1
|
Yao B, Hu W, Chen Y, Li J, Jiang K, Dou J. Pan-cancer analysis of the TRAF family genes and their correlation with prognosis, TME, immune and drug sensitivity. Eur J Med Res 2024; 29:307. [PMID: 38825674 PMCID: PMC11145793 DOI: 10.1186/s40001-024-01875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Tumor necrosis factor receptor-associated factors family genes play a pivotal role in tumorigenesis and metastasis, functioning as adapters or E3 ubiquitin ligases across various signaling pathways. To date, limited research has explored the association between tumor necrosis factor receptor-associated factors family genes and the clinicopathological characteristics of tumors, immunity, and the tumor microenvironment (TME). This comprehensive study investigates the relationship between tumor necrosis factor receptor-associated factors family and prognosis, TME, immune response, and drug sensitivity in a pan-cancer context. METHODS Utilizing current public databases, this study examines the expression levels and prognostic significance of tumor necrosis factor receptor-associated factors family genes in a pan-cancer context through bioinformatic analysis. In addition, it investigates the correlation between tumor necrosis factor receptor-associated factors expression and various factors, including the TME, immune subtypes, stemness scores, and drug sensitivity in pan-cancer. RESULTS Elevated expression levels of tumor necrosis factor receptor-associated factor 2, 3, 4, and 7 were observed across various cancer types. Patients exhibiting high expression of these genes generally faced a worse prognosis. Furthermore, a significant correlation was noted between the expression of tumor necrosis factor receptor-associated factors family genes and multiple dimensions of the TME, immune subtypes, and drug sensitivity.
Collapse
Affiliation(s)
- Bin Yao
- Changshu NO.2 People's Hospital, Changshu, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Chen
- Huai'an Hospital Affiliated to Yangzhou University, Huai'an, China
| | - Jing Li
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jin Dou
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
- Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Alhammadi MA, Bajbouj K, Talaat IM, Hamoudi R. The role of RNA-modifying proteins in renal cell carcinoma. Cell Death Dis 2024; 15:227. [PMID: 38503745 PMCID: PMC10951318 DOI: 10.1038/s41419-024-06479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
Gene expression is one of the most critical cellular processes. It is controlled by complex mechanisms at the genomic, epigenomic, transcriptomic, and proteomic levels. Any aberration in these mechanisms can lead to dysregulated gene expression. One recently discovered process that controls gene expression includes chemical modifications of RNA molecules by RNA-modifying proteins, a field known as epitranscriptomics. Epitranscriptomics can regulate mRNA splicing, nuclear export, stabilization, translation, or induce degradation of target RNA molecules. Dysregulation in RNA-modifying proteins has been found to contribute to many pathological conditions, such as cancer, diabetes, obesity, cardiovascular diseases, and neurological diseases, among others. This article reviews the role of epitranscriptomics in the pathogenesis and progression of renal cell carcinoma. It summarizes the molecular function of RNA-modifying proteins in the pathogenesis of renal cell carcinoma.
Collapse
Affiliation(s)
- Muna A Alhammadi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America.
| | - Iman M Talaat
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Pathology Department, Faculty of Medicine, Alexandria University, 21131, Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, NW3 2PS, United Kingdom.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates.
