1
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025:10.1038/s41582-025-01073-y. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Fernandes DC, Silva-de-França F, Pohl PC, Eto SF, Sardinha LR, Lambris JD, Tambourgi DV. Cp40-mediated complement C3 inhibition dampens inflammasome activation and inflammatory mediators storm induced by Bitis arietans venom. Int Immunopharmacol 2025; 147:113701. [PMID: 39809101 DOI: 10.1016/j.intimp.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
The complement system plays a crucial role in various pathophysiological conditions, including snake envenomation. In this study, we investigated the effects of Bitis arietans venom on the complement system using an ex vivo human whole blood model. Our findings demonstrate that B. arietans venom was able to activate the complement system, leading to a significant increase in the production of anaphylatoxins (C3a/C3a-desArg, C5a/C5a-desArg) and the soluble Terminal Complement Complex (sTCC). Inhibition of the C3 component by Cp40, a C3-C3b inhibitor, resulted in the reduction of C3a/C3a-desArg, C5a/C5a-desArg, and sTCC levels to baseline in venom-stimulated samples. Furthermore, treatment with Cp40 promoted a substantial decrease in the production of pro-inflammatory mediators, such as Prostaglandin E2 (PGE2), IL-8/CXCL8, MCP-1/CCL2, and MIG/CXCL9. To further elucidate the molecular mechanisms, we utilized the THP-1 cell line differentiated into M0 macrophages. Incubation of these macrophages with human plasma, from the human whole blood treated with B. arietans venom, resulted in the expression of the NLRP3 inflammasome and the production of IL-8 and IL-1β. Importantly, Cp40 was able to diminish the production of these cytokines, as well as the levels of ASC and caspase-1 proteins. In conclusion, our results indicate that the inhibition of the complement by Cp40 at C3/C3b level can modulate the inflammatory response and inflammasome activation induced by B. arietans venom. These findings suggest that complement inhibition may be a promising therapeutic approach for managing the inflammatory complications associated with this snake envenomation.
Collapse
Affiliation(s)
- Dayanne Carla Fernandes
- Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil; Center of Toxins, Cell Signaling and Immune Response (CeTICS), CEPID, FAPESP, Brazil
| | - Felipe Silva-de-França
- Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil; Center of Toxins, Cell Signaling and Immune Response (CeTICS), CEPID, FAPESP, Brazil
| | | | | | | | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil; Center of Toxins, Cell Signaling and Immune Response (CeTICS), CEPID, FAPESP, Brazil.
| |
Collapse
|
3
|
Mannes M, Savukoski S, Ignatius A, Halbgebauer R, Huber-Lang M. Crepuscular rays - The bright side of complement after tissue injury. Eur J Immunol 2024; 54:e2350848. [PMID: 38794857 DOI: 10.1002/eji.202350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Susa Savukoski
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
Costantini TW, Kornblith LZ, Pritts T, Coimbra R. The intersection of coagulation activation and inflammation after injury: What you need to know. J Trauma Acute Care Surg 2024; 96:347-356. [PMID: 37962222 PMCID: PMC11001294 DOI: 10.1097/ta.0000000000004190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Affiliation(s)
- Todd W Costantini
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (T.W.C.), UC San Diego School of Medicine, San Diego; Department of Surgery (L.Z.K.), Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California; Department of Surgery (T.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio; and Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California
| | | | | | | |
Collapse
|
5
|
Dai L, Chen Y, Wu J, He Z, Zhang Y, Zhang W, Xie Y, Zeng H, Zhong X. A novel complement C3 inhibitor CP40-KK protects against experimental pulmonary arterial hypertension via an inflammasome NLRP3 associated pathway. J Transl Med 2024; 22:164. [PMID: 38365806 PMCID: PMC10870435 DOI: 10.1186/s12967-023-04741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disease characterized by complement dependent and proinflammatory activation of macrophages. However, effective treatment for complement activation in PAH is lacking. We aimed to explore the effect and mechanism of CP40-KK (a newly identified analog of selective complement C3 inhibitor CP40) in the PAH model. METHODS We used western blotting, immunohistochemistry, and immunofluorescence staining of lung tissues from the monocrotaline (MCT)-induced rat PAH model to study macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1β and IL-18) release. Surface plasmon resonance (SPR), ELISA, and CH50 assays were used to test the affinity between CP40-KK and rat/human complement C3. CP40-KK group rats only received CP40-KK (2 mg/kg) by subcutaneous injection at day 15 to day 28 continuously. RESULTS C3a was significantly upregulated in the plasma of MCT-treated rats. SPR, ELISA, and CH50 assays revealed that CP40-KK displayed similar affinity binding to human and rat complement C3. Pharmacological inhibition of complement C3 cleavage (CP40-KK) could ameliorate MCT-induced NLRP3 inflammasome activity, pulmonary vascular remodeling, and right ventricular hypertrophy. Mechanistically, increased proliferation of pulmonary arterial smooth muscle cells is closely associated with macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1β and IL-18) release. Besides, C3a enhanced IL-1β activity in macrophages and promoted pulmonary arterial smooth muscle cell proliferation in vitro. CONCLUSION Our findings suggest that CP40-KK treatment was protective in the MCT-induced rat PAH model, which might serve as a therapeutic option for PAH.
