1
|
Simovic MO, Bynum J, Liu B, Dalle Lucca JJ, Li Y. Impact of Immunopathy and Coagulopathy on Multi-Organ Failure and Mortality in a Lethal Porcine Model of Controlled and Uncontrolled Hemorrhage. Int J Mol Sci 2024; 25:2500. [PMID: 38473750 DOI: 10.3390/ijms25052500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Uncontrolled hemorrhage is a major preventable cause of death in patients with trauma. However, the majority of large animal models of hemorrhage have utilized controlled hemorrhage rather than uncontrolled hemorrhage to investigate the impact of immunopathy and coagulopathy on multi-organ failure (MOF) and mortality. This study evaluates these alterations in a severe porcine controlled and uncontrolled hemorrhagic shock (HS) model. Anesthetized female swine underwent controlled hemorrhage and uncontrolled hemorrhage by partial splenic resection followed with or without lactated Ringer solution (LR) or Voluven® resuscitation. Swine were surveyed 6 h after completion of splenic hemorrhage or until death. Blood chemistry, physiologic variables, systemic and tissue levels of complement proteins and cytokines, coagulation parameters, organ function, and damage were recorded and assessed. HS resulted in systemic and local complement activation, cytokine release, hypocoagulopathy, metabolic acidosis, MOF, and no animal survival. Resuscitation with LR and Voluven® after HS improved hemodynamic parameters (MAP and SI), metabolic acidosis, hyperkalemia, and survival but resulted in increased complement activation and worse coagulopathy. Compared with the LR group, the animals with hemorrhagic shock treated with Voluven® had worse dilutional anemia, coagulopathy, renal and hepatic dysfunction, increased myocardial complement activation and renal damage, and decreased survival rate. Hemorrhagic shock triggers early immunopathy and coagulopathy and appears associated with MOF and death. This study indicates that immunopathy and coagulopathy are therapeutic targets that may be addressed with a high-impact adjunctive treatment to conventional resuscitation.
Collapse
Affiliation(s)
- Milomir O Simovic
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - James Bynum
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bin Liu
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | | | - Yansong Li
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Wang J, Liu L, Liu C, Cheng N, Mao Q, Chen C, Hu J, He H, Hui X, Qu P, Lian W, Duan L, Dong Y, Liu Y, Li J. Identification and analysis of differential miRNA-mRNA interactions in coronary heart disease: an experimental screening approach. Front Cardiovasc Med 2023; 10:1186297. [PMID: 37965086 PMCID: PMC10642340 DOI: 10.3389/fcvm.2023.1186297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This aim of this study is to screen the differential molecules of kidney deficiency and blood stasis (KDBS) syndrome in coronary heart disease by high-throughput sequencing. In addition, the study aims to verify the alterations in the expression levels of miR-4685-3p and its regulated downstream, namely, C1QC, C4, and C5, using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), and to determine whether the complement and coagulation cascade pathway is the specific pathogenic pathway. Methods Patients diagnosed with unstable angina pectoris with KDBS syndrome, patients with non-kidney deficiency blood stasis (NKDBS) syndrome, and a Normal group were recruited. The clinical symptoms of each group were further analyzed. Illumina's NextSeq 2000 sequencing platform and FastQC software were used for RNA sequencing and quality control. DESeq software was used for differential gene expression (DGE) analysis. qPCR and ELISA verification were performed on DGE analysis. Results The DGE profiles of 77 miRNA and 331 mRNA were selected. The GO enrichment analysis comprised 43 biological processes, 49 cell components, and 42 molecular functions. The KEGG enrichment results included 40 KEGG pathways. The PCR results showed that, compared with the Normal group, the miR-4685-3p levels decreased in the CHD_KDBS group (P = 0.001), and were found to be lower than those observed in the CHD_NKDBS group. The downstream mRNA C1 regulated by miR-4685-3p showed an increasing trend in the CHD_KDBS group, which was higher than