1
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Lv Z, Zhang Y, Lu M, Wang Z, Nong X, Wen G, Zhang W. cRGD-platelet@MnO/MSN@PPARα/LXRα Nanoparticles Improve Atherosclerosis in Rats by Inhibiting Inflammation and Reducing Blood Lipid. Curr Pharm Biotechnol 2025; 26:740-753. [PMID: 39225219 DOI: 10.2174/0113892010314993240819065655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Atherosclerosis (AS) is an inflammatory disease of arterial intima driven by lipids. Liver X receptor alpha (LXRα) and peroxisome proliferator-activated receptor alpha (PPARα) agonists are limited in the treatment of AS due to their off-target effects and serious side effects. Therefore, this study was designed to construct a novel nanoparticle (NP) and evaluate its mechanism of action on inflammation inhibition and lipid reduction in AS. METHODS We synthesized cRGD-platelet@MnO/MSN@PPARα/LXRα NPs (cRGD-platelet- NPs) and confirmed their size, safety, and targeting ability through various tests, including dynamic light scattering and immunofluorescence. In vivo and in vitro experiments assessed cell proliferation, apoptosis, inflammation, and plaque formation. Finally, the NF-κB signaling pathway expression in rat aorta was determined using a western blot. RESULTS The synthesis of cRGD-platelet-NPs was successful; the particle size was approximately 150 nm, and the PDI was below 0.3. They could be successfully absorbed by cells, exhibiting high safety in vivo and in vitro. The cRGD-platelet-NPs successfully reduced plaque formation, improved lipid profiles by lowering LDL-cholesterol, total cholesterol, and triglycerides, and raised HDL-cholesterol levels. Additionally, they decreased inflammatory markers in the serum and aortic tissue, suggesting reduced inflammation. Immunohistochemistry and western blot analyses indicated that these NPs could not only promote M2 macrophage polarization but also suppress the NF-κB signaling pathway. CONCLUSION The newly developed cRGD-platelet-NPs with high safety are a promising approach to AS treatment, which can regulate ABCA1, reduce the formation of AS plaques, and enhance cholesterol efflux. The mechanism may involve the suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zheng Lv
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yupeng Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Mengke Lu
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Ziyi Wang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Xiaoyue Nong
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Guoliang Wen
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| |
Collapse
|
3
|
Huang J, Huang T, Li J. Regulation Mechanism and Potential Value of Active Substances in Spices in Alcohol-Liver-Intestine Axis Health. Int J Mol Sci 2024; 25:3728. [PMID: 38612538 PMCID: PMC11011869 DOI: 10.3390/ijms25073728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Excessive alcohol intake will aggravate the health risk between the liver and intestine and affect the multi-directional information exchange of metabolites between host cells and microbial communities. Because of the side effects of clinical drugs, people tend to explore the intervention value of natural drugs on diseases. As a flavor substance, spices have been proven to have medicinal value, but they are still rare in treating hepatointestinal diseases caused by alcohol. This paper summarized the metabolic transformation of alcohol in the liver and intestine and summarized the potential value of various perfume active substances in improving liver and intestine diseases caused by alcohol. It is also found that bioactive substances in spices can exert antioxidant activity in the liver and intestine environment and reduce the oxidative stress caused by diseases. These substances can interfere with fatty acid synthesis, promote sugar and lipid metabolism, and reduce liver injury caused by steatosis. They can effectively regulate the balance of intestinal flora, promote the production of SCFAs, and restore the intestinal microenvironment.
Collapse
Affiliation(s)
- Jianyu Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
4
|
Ortiz-Cerda T, Argüelles-Arias F, Macías-García L, Vázquez-Román V, Tapia G, Xie K, García-García MD, Merinero M, García-Montes JM, Alcudia A, Witting PK, De-Miguel M. Effects of polyphenolic maqui ( Aristotelia chilensis) extract on the inhibition of NLRP3 inflammasome and activation of mast cells in a mouse model of Crohn's disease-like colitis. Front Immunol 2024; 14:1229767. [PMID: 38283356 PMCID: PMC10811055 DOI: 10.3389/fimmu.2023.1229767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Crohn's disease (CD) involves activation of mast cells (MC) and NF-кB in parallel with the PPAR-α/NLRP3 inflammasome/IL-1β pathway in the inflamed colon. Whether polyphenols from maqui (Aristotelia chilensis) represent a natural alternative treatment for CD is unclear. Therefore, we used an animal model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD-like colitis to investigate protective effects of maqui extract through monitoring NLRP3 inflammasome and MC activation in colon tissue. Methods Maqui extract was administered via orogastric route to mice after (post-Treatment group) or prior (pre-Treatment group) to TNBS-induction. Colon pathology was characterized by histoarchitectural imaging, disease activity index (DAI), and assessing NF-кB, p-NF-кB, PPAR-α/NLRP3 expression and IL-1β levels. Results Compared to mice treated with TNBS alone administration of anthocyanin-rich maqui extract improved the DAI, colon histoarchitecture and reduced both colon wet-weight and transmural inflammation. Induction with TNBS significantly increased colonic NLPR3 inflammasome activation, while co-treatment with maqui extract (either post- or pre-Treatment) significantly downregulated NLRP3, ASC and caspase-1 levels, which manifested as reduced colonic IL-1β levels. Supplemented maqui extract marginally diminished NF-кB activity in epithelial cells but reached statistical significance in immune cells (as judged by decreased NF-кB phosphorylation). PPAR-α signaling was largely unaffected by Maqui whereas MC infiltration into the colon mucosa and submucosa decreased and their level of degranulation was suppressed. Conclusion These outcomes show the post- and pre- Treatment effect of a polyphenolic extract rich in anthocyanins from maqui the acute phase of TNBS- induced CD-like colitis is linked to suppression of the NLRP3 inflammasome and reduced MC responses. These data indicate that maqui extract represents a potential nutraceutical for the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tamara Ortiz-Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
- Redox Biology Group, The Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Federico Argüelles-Arias
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Department of Gastroenterology, University Hospital Virgen Macarena, Seville, Spain
| | - Laura Macías-García
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| | - Victoria Vázquez-Román
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| | - Gladys Tapia
- Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Kangzhe Xie
- Redox Biology Group, The Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Manuel Merinero
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, Seville, Spain
| | | | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, Seville, Spain
| | - Paul K. Witting
- Redox Biology Group, The Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Manuel De-Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Wang Z, Wang M, Xu X, Liu Y, Chen Q, Wu B, Zhang Y. PPARs/macrophages: A bridge between the inflammatory response and lipid metabolism in autoimmune diseases. Biochem Biophys Res Commun 2023; 684:149128. [PMID: 39491979 DOI: 10.1016/j.bbrc.2023.149128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Autoimmune diseases (AIDs) are a collection of pathologies that arise from autoimmune reactions and lead to the destruction and damage of the body's tissues and cellular components, ultimately resulting in tissue damage and organ dysfunction. The anti-inflammatory effects of the peroxisome proliferator-activated receptor (PPAR), a pivotal regulator of lipid metabolism, are crucial in the context of AIDs. PPAR mitigates AIDs by modulating macrophage polarization and suppressing the inflammatory response. Numerous studies have demonstrated the crucial involvement of lipid metabolism and phenotypic switching in classically activated (M1)/alternatively activated (M2)-like macrophages in the inflammatory pathway of AIDs. However, the precise mechanism by which PPAR, a critical mediator between of lipid metabolism and macrophage polarization, regulates macrophage polarization remains unclear. This review aimed to clarify the role of PPAR and macrophages in the triangular relationship among AIDs, lipid metabolism, and inflammatory response, and aims to summarize the mechanism of the PPAR-mediated macrophage activation and polarization, which impacts the progression and development of AIDs.
Collapse
Affiliation(s)
- Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China; Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yunyan Liu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China; Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Ying Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401334, China; Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
7
|
Vitulo M, Gnodi E, Rosini G, Meneveri R, Giovannoni R, Barisani D. Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD. Int J Mol Sci 2023; 24:12748. [PMID: 37628929 PMCID: PMC10454602 DOI: 10.3390/ijms241612748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the metabolic syndrome, such as central obesity and insulin-resistance, but a specific drug able to revert NAFL and prevent its evolution towards NASH is still lacking. With the liver being a key organ in metabolic processes, the potential therapeutic strategies are many, and range from directly targeting the lipid metabolism to the prevention of tissue inflammation. However, side effects have been reported for the drugs tested up to now. In this review, different approaches to the treatment of NAFLD are presented, including newer therapies and ongoing clinical trials. Particular focus is placed on the reverse cholesterol transport system and on the agonists for nuclear factors like PPAR and FXR, but also drugs initially developed for other conditions such as incretins and thyromimetics along with validated natural compounds that have anti-inflammatory potential. This work provides an overview of the different therapeutic strategies currently being tested for NAFLD, other than, or along with, the recommendation of weight loss.