Collapse
Affiliation(s)
- Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Jinhua Wu
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, Guangxi, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yueqi Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yang Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| | - Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Rayatdoost F, Grottke O. The Use of Large Animal Models in Trauma and Bleeding Studies. Hamostaseologie 2023; 43:360-373. [PMID: 37696297 DOI: 10.1055/a-2118-1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Major trauma often results in significant bleeding and coagulopathy, posing a substantial clinical burden. To understand the underlying pathophysiology and to refine clinical strategies to overcome coagulopathy, preclinical large animal models are often used. This review scrutinizes the clinical relevance of large animal models in hemostasis research, emphasizing challenges in translating findings into clinical therapies. METHODS We conducted a thorough search of PubMed and EMBASE databases from January 1, 2010, to December 31, 2022. We used specific keywords and inclusion/exclusion criteria centered on large animal models. RESULTS Our review analyzed 84 pertinent articles, including four animal species: pigs, sheep, dogs, and nonhuman primates (NHPs). Eighty-five percent of the studies predominantly utilized porcine models. Meanwhile, sheep and dogs were less represented, making up only 2.5% of the total studies. Models with NHP were 10%. The most frequently used trauma models involved a combination of liver injury and femur fractures (eight studies), arterial hemorrhage (seven studies), and a combination of hemodilution and liver injury (seven studies). A wide array of coagulation parameters were employed to assess the efficacy of interventions in hemostasis and bleeding control. CONCLUSIONS Recognizing the diverse strengths and weaknesses of large animal models is critical for trauma and hemorrhage research. Each model is unique and should be chosen based on how well it aligns with the specific scientific objectives of the study. By strategically considering each model's advantages and limitations, we can enhance our understanding of trauma and hemorrhage pathophysiology and further advance the development of effective treatments.
Collapse
Affiliation(s)
- Farahnaz Rayatdoost
- Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Oliver Grottke
- Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Fernandes DC, Tambourgi DV. Complement System Inhibitory Drugs in a Zebrafish ( Danio rerio) Model: Computational Modeling. Int J Mol Sci 2023; 24:13895. [PMID: 37762197 PMCID: PMC10530807 DOI: 10.3390/ijms241813895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.
Collapse
Affiliation(s)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| |
Collapse
|
8
|
Huang Q, Gao S, Yao Y, Wang Y, Li J, Chen J, guo C, Zhao D, Li X. Innate immunity and immunotherapy for hemorrhagic shock. Front Immunol 2022; 13:918380. [PMID: 36091025 PMCID: PMC9453212 DOI: 10.3389/fimmu.2022.918380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the innate immune response plays a central role in the pathophysiology ofthe severe complications and organ injury in surviving patients. During the development of HS, innate immunity acts as the first line of defense, mediating a rapid response to pathogens or danger signals through pattern recognition receptors. The early and exaggerated activation of innate immunity, which is widespread in patients with HS, results in systemic inflammation, cytokine storm, and excessive activation of complement factors and innate immune cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells. Recently, compelling evidence focusing on the innate immune regulation in preclinical and clinical studies promises new treatment avenues to reverse or minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality. In this review, we first discuss the innate immune response involved in HS injury, and then systematically detail the cutting-edge therapeutic strategies in the past decade regarding the innate immune regulation in this field; these strategies include the use of mesenchymal stem cells, exosomes, genetic approaches, antibody therapy, small molecule inhibitors, natural medicine, mesenteric lymph drainage, vagus nerve stimulation, hormones, glycoproteins, and others. We also reviewed the available clinical studies on immune regulation for treating HS and assessed the potential of immune regulation concerning a translation from basic research to clinical practice. Combining therapeutic strategies with an improved understanding of how the innate immune system responds to HS could help to identify and develop targeted therapeutic modalities that mitigate severe organ dysfunction, improve patient outcomes, and reduce mortality due to HS injury.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd., Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yisa Wang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chen guo
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| |
Collapse
|
9
|
Leonel TB, Gabrili JJM, Squaiella-Baptistão CC, Woodruff TM, Lambris JD, Tambourgi DV. Bothrops jararaca Snake Venom Inflammation Induced in Human Whole Blood: Role of the Complement System. Front Immunol 2022; 13:885223. [PMID: 35720304 PMCID: PMC9201114 DOI: 10.3389/fimmu.2022.885223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical manifestations of envenomation by Bothrops species are complex and characterized by prominent local effects that can progress to tissue loss, physical disability, or amputation. Systemic signs can also occur, such as hemorrhage, coagulopathy, shock, and acute kidney failure. The rapid development of local clinical manifestations is accompanied by the presence of mediators of the inflammatory process originating from tissues damaged by the bothropic venom. Considering the important role that the complement system plays in the inflammatory response, in this study, we analyzed the action of Bothrops jararaca snake venom on the complement system and cell surface receptors involved in innate immunity using an ex vivo human whole blood model. B. jararaca venom was able to induce activation of the complement system in the human whole blood model and promoted a significant increase in the production of anaphylatoxins C3a/C3a-desArg, C4a/C4a-desArg, C5a/C5a-desArg and sTCC. In leukocytes, the venom of B. jararaca reduced the expression of CD11b, CD14 and C5aR1. Inhibition of the C3 component by Cp40, an inhibitor of C3, resulted in a reduction of C3a/C3a-desArg, C5a/C5a-desArg and sTCC to basal levels in samples stimulated with the venom. Exposure to B. jararaca venom induced the production of inflammatory cytokines and chemokines such as TNF-α, IL-8/CXCL8, MCP-1/CCL2 and MIG/CXCL9 in the human whole blood model. Treatment with Cp40 promoted a significant reduction in the production of TNF-α, IL-8/CXCL8 and MCP-1/CCL2. C5aR1 inhibition with PMX205 also promoted a reduction of TNF-α and IL-8/CXCL8 to basal levels in the samples stimulated with venom. In conclusion, the data presented here suggest that the activation of the complement system promoted by the venom of the snake B. jararaca in the human whole blood model significantly contributes to the inflammatory process. The control of several inflammatory parameters using Cp40, an inhibitor of the C3 component, and PMX205, a C5aR1 antagonist, indicates that complement inhibition may represent a potential therapeutic tool in B. jararaca envenoming.
