, Vargas-Medrano J, Gil-Tommee C, Medina D, Garza NT, Yang B, Segura-Ulate I, Dominguez SJ, Perez RG. FTY720/Fingolimod Reduces Synucleinopathy and Improves Gut Motility in A53T Mice: CONTRIBUTIONS OF PRO-BRAIN-DERIVED NEUROTROPHIC FACTOR (PRO-BDNF) AND MATURE BDNF. J Biol Chem 2016; 291:20811-21. [PMID: 27528608 PMCID: PMC5034069 DOI: 10.1074/jbc.m116.744029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martínez
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Javier Vargas-Medrano
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Carolina Gil-Tommee
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - David Medina
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Nathan T Garza
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Barbara Yang
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Ismael Segura-Ulate
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Samantha J Dominguez
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Ruth G Perez
- From the Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, Texas 79905
| |
Collapse
|
47
|
Rutherford NJ, Brooks M, Giasson BI. Novel antibodies to phosphorylated α-synuclein serine 129 and NFL serine 473 demonstrate the close molecular homology of these epitopes. Acta Neuropathol Commun 2016; 4:80. [PMID: 27503460 PMCID: PMC4977832 DOI: 10.1186/s40478-016-0357-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/28/2016] [Indexed: 11/15/2022] Open
Abstract
Pathological inclusions containing aggregated, highly phosphorylated (at serine129) α-synuclein (αS pSer129) are characteristic of a group of neurodegenerative diseases termed synucleinopathies. Antibodies to the pSer129 epitope can be highly sensitive in detecting αS inclusions in human tissue and experimental models of synucleinopathies. However, the generation of extensively specific pSer129 antibodies has been problematic, in some cases leading to the misinterpretation of αS inclusion pathology. One common issue is cross-reactivity to the low molecular mass neurofilament subunit (NFL) phosphorylated at Ser473. Here, we generated a series of monoclonal antibodies to the pSer129 αS and pSer473 NFL epitopes. We determined the relative abilities of the known αS kinases, polo-like kinases (PLK) 1, 2 and 3 and casein kinase (CK) II in phosphorylating NFL and αS, while using this information to characterize the specificity of the new antibodies. NFL can be phosphorylated by PLK1, 2 and 3 at Ser473; however CKII shows the highest phosphorylation efficiency and specificity for this site. Conversely, PLK3 is the most efficient kinase at phosphorylating αS at Ser129, but there is overlay in the ability of these kinases to phosphorylate both epitopes. Antibody 4F8, generated to the pSer473 NFL epitope, was relatively specific for phosphorylated NFL, however it could uniquely cross-react with pSer129 αS when highly phosphorylated, further showing the structural similarity between these phospho-epitopes. All of the new pSer129 antibodies detected pathological αS inclusions in human brains and mouse and cultured cell experimental models of induced synucleinopathies. Several of these pSer129 αS antibodies reacted with the pSer473 NFL epitope, but 2 clones (LS3-2C2 and LS4-2G12) did not. However, LS3-2C2 demonstrated cross-reactivity with other proteins. Our findings further demonstrate the difficulties in generating specific pSer129 αS antibodies, but highlights that the use of multiple antibodies, such as those generated here, can provide a sensitive and accurate assessment of αS pathology.
Collapse
|
48
|
Guo JL, Buist A, Soares A, Callaerts K, Calafate S, Stevenaert F, Daniels JP, Zoll BE, Crowe A, Brunden KR, Moechars D, Lee VMY. The Dynamics and Turnover of Tau Aggregates in Cultured Cells: INSIGHTS INTO THERAPIES FOR TAUOPATHIES. J Biol Chem 2016; 291:13175-93. [PMID: 27129267 DOI: 10.1074/jbc.m115.712083] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
Filamentous tau aggregates, the hallmark lesions of Alzheimer disease (AD), play key roles in neurodegeneration. Activation of protein degradation systems has been proposed to be a potential strategy for removing pathological tau, but it remains unclear how effectively tau aggregates can be degraded by these systems. By applying our previously established cellular model system of AD-like tau aggregate induction using preformed tau fibrils, we demonstrate that tau aggregates induced in cells with regulated expression of full-length mutant tau can be gradually cleared when soluble tau expression is suppressed. This clearance is at least partially mediated by the autophagy-lysosome pathway, although both the ubiquitin-proteasome system and the autophagy-lysosome pathway are deficient in handling large tau aggregates. Importantly, residual tau aggregates left after the clearance phase leads to a rapid reinstatement of robust tau pathology once soluble tau expression is turned on again. Moreover, we succeeded in generating monoclonal cells persistently carrying tau aggregates without obvious cytotoxicity. Live imaging of GFP-tagged tau aggregates showed that tau inclusions are dynamic structures constantly undergoing "fission" and "fusion," which facilitate stable propagation of tau pathology in dividing cells. These findings provide a greater understanding of cell-to-cell transmission of tau aggregates in dividing cells and possibly neurons.