Collapse
Affiliation(s)
- Manuela Vitulo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Giulia Rosini
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Roberto Giovannoni
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| |
Collapse
|
8
|
Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res 2023; 192:106786. [PMID: 37146924 DOI: 10.1016/j.phrs.2023.106786] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease phenotypes which start with simple steatosis and lipid accumulation in the hepatocytes - a typical histological lesions characteristic. It may progress to non-alcoholic steatohepatitis (NASH) that is characterized by hepatic inflammation and/or fibrosis and subsequent onset of NAFLD-related cirrhosis and hepatocellular carcinoma (HCC). Due to the central role of the liver in metabolism, NAFLD is regarded as a result of and contribution to the metabolic abnormalities seen in the metabolic syndrome. Peroxisome proliferator-activated receptors (PPARs) has three subtypes, which govern the expression of genes responsible for energy metabolism, cellular development, inflammation, and differentiation. The agonists of PPARα, such as fenofibrate and clofibrate, have been used as lipid-lowering drugs in clinical practice. Thiazolidinediones (TZDs) - ligands of PPARγ, such as rosiglitazone and pioglitazone, are also used in the treatment of type 2 diabetes (T2D) with insulin resistance (IR). Increasing evidence suggests that PPARβ/δ agonists have potential therapeutic effects in improving insulin sensitivity and lipid metabolism disorders. In addition, PPARs ligands have been considered as potential therapeutic drugs for hypertension, atherosclerosis (AS) or diabetic nephropathy. Their crucial biological roles dictate the significance of PPARs-targeting in medical research and drug discovery. Here, it reviews the biological activities, ligand selectivity and biological functions of the PPARs family, and discusses the relationship between PPARs and the pathogenesis of NAFLD and metabolic syndrome. This will open new possibilities for PPARs application in medicine, and provide a new idea for the treatment of fatty liver and related diseases.
Collapse
Affiliation(s)
- Yuan-Ye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jing Zhang
- University International College, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Fan-Yi Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, 24/1400 West Beijing Road, Shanghai, 200040, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
9
|
Zamith Cunha R, Zannoni A, Salamanca G, De Silva M, Rinnovati R, Gramenzi A, Forni M, Chiocchetti R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARα) in the synovial membrane of the horse metacarpophalangeal joint. Front Vet Sci 2023; 10:1045030. [PMID: 36937015 PMCID: PMC10020506 DOI: 10.3389/fvets.2023.1045030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background The metacarpophalangeal joint undergoes enormous loading during locomotion and can therefore often become inflamed, potentially resulting in osteoarthritis (OA). There are studies indicating that the endocannabinoid system (ECS) modulates synovium homeostasis, and could be a promising target for OA therapy. Some cannabinoid receptors, which modulate proliferative and secretory responses in joint inflammation, have been functionally identified in human and animal synovial cells. Objective To characterize the cellular distribution of the cannabinoid receptors 1 (CB1R) and 2 (CB2R), and the cannabinoid-related receptors transient receptor potential vanilloid type 1 (TRPV1), G protein-related receptor 55 (GPR55) and peroxisome proliferator-activated receptor alpha (PPARα) in the synovial membrane of the metacarpophalangeal joint of the horse. Animals The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. Materials and methods The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. The expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in synovial tissues was studied using qualitative and quantitative immunofluorescence, and quantitative real-time reverse transcriptase PCR (qRT-PCR). Macrophage-like (MLS) and fibroblast-like (FLS) synoviocytes were identified by means of antibodies directed against IBA1 and vimentin, respectively. Results Both the mRNA and protein expression of the CB2R, TRPV1, GPR55, and PPARα were found in the synoviocytes and blood vessels of the metacarpophalangeal joints. The synoviocytes expressed the mRNA and protein of the CB1R in some of the horses investigated, but not in all. Conclusions and clinical importance Given the expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in the synovial elements of the metacarpophalangeal joint, these findings encouraged the development of new studies supporting the use of molecules acting on these receptors to reduce the inflammation during joint inflammation in the horse.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- *Correspondence: Roberto Chiocchetti
| |
Collapse
|
10
|
Matrisciano F. Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia. Curr Neuropharmacol 2023; 21:2409-2423. [PMID: 36946488 PMCID: PMC10616917 DOI: 10.2174/1570159x21666230322160259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 03/23/2023] Open
Abstract
Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
11
|
Lampiasi N. Interactions between Macrophages and Mast Cells in the Female Reproductive System. Int J Mol Sci 2022; 23:ijms23105414. [PMID: 35628223 PMCID: PMC9142086 DOI: 10.3390/ijms23105414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) and macrophages (Mϕs) are innate immune cells that differentiate from early common myeloid precursors and reside in all body tissues. MCs have a unique capacity to neutralize/degrade toxic proteins, and they are hypothesized as being able to adopt two alternative polarization profiles, similar to Mϕs, with distinct or even opposite roles. Mϕs are very plastic phagocytic cells that are devoted to the elimination of senescent/anomalous endogenous entities (to maintain tissue homeostasis), and to the recognition and elimination of exogenous threats. They can adopt several functional phenotypes in response to microenvironmental cues, whose extreme profiles are the inflammatory/killing phenotype (M1) and the anti-inflammatory/healing phenotype (M2). The concomitant and abundant presence of these two cell types and the partial overlap of their defensive and homeostatic functions leads to the hypothesis that their crosstalk is necessary for the optimal coordination of their functions, both under physiological and pathological conditions. This review will examine the relationship between MCs and Mϕs in some situations of homeostatic regulation (menstrual cycle, embryo implantation), and in some inflammatory conditions in the same organs (endometriosis, preeclampsia), in order to appreciate the importance of their cross-regulation.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
12
|
Xu L, Lu Y, Wang N, Feng Y. The Role and Mechanisms of Selenium Supplementation on Fatty Liver-Associated Disorder. Antioxidants (Basel) 2022; 11:922. [PMID: 35624786 PMCID: PMC9137657 DOI: 10.3390/antiox11050922] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease without effective therapy. Selenium, as an essential trace element for humans, is notable for its antioxidant properties. The previous study shows that selenium levels in NAFLD patients are lower than normal ones. Selenium supplementation can effectively alleviate metabolic disorders by relieving anti-oxidative stress and anti-inflammatory regulation. However, the correlation between selenium and NAFLD has not been fully clarified. Herein, we review the current studies on selenium in regulating the different stages of NAFLD and summarize relevant clinical trials to highlight the potential roles of selenium in NAFLD treatment.
Collapse
Affiliation(s)
| | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (L.X.); (Y.L.); (N.W.)
| |
Collapse
|
13
|
Engoren M, Jewell ES, Douville N, Moser S, Maile MD, Bauer ME. Genetic variants associated with sepsis. PLoS One 2022; 17:e0265052. [PMID: 35275946 PMCID: PMC8916629 DOI: 10.1371/journal.pone.0265052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The variable presentations and different phenotypes of sepsis suggest that risk of sepsis comes from many genes each having a small effect. The cumulative effect can be used to create individual risk profile. The purpose of this study was to create a polygenic risk score and determine the genetic variants associated with sepsis. METHODS We sequenced ~14 million single nucleotide polymorphisms with a minimac imputation quality R2>0.3 and minor allele frequency >10-6 in patients with Sepsis-2 or Sepsis-3. Genome-wide association was performed using Firth bias-corrected logistic regression. Semi-parsimonious logistic regression was used to create polygenic risk scores and reduced regression to determine the genetic variants independently associated with sepsis. FINDINGS 2261 patients had sepsis and 13,068 control patients did not. The polygenic risk scores had good discrimination: c-statistic = 0.752 ± 0.005 for Sepsis-2 and 0.752 ± 0.007 for Sepsis-3. We found 772 genetic variants associated with Sepsis-2 and 442 with Sepsis-3, p<0.01. After multivariate adjustment, 100 variants on 85 genes were associated with Sepsis-2 and 69 variants in 54 genes with Sepsis-3. Twenty-five variants were present in both the Sepsis-2 and Sepsis-3 groups out of 32 genes that were present in both groups. The other 7 genes had different variants present. Most variants had small effect sizes. CONCLUSIONS Sepsis-2 and Sepsis-3 have both separate and shared genetic variants. Most genetic variants have small effects sizes, but cumulatively, the polygenic risk scores have good discrimination.