Collapse
Affiliation(s)
| | | | | | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
10
|
Abstract
Patients in the intensive care unit (ICU) often straddle the divide between life and death. Understanding the complex underlying pathomechanisms relevant to such situations may help intensivists select broadly acting treatment options that can improve the outcome for these patients. As one of the most important defense mechanisms of the innate immune system, the complement system plays a crucial role in a diverse spectrum of diseases that can necessitate ICU admission. Among others, myocardial infarction, acute lung injury/acute respiratory distress syndrome (ARDS), organ failure, and sepsis are characterized by an inadequate complement response, which can potentially be addressed via promising intervention options. Often, ICU monitoring and existing treatment options rely on massive intervention strategies to maintain the function of vital organs, and these approaches can further contribute to an unbalanced complement response. Artificial surfaces of extracorporeal organ support devices, transfusion of blood products, and the application of anticoagulants can all trigger or amplify undesired complement activation. It is, therefore, worth pursuing the evaluation of complement inhibition strategies in the setting of ICU treatment. Recently, clinical studies in COVID-19-related ARDS have shown promising effects of central inhibition at the level of C3 and paved the way for prospective investigation of this approach. In this review, we highlight the fundamental and often neglected role of complement in the ICU, with a special focus on targeted complement inhibition. We will also consider complement substitution therapies to temporarily counteract a disease/treatment-related complement consumption.
Collapse
|
11
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
12
|
Mollnes TE, Storm BS, Brekke OL, Nilsson PH, Lambris JD. Application of the C3 inhibitor compstatin in a human whole blood model designed for complement research - 20 years of experience and future perspectives. Semin Immunol 2022; 59:101604. [PMID: 35570131 DOI: 10.1016/j.smim.2022.101604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 01/15/2023]
Abstract
The complex molecular and cellular biological systems that maintain host homeostasis undergo continuous crosstalk. Complement, a component of innate immunity, is one such system. Initially regarded as a system to protect the host from infection, complement has more recently been shown to have numerous other functions, including involvement in embryonic development, tissue modeling, and repair. Furthermore, the complement system plays a major role in the pathophysiology of many diseases. Through interactions with other plasma cascades, including hemostasis, complement activation leads to the broad host-protective response known as thromboinflammation. Most complement research has been limited to reductionistic models of purified components and cells and their interactions in vitro. However, to study the pathophysiology of complement-driven diseases, including the interaction between the complement system and other inflammatory systems, holistic models demonstrating only minimal interference with complement activity are needed. Here we describe two such models; whole blood anticoagulated with either the thrombin inhibitor lepirudin or the fibrin polymerization peptide blocker GPRP, both of which retain complement activity and preserve the ability of complement to be mutually reactive with other inflammatory systems. For instance, to examine the relative roles of C3 and C5 in complement activation, it is possible to compare the effects of the C3 inhibitor compstatin effects to those of inhibitors of C5 and C5aR1. We also discuss how complement is activated by both pathogen-associated molecular patterns, inducing infectious inflammation caused by organisms such as Gram-negative and Gram-positive bacteria, and by sterile damage-associated molecular patterns, including cholesterol crystals and artificial materials used in clinical medicine. When C3 is inhibited, it is important to determine the mechanism by which inflammation is attenuated, i.e., whether the attenuation derives directly from C3 activation products or via downstream activation of C5, since the mechanism involved may determine the appropriate choice of inhibitor under various conditions. With some exceptions, most inflammatory responses are dependent on C5 and C5aR1; one exception is venous air embolism, in which air bubbles enter the blood circulation and trigger a mainly C3-dependent thromboembolism, with the formation of an active C3 convertase, without a corresponding C5 activation. Under such conditions, an inhibitor of C3 is needed to attenuate the inflammation. Our holistic blood models will be useful for further studies of the inhibition of any complement target, not just C3 or C5. The focus here will be on targeting the critical complement component, activation product, or receptor that is important for the pathophysiology in a variety of disease conditions.
Collapse
Affiliation(s)
- Tom E Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Benjamin S Storm
- Research Laboratory, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Ole L Brekke
- Research Laboratory, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 39182 Kalmar, Sweden; Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Fu G, Chen T, Wu J, Jiang T, Tang D, Bonaroti J, Conroy J, Scott MJ, Deng M, Billiar TR. Single-Cell Transcriptomics Reveals Compartment-Specific Differences in Immune Responses and Contributions for Complement Factor 3 in Hemorrhagic Shock Plus Tissue Trauma. Shock 2021; 56:994-1008. [PMID: 33710107 PMCID: PMC8429528 DOI: 10.1097/shk.0000000000001765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Hemorrhagic shock with tissue trauma (HS/T) leads to the activation of a system-wide immune-inflammatory response that involves all organs and body compartments. Recent advances in single-cell analysis permit the simultaneous assessment of transcriptomic patterns in a large number of cells making it feasible to survey the landscape of immune cell responses across numerous anatomic sites. Here, we used single-cell RNA sequencing of leukocytes from the blood, liver, and spleen to identify the major shifts in gene expression by cell type and compartment in a mouse HS/T model. At 6 h, dramatic changes in gene expression were observed across multiple-cell types and in all compartments in wild-type mice. Monocytes from circulation and liver exhibited a significant upregulation of genes associated with chemotaxis and migration and a simultaneous suppression of genes associated with interferon signaling and antigen presentation. In contrast, liver conventional DC exhibited a unique pattern compared with other myeloid cells that included a pronounced increase in major histocompatibility complex class II (MHCII) gene expression. The dominant pattern across all compartments for B and T cells was a suppression of genes associated with cell activation and signaling after HS/T. Using complement factor 3 (C3) knockout mice we unveiled a role for C3 in the suppression of monocyte Major Histocompatibility Complex class II expression and activation of gene expression associated with migration, phagocytosis and cytokine upregulation, and an unexpected role in promoting interferon-signaling in a subset of B and T cells across all three compartments after HS/T. This transcriptomic landscape study of immune cells provides new insights into the host immune response to trauma, as well as a rich resource for further investigation of trauma-induced immune responses and complement in driving interferon signaling.