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
3
|
Zhang X, Xu Y, Zhang W, Yang B, Zhang Y, Jia Z, Huang S, Zhang A, Li S. TRAF1 improves cisplatin-induced acute kidney injury via inhibition of inflammation and metabolic disorders. Biochim Biophys Acta Gen Subj 2023; 1867:130423. [PMID: 37419425 DOI: 10.1016/j.bbagen.2023.130423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Cisplatin-induced acute kidney injury (AKI) is a severe clinical complication with no satisfactory therapies in the clinic. Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) plays a vital role in both inflammation and metabolism. However, the TRAF1 effect in cisplatin induced AKI needs to be evaluated. METHODS We observed the role of TRAF1 in eight-week-old male mice and mouse proximal tubular cells both treated with cisplatin by examining the indicators associated with kidney injury, apoptosis, inflammation, and metabolism. RESULTS TRAF1 expression was decreased in cisplatin-treated mice and mouse proximal tubular cells (mPTCs), suggesting a potential role of TRAF1 in cisplatin-associated kidney injury. TRAF1 overexpression significantly alleviated cisplatin-triggered AKI and renal tubular injury, as demonstrated by reduced serum creatinine (Scr) and urea nitrogen (BUN) levels, as well as the ameliorated histological damage and inhibited upregulation of NGAL and KIM-1. Moreover, the NF-κB activation and inflammatory cytokine production enhanced by cisplatin were significantly blunted by TRAF1. Meanwhile, the increased number of apoptotic cells and enhanced expression of BAX and cleaved Caspase-3 were markedly decreased by TRAF1 overexpression both in vivo and vitro. Additionally, a significant correction of the metabolic disturbance, including perturbations in energy generation and lipid and amino acid metabolism, was observed in the cisplatin-treated mice kidneys. CONCLUSION TRAF1 overexpression obviously attenuated cisplatin-induced nephrotoxicity, possibly by correcting the impaired metabolism, inhibiting inflammation, and blocking apoptosis in renal tubular cells. GENERAL SIGNIFICANCE These observations emphasize the novel mechanisms associated to metabolism and inflammation of TRAF1 in cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ying Xu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wei Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Bingyu Yang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Aihua Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Shuzhen Li
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
4
|
Lin J, Chen P, Tan Z, Sun Y, Tam WK, Ao D, Shen W, Leung VYL, Cheung KMC, To MKT. Application of silver nanoparticles for improving motor recovery after spinal cord injury via reduction of pro-inflammatory M1 macrophages. Heliyon 2023; 9:e15689. [PMID: 37234658 PMCID: PMC10205515 DOI: 10.1016/j.heliyon.2023.e15689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.
Collapse
Affiliation(s)
- Jie Lin
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Peikai Chen
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
| | - Zhijia Tan
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
| | - Yi Sun
- Department of Sports Medicine, Peking University-Shenzhen Hospital, Shenzhen, Guangdong, 518034, China
| | - Wai Kit Tam
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Di Ao
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Wei Shen
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Victor Yu-Leong Leung
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Michael Kai Tsun To
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
5
|
The molecular mechanisms of vulpinic acid induced programmed cell death in melanoma. Mol Biol Rep 2022; 49:8273-8280. [PMID: 35960408 DOI: 10.1007/s11033-022-07619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUNDS Malignant melanoma is an aggressive skin tumor with a rapidly increasing incidence and there is not yet a successful treatment strategy. Vulpinic acid (VA) is derived from secondary metabolites from lichen species. In the current study, we, for the first time, investigated the anti-cancer effects of VA and the underlying mechanism VA induced programmed cell death in melanoma. METHODS The anti-cancer effects of VA on melanoma cells were evaluated by the xCELLigence system, flow cytometry, caspase-3 activity and RT-PCR analysis. RESULTS Our results showed that VA had a strong anti-proliferative effect on A-375 melanoma cells without damaging human epidermal melanocyte cells. Additionally, VA promoted apoptotic cell death through G2/M arrest and the activation of both intrinsic and extrinsic apoptosis pathways according to the analysis of 88 genes associated with apoptosis by qRT-PCR. CONCLUSIONS Our findings suggest that VA could become an alternative topical and transdermal treatment strategy in the treatment of maligned melanoma cancer. However, further investigations are needed to assess the underlying molecular mechanism of VA mediated apoptotic cell death in the treatment of melanoma.
Collapse
|
6
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF1 Exacerbates Myocardial Ischemia Reperfusion Injury via ASK1-JNK/p38 Signaling. J Am Heart Assoc 2019; 8:e012575. [PMID: 31650881 PMCID: PMC6898833 DOI: 10.1161/jaha.119.012575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background After acute myocardial infarction, the recovery of ischemic myocardial blood flow may cause myocardial reperfusion injury, which reduces the efficacy of myocardial reperfusion. Ways to reduce and prevent myocardial ischemia/reperfusion (I/R) injury are of great clinical significance in the treatment of patients with acute myocardial infarction. TRAF1 (tumor necrosis factor receptor-associated factor 1) is an important adapter protein that is implicated in molecular events regulating immunity, inflammation, and cell death. Little is known about the role and impact of TRAF1 in myocardial I/R injury. Methods and Results TRAF1 expression is markedly induced in wild-type mice and cardiomyocytes after I/R or hypoxia/reoxygenation stimulation. I/R models were established in TRAF1 knockout mice and wild type mice (n=10 per group). We demonstrated that TRAF1 deficiency protects against myocardial I/R-induced loss of heat function, inflammation, and cardiomyocyte death. In addition, overexpression of TRAF1 in primary cardiomyocytes promotes hypoxia/reoxygenation-induced inflammation and apoptosis in vitro. Mechanistically, TRAF1 promotes myocardial I/R injury through regulating ASK1 (apoptosis signal-regulating kinase 1)-mediated JNK/p38 (c-Jun N-terminal kinase/p38) MAPK (mitogen-activated protein kinase) cascades. Conclusions Our results indicated that TRAF1 aggravates the development of myocardial I/R injury by enhancing the activation of ASK1-mediated JNK/p38 cascades. Targeting the TRAF1-ASK1-JNK/p38 pathway provide feasible therapies for cardiac I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huang Shi China