that in the Normal group (P = 0.0019). The mRNA C4 and C5 in the CHD_KDBS group showed an upward trend, but the difference was not statistically significant. ELISA was utilized for the detection of proteins associated with the complement and coagulation cascade pathway. It was found that the expression level of C1 was significantly upregulated in the CHD_KDBS group compared with the Normal group (P < 0.0001), which was seen to be higher than that in the CHD_NKDBS group (P < 0.0001). The expression levels of C4 and C5 in the CHD_KDBS group were significantly lower than the Normal group, and were lower than that in the CHD_NKDBS group (P < 0.0001). Conclusion The occurrence of CHD_KDBS might be related to the activation of the complement and coagulation cascade pathway, which is demonstrated by the observed decrease in miR-4685-3p and the subsequent upregulation of its downstream C1QC. In addition, the expression levels of complement C4 and C5 were found to be decreased, which provided a research basis for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Lanchun Liu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Chao Liu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Nuo Cheng
- Department of Graduate, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyuan Mao
- Department of Oncology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Cong Chen
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jun Hu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Haoqiang He
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Xiaoshan Hui
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Peirong Qu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Wenjing Lian
- Department of Graduate, Beijing University of Chinese Medicine, Beijing, China
| | - Lian Duan
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yan Dong
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jun Li
- Department of Cardiology, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
3
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
4
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
5
|
Yang Z, Nunn MA, Le TD, Simovic MO, Edsall PR, Liu B, Barr JL, Lund BJ, Hill-Pryor CD, Pusateri AE, Cancio LC, Li Y. Immunopathology of terminal complement activation and complement C5 blockade creating a pro-survival and organ-protective phenotype in trauma. Br J Pharmacol 2023; 180:422-440. [PMID: 36251578 PMCID: PMC10100417 DOI: 10.1111/bph.15970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 09/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic haemorrhage (TH) is the leading cause of potentially preventable deaths that occur during the prehospital phase of care. No effective pharmacological therapeutics are available for critical TH patients yet. Here, we identify terminal complement activation (TCA) as a therapeutic target in combat casualties and evaluate the efficacy of a TCA inhibitor (nomacopan) on organ damage and survival in vivo. EXPERIMENTAL APPROACH Complement activation products and cytokines were analysed in plasma from 54 combat casualties. The correlations between activated complement pathway(s) and the clinical outcomes in trauma patients were assessed. Nomacopan was administered to rats subjected to lethal TH (blast injury and haemorrhagic shock). Effects of nomacopan on TH were determined using survival rate, organ damage, physiological parameters, and laboratory profiles. KEY RESULTS Early TCA was associated with systemic inflammatory responses and clinical outcomes in this trauma cohort. Lethal TH in the untreated rats induced early TCA that correlated with the severity of tissue damage and mortality. The addition of nomacopan to a damage-control resuscitation (DCR) protocol significantly inhibited TCA, decreased local and systemic inflammatory responses, improved haemodynamics and metabolism, attenuated tissue and organ damage, and increased survival. CONCLUSION AND IMPLICATIONS Previous findings of our and other groups revealed that early TCA represents a rational therapeutic target for trauma patients. Nomacopan as a pro-survival and organ-protective drug, could emerge as a promising adjunct to DCR that may significantly reduce the morbidity and mortality in severe TH patients while awaiting transport to critical care facilities.