Collapse
Affiliation(s)
- Guang Fu
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Surgery, University of Pittsburgh, PA, USA
| | - Tianmeng Chen
- Department of Surgery, University of Pittsburgh, PA, USA
- Cellular and Molecular Pathology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Junru Wu
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Surgery, University of Pittsburgh, PA, USA
| | - Ting Jiang
- Department of Surgery, University of Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Da Tang
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Surgery, University of Pittsburgh, PA, USA
| | | | - Julia Conroy
- Department of Surgery, University of Pittsburgh, PA, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, PA, USA
- Trauma Research Center, University of Pittsburgh, PA, USA
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, PA, USA
- Department of Surgery, Ohio State University, Ohio, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, PA, USA
- Trauma Research Center, University of Pittsburgh, PA, USA
| |
Collapse
|
14
|
Zhao Z, Zhang J, Li N, Yao G, Zhao Y, Li S, Ge Q, Lu J, Bo S, Xi J, Han Y. Disseminated intravascular coagulation associated organ failure in obstetric patients admitted to intensive care units: a multicenter study in China. Sci Rep 2021; 11:16379. [PMID: 34385545 PMCID: PMC8360968 DOI: 10.1038/s41598-021-95841-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
We aimed to determine disseminated intravascular coagulation (DIC)-associated organ failure and underlying diseases based on data from three ICU wards in tertiary hospitals in China from 2008 to 2016. The diagnosis of DIC was confirmed by an International Society of Thrombosis and Hemostasis score greater than or equal to 5. The maternal outcomes included the changes in organ function 24 h after ICU admission. The durations of hospital stay and ICU stay were recorded as secondary outcomes. Among 297 ICU admissions (median Sequential Organ Failure Assessment score, 4) for obstetric diseases, there were 87 DIC cases, with an estimated DIC incidence of 87 per 87,580 deliveries. Postpartum hemorrhage was the leading disease associated with DIC (71, 81.6%), followed by hypertensive disorders (27, 31.0%), sepsis (15, 17.2%), acute fatty liver of pregnancy (11, 12.6%) and amniotic fluid embolism (10, 11.5%). Compared with patients without DIC, those with DIC had higher rates of multiple organ dysfunction syndrome/death (27.6% vs 4.8%, p = 0.000), organ failure (36.8% vs 24.3%, p = 0.029), among which organ failure included acute renal failure (32.2% vs 10.0%, p = 0.000), respiratory failure (16.1% vs 8.6%, p = 0.057), disturbance of consciousness (12.6% vs 2.4%, p = 0.000) and DIC group also had higher rates of massive transfusion (52.9% vs 21.9%, p = 0.000), hysterectomy (32.2% vs 15.7%, p = 0.001), longer ICU (4 days vs 2 days, p = 0.000) and hospital stays (14 days vs 11 days, p = 0.005). DIC and amniotic fluid embolism were independent risk factors for organ failure in patients admitted to the ICU. Postpartum hemorrhage was the leading cause of DIC associated organ failure in obstetrics admitted to the ICU. The control of obstetric bleeding in a timely manner may improve obstetric prognoses.
Collapse
Affiliation(s)
- Zhiling Zhao
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, People's Republic of China
| | - Jianxin Zhang
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Beijing Chao-Yang Hospital, Beijing, China
| | - Nan Li
- Department of Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Gaiqi Yao
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, People's Republic of China.
| | - Yangyu Zhao
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China.
| | - Shuangling Li
- Department of Surgical Intensive Care Unit, Peking University First Hospital, Beijing, China
| | - Qinggang Ge
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, People's Republic of China
| | - Junli Lu
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Beijing Chao-Yang Hospital, Beijing, China
| | - Shining Bo
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, People's Republic of China
| | - Jingjing Xi
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, People's Republic of China
| | - Yue Han
- Department of Intensive Care Unit, Capital Medical University Affiliated Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
15
|
Packialakshmi B, Stewart IJ, Burmeister DM, Chung KK, Zhou X. Large animal models for translational research in acute kidney injury. Ren Fail 2021; 42:1042-1058. [PMID: 33043785 PMCID: PMC7586719 DOI: 10.1080/0886022x.2020.1830108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While extensive research using animal models has improved the understanding of acute kidney injury (AKI), this knowledge has not been translated into effective treatments. Many promising interventions for AKI identified in mice and rats have not been validated in subsequent clinical trials. As a result, the mortality rate of AKI patients remains high. Inflammation plays a fundamental role in the pathogenesis of AKI, and one reason for the failure to translate promising therapeutics may lie in the profound difference between the immune systems of rodents and humans. The immune systems of large animals such as swine, nonhuman primates, sheep, dogs and cats, more closely resemble the human immune system. Therefore, in the absence of a basic understanding of the pathophysiology of human AKI, large animals are attractive models to test novel interventions. However, there is a lack of reviews on large animal models for AKI in the literature. In this review, we will first highlight differences in innate and adaptive immunities among rodents, large animals, and humans in relation to AKI. After illustrating the potential merits of large animals in testing therapies for AKI, we will summarize the current state of the evidence in terms of what therapeutics have been tested in large animal models. The aim of this review is not to suggest that murine models are not valid to study AKI. Instead, our objective is to demonstrate that large animal models can serve as valuable and complementary tools in translating potential therapeutics into clinical practice.