| | - Li Zhang
- Center for Animal Experiment Wuhan University Wuhan China
| | - Yi Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Kai Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Yongbo Wu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Daoqun Jin
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| |
Collapse
|
8
|
Huang X, Gao Y, Qin J, Lu S. miR-214 Down-Regulation Promoted Hypoxia/Reoxygenation-Induced Hepatocyte Apoptosis Through TRAF1/ASK1/JNK Pathway. Dig Dis Sci 2019; 64:1217-1225. [PMID: 30560327 DOI: 10.1007/s10620-018-5405-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study investigated the role of miR-214 in the hepatocyte apoptosis induced by hypoxia/reoxygenation (H/R) injury. MATERIALS AND METHODS In vivo hepatic ischemia/reperfusion (HIR) injury, mice model and in vitro HR model were established. miR-214, TRAF1, ASK1, and JNK expression levels were detected by qRT-PCR and western blot. The apoptosis of mouse hepatocyte AML12 was detected by flow cytometry analysis. The interaction between miR-214 and TRAF1 was confirmed by dual-luciferase reporter gene assay. RESULTS Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were elevated in HIR injury mice compared with sham mice. miR-214 expression was down-regulated in liver tissues of HIR and H/R-induced hepatocytes, whereas TRAF1, ASK1, and JNK expressions were up-regulated in HIR and H/R groups. H/R stimulation promoted the apoptosis of hepatocytes, and miR-214 overexpression inhibited the apoptosis of hepatocytes. Besides, TRAF1 was a target of miR-214 and negatively regulated by miR-214. miR-214/TRAF1 pathway involved in the modulation of H/R-induced apoptosis of hepatocytes. In vivo study proved miR-214 reduced hepatic injury of HIR mice. CONCLUSION miR-214 overexpression reduces hepatocyte apoptosis after HIR injury through negatively regulating TRAF1/ASK1/JNK pathway.
Collapse
Affiliation(s)
- Xinli Huang
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yun Gao
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jianjie Qin
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Sen Lu
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Wen X, Wang B, Feng T, Yuan W, Zhou J, Fang T. TNF receptor-associated factor 1 as a biomarker for assessment of non-small cell lung cancer metastasis and overall survival. CLINICAL RESPIRATORY JOURNAL 2018. [PMID: 29528567 DOI: 10.1111/crj.12789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC), which comprises 80%-85% of all lung cancer cases, is one of the most common human malignancies. Despite great improvements in diagnostic technology and the introduction of new therapeutic agents in recent years, the 5-year survival rate of NSCLC is still low. Tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1) plays an important role in the TNF-related apoptosis-inducing ligand (TRAIL) associated signal pathway. METHODS In this study, we aim to illuminate the function of TRAF1 in NSCLC. Toward that end, TRAF1 expression was detected using immunohistochemistry (IHC) in specimens from 200 NSCLC patients. The function of TRAF1 in the A549 and H1299 cell lines was evaluated by colony formation and MTT assays. RESULTS Our data showed that TRAF1 was significantly upregulated in NSCLC tissues. TRAF1 expression was positively associated with NSCLC lymphatic metastasis and clinical stage and was negatively associated with overall patient survival. TRAF1 promoted NSCLC cell proliferation CONCLUSION: TRAF1 expression was positively associated with NSCLC lymphatic metastasis and histological grade and was negatively associated with overall patient survival. TRAF1 may be an important therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaoxing Wen
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Bingping Wang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Tao Feng
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Fang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| |
Collapse
|
10
|
Pang Y, Zhao J, Fowdur M, Liu Y, Wu H, He M. To Explore the Mechanism of the GRM4 Gene in Osteosarcoma by RNA Sequencing and Bioinformatics Approach. Med Sci Monit Basic Res 2018; 24:16-25. [PMID: 29339716 PMCID: PMC5782838 DOI: 10.12659/msmbr.908107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Glutamate metabotropic receptor 4 (GRM4) has been correlated with the pathogenesis of osteosarcoma. The objective of this study was to explore the underlying molecular mechanism of GRM4 in osteosarcoma. Material/Methods The expression levels of GRM4 in four human osteosarcoma cell lines and hFOB1.19 cells were examined by real-time quantitative PCR (RT-qPCR). The U2OS cells of the highest GRM4 expression were transfected with lentivirus-mediated small interfering RNA (siRNA). The differentially expressed genes (DEGs) after GRM4 gene silencing were screened through RNA sequencing, and analyzed by bioinformatics. Additionally, the transcription factors (TFs) targeting GRM4 were predicted and the downstream protein-protein interaction (PPI) network was constructed using the bioinformatics approach. Results A total of 51 significant DEGs were obtained, including 14 upregulated and 37 downregulated DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs indicated that four significant enrichment pathways were obtained. A total of six TFs that could be involved in the transcriptional regulation of GRM4 were detected. The results showed that 182 genes in the PPI network were significantly enriched in 14 pathways. The chemokines and chemokine receptors were found to be significantly enriched in three pathways. Conclusions The DEGs in the four significant enrichment pathways might participate in the development and progression of osteosarcoma through GRM4. The results revealed that EGR1 and CTCF are probably involved in the transcriptional regulation of GRM4, which participates in the progress of osteosarcoma by interacting with chemokines and their receptors.