Collapse
Affiliation(s)
- Zhangsheng Yang
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Tuan D Le
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Milomir O Simovic
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| | - Peter R Edsall
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Bin Liu
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Johnny L Barr
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Brian J Lund
- 59th Medical Wing Operational Medicine, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Anthony E Pusateri
- Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Yansong Li
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
6
|
Yang Z, Simovic MO, Liu B, Burgess MB, Cap AP, DalleLucca JJ, Li Y. Indices of complement activation and coagulation changes in trauma patients. Trauma Surg Acute Care Open 2022; 7:e000927. [PMID: 36117727 PMCID: PMC9476135 DOI: 10.1136/tsaco-2022-000927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Early complementopathy and coagulopathy are shown often after trauma. However, the prevalence of any interplay between complement cascade (ComC) and coagulation cascade (CoaC) after trauma remains unclear. This study intended to explore whether complement-coagulation crosstalk exists, which may provide a reliable guide to clinical implications in trauma patients. Methods This single-center cohort study of trauma patients enrolled 100 patients along with 20 healthy volunteers. Blood samples from patients were collected at admission, 45, 90, 135 minutes, and 18 hours after admission. Demographic characteristics were recorded, blood levels of ComC and CoaC factors, and inflammatory cytokines were measured by ELISA, clot-based assays, or luminex multiplex assay, and partial thromboplastin (PT) and partial thromboplastin time (PTT) were assessed using a Behring blood coagulation system. Results Compared with the healthy controls, plasma levels of complement factors (C5b-9 and Bb) and 11 tested inflammatory cytokines increased in moderately and severely injured patients as early as 45 minutes after admission and sustained higher levels up to 18 hours after admission. C5b-9 correlated positively to patients’ hospital stay. In parallel, the consumption of coagulation factors I, II, X, and XIII was shown throughout the first 18 hours after admission in moderately and severely injured patients, whereas PT, PTT, D-dimer, factor VII, and factor VIII values significantly increased from the admission to 135 minutes in moderately and severely injured patients. Along with an inverse correlation between plasma Bb, factors I and II, a positive correlation between C5b-9, Bb, D-dimer, PT, and PTT was evident. Conclusions This study demonstrates trauma-induced early activation of plasma cascades including ComC, CoaC, and fibrinolytic cascade, and their correlation between plasma cascades in severe trauma patients. Our study suggests that the simultaneous modulation of plasma cascades might benefit clinical outcomes for trauma patients. Level of evidence Prospective study, level III.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Milomir O Simovic
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Bin Liu
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Matthew B Burgess
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Andrew P Cap
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | | | - Yansong Li
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Trauma Research, UTHSCSA, San Antonio, Texas, USA.,Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
7
|
Pape HC, Moore EE, McKinley T, Sauaia A. Pathophysiology in patients with polytrauma. Injury 2022; 53:2400-2412. [PMID: 35577600 DOI: 10.1016/j.injury.2022.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
Abstract
The pathophysiology after polytrauma represents a complex network of interactions. While it was thought for a long time that the direct and indirect effects of hypoperfusion are most relevant due to the endothelial permeability changes, it was discovered that the innate immune response to trauma is equally important in modifying the organ response. Recent multi center studies provided a "genetic storm" theory, according to which certain neutrophil changes are activated at the time of injury. However, a second hit phenomenon can be induced by activation of certain molecules by direct organ injury, or pathogens (damage associated molecular patterns, DAMPS - pathogen associated molecular patterns, PAMPS). The interactions between the four pathogenetic cycles (of shock, coagulopathy, temperature loss and soft tissue injuries) and cross-talk between coagulation and inflammation have also been identified as important modifiers of the clinical status. In a similar fashion, overzealous surgeries and their associated soft tissue injury and blood loss can induce secondary worsening of the patient condition. Therefore, staged surgeries in certain indications represent an important alternative, to allow for performing a "safe definitive surgery" strategy for major fractures. The current review summarizes all these situations in a detailed fashion.