Collapse
Affiliation(s)
- Jing L Guo
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Arjan Buist
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Alberto Soares
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kathleen Callaerts
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Sara Calafate
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Frederik Stevenaert
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Joshua P Daniels
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Bryan E Zoll
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Alex Crowe
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Kurt R Brunden
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Diederik Moechars
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Virginia M Y Lee
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
49
|
Haney CM, Wissner RF, Warner JB, Wang YJ, Ferrie JJ, J Covell D, Karpowicz RJ, Lee VMY, Petersson EJ. Comparison of strategies for non-perturbing labeling of α-synuclein to study amyloidogenesis. Org Biomol Chem 2016; 14:1584-92. [PMID: 26695131 PMCID: PMC4733880 DOI: 10.1039/c5ob02329g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Characterization of the amyloidogenic Parkinson's disease protein α-synuclein (αS) has proven difficult due to its structural plasticity. Here, we present a number of complementary methods to site-specifically introduce fluorescent probes to examine αS fibril formation and cellular uptake. By using various combinations of conventional Cys modification, amber codon suppression, transferase mediated N-terminal modification, and native chemical ligation, several variants of singly- and doubly-labeled αS were produced. We validated the nonperturbative nature of the label by a combination of in vitro aggregation kinetics measurements and imaging of the resulting fibrils. The labeled αS can then be used to monitor conformational changes during fibril formation or cellular uptake of αS fibrils in models of disease propagation.
Collapse
Affiliation(s)
- Conor M Haney
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - Rebecca F Wissner
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - John B Warner
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - Dustin J Covell
- Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Richard J Karpowicz
- Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Uchihara T, Giasson BI. Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 2016; 131:49-73. [PMID: 26446103 PMCID: PMC4698305 DOI: 10.1007/s00401-015-1485-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 12/15/2022]
Abstract
Progressive aggregation of alpha-synuclein (αS) through formation of amorphous pale bodies to mature Lewy bodies or in neuronal processes as Lewy neurites may be the consequence of conformational protein changes and accumulations, which structurally represents "molecular template". Focal initiation and subsequent spread along anatomically connected structures embody "structural template". To investigate the hypothesis that both processes might be closely associated and involved in the progression of αS pathology, which can be observed in human brains, αS amyloidogenic precursors termed "seeds" were experimentally injected into the brain or peripheral nervous system of animals. Although these studies showed that αS amyloidogenic seeds can induce αS pathology, which can spread in the nervous system, the findings are still not unequivocal in demonstrating predominant transsynaptic or intraneuronal spreads either in anterograde or retrograde directions. Interpretation of some of these studies is further complicated by other concurrent aberrant processes including neuroimmune activation, injury responses and/or general perturbation of proteostasis. In human brain, αS deposition and neuronal degeneration are accentuated in distal axon/synapse. Hyperbranching of axons is an anatomical commonality of Lewy-prone systems, providing a structural basis for abundance in distal axons and synaptic terminals. This neuroanatomical feature also can contribute to such distal accentuation of vulnerability in neuronal demise and the formation of αS inclusion pathology. Although retrograde progression of αS aggregation in hyperbranching axons may be a consistent feature of Lewy pathology, the regional distribution and gradient of Lewy pathology are not necessarily compatible with a predictable pattern such as upward progression from lower brainstem to cerebral cortex. Furthermore, "focal Lewy body disease" with the specific isolated involvement of autonomic, olfactory or cardiac systems suggests that spread of αS pathology is not always consistent. In many instances, the regional variability of Lewy pathology in human brain cannot be explained by a unified hypothesis such as transsynaptic spread. Thus, the distribution of Lewy pathology in human brain may be better explained by variable combinations of independent focal Lewy pathology to generate "multifocal Lewy body disease" that could be coupled with selective but variable neuroanatomical spread of αS pathology. More flexible models are warranted to take into account the relative propensity to develop Lewy pathology in different Lewy-prone systems, even without interconnections, compatible with the expanding clinicopathological spectra of Lewy-related disorders. These revised models are useful to better understand the mechanisms underlying the variable progression of Lewy body diseases so that diagnostic and therapeutic strategies are improved.
Collapse
Affiliation(s)
- Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKinght Brain Institute, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610-0159, USA.
| |
Collapse
|