Collapse
Affiliation(s)
- Yunguo Pang
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mitra Fowdur
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yun Liu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hao Wu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
11
|
Xu B, Li J, Liu X, Li C, Chang X. TXNDC5 is a cervical tumor susceptibility gene that stimulates cell migration, vasculogenic mimicry and angiogenesis by down-regulating SERPINF1 and TRAF1 expression. Oncotarget 2017; 8:91009-91024. [PMID: 29207620 PMCID: PMC5710901 DOI: 10.18632/oncotarget.18857] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/10/2017] [Indexed: 12/16/2022] Open
Abstract
TXNDC5 (thioredoxin domain-containing protein 5) catalyzes disulfide bond formation, isomerization and reduction. Studies have reported that TXNDC5 expression is increased in some tumor tissues and that its increased expression can predict a poor prognosis. However, the tumorigenic mechanism has not been well characterized. In this study, we detected a significant association between the rs408014 and rs7771314 SNPs at the TXNDC5 locus and cervical carcinoma using the Taqman genotyping method. We also detected a significantly increased expression of TXNDC5 in cervical tumor tissues using immunohistochemistry and Western blot analysis. Additionally, inhibition of TXNDC5 expression using siRNA prevented tube-like structure formation, an experimental indicator of vasculogenic mimicry and metastasis, in HeLa cervical tumor cells. Inhibiting TXNDC5 expression simultaneously led to the increased expression of SERPINF1 (serpin peptidase inhibitor, clade F) and TRAF1 (TNF receptor-associated factor 1), which have been reported to inhibit angiogenesis and metastasis as well as induce apoptosis. This finding was confirmed in Caski and C-33A cervical tumor cell lines. The ability to form tube-like structures was rescued in HeLa cells simultaneously treated with anti-TXNDC5, SERPINF1 and TRAF1 siRNAs. Furthermore, the inhibition of TXNDC5 expression significantly attenuated endothelial tube formation, a marker of angiogenesis, in human umbilical vein endothelial cells. The present study suggests that TXNDC5 is a susceptibility gene in cervical cancer, and high expression of this gene contributes to abnormal angiogenesis, vasculogenic mimicry and metastasis by down-regulating SERPINF1 and TRAF1 expression.