Collapse
Affiliation(s)
- H-C Pape
- Department of Trauma, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
| | - E E Moore
- Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, University of Colorado, Aurora, CO, USA.
| | - T McKinley
- Department of Orthopaedics, Indiana University, 200 Hawkins Dr, Iowa City, IA 52242, USA.
| | - A Sauaia
- Schools of Public Health and Medicine, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
8
|
Ramin S, Arcelli M, Bouchdoug K, Laumon T, Duflos C, De Jong A, Jaber S, Capdevila X, Charbit J. Driving pressure is not predictive of ARDS outcome in chest trauma patients under mechanical ventilation. Anaesth Crit Care Pain Med 2022; 41:101095. [PMID: 35489710 DOI: 10.1016/j.accpm.2022.101095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The relationship between the driving pressure of the respiratory system (ΔPrs) under mechanical ventilation and worse outcome has never been studied specifically in chest trauma patients. The objective of the present study was to assess in cases of chest trauma the relationship between ΔPrs and severity of acute respiratory distress syndrome (ARDS) or death and length of stay. METHODS A retrospective analysis of severe trauma patients (ISS > 15) with chest injuries admitted to the Trauma Centre from January 2010 to December 2018 was performed. Patients who received mechanical ventilation were included in our analysis. Mechanical ventilation parameters and ΔPrs were recorded during the stay in the intensive care unit. Association of ΔPrs with mortality and outcomes was specifically studied at the onset of ARDS (ΔPrs-ARDS) by receiver operator characteristic curve analysis, Kaplan-Meier curves, and multivariate analysis. RESULTS Among the 266 chest trauma patients studied, 194 (73%) developed ARDS. ΔPrs was significantly higher in the ARDS group versus in the no ARDS group (11.6 ± 2.4 cm H2O vs. 10.9 ± 1.9 cm H2O, p = 0.04). Among the patients with ARDS, no difference according to the duration of mechanical ventilation was found between the high ΔPrs group (ΔPrs-ARDS > 14 cm H2O) and the low ΔPrs group (ΔPrs-ARDS ≤ 14 cm H2O), (p = 0.75). ΔPrs-ARDS was not independently associated with the duration of mechanical ventilation (hazard ratio [HR], 1.006; 95% CI, 0.95-1.07; p = 0.8) or mortality (HR, 1.07; 95% CI, 0.9-1.28; p = 0.45). High mechanical power (≥ 12 J/min) was associated with a lower time for weaning of mechanical ventilation in Kaplan-Meier curves but not in multivariate analysis (HR, 0.98; 95% CI, 0.94-1.02; p = 0.22). CONCLUSION A high ΔPrs-ARDS was not significantly associated with an increase in mechanical ventilation duration or mortality risk in ARDS patients with chest trauma in contrast with medical patients.
Collapse
Affiliation(s)
- Severin Ramin
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Lapeyronie, Montpellier, France; OcciTRAUMA Network, Regional Network of Medical Organization and Management for Severe Trauma in Occitanie, France.
| | - Matteo Arcelli
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Lapeyronie, Montpellier, France; OcciTRAUMA Network, Regional Network of Medical Organization and Management for Severe Trauma in Occitanie, France
| | - Karim Bouchdoug
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Lapeyronie, Montpellier, France; OcciTRAUMA Network, Regional Network of Medical Organization and Management for Severe Trauma in Occitanie, France; Department of Statistical Analysis, Montpellier, France
| | - Thomas Laumon
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Lapeyronie, Montpellier, France; OcciTRAUMA Network, Regional Network of Medical Organization and Management for Severe Trauma in Occitanie, France
| | | | - Audrey De Jong
- Department of Anaesthesiology and Critical Care Medicine, Saint Eloi University Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Samir Jaber
- Department of Anaesthesiology and Critical Care Medicine, Saint Eloi University Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Xavier Capdevila
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Lapeyronie, Montpellier, France; OcciTRAUMA Network, Regional Network of Medical Organization and Management for Severe Trauma in Occitanie, France