Collapse
Affiliation(s)
- Milo Engoren
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Elizabeth S. Jewell
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Nicholas Douville
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Stephanie Moser
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael D. Maile
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Melissa E. Bauer
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, Duke University, Durham, NC, United States of America
| |
Collapse
|
14
|
Dong XC, Chowdhury K, Huang M, Kim HG. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid Redox Signal 2021; 35:689-717. [PMID: 33906425 PMCID: PMC8558079 DOI: 10.1089/ars.2021.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Fatty liver disease is a major liver disorder in the modern societies. Comprehensive understanding of the pathophysiology and molecular mechanisms is essential for the prevention and treatment of the disease. Recent Advances: Remarkable progress has been made in the recent years in basic and translational research in the field of fatty liver disease. Multiple signaling pathways have been implicated in the development of fatty liver disease, including AMP-activated protein kinase, mechanistic target of rapamycin kinase, endoplasmic reticulum stress, oxidative stress, inflammation, transforming growth factor β, and yes1-associated transcriptional regulator/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). In addition, critical molecular regulations at the transcriptional and epigenetic levels have been linked to the pathogenesis of fatty liver disease. Critical Issues: Some critical issues remain to be solved so that research findings can be translated into clinical applications. Robust and reliable biomarkers are needed for diagnosis of different stages of the fatty liver disease. Effective and safe molecular targets remain to be identified and validated. Prevention strategies require solid scientific evidence and population-wide feasibility. Future Directions: As more data are generated with time, integrative approaches are needed to comprehensively understand the disease pathophysiology and mechanisms at multiple levels from population, organismal system, organ/tissue, to cell. The interactions between genes and environmental factors require deeper investigation for the purposes of prevention and personalized treatment of fatty liver disease. Antioxid. Redox Signal. 35, 689-717.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Zubareva OE, Melik-Kasumov TB. The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation of Epileptogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
17
|
Wu L, Li J, Feng J, Ji J, Yu Q, Li Y, Zheng Y, Dai W, Wu J, Guo C. Crosstalk between PPARs and gut microbiota in NAFLD. Biomed Pharmacother 2021; 136:111255. [PMID: 33485064 DOI: 10.1016/j.biopha.2021.111255] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disorder in both China and worldwide. It ranges from simple steatosis and progresses over time to nonalcoholic steatohepatitis (NASH), advanced liver fibrosis, cirrhosis, or hepatocellular carcinoma(HCC). Furthermore, NAFLD and its complications impose a huge health burden to society. The microbiota is widely connected and plays an active role in human physiology and pathology, and it is a hidden 'organ' in determining the state of the host, in terms of homeostasis, or disease. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptorsuperfamily and can regulate multiple pathways involved in metabolism, and serve as effective targets forthe treatment of many types of metabolic syndromes, including NAFLD. The purpose of this review is to integrate related articles on gut microbiota, PPARs and NAFLD, and present a balanced overview on how the microbiota can possibly influence the development of NAFLD through PPARs.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China; Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China; Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Li
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China; Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People'sHospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
18
|
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021; 114:154338. [PMID: 32791172 PMCID: PMC7736084 DOI: 10.1016/j.metabol.2020.154338] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated transcription factors of nuclear hormone receptor superfamily that regulate energy metabolism. Currently, three PPAR subtypes have been identified: PPARα, PPARγ, and PPARβ/δ. PPARα and PPARδ are highly expressed in oxidative tissues and regulate genes involved in substrate delivery and oxidative phosphorylation (OXPHOS) and regulation of energy homeostasis. In contrast, PPARγ is more important in lipogenesis and lipid synthesis, with highest expression levels in white adipose tissue (WAT). In addition to tissues regulating whole body energy homeostasis, PPARs are expressed in immune cells and have an emerging critical role in immune cell differentiation and fate commitment. In this review, we discuss the actions of PPARs in the function of the innate and the adaptive immune system and their implications in immune-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Eirini Konstantinidou
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Chinmay Jani
- Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Mt. Auburn Hospital, Cambridge, MA 02138, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
19
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
20
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
21
|
Roles of peroxisome proliferator-activated receptor α in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact 2020; 327:109176. [PMID: 32534989 DOI: 10.1016/j.cbi.2020.109176] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a progressively aggravated liver disease with high incidence in alcoholics. Ethanol-induced fat accumulation and the subsequent lipopolysaccharide (LPS)-driven inflammation bring liver from reversible steatosis, to irreversible hepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and plays pivotal roles in the regulation of fatty acid homeostasis as well as the inflammation control in the liver. It has been well documented that PPARα activity and/or expression are downregulated in liver of mice exposed to ethanol, which is thought to be one of the prime contributors to ethanol-induced steatosis, hepatitis and fibrosis. This article summarizes the current evidences from in vitro and animal models for the critical roles of PPARα in the onset and progression of ALD. Importantly, it should be noted that the expression of PPARα in human liver is reported to be similar to that in mice, and PPARα expression is downregulated in the liver of patients with nonalcoholic fatty liver disease (NAFLD), a disease sharing many similarities with ALD. Therefore, clinical trials investigating the expression of PPARα in the liver of ALD patients and the efficacy of strong PPARα agonists for the prevention and treatment of ALD are warranted.
Collapse
|
22
|
McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, Patil TK, Bohannon JK, Sherwood ER, Patil NK. The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Front Immunol 2020; 11:1043. [PMID: 32547553 PMCID: PMC7273750 DOI: 10.3389/fimmu.2020.01043] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or β-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or β-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.
Collapse
Affiliation(s)
- Margaret A. McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
23
|
Pemafibrate, a selective PPARα modulator, and fenofibrate suppress microglial activation through distinct PPARα and SIRT1-dependent pathways. Biochem Biophys Res Commun 2020; 524:385-391. [DOI: 10.1016/j.bbrc.2020.01.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
24
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: the role of HDL. Curr Opin Lipidol 2019; 30:462-469. [PMID: 31577612 DOI: 10.1097/mol.0000000000000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Cellular cholesterol content influences the structure and function of lipid rafts, plasma membrane microdomains essential for cell signaling and activation. HDL modulate cellular cholesterol efflux, thus limiting cholesterol accumulation and controlling immune cell activation. Aim of this review is to discuss the link between HDL and cellular cholesterol metabolism in immune cells and the therapeutic potential of targeting cholesterol removal from cell membranes. RECENT FINDINGS The inverse relationship between HDL-cholesterol (HDL-C) levels and the risk of cardiovascular disease has been recently challenged by observations linking elevated levels of HDL-C with increased risk of all-cause mortality, infections and autoimmune diseases, paralleled by the failure of clinical trials with HDL-C-raising therapies. These findings suggest that improving HDL function might be more important than merely raising HDL-C levels. New approaches aimed at increasing the ability of HDL to remove cellular cholesterol have been assessed for their effect on immune cells, and the results have suggested that this could be a new effective approach. SUMMARY Cholesterol removal from plasma membrane by different means affects the activity of immune cells, suggesting that approaches aimed at increasing the ability of HDL to mobilize cholesterol from cells would represent the next step in HDL biology.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital
- IRCCS MultiMedica, Milan, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- IRCCS MultiMedica, Milan, Italy
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- Center for the Study of Atherosclerosis, E. Bassini Hospital
| |
Collapse
|
25
|
Okabayashi Y, Nagasaka S, Kanzaki G, Tsuboi N, Yokoo T, Shimizu A. Group 1 innate lymphoid cells are involved in the progression of experimental anti-glomerular basement membrane glomerulonephritis and are regulated by peroxisome proliferator-activated receptor α. Kidney Int 2019; 96:942-956. [PMID: 31402171 DOI: 10.1016/j.kint.2019.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells play an important role in the early effector cytokine-mediated response. In Wistar Kyoto rats, CD8+ non-T lymphocytes (CD8+Lym) infiltrate into glomeruli during the development of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. Here, we examined the profiles and roles of CD8+Lym in anti-GBM glomerulonephritis. The regulation of CD8+Lym by peroxisome proliferator-activated receptor (PPAR)-α in anti-GBM glomerulonephritis was also evaluated. Glomerular infiltrating CD8+Lym were lineage-negative cells that showed markedly high expression of IFN-γ and T-bet mRNAs but not Eomes, indicating these cells are group 1 innate lymphoid cells. In anti-GBM glomerulonephritis, the glomerular mRNAs of innate lymphoid cell-related cytokines (IFN-γ and TNF-α) and chemokines (CXCL9, CXCL10, and CXCL11) are significantly increased. Treatment with a PPARα agonist ameliorated renal injury, with reduced expression of these mRNAs. In vitro, enhanced IFN-γ production from innate lymphoid cells upon IL-12 and IL-18 stimulation was reduced by the PPARα agonist. Moreover, CXCL9 mRNA in glomerular endothelial cells and CXCL9, CXCL10, and CXCL11 mRNAs in podocytes and macrophages were upregulated by IFN-γ, whereas the PPARα agonist downregulated their expression. We also detected the infiltration of innate lymphoid cells into glomeruli in human anti-GBM glomerulonephritis. Thus, innate lymphoid cells are involved in the progression of anti-GBM glomerulonephritis and regulated directly or indirectly by PPARα. Our findings suggest that innate lymphoid cells could serve as novel therapeutic targets for anti-GBM glomerulonephritis.