Collapse
Affiliation(s)
- Bing Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Jian Li
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaoxin Liu
- Blood Transfusion Department of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chang Li
- Pathology Department of Tengzhou Central People's Hospital, Tengzhou, P. R. China
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
12
|
Yamamoto H, Ryu J, Min E, Oi N, Bai R, Zykova TA, Yu DH, Moriyama K, Bode AM, Dong Z. TRAF1 Is Critical for DMBA/Solar UVR-Induced Skin Carcinogenesis. J Invest Dermatol 2017; 137:1322-1332. [PMID: 28131816 DOI: 10.1016/j.jid.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
Abstract
TRAF1 is a member of the TRAF protein family, which regulates the canonical and noncanonical NF-κB signaling cascades. Although aberrant TRAF1 expression in tumors has been reported, the role of TRAF1 remains elusive. Here, we report that TRAF1 is required for solar UV-induced skin carcinogenesis. Immunohistochemical analysis showed that TRAF1 expression is up-regulated in human actinic keratosis and squamous cell carcinoma. In vivo studies indicated that TRAF1 expression levels in mouse skin are induced by short-term solar UV irradiation, and a long-term skin carcinogenesis study showed that deletion of TRAF1 in mice results in a significant inhibition of skin tumor formation. Moreover, we show that TRAF1 is required for solar UV-induced extracellular signal-regulated kinase-5 (ERK5) phosphorylation and the expression of AP-1 family members (c-Fos/c-Jun). Mechanistic studies showed that TRAF1 expression enhances the ubiquitination of ERK5 on lysine 184, which is necessary for its kinase activity and AP-1 activation. Overall, our results suggest that TRAF1 mediates ERK5 activity by regulating the upstream effectors of ERK5 and also by modulating its ubiquitination status. Targeting TRAF1 function might lead to strategies for preventing and treating skin cancer.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Eli Min
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Naomi Oi
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Tatyana A Zykova
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kenji Moriyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA.
| |
Collapse
|
13
|
Tumour necrosis factor receptor-associated factor-1 (TRAF-1) expression is increased in renal cell carcinoma patient serum but decreased in cancer tissue compared with normal: potential biomarker significance. Pathology 2016; 46:518-22. [PMID: 25158810 DOI: 10.1097/pat.0000000000000145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renal cell carcinoma (RCC) generally has a poor prognosis because of late diagnosis and metastasis. We have previously described decreased tumour necrosis factor receptor-associated factor-1 (TRAF-1) in RCC compared with paired normal kidney in a patient cohort in Australia. In the present study, TRAF-1 expression in clear cell RCC (ccRCC) and normal kidney was again compared, but in a cohort from University Malaya Medical Centre. Serum TRAF-1 was also evaluated in RCC and normal samples.Immunohistochemistry with automated batch staining and Aperio ImageScope morphometry was used to compare TRAF-1 in 61 ccRCC with paired normal kidney tissue. Serum from 15 newly diagnosed and untreated ccRCC and 15 healthy people was tested for TRAF-1 using ELISA.In this cohort, TRAF-1 was highly expressed in proximal tubular epithelium of normal kidney, and significantly decreased in ccRCC tissue (p < 0.001). Conversely, TRAF-1 in serum from ccRCC patients was significantly increased over control serum (132 ± 30 versus 54 ± 14 pg/mL, respectively; p = 0.013).Decreased TRAF-1 in RCC tissue, reported previously, was confirmed. This, along with significantly increased serum TRAF-1 may indicate the protein is actively secreted during development and progression of ccRCC. Therefore, the increased serum TRAF-1 may be a useful non-invasive indicator of RCC development.
Collapse
|
14
|
Wan XK, Yuan SL, Wang YC, Tao HX, Jiang W, Guan ZY, Cao C, Liu CJ. Helicobacter pylori inhibits the cleavage of TRAF1 via a CagA-dependent mechanism. World J Gastroenterol 2016; 22:10566-10574. [PMID: 28082808 PMCID: PMC5192267 DOI: 10.3748/wjg.v22.i48.10566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/05/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To study the impact on cleavage of tumor necrosis factor receptor-associated factor 1 (TRAF1) regulated by Helicobacter pylori (H. pylori).
METHODS Cleavage of TRAF1 was detected by western blotting in the human gastric cancer cell line AGS following treatment with an apoptosis inducer. Cleavage of TRAF1 mediated by caspase was examined in vitro using specific caspase inhibitors. The effect of the COOH-terminal TRAF1 fragment on gastric cell apoptosis during H. pylori infection was measured using flow cytometry. The impact of H. pylori infection on TRAF1 cleavage was detected in the presence of apoptosis inducer. The roles of H. pylori virulence factors that may regulate TRAF1 cleavage were analyzed using isogenic cagA-, vacA- and cagE-null mutants.
RESULTS TRAF1 was found to be cleaved in AGS cells treated with the apoptosis inducer, and caspase-8 was the major caspase involved in the cleavage of TRAF1. The COOH-terminal TRAF1 fragment significantly induced cell apoptosis (P < 0.05) as well as promoted H. pylori-induced cell apoptosis (P < 0.05). H. pylori infection was found to significantly inhibit the cleavage of TRAF1 and to inhibit the activation of caspase-8 in the presence of the apoptosis inducer at specific infection times and different cell/bacteria ratios. We also found that the effects of cagE- and cagA-null mutants on the inhibition of TRAF1 cleavage and activation of caspase-8 were significantly attenuated, compared with wild-type H. pylori, in the presence of the apoptosis inducer, showing that the virulence factor CagA was mainly involved in the inhibition of TRAF1 cleavage.