| | - Jonathan Charbit
- Department of Anaesthesiology and Critical Care Medicine, Hôpital Lapeyronie, Montpellier, France; OcciTRAUMA Network, Regional Network of Medical Organization and Management for Severe Trauma in Occitanie, France
| |
Collapse
|
9
|
Abstract
Patients in the intensive care unit (ICU) often straddle the divide between life and death. Understanding the complex underlying pathomechanisms relevant to such situations may help intensivists select broadly acting treatment options that can improve the outcome for these patients. As one of the most important defense mechanisms of the innate immune system, the complement system plays a crucial role in a diverse spectrum of diseases that can necessitate ICU admission. Among others, myocardial infarction, acute lung injury/acute respiratory distress syndrome (ARDS), organ failure, and sepsis are characterized by an inadequate complement response, which can potentially be addressed via promising intervention options. Often, ICU monitoring and existing treatment options rely on massive intervention strategies to maintain the function of vital organs, and these approaches can further contribute to an unbalanced complement response. Artificial surfaces of extracorporeal organ support devices, transfusion of blood products, and the application of anticoagulants can all trigger or amplify undesired complement activation. It is, therefore, worth pursuing the evaluation of complement inhibition strategies in the setting of ICU treatment. Recently, clinical studies in COVID-19-related ARDS have shown promising effects of central inhibition at the level of C3 and paved the way for prospective investigation of this approach. In this review, we highlight the fundamental and often neglected role of complement in the ICU, with a special focus on targeted complement inhibition. We will also consider complement substitution therapies to temporarily counteract a disease/treatment-related complement consumption.
Collapse
|
10
|
Cao D, Strainic MG, Counihan D, Sridar S, An F, Hussain W, Schmaier AH, Nieman M, Medof ME. Vascular Endothelial Cells Produce Coagulation Factors That Control Their Growth via Joint Protease-Activated Receptor and C5a Receptor 1 (CD88) Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:361-378. [PMID: 35144762 PMCID: PMC8908053 DOI: 10.1016/j.ajpath.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
As per the classical view of the coagulation system, it functions solely in plasma to maintain hemostasis. An experimental approach modeling vascular reconstitution was used to show that vascular endothelial cells (ECs) endogenously synthesize coagulation factors during angiogenesis. Intracellular thrombin generated from this synthesis promotes the mitotic function of vascular endothelial cell growth factor A (VEGF-A). The thrombin concurrently cleaves C5a from EC-synthesized complement component C5 and unmasks the tethered ligand for EC-expressed protease-activated receptor 4 (PAR4). The two ligands jointly trigger EC C5a receptor-1 (C5ar1) and PAR4 signaling, which together promote VEGF receptor 2 growth signaling. C5ar1 is functionally associated with PAR4, enabling C5a or thrombin to elicit Gαi and/or Gαq signaling. EC coagulation factor and EC complement component synthesis concurrently down-regulate with contact inhibition. The connection of these processes with VEGF receptor 2 signaling provides new insights into mechanisms underlying angiogenesis. Knowledge of endogenous coagulation factor/complement component synthesis and joint PAR4/C5ar1 signaling could be applied to other cell types.
Collapse
Affiliation(s)
- Devin Cao
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Daniel Counihan
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shiva Sridar
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Fengqi An
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wasim Hussain
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Alvin H. Schmaier
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio,Address correspondence to M. Edward Medof, M.D., Ph.D., Institute of Pathology, 2085 Adelbert, Room 301, Cleveland, OH 44106.