Collapse
Affiliation(s)
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
16
|
Mannes M, Schmidt CQ, Nilsson B, Ekdahl KN, Huber-Lang M. Complement as driver of systemic inflammation and organ failure in trauma, burn, and sepsis. Semin Immunopathol 2021; 43:773-788. [PMID: 34191093 PMCID: PMC8243057 DOI: 10.1007/s00281-021-00872-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
Complement is one of the most ancient defense systems. It gets strongly activated immediately after acute injuries like trauma, burn, or sepsis and helps to initiate regeneration. However, uncontrolled complement activation contributes to disease progression instead of supporting healing. Such effects are perceptible not only at the site of injury but also systemically, leading to systemic activation of other intravascular cascade systems eventually causing dysfunction of several vital organs. Understanding the complement pathomechanism and its interplay with other systems is a strict requirement for exploring novel therapeutic intervention routes. Ex vivo models exploring the cross-talk with other systems are rather limited, which complicates the determination of the exact pathophysiological roles that complement has in trauma, burn, and sepsis. Literature reporting on these three conditions is often controversial regarding the importance, distribution, and temporal occurrence of complement activation products further hampering the deduction of defined pathophysiological pathways driven by complement. Nevertheless, many in vitro experiments and animal models have shown beneficial effects of complement inhibition at different levels of the cascade. In the future, not only inhibition but also a complement reconstitution therapy should be considered in prospective studies to expedite how meaningful complement-targeted interventions need to be tailored to prevent complement augmented multi-organ failure after trauma, burn, and sepsis. This review summarizes clinically relevant studies investigating the role of complement in the acute diseases trauma, burn, and sepsis with important implications for clinical translation.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany.
| |
Collapse
|
17
|
From discovery to approval: A brief history of the compstatin family of complement C3 inhibitors. Clin Immunol 2021; 235:108785. [PMID: 34147650 DOI: 10.1016/j.clim.2021.108785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
The FDA approval of pegcetacoplan (Empaveli), a PEGylated compstatin-based C3 therapeutic, as a new treatment for paroxysmal nocturnal hemoglobinuria (PNH) marks a milestone in the history of complement drug discovery. Almost 15 years after the approval of the first complement-specific drug for PNH, the anti-C5 antibody eculizumab, a novel class of complement inhibitors with a distinct mechanism of action finally enters the clinic. This landmark decision broadens the spectrum of available complement therapeutics, offering patients with unmet clinical needs or insufficient responses to anti-C5 therapy an alternative treatment option with a broad activity profile. Here we present a brief historical account of this newly approved complement drug, consolidating its approval within the long research record of the compstatin family of peptidic C3 inhibitors.
Collapse
|
18
|
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed Pharmacother 2021; 139:111642. [PMID: 33940506 PMCID: PMC8078916 DOI: 10.1016/j.biopha.2021.111642] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
19
|
Chen J, Wang W, Tang Y, Huang XR, Yu X, Lan HY. Inflammatory stress in SARS-COV-2 associated Acute Kidney Injury. Int J Biol Sci 2021; 17:1497-1506. [PMID: 33907513 PMCID: PMC8071761 DOI: 10.7150/ijbs.58791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Increasing clinical evidence shows that acute kidney injury (AKI) is a common and severe complication in critically ill COVID-19 patients. The older age, the severity of COVID-19 infection, the ethnicity, and the history of smoking, diabetes, hypertension, and cardiovascular disease are the risk factor for AKI in COVID-19 patients. Of them, inflammation may be a key player in the pathogenesis of AKI in patients with COVID-19. It is highly possible that SARS-COV-2 infection may trigger the activation of multiple inflammatory pathways including angiotensin II, cytokine storm such as interleukin-6 (IL-6), C-reactive protein (CRP), TGF-β signaling, complement activation, and lung-kidney crosstalk to cause AKI. Thus, treatments by targeting these inflammatory molecules and pathways with a monoclonal antibody against IL-6 (Tocilizumab), C3 inhibitor AMY-101, anti-C5 antibody, anti-TGF-β OT-101, and the use of CRRT in critically ill patients may represent as novel and specific therapies for AKI in COVID-19 patients.
Collapse
Affiliation(s)
- Junzhe Chen
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, The Third Affiliated hospital, Southern Medical university, Guangzhou, China
| | - Wenbiao Wang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated hospital, Southern Medical university, Guangzhou, China
| | - Xiao-ru Huang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Rodrigues PRS, Picco N, Morgan BP, Ghazal P. Sepsis target validation for repurposing and combining complement and immune checkpoint inhibition therapeutics. Expert Opin Drug Discov 2020; 16:537-551. [PMID: 33206027 DOI: 10.1080/17460441.2021.1851186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Sepsis is a disease that occurs due to an adverse immune response to infection by bacteria, viruses and fungi and is the leading pathway to death by infection. The hallmarks for maladapted immune reactions in severe sepsis, which contribute to multiple organ failure and death, are bookended by the exacerbated activation of the complement system to protracted T-cell dysfunction states orchestrated by immune checkpoint control. Despite major advances in our understanding of the condition, there remains to be either a definitive test or an effective therapeutic intervention.Areas covered: The authors consider a combinational drug therapy approach using new biologics, and mathematical modeling for predicting patient responses, in targeting innate and adaptive immune mediators underlying sepsis. Special consideration is given for emerging complement and immune checkpoint inhibitors that may be repurposed for sepsis treatment.Expert opinion: In order to overcome the challenges inherent to finding new therapies for the complex dysregulated host response to infection that drives sepsis, it is necessary to move away from monotherapy and promote precision for personalized combinatory therapies. Notably, combinatory therapy should be guided by predictive systems models of the immune-metabolic characteristics of an individual's disease progression.