CONCLUSION H. pylori infection significantly inhibits the cleavage of TRAF1 via a CagA-dependent mechanism, which would increase the relative amounts of full-length TRAF1 and exert an antiapoptotic effect on H. pylori-infected cells.
Collapse
|
15
|
Wan XK, Yuan SL, Tao HX, Diao LP, Wang YC, Cao C, Liu CJ. The Upregulation of TRAF1 Induced by Helicobacter pylori Plays an Antiapoptotic Effect on the Infected Cells. Helicobacter 2016; 21:554-564. [PMID: 27060717 DOI: 10.1111/hel.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a member of the TRAF family and is dysregulated in diseases, such as atheroma, lymphoma, and solid tumors, but the role of TRAF1 in gastric cancer remains unknown. This study was aimed to investigate the role of TRAF1 in Helicobacter pylori (H. pylori)-related cell apoptosis and gastric carcinogenesis. MATERIALS AND METHODS The mRNA and protein expression levels of TRAF1 were measured in a panel of gastric cancer cell lines and in H. pylori -infected mice by quantitative real-time PCR (qPCR) and Western blotting. The transcription factor that mainly affects transcription of TRAF1 during H. pylori infection was identified. The roles of H. pylori virulence factors that regulate TRAF1 expression were analyzed using isogenic cagA-, vacA-, and cagE-null mutants. The effects of TRAF1 on gastric cell viability and apoptosis during H. pylori infection were detected using the standard MTS (cell viability) assay and flow cytometry, respectively. RESULTS H. pylori infection induced TRAF1 overexpression in both gastric epithelial cells and mice. The expression of TRAF1 in response to H. pylori infection was majorly regulated by the activation of NF-κB and was strongly related to H. pylori virulence factor CagA. The upregulation of TRAF1 inhibited cell apoptosis and increased the viability of infected cells. CONCLUSIONS H. pylori infection induces the overexpression of TRAF1 in gastric epithelial cells. The upregulation of TRAF1 plays an antiapoptotic role in H. pylori -infected gastric cells and may contribute to the gastric carcinogenesis.
Collapse
Affiliation(s)
- Xiu-Kun Wan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Sheng-Ling Yuan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hao-Xia Tao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Li-Peng Diao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan-Chun Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chun-Jie Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
16
|
Decreased Expression of Inhibitor of Caspase-Activated DNase (ICAD) in Renal Cell Carcinoma - Tissue Microarray of Human Samples. J Kidney Cancer VHL 2016; 3:1-11. [PMID: 28326275 PMCID: PMC5345525 DOI: 10.15586/jkcvhl.2016.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023] Open
Abstract
Although primary localised tumours of renal cell carcinoma (RCC) can be treated relatively successfully with surgery, metastatic RCC has poor prognosis because of late diagnosis and resistance to therapies. In the present study, we were interested in profiling the protein expression of “inhibitor of caspase-activated DNase” (ICAD), an apoptosis inhibitor, in kidney cancer and its paired normal kidney. Immunohistochemistry with automated batch staining and morphometry using digital pathology were used to compare ICAD in 121 RCC specimens with their paired normal kidney tissue. Tissue microarray of formalin-fixed, paraffin-embedded archival tissue was used. Intensity and localisation of ICAD were compared between normal and cancer samples, and against grading within the cancers. The results demonstrated that, in this cohort, ICAD was highly expressed in the proximal tubular epithelium of normal kidney, and significantly decreased in clear cell RCC tissue (p < 0.05) as well as other subtypes of RCC (p < 0.01) compared with normal kidney. There was a tendency towards nuclear localisation of ICAD in clear cell RCC, but not in other subtypes of RCC. No significant association was found between ICAD intensity and grade of RCC. In summary, down-regulation of ICAD occurs in RCC. ICAD normally inhibits DNA fragmentation and apoptosis; thus, its down-regulation was unexpected in a cancer known for its resistance to apoptosis. However, these RCC samples were from primary, not metastatic, RCC sites, and down-regulated ICAD may be part of a progressive pathway that promotes RCC metastasis.