| |
Collapse
|
11
|
Fu M, Guo J, Zhang Y, Zhao Y, Zhang Y, Wang Z, Hou Z. Effect of Wearing Medical Masks on Perioperative Respiratory Complications in Older Adults with Hip Fracture: A Retrospective Cohort Study. Clin Interv Aging 2021; 16:1967-1974. [PMID: 34824528 PMCID: PMC8610772 DOI: 10.2147/cia.s333238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Respiratory complication is one of the major challenges in the treatment of older adults with hip fractures. However, no study so far has investigated the effect of wearing medical masks on the prevention of perioperative respiratory complications in these patients. Patients and Methods In this retrospective cohort study, 1016 consecutive patients aged ≥65 years with hip fractures were included and assigned to two groups: the control group and the observation group. The two groups received the same perioperative management modalities. In addition, patients in the observation group were asked to wear medical masks for protection. Data of patients’ demographics, fracture type, surgical methods, comorbidities, the incidence of perioperative respiratory and other complications, and hospital outcomes were collected and compared between the two groups. Subgroup analyses were also performed stratified by fracture types. Results A total of 1016 patients (292 females and 724 males) with a mean age of 79.4±7.3 years were analyzed in the study, including 533 in the control group and 483 in the observation group. The overall incidence of perioperative respiratory complication, and the incidence of pulmonary infection, respiratory failure and arrhythmia in the observation group were significantly lower than the control group, especially in winter and spring. There was no difference in other complications, hospital length of stay, and total hospital costs. Further subgroup analyses showed that the incidence of heart failure and arrhythmia in the observation group was lower than that in the control group for patients with femoral neck fractures, which was different from patients with intertrochanteric fractures. Conclusion The incidence of perioperative respiratory complications, including pulmonary infection and respiratory failure, could be reduced in older adults with hip fractures by strengthening personal protection, including wearing medical masks, especially in winter and spring. Wearing medical masks could also effectively reduce the incidence of perioperative heart failure and arrhythmia in femoral neck fracture patients and do not increase the incidence of other complications and the burden of hospitalization.
Collapse
Affiliation(s)
- Mingming Fu
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Junfei Guo
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yaqian Zhang
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yuqi Zhao
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China.,Chinese Academy of Engineering, Beijing, 100088, People's Republic of China
| | - Zhiqian Wang
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China.,NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China
| |
Collapse
|
12
|
Ren J, Tsilafakis K, Chen L, Lekkos K, Kostavasili I, Varela A, Cokkinos DV, Davos CH, Sun X, Song J, Mavroidis M. Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular cardiomyopathy. Theranostics 2021; 11:5939-5954. [PMID: 33897891 PMCID: PMC8058736 DOI: 10.7150/thno.58160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: We previously found that complement components are upregulated in the myocardium of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), and inhibiting the complement receptor C5aR reduces disease severity in desmin knockout (Des-/- ) mice, a model for ARVC. Here, we examined the mechanism underlying complement activation in ARVC, revealing a potential new therapeutic target. Methods: First, immunostaining, RT-PCR and western blot were used to detect the expression levels of complement and coagulation factors. Second, we knocked out the central complement component C3 in Des-/- mice (ARVC model) by crossing Des-/- mice with C3-/- mice to explore whether complement system activation occurs independently of the conventional pathway. Then, we evaluated whether a targeted intervention to coagulation system is effective to reduce myocardium injury. Finally, the plasma sC5b9 level was assessed to investigate the role in predicting adverse cardiac events in the ARVC cohort. Results: The complement system is activated in the myocardium in ARVC. Autoantibodies against myocardial proteins provided a possible mechanism underlying. Moreover, we found increased levels of myocardial C5 and the serum C5a in Des-/-C3-/- mice compared to wild-type mice, indicating that C5 is activated independently from the conventional pathway, presumably via the coagulation system. Crosstalk between the complement and coagulation systems exacerbated the myocardial injury in ARVC mice, and this injury was reduced by using the thrombin inhibitor lepirudin. In addition, we found significantly elevated plasma levels of sC5b9 and thrombin in patients, and this increase was correlated with all-cause mortality. Conclusions: These results suggest that crosstalk between the coagulation and complement systems plays a pathogenic role in cardiac dysfunction in ARVC. Thus, understanding this crosstalk may have important clinical implications with respect to diagnosing and treating ARVC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | | | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Konstantinos Lekkos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos H. Davos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiaogang Sun