Collapse
Affiliation(s)
- Yusuke Okabayashi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Nagasaka
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
26
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
27
|
Silva AKS, Peixoto CA. Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cell Mol Life Sci 2018; 75:2951-2961. [PMID: 29789866 PMCID: PMC11105365 DOI: 10.1007/s00018-018-2838-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Overweight and obesity have been identified as the most important risk factors for many diseases, including cardiovascular disease, type 2 diabetes and lipid disorders, such as non-alcoholic fatty liver disease (NAFLD). The metabolic changes associated with obesity are grouped to define metabolic syndrome, which is one of the main causes of morbidity and mortality in industrialized countries. NAFLD is considered to be the hepatic manifestation of metabolic syndrome and is one of the most prevalent liver diseases worldwide. Inflammation plays an important role in the development of numerous liver diseases, contributing to the progression to more severe stages, such as non-alcoholic steatohepatitis and hepatocellular carcinoma. Peroxisome proliferator-activated receptors (PPARs) are binder-activated nuclear receptors that are involved in the transcriptional regulation of lipid metabolism, energy balance, inflammation and atherosclerosis. Three isotypes are known: PPAR-α, PPARδ/β and PPAR-γ. These isotypes play different roles in diverse tissues and cells, including the inflammatory process. In this review, we discuss current knowledge on the role PPARs in the hepatic inflammatory process involved in NAFLD as well as new pharmacological strategies that target PPARs.
Collapse
Affiliation(s)
- Amanda Karolina Soares Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
- Biological Sciences of the Federal University of Pernambuco, Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Okine BN, Gaspar JC, Finn DP. PPARs and pain. Br J Pharmacol 2018; 176:1421-1442. [PMID: 29679493 DOI: 10.1111/bph.14339] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is a common cause of disability worldwide and remains a global health and socio-economic challenge. Current analgesics are either ineffective in a significant proportion of patients with chronic pain or associated with significant adverse side effects. The PPARs, a family of nuclear hormone transcription factors, have emerged as important modulators of pain in preclinical studies and therefore a potential therapeutic target for the treatment of pain. Modulation of nociceptive processing by PPARs is likely to involve both transcription-dependent and transcription-independent mechanisms. This review presents a comprehensive overview of preclinical studies investigating the contribution of PPAR signalling to nociceptive processing in animal models of inflammatory and neuropathic pain. We examine current evidence from anatomical, molecular and pharmacological studies demonstrating a role for PPARs in pain control. We also discuss the limited evidence available from relevant clinical studies and identify areas that warrant further research. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Bright N Okine
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Jessica C Gaspar
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
29
|
Pontis S, Ribeiro A, Sasso O, Piomelli D. Macrophage-derived lipid agonists of PPAR-αas intrinsic controllers of inflammation. Crit Rev Biochem Mol Biol 2015; 51:7-14. [DOI: 10.3109/10409238.2015.1092944] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Okine BN, Rea K, Olango WM, Price J, Herdman S, Madasu MK, Roche M, Finn DP. A role for PPARα in the medial prefrontal cortex in formalin-evoked nociceptive responding in rats. Br J Pharmacol 2014; 171:1462-71. [PMID: 24303983 DOI: 10.1111/bph.12540] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/02/2013] [Accepted: 10/27/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The nuclear hormone receptor, PPARα, and its endogenous ligands, are involved in pain modulation. PPARα is expressed in the medial prefrontal cortex (mPFC), a key brain region involved in both the cognitive-affective component of pain and in descending modulation of pain. However, the role of PPARα in the mPFC in pain responding has not been investigated. Here, we investigated the effects of pharmacological modulation of PPARα in the rat mPFC on formalin-evoked nociceptive behaviour and the impact of formalin-induced nociception on components of PPARα signalling in the mPFC. EXPERIMENTAL APPROACH The effects of intra-mPFC microinjection of a PPARα agonist (GW7647) or a PPARα antagonist (GW6471) on formalin-evoked nociceptive behaviour in rats were studied. Quantitative real-time PCR and LC-MS/MS were used to study the effects of intraplantar injection of formalin on PPARα mRNA expression and levels of endogenous ligands, respectively, in the mPFC. KEY RESULTS Intra-mPFC administration of GW6471, but not GW7647, resulted in delayed onset of the early second phase of formalin-evoked nociceptive behaviour. Furthermore, formalin-evoked nociceptive behaviour was associated with significant reductions in mPFC levels of endogenous PPARα ligands (N-palmitoylethanolamide and N-oleoylethanolamide) and a 70% reduction in PPARα mRNA but not protein expression. CONCLUSIONS AND IMPLICATIONS These data suggest that endogenous ligands may act at PPARα in the mPFC to play a facilitatory/permissive role in second phase formalin-evoked nociceptive behaviour in rats. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- B N Okine
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tancevski I, Nairz M, Duwensee K, Auer K, Schroll A, Heim C, Feistritzer C, Hoefer J, Gerner RR, Moschen AR, Heller I, Pallweber P, Li X, Theurl M, Demetz E, Wolf AM, Wolf D, Eller P, Ritsch A, Weiss G. Fibrates ameliorate the course of bacterial sepsis by promoting neutrophil recruitment via CXCR2. EMBO Mol Med 2014; 6:810-20. [PMID: 24755316 PMCID: PMC4203357 DOI: 10.1002/emmm.201303415] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial sepsis results in high mortality rates, and new therapeutics to control infection are urgently needed. Here, we investigate the therapeutic potential of fibrates in the treatment of bacterial sepsis and examine their effects on innate immunity. Fibrates significantly improved the survival from sepsis in mice infected with Salmonella typhimurium, which was paralleled by markedly increased neutrophil influx to the site of infection resulting in rapid clearance of invading bacteria. As a consequence of fibrate-mediated early control of infection, the systemic inflammatory response was repressed in fibrate-treated mice. Mechanistically, we found that fibrates preserve chemotaxis of murine neutrophils by blocking LPS-induced phosphorylation of ERK. This results in a decrease of G protein-coupled receptor kinase-2 expression, thereby inhibiting the LPS-mediated downregulation of CXCR2, a chemokine receptor critical for neutrophil recruitment. Accordingly, application of a synthetic CXCR2 inhibitor completely abrogated the protective effects of fibrates in septicemia in vivo. Our results unravel a novel function of fibrates in innate immunity and host response to infection and suggest fibrates as a promising adjunct therapy in bacterial sepsis.