Collapse
Affiliation(s)
- Patrícia R S Rodrigues
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Noemi Picco
- Department of Mathematics, Swansea University, Swansea, UK
| | - B Paul Morgan
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
22
|
Fletcher-Sandersjöö A, Bellander BM. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res 2020; 194:36-41. [PMID: 32569879 PMCID: PMC7301826 DOI: 10.1016/j.thromres.2020.06.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for the current COVID-19 pandemic resulting in an escalating number of cases and fatalities worldwide. Preliminary evidence from these patients, as well as past coronavirus epidemics, indicates that those infected suffer from disproportionate complement activation as well as excessive coagulation, leading to thrombotic complications and poor outcome. In non-coronavirus cohorts, evidence has accumulated of an interaction between the complement and coagulation systems, with one amplifying activation of the other. A pressing question is therefore if COVID-19 associated thrombosis could be caused by overactivation of the complement cascade? In this review, we summarize the literature on thrombotic complications in COVID-19, complement activation in coronavirus infections, and the crosstalk between the complement and coagulation systems. We demonstrate how the complement system is able to activate the coagulation cascade and platelets, inhibit fibrinolysis and stimulate endothelial cells. We also describe how these interactions see clinical relevance in several disorders where overactive complement results in a prothrombotic clinical presentation, and how it could be clinically relevant in COVID-19.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Lupu L, Palmer A, Huber-Lang M. Inflammation, Thrombosis, and Destruction: The Three-Headed Cerberus of Trauma- and SARS-CoV-2-Induced ARDS. Front Immunol 2020; 11:584514. [PMID: 33101314 PMCID: PMC7546394 DOI: 10.3389/fimmu.2020.584514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023] Open
Abstract
Physical trauma can be considered an unrecognized "pandemic" because it can occur anywhere and affect anyone and represents a global burden. Following severe tissue trauma, patients frequently develop acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) despite modern surgical and intensive care concepts. The underlying complex pathophysiology of life-threatening ALI/ARDS has been intensively studied in experimental and clinical settings. However, currently, the coronavirus family has become the focus of ALI/ARDS research because it represents an emerging global public health threat. The clinical presentation of the infection is highly heterogeneous, varying from a lack of symptoms to multiple organ dysfunction and mortality. In a particular subset of patients, the primary infection progresses rapidly to ALI and ARDS. The pathophysiological mechanisms triggering and driving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced ALI/ARDS are still poorly understood. Although it is also generally unknown whether insights from trauma-induced ARDS may be readily translated to SARS-CoV-2-associated ARDS, it was still recommended to treat coronavirus-positive patients with ALI/ARDS with standard protocols for ALI/ARDS. However, this strategy was questioned by clinical scientists, because it was documented that some severely hypoxic SARS-CoV-2-infected patients exhibited a normal respiratory system compliance, a phenomenon rarely observed in ARDS patients with another underlying etiology. Therefore, coronavirus-induced ARDS was defined as a specific ARDS phenotype, which accordingly requires an adjusted therapeutic approach. These suggestions reflect previous attempts of classifying ARDS into different phenotypes that might overall facilitate ARDS diagnosis and treatment. Based on the clinical data from ARDS patients, two major phenotypes have been proposed: hyper- and hypo-inflammatory. Here, we provide a comparative review of the pathophysiological pathway of trauma-/hemorrhagic shock-induced ARDS and coronavirus-induced ARDS, with an emphasis on the crucial key points in the pathogenesis of both these ARDS forms. Therefore, the manifold available data on trauma-/hemorrhagic shock-induced ARDS may help to better understand coronavirus-induced ARDS.
Collapse
Affiliation(s)
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
24
|
Halbgebauer R, Karasu E, Braun CK, Palmer A, Braumüller S, Schultze A, Schäfer F, Bückle S, Eigner A, Wachter U, Radermacher P, Resuello RRG, Tuplano JV, Nilsson Ekdahl K, Nilsson B, Armacki M, Kleger A, Seufferlein T, Kalbitz M, Gebhard F, Lambris JD, van Griensven M, Huber-Lang M. Thirty-Eight-Negative Kinase 1 Is a Mediator of Acute Kidney Injury in Experimental and Clinical Traumatic Hemorrhagic Shock. Front Immunol 2020; 11:2081. [PMID: 32983160 PMCID: PMC7479097 DOI: 10.3389/fimmu.2020.02081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Trauma represents a major socioeconomic burden worldwide. After a severe injury, hemorrhagic shock (HS) as a frequent concomitant aspect is a central driver of systemic inflammation and organ damage. The kidney is often strongly affected by traumatic-HS, and acute kidney injury (AKI) poses the patient at great risk for adverse outcome. Recently, thirty-eight-negative kinase 1 (TNK1) was proposed to play a detrimental role in organ damage after trauma/HS. Therefore, we aimed to assess the role of TNK1 in HS-induced kidney injury in a murine and a post hoc analysis of a non-human primate model of HS comparable to the clinical situation. Mice and non-human primates underwent resuscitated HS at 30 mmHg for 60 min. 5 h after the induction of shock, animals were assessed for systemic inflammation and TNK1 expression in the kidney. In vitro, murine distal convoluted tubule cells were stimulated with inflammatory mediators to gain mechanistic insights into the role of TNK1 in kidney dysfunction. In a translational approach, we investigated blood drawn from either healthy volunteers or severely injured patients at different time points after trauma (from arrival at the emergency room and at fixed time intervals until 10 days post injury; identifier: NCT02682550, https://clinicaltrials.gov/ct2/show/NCT02682550). A pronounced inflammatory response, as seen by increased IL-6 plasma levels as well as early signs of AKI, were observed in mice, non-human primates, and humans after trauma/HS. TNK1 was found in the plasma early after trauma-HS in trauma patients. Renal TNK1 expression was significantly increased in mice and non-human primates after HS, and these effects with concomitant induction of apoptosis were blocked by therapeutic inhibition of complement C3 activation in non-human primates. Mechanistically, in vitro data suggested that IL-6 rather than C3 cleavage products induced upregulation of TNK1 and impaired barrier function in renal epithelial cells. In conclusion, these data indicate that C3 inhibition in vivo may inhibit an excessive inflammatory response and mediator release, thereby indirectly neutralizing TNK1 as a potent driver of organ damage. In future studies, we will address the therapeutic potential of direct TNK1 inhibition in the context of severe tissue trauma with different degrees of additional HS.