Collapse
|
17
|
Gobe GC, Ng KL, Small DM, Vesey DA, Johnson DW, Samaratunga H, Oliver K, Wood S, Barclay JL, Rajandram R, Li L, Morais C. Decreased apoptosis repressor with caspase recruitment domain confers resistance to sunitinib in renal cell carcinoma through alternate angiogenesis pathways. Biochem Biophys Res Commun 2016; 473:47-53. [PMID: 26995091 DOI: 10.1016/j.bbrc.2016.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 11/15/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC), an endogenous inhibitor of apoptosis, is upregulated in a number of human cancers, thereby conferring drug resistance and giving a rationale for the inhibition of ARC to overcome drug resistance. Our hypothesis was that ARC would be similarly upregulated and targetable for therapy in renal cell carcinoma (RCC). Expression of ARC was assessed in 85 human RCC samples and paired non-neoplastic kidney by qPCR and immunohistochemistry, as well as in four RCC cell lines by qPCR, Western immunoblot and confocal microscopy. Contrary to expectations, ARC was significantly decreased in the majority of clear cell RCC and in three (ACHN, Caki-1 and 786-0) of the four RCC cell lines compared with the HK-2 non-cancerous human proximal tubular epithelial cell line. Inhibition of ARC with shRNA in the RCC cell line (SN12K1) that had shown increased ARC expression conferred resistance to Sunitinib, and upregulated interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). We therefore propose that decreased ARC, particularly in clear cell RCC, confers resistance to targeted therapy through restoration of tyrosine kinase-independent alternate angiogenesis pathways. Although the results are contrary to expectations from other cancer studies, they were confirmed here with multiple analytical methods. We believe the highly heterogeneous nature of cancers like RCC predicate that expression patterns of molecules must be interpreted in relation to respective matched non-neoplastic regions. In the current study, this procedure indicated that ARC is decreased in RCC.
Collapse
Affiliation(s)
- Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Keng Lim Ng
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Urology, Princess Alexandra Hospital, Wollongabba Queensland, Australia
| | - David M Small
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Renal Medicine, The University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Renal Medicine, The University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| | - Hemamali Samaratunga
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia; Aquesta Pathology, Brisbane, Australia
| | - Kimberley Oliver
- Anatomical Pathology, Princess Alexandra Hospital, Wollongabba, Queensland, Australia
| | - Simon Wood
- Department of Urology, Princess Alexandra Hospital, Wollongabba Queensland, Australia
| | | | - Retnagowri Rajandram
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Li Li
- Laboratory of Translational Cancer Research, Ochsner Health System, New Orleans, LA, USA
| | - Christudas Morais
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Queensland, 4102, Australia.
| |
Collapse
|
18
|
Liu X, Hemminki K, Försti A, Sundquist J, Sundquist K, Ji J. Cancer risk and mortality in asthma patients: A Swedish national cohort study. Acta Oncol 2015; 54:1120-7. [PMID: 25608824 DOI: 10.3109/0284186x.2014.1001497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous studies found an increased risk of cancer in hospitalized asthma patients, but it is not known whether patients from primary health care show a similar risk pattern. In addition, it is unclear whether the diagnosis of asthma can influence the prognosis of subsequent cancer. METHODS Asthma patients were identified from Swedish inpatient, outpatient, and primary health care registers, and were linked to the Swedish Cancer Registry to identify subsequent diagnoses of cancer. Standardized incidence ratios (SIRs) were used to examine the risk of cancer in asthma patients compared with subjects without asthma. In addition, we used Cox proportional hazards regression to estimate hazard ratios (HRs) for mortality in patients with both asthma and cancer. RESULTS A total of 10 649 cancers were diagnosed in patients with previous asthma, with a SIR of 1.19 (95% CI 1.17-1.21). A total of 15 cancer sites showed an increased incidence, whereas two cancer sites showed a decreased risk. Non-allergic asthma showed the highest risk of cancer (SIR = 1.25, 95% CI 1.18-1.32), followed by unspecified asthma (SIR = 1.22, 95% CI 1.19-1.25), status asthmaticus (SIR = 1.19, 95% CI 1.02-1.39), and allergic asthma (SIR = 1.14, 95% CI 1.06-1.22). The risk of cancer was similarly increased in asthma patients diagnosed in primary health care and those diagnosed in hospitals. Cancer patients with previous asthma had increased mortality, with a HR of 1.55 (95% CI 1.50-1.60). HRs ranged from 1.09 to 1.94 for different sites/types of cancer. CONCLUSIONS Patients with asthma, irrespective of whether they were treated in primary health care or hospitals, had an increased risk of cancer. In addition, cancer patients with previous asthma had a worse prognosis compared with those without asthma, suggesting that these patients may require a multidisciplinary approach to manage the comorbidity.