Collapse
Affiliation(s)
- Ivan Tancevski
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Kristina Duwensee
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Kristina Auer
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Christiane Heim
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Clemens Feistritzer
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Julia Hoefer
- Department of Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I/Gastroenterology, Endocrinology & Metabolism Innsbruck Medical University, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I/Gastroenterology, Endocrinology & Metabolism Innsbruck Medical University, Innsbruck, Austria
| | - Ingrid Heller
- Department of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Petra Pallweber
- Department of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Xiaorong Li
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Markus Theurl
- Department of Internal Medicine III/Cardiology, Innsbruck Medical University, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Anna M Wolf
- Department of Hematology/Oncology, University Hospital Bonn, Bonn, Germany
| | - Dominik Wolf
- Department of Hematology/Oncology, University Hospital Bonn, Bonn, Germany
| | - Philipp Eller
- Department of Internal Medicine/Angiology, Medical University of Graz, Graz, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I/Gastroenterology, Endocrinology & Metabolism Innsbruck Medical University, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
32
|
Vamecq J, Cherkaoui-Malki M, Andreoletti P, Latruffe N. The human peroxisome in health and disease: the story of an oddity becoming a vital organelle. Biochimie 2013; 98:4-15. [PMID: 24075875 DOI: 10.1016/j.biochi.2013.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022]
Abstract
Since the first report by Rhodin in 1954, our knowledge on mammalian microbodies/peroxisomes has known several periods. An initial two decades period (1954-1973) has contributed to the biochemical individualisation of peroxisomes as a new class of subcellular organelles (de Duve, 1965). The corresponding research period failed to define a clear role of mammalian peroxisomes in vital functions and intermediary metabolism, explaining why feeling that peroxisomes might be in the human cell oddities has prevailed during several decades. The period standing from 1973 to nowadays has progressively removed this cell oddity view of peroxisomes by highlighting vital function and metabolic role of peroxisomes in health and disease along with genetic and metabolic regulation of peroxisomal protein content, organelle envelope formation and protein signal targeting mechanisms. Research on peroxisomes and their response to various drugs and metabolites, dietary and physiological conditions has also played a key role in the discovery of peroxisome proliferator activated receptors (PPARs) belonging to the nuclear hormone receptor superfamily and for which impact in science and medicine goes now by far beyond that of the peroxisomes.
Collapse
Affiliation(s)
- Joseph Vamecq
- INSERM, Laboratory of Biochemistry and Molecular Biology, Hormonology-Metabolism-Nutrition-Oncology, Centre of Biology and Pathology (CBP), CHU Lille, France.
| | - Mustapha Cherkaoui-Malki
- Laboratory of Biochemistry of Peroxisome, Inflammation & Lipids Metabolism (BioPeroxIL-EA7270), University of Burgundy, 21000 Dijon, France
| | - Pierre Andreoletti
- Laboratory of Biochemistry of Peroxisome, Inflammation & Lipids Metabolism (BioPeroxIL-EA7270), University of Burgundy, 21000 Dijon, France
| | - Norbert Latruffe
- Laboratory of Biochemistry of Peroxisome, Inflammation & Lipids Metabolism (BioPeroxIL-EA7270), University of Burgundy, 21000 Dijon, France
| |
Collapse
|
33
|
Wang X, Xu X, Li Y, Li X, Tao W, Li B, Wang Y, Yang L. Systems pharmacology uncovers Janus functions of botanical drugs: activation of host defense system and inhibition of influenza virus replication. Integr Biol (Camb) 2013; 5:351-71. [PMID: 23168537 PMCID: PMC7108588 DOI: 10.1039/c2ib20204b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the imminent threat of influenza pandemics and continuing emergence of new drug-resistant influenza virus strains, novel strategies for preventing and treating influenza disease are urgently needed. Herbal medicine, used for thousands of years in combinational therapies (Herb Formula), plays a significant role in stimulating the host immune system in vivo, and meanwhile, in fighting against the pandemic by directly inhibiting influenza virus in vitro. Such potential Janus functions may spark interest in therapeutic manipulation of virus diseases. Unfortunately, the molecular mechanism of the Janus functions of the medicinal herbs in the treatment of influenza remains unclear. In this work, to illustrate the therapeutic concept of Janus functions in the treatment of influenza, we have introduced a novel systems pharmacology model that integrates pharmacokinetic screening, targeting and network analysis of two representative herbs Lonicera japonica and Fructus Forsythiae that are efficient in the treatment of influenza, inflammation and other diseases. 50 Chemicals with favorable pharmacokinetic profiles have been identified for the two herbs, and the ligand-target network was constructed by complementing the literature-based experimental data deposited in DrugBank. The annotation of these chemicals was assigned using a novel drug targeting approach, and mapped to target-disease and drug-target-pathway networks. The overall data suggest that the medicinal herbs function by indirectly suppressing the virus proliferation via regulating the immune systems in hosts, and also, by directly inhibiting virus proliferation through targeting viral proteins essential for the viral life cycle. For the first time, we have demonstrated the mechanism of medicinal herbs in prevention and treatment of virus diseases via the Janus functions on a systematic level.
Collapse
Affiliation(s)
- Xia Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Avci CB, Dodurga Y, Gundogdu G, Caglar HO, Kucukatay V, Gunduz C, Satiroglu-Tufan NL. Regulation of URG4/URGCP and PPARα gene expressions after retinoic acid treatment in neuroblastoma cells. Tumour Biol 2013; 34:3853-7. [PMID: 23821302 DOI: 10.1007/s13277-013-0970-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022] Open
Abstract
Neuroblastoma (NB), originating from neural crest cells, is the most common extracranial tumor of childhood. Retinoic acid (RA) which is the biological active form of vitamin A regulates differentiation of NB cells, and RA derivatives have been used for NB treatment. PPARα (peroxisome proliferator-activated receptor) plays an important role in the oxidation of fatty acids, carcinogenesis, and differentiation. URG4/URGCP gene is a proto-oncogene and that overexpression of URG4/URGCP is associated with metastasis and tumor recurrence in osteosarcoma. It has been known that URG4/URGCP gene is an overexpressed gene in hepatocellular carcinoma and gastric cancers. This study aims to detect gene expression patterns of PPARα and URG4/URGCP genes in SH-SY5Y NB cell line after RA treatment. Expressions levels of PPARα and URG4/URGCP genes were analyzed after RA treatment for reducing differentiation in SH-SY5Y NB cell line. To induce differentiation, the cells were treated with 10 μM RA in the dark for 3-10 days. Gene expression of URG4/URGCP and PPARα genes were presented as the yield of polymerase chain reaction (PCR) products from target genes compared with the yield of PCR products from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. SH-SY5Y cells possess small processes in an undifferentiated state, and after treatment with RA, the cells developed long neurites, resembling a neuronal phenotype. PPARα gene expression increased in RA-treated groups; URG4/URGCP gene expression decreased in SH-SY5Y cells after RA treatment compared with that in the control cells. NB cell differentiation might associate with PPARα and URG4/URGCP gene expression profile after RA treatment.
Collapse
Affiliation(s)
- Cigir Biray Avci
- Department of Medical Biology, School of Medicine, Ege University, Bornova, Izmir, 35100, Turkey,
| | | | | | | | | | | | | |
Collapse
|
35
|
van Eekeren ICM, Clockaerts S, Bastiaansen-Jenniskens YM, Lubberts E, Verhaar JAN, van Osch GJVM, Bierma-Zeinstra SM. Fibrates as therapy for osteoarthritis and rheumatoid arthritis? A systematic review. Ther Adv Musculoskelet Dis 2013; 5:33-44. [PMID: 23515070 DOI: 10.1177/1759720x12468659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fibrates are used as lipid-lowering drugs to prevent cardiovascular pathology. Fibrates are ligands of peroxisome proliferator-activated receptor α (PPARα). Besides altering lipid metabolism, PPARα ligands exert anti-inflammatory effects on various cell types. In this study, we hypothesized that PPARα agonists exert beneficial effects on osteoarthritis (OA) and rheumatoid arthritis (RA) by their local anti-inflammatory effects, but also by their systemic influences. A systematic literature search of Medline and EMBASE databases was performed up to August 2011. The main search items were osteoarthritis, rheumatoid arthritis, peroxisome proliferator-activated receptor alpha and fibrates. Inclusion criteria were in vivo or in vitro studies regarding humans or animals in which the effects of PPARα ligands were studied. Six in vivo human studies, four in vivo animal studies and seven in vitro studies were included. The in vivo human studies showed all beneficial clinical effects of PPARα ligands, but studies were small and only four were randomized. Ligands for PPARα significantly reduced pain, swelling of the joints and decreased systemic inflammatory markers. In vitro and in vivo animal studies indicate that PPARα agonists inhibit bone resorption, and reduce inflammatory and destructive responses in cartilage and synovium. PPARα agonists such as fibrates should be considered as potential therapeutic strategy for RA. There is no clinical evidence for their use in OA, although in vitro studies indicate that PPARα agonists demonstrate different joint-protective effects locally, and systemic effects on inflammation, serum lipid levels and vascular pathology. Animal studies should be performed and after confirmation of the protective effects of PPARα, large randomized controlled trials could investigate fibrates in OA and RA.