Collapse
Affiliation(s)
- Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christian K Braun
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany.,Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Fabian Schäfer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Sarah Bückle
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Alica Eigner
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Ulrich Wachter
- Institute for Anesthesiological Pathophysiology and Process Development, University of Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Development, University of Ulm, Ulm, Germany
| | | | - Joel V Tuplano
- Simian Conservation Breeding and Research Center, Makati, Philippines
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital Ulm, Ulm, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martijn van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
25
|
Mastaglio S, Ruggeri A, Risitano AM, Angelillo P, Yancopoulou D, Mastellos DC, Huber-Lang M, Piemontese S, Assanelli A, Garlanda C, Lambris JD, Ciceri F. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol 2020; 215:108450. [PMID: 32360516 PMCID: PMC7189192 DOI: 10.1016/j.clim.2020.108450] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical manifestation of COVID-19 pneumonia and is mainly based on an immune-driven pathology. Mounting evidence suggests that COVID-19 is fueled by a maladaptive host inflammatory response that involves excessive activation of innate immune pathways. While a “cytokine storm” involving IL-6 and other cytokines has been documented, complement C3 activation has been implicated as an initial effector mechanism that exacerbates lung injury in preclinical models of SARS-CoV infection. C3-targeted intervention may provide broader therapeutic control of complement-mediated inflammatory damage in COVID-19 patients. Herein, we report the clinical course of a patient with severe ARDS due to COVID-19 pneumonia who was safely and successfully treated with the compstatin-based complement C3 inhibitor AMY-101.
Collapse
Affiliation(s)
- Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio M Risitano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Piera Angelillo
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Aghia Paraskevi, Athens, Greece
| | - Markus Huber-Lang
- Institute of Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Simona Piemontese
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, Milan, Italy; Humanitas University, Milan, Italy
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita Salute San Raffaele, Milan, Italy.
| |
Collapse
|
26
|
Fletcher-Sandersjöö A, Maegele M, Bellander BM. Does Complement-Mediated Hemostatic Disturbance Occur in Traumatic Brain Injury? A Literature Review and Observational Study Protocol. Int J Mol Sci 2020; 21:E1596. [PMID: 32111078 PMCID: PMC7084711 DOI: 10.3390/ijms21051596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Despite improvements in medical triage and tertiary care, traumatic brain injury (TBI) remains associated with significant morbidity and mortality. Almost two-thirds of patients with severe TBI develop some form of hemostatic disturbance, which contributes to poor outcome. In addition, the complement system, which is abundant in the healthy brain, undergoes significant intra- and extracranial amplification following TBI. Previously considered to be structurally similar but separate systems, evidence of an interaction between the complement and coagulation systems in non-TBI cohorts has accumulated, with the activation of one system amplifying the activation of the other, independent of their established pathways. However, it is not known whether this interaction exists in TBI. In this review we summarize the available literature on complement activation following TBI, and the crosstalk between the complement and coagulation systems. We demonstrate how the complement system interacts with the coagulation cascade by activating the intrinsic coagulation pathway and by bypassing the initial cascade and directly producing thrombin as well. This crosstalk also effects platelets, where evidence points to a relationship with the complement system on multiple levels, with complement anaphylatoxins being able to induce disproportionate platelet activation and adhesion. The complement system also stimulates thrombosis by inhibiting fibrinolysis and stimulating endothelial cells to release prothrombotic microparticles. These interactions see clinical relevance in several disorders where a deficiency in complement regulation seems to result in a prothrombotic clinical presentation. Finally, based on these observations, we present the outline of an observational cohort study that is currently under preparation and aimed at assessing how complement influences coagulation in patients with isolated TBI.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marc Maegele
- Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke, 58455 Cologne, Germany;
- Institute for Research in Operative Medicine, University Witten/Herdecke, 58455 Cologne, Germany
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
27
|
Abstract
Increasing evidence indicates an integral role for the complement system in the deleterious inflammatory reactions that occur during critical phases of the transplantation process, such as brain or cardiac death of the donor, surgical trauma, organ preservation and ischaemia-reperfusion injury, as well as in humoral and cellular immune responses to the allograft. Ischaemia is the most common cause of complement activation in kidney transplantation and in combination with reperfusion is a major cause of inflammation and graft damage. Complement also has a prominent role in antibody-mediated rejection (ABMR) owing to ABO and HLA incompatibility, which leads to devastating damage to the transplanted kidney. Emerging drugs and treatment modalities that inhibit complement activation at various stages in the complement cascade are being developed to ameliorate the damage caused by complement activation in transplantation. These promising new therapies have various potential applications at different stages in the process of transplantation, including inhibiting the destructive effects of ischaemia and/or reperfusion injury, treating ABMR, inducing accommodation and modulating the adaptive immune response.
Collapse
|
28
|
Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov 2019; 18:707-729. [PMID: 31324874 DOI: 10.1038/s41573-019-0031-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The complement system plays a key role in pathogen immunosurveillance and tissue homeostasis. However, subversion of its tight regulatory control can fuel a vicious cycle of inflammatory damage that exacerbates pathology. The clinical merit of targeting the complement system has been established for rare clinical disorders such as paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome. Evidence from preclinical studies and human genome-wide analyses, supported by new molecular and structural insights, has revealed new pathomechanisms and unmet clinical needs that have thrust a new generation of complement inhibitors into clinical development for a variety of indications. This review critically discusses recent clinical milestones in complement drug discovery, providing an updated translational perspective that may guide optimal target selection and disease-tailored complement intervention.