Collapse
Affiliation(s)
- Xiangdong Liu
- a Center for Primary Health Care Research, Lund University , Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Zhang XF, Zhang R, Huang L, Wang PX, Zhang Y, Jiang DS, Zhu LH, Tian S, Zhang XD, Li H. TRAF1 is a key mediator for hepatic ischemia/reperfusion injury. Cell Death Dis 2014; 5:e1467. [PMID: 25321474 PMCID: PMC4649517 DOI: 10.1038/cddis.2014.411] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, is involved in immunity and in apoptotic processes in various cell types. However, little is known about its function and the molecular mechanism of its activation during liver injury. This study tested the hypothesis that TRAF1 is a mediator of cell injury after hepatic ischemia/reperfusion injury (I/R). In a mouse hepatic I/R injury model, we found that TRAF1 expression was highly induced. TRAF1 deficiency was liver protective, whereas sustained TRAF1 overexpression aggravated liver injury in response to hepatic I/R injury. Mechanistic studies demonstrated that a deficiency of TRAF1 in cultured hepatocytes led to the inhibition of NF-κB-mediated inflammatory responses, suppression of the ASK/JNK pro-death pathway and promotion of cellular regeneration capacity. In contrast, the converse occurred in hepatocyte-specific TRAF1 transgenic mice. TRAF1 activated the ASK1/JNK pathway and promoted hepatic injury. Our study demonstrates that TRAF1 is a crucial early mediator of hepatic I/R injury and suggests that TRAF1 may be a potential gene therapy target for the treatment of liver injury.
Collapse
Affiliation(s)
- X-F Zhang
- College of Life Sciences, Wuhan University, Wuhan, PR China
| | - R Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - L Huang
- 1] Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China [2] Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - P-X Wang
- 1] Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China [2] Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Y Zhang
- 1] Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China [2] Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - D-S Jiang
- 1] Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China [2] Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - L-H Zhu
- 1] Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China [2] Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - S Tian
- 1] Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China [2] Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - X-D Zhang
- College of Life Sciences, Wuhan University, Wuhan, PR China
| | - H Li
- 1] Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China [2] Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Dai Z, Arévalo MT, Li J, Zeng M. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery. Bioengineered 2013; 5:30-7. [PMID: 24424156 PMCID: PMC4008463 DOI: 10.4161/bioe.27339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.
Collapse
Affiliation(s)
- Zhi Dai
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Maria T Arévalo
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Junwei Li
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Mingtao Zeng
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| |
Collapse
|
21
|
Lu YY, Li ZZ, Jiang DS, Wang L, Zhang Y, Chen K, Zhang XF, Liu Y, Fan GC, Chen Y, Yang Q, Zhou Y, Zhang XD, Liu DP, Li H. TRAF1 is a critical regulator of cerebral ischaemia-reperfusion injury and neuronal death. Nat Commun 2013; 4:2852. [PMID: 24284943 PMCID: PMC3868160 DOI: 10.1038/ncomms3852] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/31/2013] [Indexed: 01/08/2023] Open
Abstract
Stroke is a leading global cause of mortality and disability. Less than 5% of patients are able to receive tissue plasminogen activator thrombolysis within the necessary timeframe. Focusing on the process of neuronal apoptosis in the penumbra, which lasts from hours to days after ischaemia, appears to be promising. Here we report that tumour necrosis factor receptor-associated factor 1 (TRAF1) expression is markedly induced in wild-type mice 6 h after stroke onset. Using genetic approaches, we demonstrate that increased neuronal TRAF1 leads to elevated neuronal death and enlarged ischaemic lesions, whereas TRAF1 deficiency is neuroprotective. In addition, TRAF1-mediated neuroapoptosis correlates with the activation of the JNK pro-death pathway and inhibition of the Akt cell survival pathway. Finally, TRAF1 is found to exert pro-apoptotic effects via direct interaction with ASK1. Thus, ASK1 positively and negatively regulates the JNK and Akt signalling pathways, respectively. Targeting the TRAF1/ASK1 pathway may provide feasible therapies for stroke long after onset.
Collapse
Affiliation(s)
- Yan-Yun Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
- These authors contributed equally to this work
| | - Zuo-Zhi Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- These authors contributed equally to this work
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
- These authors contributed equally to this work
| | - Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Ke Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | - Yingjie Chen
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-3360, USA
| | - Yan Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Dong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| |
Collapse
|