Collapse
Affiliation(s)
- Inge C M van Eekeren
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Dong K, Zhang MX, Liu Y, Su XL, Chen B, Zhang XL. Peroxisome proliferator-activated receptor alpha expression changes in human pregnant myometrium. Reprod Sci 2012; 20:654-60. [PMID: 23144166 DOI: 10.1177/1933719112461187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) has been demonstrated to exhibit anti-inflammatory activities that are hypothesized to play a key role in labor suppression and maintenance of uterine quiescence. The aim of this study was to identify pregnancy- and labor-associated changes in PPARα in human myometrium. For this investigation, human myometrium was obtained from premenopausal women, and the study participants were categorized into the following 4 groups: nonpregnant (NP; n = 10), preterm not in labor (PNL; n = 10, gestation range 20-35 weeks), term not in labor (TNL; n = 20, gestation range 37-41 weeks), and term in labor (TL; n = 20, gestation range 37-41 weeks). Immunohistochemistry was used to locate and confirm the expression of PPARα. Relative quantitative real-time polymerase chain reaction (PCR) and Western blotting were employed to study the expression of anti-inflammatory PPARα and proinflammatory interleukin 1β (IL-1β). Immunohistochemistry indicated that PPARα was located in the nucleus of uterine smooth muscle cells. Compared to other groups, in PNL group, the PPARα messenger RNA (mRNA) and protein increased significantly. Decreased PPARα mRNA and protein expressions in myometrium were associated with labor while IL-1β increased remarkably. There were negative correlations between PPARα and IL-1β on mRNA (r = -.765, P < .01) and protein (r = -.624, P < .01) levels analyzed using Pearson test. In conclusion, human pregnancy is associated with changes in expression of PPARα and IL-1β in myometrium. The changes observed suggest that PPARα may play a role in maintaining pregnancy or initiating labor through inhibiting the expression of IL-1β in human myometrium.
Collapse
Affiliation(s)
- Kun Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
37
|
Human macrophage response to L. (Viannia) panamensis: microarray evidence for an early inflammatory response. PLoS Negl Trop Dis 2012; 6:e1866. [PMID: 23145196 PMCID: PMC3493378 DOI: 10.1371/journal.pntd.0001866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 09/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background Previous findings indicate that susceptibility to Leishmania (Viannia) panamensis infection of monocyte-derived macrophages from patients and asymptomatically infected individuals were associated with the adaptive immune response and clinical outcome. Methodology/Principal Findings To understand the basis for this difference we examined differential gene expression of human monocyte-derived macrophages following exposure to L. (V.) panamensis. Gene activation profiles were determined using macrophages from healthy volunteers cultured with or without stationary phase promastigotes of L. (V.) panamensis. Significant changes in expression (>1.5-fold change; p<0.05; up- or down-regulated) were identified at 0.5, 4 and 24 hours. mRNA abundance profiles varied over time, with the highest level of activation occurring at earlier time points (0.5 and 4 hrs). In contrast to observations for other Leishmania species, most significantly changed mRNAs were up- rather than down-regulated, especially at early time points. Up-regulated transcripts over the first 24 hours belonged to pathways involving eicosanoid metabolism, oxidative stress, activation of PKC through G protein coupled receptors, or mechanism of gene regulation by peroxisome proliferators via PPARα. Additionally, a marked activation of Toll-receptor mediated pathways was observed. Comparison with published microarray data from macrophages infected with L. (Leishmania) chagasi indicate differences in the regulation of genes involved in signaling, motility and the immune response. Conclusions Results show that the early (0.5 to 24 hours) human monocyte-derived macrophage response to L. (Viannia) panamensis is not quiescent, in contrast to published reports examining later response times (48–96 hours). Early macrophage responses are important for the developing cellular response at the site of infection. The kinetics and the mRNA abundance profiles induced by L. (Viannia) panamensis illustrate the dynamics of these interactions and the distinct biologic responses to different Leishmania species from the outset of infection within their primary host cell. Leishmania parasites cause a spectrum of diseases (cutaneous, visceral and the deforming forms—chronic cutaneous and mucocutaneous) known as leishmaniasis. The macrophage, a key cell in the immune system, is the cellular target of Leishmania parasites in the mammalian host. Previous studies showed the responses of monocytederived macrophages from naturally infected humans to infection with Leishmania (Viannia) panamensis were key to adaptive immune responses and clinical outcome. Consequently, an mRNA microarray approach was employed to assess the changes in macrophage gene expression over time (0.5 to 24 hours) induced by L. panamensis. The highest level of gene expression induction occurred early (0.5–4 hours); the early pathways (groups of genes) activated included those involved in the innate immune response (signaling, phagocytosis, TLR activation, and inflammatory). Early gene activation is presumed to be important for the developing cellular milieu at the site of infection. By 24 hours post-infection the dominant pathways involved metabolic functions. However, a comparison of the macrophage response to L. (V.) panamensis to that of L. (L.) chagasi (causative agent of visceral leishmaniasis) at 24 hours revealed a differential up-regulation of genes (cell adhesion, signaling, and inflammation) in response to these species. These observations underscore the distinct biology of different Leishmania species from the outset of infection.
Collapse
|
38
|
Kurtz M, Martínez N, Capobianco E, Higa R, Fornes D, White V, Jawerbaum A. Increased nitric oxide production and gender-dependent changes in PPARα expression and signaling in the fetal lung from diabetic rats. Mol Cell Endocrinol 2012; 362:120-7. [PMID: 22687882 DOI: 10.1016/j.mce.2012.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 11/29/2022]
Abstract
The fetal lung is affected by maternal diabetes. Nuclear receptor PPARα regulates nitric oxide (NO) overproduction in different tissues. We aimed to determine whether fetal lung PPARα expression is altered by maternal diabetes, and if there are gender-dependent changes in PPARα regulation of NO production in the fetal lung. Fetal lungs from control and diabetic rats were explanted on day 21 of gestation and evaluated for PPARα expression and NO production. Fetuses were injected with the PPARα ligand LTB(4) on days 19, 20 and 21, and the fetal lung explanted on day 21 to evaluate PPARα and the inducible isoform of NO synthase (iNOS). Besides, pregnant rats were fed with olive oil- and safflower oil-supplemented diets, enriched in PPAR ligands, for evaluation of fetal lung NO production and PPARα expression. We found reduced PPARα concentrations only in the lung from male fetuses from the diabetic group when compared to controls, although maternal diabetes led to NO overproduction in both male and female fetal lungs. Fetal activation of PPARα led to changes in lung PPARα expression only in female fetuses, although this treatment increased iNOS expression in both male and female fetuses in the diabetic group. Diets supplemented with olive oil and not with safflower oil led to a reduction in NO production in male and female fetal lungs. In conclusion, there are gender-dependent changes in PPARα expression and signaling in the fetal lung from diabetic rats, although PPARα activation prevents maternal diabetes-induced lung NO overproduction in both male and female fetuses.
Collapse
Affiliation(s)
- Melisa Kurtz
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155 (1121ABG) Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
39
|
Gervois P, Mansouri RM. PPARα as a therapeutic target in inflammation-associated diseases. Expert Opin Ther Targets 2012; 16:1113-25. [PMID: 22925108 DOI: 10.1517/14728222.2012.715633] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) plays a major regulatory function of genes involved in energy metabolism and is a therapeutic target for dyslipidemia. The last decade provided a constellation of findings demonstrating that PPARα behaves as a modulator of both acute and chronic inflammation. PPARα became a rational potential therapeutic target for the treatment of inflammatory disorders. AERAS COVERED The ability of PPARα to control inflammatory signaling pathways via a diversity of molecular mechanisms is discussed. This review is especially focused on the global action of PPARα on inflammation in several tissues from data obtained in numerous cell types and in vivo models exposed to inflammatory stimuli. EXPERT OPINION Available PPARα agonists currently used in clinic belong to the class of hypolipidemic drugs but were not expected and not designed to act as anti-inflammatory drugs. To date, accumulating preclinical suggest evidence promising benefits when considering PPARα as a drug target to treat inflammatory disorders. However, clinical studies are needed to validate this concept. Drug design should also be directed toward the elaboration of PPARα agonists more specifically active in the control inflammatory signaling.