Collapse
|
29
|
Karasu E, Nilsson B, Köhl J, Lambris JD, Huber-Lang M. Targeting Complement Pathways in Polytrauma- and Sepsis-Induced Multiple-Organ Dysfunction. Front Immunol 2019; 10:543. [PMID: 30949180 PMCID: PMC6437067 DOI: 10.3389/fimmu.2019.00543] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Exposure to traumatic or infectious insults results in a rapid activation of the complement cascade as major fluid defense system of innate immunity. The complement system acts as a master alarm system during the molecular danger response after trauma and significantly contributes to the clearance of DAMPs and PAMPs. However, depending on the origin and extent of the damaged macro- and micro -milieu, the complement system can also be either excessively activated or inhibited. In both cases, this can lead to a maladaptive immune response and subsequent multiple cellular and organ dysfunction. The arsenal of complement-specific drugs offers promising strategies for various critical conditions after trauma, hemorrhagic shock, sepsis, and multiple organ failure. The imbalanced immune response needs to be detected in a rational and real-time manner before the translational therapeutic potential of these drugs can be fully utilized. Overall, the temporal-spatial complement response after tissue trauma and during sepsis remains somewhat enigmatic and demands a clinical triad: reliable tissue damage assessment, complement activation monitoring, and potent complement targeting to highly specific rebalance the fluid phase innate immune response.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
30
|
What's New in Shock, January 2019? Shock 2019; 51:1-3. [DOI: 10.1097/shk.0000000000001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Reis ES, Berger N, Wang X, Koutsogiannaki S, Doot RK, Gumas JT, Foukas PG, Resuello RRG, Tuplano JV, Kukis D, Tarantal AF, Young AJ, Kajikawa T, Soulika AM, Mastellos DC, Yancopoulou D, Biglarnia AR, Huber-Lang M, Hajishengallis G, Nilsson B, Lambris JD. Safety profile after prolonged C3 inhibition. Clin Immunol 2018; 197:96-106. [PMID: 30217791 DOI: 10.1016/j.clim.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 01/21/2023]
Abstract
The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood. In view of the well-established connection between C3 deficiency and infections, therapeutic inhibition of complement at the level of C3 is often considered with caution or disregarded. We therefore set out to investigate the immune and biochemical profile of non-human primates under prolonged treatment with the C3 inhibitor compstatin (Cp40 analog). Cynomolgus monkeys were dosed subcutaneously with Cp40, resulting in systemic inhibition of C3, for 1 week, 2 weeks, or 3 months. Plasma concentrations of both C3 and Cp40 were measured periodically and complete saturation of plasma C3 was confirmed. No differences in hematological, biochemical, or immunological parameters were identified in the blood or tissues of animals treated with Cp40 when compared to those injected with vehicle alone. Further, skin wounds showed no signs of infection in those treated with Cp40. In fact, Cp40 treatment was associated with a trend toward accelerated wound healing when compared with the control group. In addition, a biodistribution study in a rhesus monkey indicated that the distribution of Cp40 in the body is associated with the presence of C3, concentrating in organs that accumulate blood and produce C3. Overall, our data suggest that systemic C3 inhibition in healthy adult non-human primates is not associated with a weakened immune system or susceptibility to infections.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nadja Berger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin T Gumas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - David Kukis
- Center for Molecular and Genomic Imaging, University of California, Davis, CA 95616, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tetsuhiro Kajikawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Athena M Soulika
- Department of Dermatology, University of California, Davis, CA 95616, USA
| | | | | | - Ali-Reza Biglarnia
- Department of Transplantation, Skane University Hospital, Lund University, Lund, Sweden
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
33
|
Berger N, Alayi TD, Resuello RRG, Tuplano JV, Reis ES, Lambris JD. New Analogs of the Complement C3 Inhibitor Compstatin with Increased Solubility and Improved Pharmacokinetic Profile. J Med Chem 2018; 61:6153-6162. [PMID: 29920096 DOI: 10.1021/acs.jmedchem.8b00560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improper regulation of complement is associated with various pathologies, and the clinical demand for compounds that can regulate complement activation is therefore imperative. Cp40, an analog of the peptide compstatin, inhibits all complement pathways at the level of the central component C3. We have further developed Cp40, using either PEGylation at the N-terminus or insertion of charged amino acids at the C-terminus. The PEGylated analogs are highly soluble and retained their inhibitory activity, with C3b binding affinity dependent on the length of the PEG chain. The addition of two or three residues of lysine, in turn, not only improved the peptide's solubility but also increased the binding affinity for C3b while retaining its inhibitory potency. Three of the new derivatives showed improved pharmacokinetic profiles in vivo in non-human primates. Given their compelling solubility and pharmacokinetic profiles, these new Cp40 analogs should broaden the spectrum of administration routes, likely reducing dosing frequency during chronic treatment and potentially expanding their range of clinical application.
Collapse
Affiliation(s)
- Nadja Berger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Tchilabalo Dilezitoko Alayi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC) , Makati City 1231 , Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC) , Makati City 1231 , Philippines
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
34
|
Mastellos DC, Reis ES, Yancopoulou D, Risitano AM, Lambris JD. Expanding Complement Therapeutics for the Treatment of Paroxysmal Nocturnal Hemoglobinuria. Semin Hematol 2018; 55:167-175. [PMID: 30032754 PMCID: PMC6060635 DOI: 10.1053/j.seminhematol.2018.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is widely regarded as an archetypal complement-mediated disorder that has propelled complement drug discovery in recent decades. Its pathology is driven by chronic complement dysregulation resulting from the lack of the glycosyl phosphatidyl inositol-linked regulators DAF and CD59 on susceptible erythrocytes. This complement imbalance fuels persistent C3 activation on affected erythrocytes, which culminates in chronic complement-mediated intravascular hemolysis. The clinical application of eculizumab, a humanized anti-C5 antibody that blocks terminal pathway activation, has led to drastic improvement of therapeutic outcomes but has also unveiled hitherto elusive pathogenic mechanisms that are now known to contribute to the clinical burden of a significant proportion of patients with PNH. These emerging clinical needs have sparked a true resurgence of complement therapeutics that offer the promise of even more effective, disease-tailored therapies for PNH. Here, we review the current state of complement therapeutics with a focus on the clinical development of C3-targeted and alternative pathway-directed drug candidates for the treatment of PNH. We also discuss the relative advantages and benefits offered by each complement-targeting approach, including translational considerations that might leverage a more comprehensive clinical intervention for PNH.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Antonio M Risitano
- Hematology and Bone Marrow Transplant Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|