Collapse
Affiliation(s)
- Philippe Gervois
- Laboratoire de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Lille Nord de France, 3, rue du professeur Laguesse, BP83 F-59006, Lille, France.
| | | |
Collapse
|
40
|
Esposito E, Rinaldi B, Mazzon E, Donniacuo M, Impellizzeri D, Paterniti I, Capuano A, Bramanti P, Cuzzocrea S. Anti-inflammatory effect of simvastatin in an experimental model of spinal cord trauma: involvement of PPAR-α. J Neuroinflammation 2012; 9:81. [PMID: 22537532 PMCID: PMC3372420 DOI: 10.1186/1742-2094-9-81] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Statins such as simvastatin are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase used in the prevention of cardiovascular disease. In addition to their cholesterol-lowering activities, statins exert pleiotropic anti-inflammatory effects, which might contribute to their beneficial effects on lipid-unrelated inflammatory diseases. Recently it has been demonstrated that the peroxisome proliferator-activated receptor (PPAR)-α mediates anti-inflammatory effects of simvastatin in vivo models of acute inflammation. Moreover, previous results suggest that PPAR-α plays a role in control of secondary inflammatory process associated with spinal cord injury (SCI). METHODS With the aim to characterize the role of PPAR-α in simvastatin activity, we tested the efficacy of simvastatin (10 mg/kg dissolved in saline i.p. 1 h and 6 h after the trauma) in an experimental model of SCI induced in mice by extradural compression of the spinal cord (T6-T7 level) using an aneurysm clip with a closing force of 24 g via a four-level T5-T8 laminectomy, and comparing mice lacking PPAR-α (PPAR-α KO) with wild type (WT) mice. In order to elucidate whether the effects of simvastatin are due to activation of the PPAR-α, we also investigated the effect of a PPAR-α antagonist, GW6471 (1 mg/kg administered i.p. 30 min prior treatment with simvastatin) on the protective effects of on simvastatin. RESULTS Results indicate that simvastatin activity is weakened in PPAR-α KO mice, as compared to WT controls. In particular, simvastatin was less effective in PPAR-α KO, compared to WT mice, as evaluated by inhibition of the degree of spinal cord inflammation, neutrophil infiltration, nitrotyrosine formation, pro-inflammmatory cytokine expression, nuclear factor (NF)-κB activation, inducible nitric-oxide synthase (iNOS) expression, and apoptosis. In addition we demonstrated that GW6471 significantly antagonized the effect of the statin and thus abolished the protective effect. CONCLUSIONS This study indicates that PPAR-α can contribute to the anti-inflammatory activity of simvastatin in SCI.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98125 Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Knapp P, Chabowski A, Błachnio-Zabielska A, Jarząbek K, Wołczyński S. Altered peroxisome-proliferator activated receptors expression in human endometrial cancer. PPAR Res 2012; 2012:471524. [PMID: 22448166 PMCID: PMC3289929 DOI: 10.1155/2012/471524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/07/2011] [Accepted: 11/21/2011] [Indexed: 02/01/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear hormone receptors acting as transcriptional factors, recently involved also in carcinogenesis. Present study was undertaken to evaluate the presence and subcellular localization of different PPAR isoforms (α, β, γ) in healthy endometrial tissue (n = 10) and endometrial carcinoma (FIGO I, endometrioides type, G1, n = 35). We sought to analyze PPARs mRNA content as well as protein immunohistochemical expression that was further quantified by Western Blot technique. For both PPARα and PPARβ, protein expression was significantly higher in endometrial cancers compared to normal endometrial mucosa. In opposite, PPARγ protein expression was lower in endometrial cancer cells. In each case, immunohistochemical reaction was confined to the perinuclear and/or nuclear region. At the transcriptional level, the content of mRNA of all PPAR subunits did not follow the protein pattern of changes. These results provide evidence for altered PPAR's protein expression and disregulation of posttranslational processes in endometrial cancers.
Collapse
Affiliation(s)
- Paweł Knapp
- Department of Gynecology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Katarzyna Jarząbek
- Department of Gynecological Endocrinology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Gynecological Endocrinology, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
42
|
Antolino-Lobo I, Meulenbelt J, van den Berg M, van Duursen MB. A mechanistic insight into 3,4-methylenedioxymethamphetamine (“ecstasy”)-mediated hepatotoxicity. Vet Q 2011; 31:193-205. [DOI: 10.1080/01652176.2011.642534] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Rinaldi B, Donniacuo M, Esposito E, Capuano A, Sodano L, Mazzon E, Di Palma D, Paterniti I, Cuzzocrea S, Rossi F. PPARα mediates the anti-inflammatory effect of simvastatin in an experimental model of zymosan-induced multiple organ failure. Br J Pharmacol 2011; 163:609-23. [PMID: 21323892 DOI: 10.1111/j.1476-5381.2011.01248.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Zymosan-induced non-septic shock is a multi-factorial pathology that involves several organs including the kidneys, liver and lungs. Its complexity and diversity presents a continuing therapeutic challenge. Given their pleiotropic effect, statins could be beneficial in non-septic shock. One of the molecular mechanisms underlying the anti-inflammatory effect of statins involves the peroxisome proliferator-activated receptor (PPAR) α. We used a zymosan-induced non-septic shock experimental model to investigate the role of PPARα in the anti-inflammatory effects of simvastatin. EXPERIMENTAL APPROACH Effects of simvastatin (5 or 10 mg·kg(-1) i.p.) were analysed in PPARα knock-out (KO) and PPARα wild type (WT) mice after zymosan or vehicle administration. Organ injury in lung, liver, kidney and intestine was evaluated by immunohistology. PPARα mRNA expression and nuclear factor-κB activation were evaluated in all experimental groups, 18 h after study onset. Cytokine levels were measured in plasma, and nitrite/nitrate in plasma and peritoneal exudate. Nitric oxide synthase, nitrotyrosine and poly ADP-ribose were localized by immunohistochemical methods. KEY RESULTS Simvastatin significantly and dose-dependently increased the zymosan-induced expression of PPARα levels in all tissues analysed. It also dose-dependently reduced systemic inflammation and the organ injury induced by zymosan in lung, liver, intestine and kidney. These effects were observed in PPARαWT mice and in PPARαKO mice. CONCLUSIONS AND IMPLICATIONS Simvastatin protected against the molecular and cellular damage caused by systemic inflammation in our experimental model. Our results also provide new information regarding the role of PPARα in the anti-inflammatory effects of statins.
Collapse
Affiliation(s)
- Barbara Rinaldi
- Department of Experimental Medicine, Section of Pharmacology 'L.Donatelli', Excellence Centre for Cardiovascular Diseases, Second University of Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Clockaerts S, Bastiaansen-Jenniskens YM, Feijt C, Verhaar JAN, Somville J, De Clerck LS, Van Osch GJVM. Peroxisome proliferator activated receptor alpha activation decreases inflammatory and destructive responses in osteoarthritic cartilage. Osteoarthritis Cartilage 2011; 19:895-902. [PMID: 21458577 DOI: 10.1016/j.joca.2011.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Peroxisome proliferator activated receptor α (PPARα) agonists are used in clinical practice as lipid-lowering drugs and are also known to exert anti-inflammatory effects on various tissues. We hypothesized that PPARα activation leads to anti-inflammatory and anti-destructive effects in human OA cartilage. METHODS Cartilage explants obtained from six OA patients were cultured for 48 h with 10 ng/ml interleukin (IL)1β as a pro-inflammatory stimulus. 100 μM Wy-14643, a potent and selective PPARα agonist, was added to the cultures and gene expression of matrix metalloproteinase (MMP)1, MMP3, MMP13, collagen type II (COL2A1), aggrecan and PPARα in cartilage explants and the release of glycosaminoglycans (GAGs), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture media were analyzed and compared to the control without Wy-14643. RESULTS Addition of Wy-14643 decreased mRNA expression of MMP1, MMP3 and MMP13 in cartilage explants that responded to IL1β, whereas Wy-14643 did not affect gene expression of COL2A1 and aggrecan. Wy-14643 also decreased secretion of inflammatory marker NO in the culture medium of cartilage explants responding to IL1β. Wy-14643 inhibited the release of GAGs by cartilage explants in culture media. CONCLUSION PPARα agonist Wy-14643 inhibited the inflammatory and destructive responses in human OA cartilage explants and did not have an effect on COL2A1 or aggrecan mRNA expression. These effects of PPARα agonists on osteoarthritic cartilage warrant further investigation of these drugs as a potential therapeutic strategy for osteoarthritis (OA).
Collapse
Affiliation(s)
- S Clockaerts
- Department of Orthopaedic Surgery and Traumatology, University of Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
45
|
Alleva LM, Gualano RC, Clark IA. Current work and future possibilities for the management of severe influenza: using immunomodulatory agents that target the host response. Future Virol 2011. [DOI: 10.2217/fvl.11.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we argue the case that the excessive inflammatory response seen in severe influenza contributes to severe illness and death by disabling oxidative phosphorylation in mitochondria, leading to reduced cellular levels of ATP. When the mitochondrial permeability transition is induced, cells cannot die by apoptosis in the face of reduced ATP levels, because apoptosis depends upon ATP availability, and so cells undergo necrosis. Cellular necrosis causes release of proinflammatory molecules such as high mobility group box 1 protein and mitochondrial DNA, and these could contribute to the prolongation of inflammation during severe influenza. With these concepts in mind, we discuss how immunomodulatory agents that prevent cellular necrosis (by restoring mitochondrial function) and limit inflammation are promising influenza treatments.
Collapse
Affiliation(s)
| | - Rosa C Gualano
- Department of Pharmacology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Ian A Clark
- Division of Biomedical Science & Biochemistry, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
46
|
Lack of PPARα exacerbates lipopolysaccharide-induced liver toxicity through STAT1 inflammatory signaling and increased oxidative/nitrosative stress. Toxicol Lett 2011; 202:23-9. [PMID: 21262334 DOI: 10.1016/j.toxlet.2011.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) has been implicated in a potent anti-inflammatory activity. However, no information is available on whether PPARα can affect signal transducers and activator of transcription proteins (STATs) in acute liver damage. Thus, this study was aimed to investigate the in vivo role of PPARα in elevating STATs as well as oxidative/nitrosative stress in a model of lipopolysaccharide (LPS)-induced acute hepatic inflammatory injury. Using age-matched Ppara-null and wild-type (WT) mice, we demonstrate that the deletion of PPARα aggravates LPS-mediated liver injury through activating STAT1 and NF-κB-p65 accompanied by increased levels of pro-inflammatory cytokines. Furthermore, the activities of key anti-oxidant enzymes and mitochondrial complexes were significantly decreased while lipid peroxidation and protein nitration were elevated in LPS-exposed Ppara-null mice compared to WT. These results indicate that PPARα is important in preventing LPS-induced acute liver damage by regulating STAT1 inflammatory signaling pathways and oxidative/nitrosative stress.
Collapse
|
47
|
Marcil V, Seidman E, Sinnett D, Boudreau F, Gendron FP, Beaulieu JF, Ménard D, Precourt LP, Amre D, Levy E. Modification in oxidative stress, inflammation, and lipoprotein assembly in response to hepatocyte nuclear factor 4alpha knockdown in intestinal epithelial cells. J Biol Chem 2010; 285:40448-60. [PMID: 20871093 DOI: 10.1074/jbc.m110.155358] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor mainly expressed in the liver, intestine, kidney, and pancreas. Many of its hepatic and pancreatic functions have been described, but limited information is available on its role in the gastrointestinal tract. The objectives of this study were to evaluate the anti-inflammatory and antioxidant functions of HNF4α as well as its implication in intestinal lipid transport and metabolism. To this end, the HNF4A gene was knocked down by transfecting Caco-2 cells with a pGFP-V-RS lentiviral vector containing an shRNA against HNF4α. Inactivation of HNF4α in Caco-2 cells resulted in the following: (a) an increase in oxidative stress as demonstrated by the levels of malondialdehyde and conjugated dienes; (b) a reduction in secondary endogenous antioxidants (catalase, glutathione peroxidase, and heme oxygenase-1); (c) a lower protein expression of nuclear factor erythroid 2-related factor that controls the antioxidant response elements-regulated antioxidant enzymes; (d) an accentuation of cellular inflammatory activation as shown by levels of nuclear factor-κB, interleukin-6, interleukin-8, and leukotriene B4; (e) a decrease in the output of high density lipoproteins and of their anti-inflammatory and anti-oxidative components apolipoproteins (apo) A-I and A-IV; (f) a diminution in cellular lipid transport revealed by a lower cellular secretion of chylomicrons and their apoB-48 moiety; and (g) alterations in the transcription factors sterol regulatory element-binding protein 2, peroxisome proliferator-activated receptor α, and liver X receptor α and β. In conclusion, HNF4α appears to play a key role in intestinal lipid metabolism as well as intestinal anti-oxidative and anti-inflammatory defense mechanisms.
Collapse
Affiliation(s)
- Valérie Marcil
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal H3G 1A4, Quebec
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-alpha bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.
Collapse
|
49
|
|
50
|
Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet--induced obesity in mice. Diabetes 2010; 59:1171-81. [PMID: 20185806 PMCID: PMC2857897 DOI: 10.2337/db09-1402] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To identify, localize, and determine M1/M2 polarization of epidydimal adipose tissue (eAT) macrophages (Phis) during high-fat diet (HFD)-induced obesity. RESEARCH DESIGN AND METHODS Male C57BL/6 mice were fed an HFD (60% fat kcal) or low-fat diet (LFD) (10% fat kcal) for 8 or 12 weeks. eATMPhis (F4/80(+) cells) were characterized by in vivo fluorescent labeling, immunohistochemistry, fluorescence-activated cell sorting, and quantitative PCR. RESULTS Recruited interstitial macrophage galactose-type C-type lectin (MGL)1(+)/CD11c(-) and crown-like structure-associated MGL1(-)/CD11c(+) and MGL1(med)/CD11c(+) eATMPhis were identified after 8 weeks of HFD. MGL1(med)/CD11c(+) cells comprised approximately 65% of CD11c(+) eATMPhis. CD11c(+) eATMPhis expressed a mixed M1/M2 profile, with some M1 transcripts upregulated (IL-12p40 and IL-1beta), others downregulated (iNOS, caspase-1, MCP-1, and CD86), and multiple M2 and matrix remodeling transcripts upregulated (arginase-1, IL-1Ra, MMP-12, ADAM8, VEGF, and Clec-7a). At HFD week 12, each eATMPhi subtype displayed an enhanced M2 phenotype as compared with HFD week 8. CD11c(+) subtypes downregulated IL-1beta and genes mediating antigen presentation (I-a, CD80) and upregulated the M2 hallmark Ym-1 and genes promoting oxidative metabolism (PGC-1alpha) and adipogenesis (MMP-2). MGL1(med)/CD11c(+) eATMPhis upregulated additional M2 genes (IL-13, SPHK1, CD163, LYVE-1, and PPAR-alpha). MGL1(med)/CD11c(+) ATMPhis expressing elevated PGC-1alpha, PPAR-alpha, and Ym-1 transcripts were selectively enriched in eAT of obese mice fed pioglitazone for 6 days, confirming the M2 features of the MGL1(med)/CD11c(+) eATMPhi transcriptional profile and implicating PPAR activation in its elicitation. CONCLUSIONS These results 1) redefine the phenotypic potential of CD11c(+) eATMPhis and 2) suggest previously unappreciated phenotypic and functional commonality between murine and human ATMPhis in the development of obesity and its complications.
Collapse
Affiliation(s)
- Merav E. Shaul
- From the Obesity and Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Grace Bennett
- From the Obesity and Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Katherine J. Strissel
- From the Obesity and Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Andrew S. Greenberg
- From the Obesity and Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Corresponding authors: Martin S. Obin, , or Andrew S. Greenberg,
| | - Martin S. Obin
- From the Obesity and Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Corresponding authors: Martin S. Obin, , or Andrew S. Greenberg,
| |
Collapse
|