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
13
|
Chakraborty S, Winkelmann VE, Braumüller S, Palmer A, Schultze A, Klohs B, Ignatius A, Vater A, Fauler M, Frick M, Huber-Lang M. Role of the C5a-C5a receptor axis in the inflammatory responses of the lungs after experimental polytrauma and hemorrhagic shock. Sci Rep 2021; 11:2158. [PMID: 33495506 PMCID: PMC7835219 DOI: 10.1038/s41598-020-79607-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Singular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Veronika Eva Winkelmann
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bettina Klohs
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Axel Vater
- Aptarion Biotech AG, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
| |
Collapse
|
14
|
Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a Matter of the Heart-Molecular Mechanism of Post-Traumatic Cardiac Dysfunction. Int J Mol Sci 2021; 22:E737. [PMID: 33450984 PMCID: PMC7828409 DOI: 10.3390/ijms22020737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, 2550 23rd Street, San Francisco, CA 94110, USA;
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| |
Collapse
|
15
|
Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch 2021; 478:137-150. [PMID: 33604758 PMCID: PMC7892326 DOI: 10.1007/s00428-021-03053-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
The lung is the main affected organ in severe coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2, and lung damage is the leading cause of death in the vast majority of patients. Mainly based on results obtained by autopsies, the seminal features of fatal COVID-19 have been described by many groups worldwide. Early changes encompass edema, epithelial damage, and capillaritis/endothelialitis, frequently combined with microthrombosis. Subsequently, patients with manifest respiratory insufficiency exhibit exudative diffuse alveolar damage (DAD) with hyaline membrane formation and pneumocyte type 2 hyperplasia, variably complicated by superinfection, which may progress to organizing/fibrotic stage DAD. These features, however, are not specific for COVID-19 and can be found in other disorders including viral infections. Clinically, the early disease stage of severe COVID-19 is characterized by high viral load, lymphopenia, massive secretion of pro-inflammatory cytokines and hypercoagulability, documented by elevated D-dimers and an increased frequency of thrombotic and thromboembolic events, whereas virus loads and cytokine levels tend to decrease in late disease stages, when tissue repair including angiogenesis prevails. The present review describes the spectrum of lung pathology based on the current literature and the authors' personal experience derived from clinical autopsies, and tries to summarize our current understanding and open questions of the pathophysiology of severe pulmonary COVID-19.
Collapse
Affiliation(s)
- Hans Bösmüller
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Matthias Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany.
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Lupu L, Palmer A, Huber-Lang M. Inflammation, Thrombosis, and Destruction: The Three-Headed Cerberus of Trauma- and SARS-CoV-2-Induced ARDS. Front Immunol 2020; 11:584514. [PMID: 33101314 PMCID: PMC7546394 DOI: 10.3389/fimmu.2020.584514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023] Open
Abstract
Physical trauma can be considered an unrecognized "pandemic" because it can occur anywhere and affect anyone and represents a global burden. Following severe tissue trauma, patients frequently develop acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) despite modern surgical and intensive care concepts. The underlying complex pathophysiology of life-threatening ALI/ARDS has been intensively studied in experimental and clinical settings. However, currently, the coronavirus family has become the focus of ALI/ARDS research because it represents an emerging global public health threat. The clinical presentation of the infection is highly heterogeneous, varying from a lack of symptoms to multiple organ dysfunction and mortality. In a particular subset of patients, the primary infection progresses rapidly to ALI and ARDS. The pathophysiological mechanisms triggering and driving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced ALI/ARDS are still poorly understood. Although it is also generally unknown whether insights from trauma-induced ARDS may be readily translated to SARS-CoV-2-associated ARDS, it was still recommended to treat coronavirus-positive patients with ALI/ARDS with standard protocols for ALI/ARDS. However, this strategy was questioned by clinical scientists, because it was documented that some severely hypoxic SARS-CoV-2-infected patients exhibited a normal respiratory system compliance, a phenomenon rarely observed in ARDS patients with another underlying etiology. Therefore, coronavirus-induced ARDS was defined as a specific ARDS phenotype, which accordingly requires an adjusted therapeutic approach. These suggestions reflect previous attempts of classifying ARDS into different phenotypes that might overall facilitate ARDS diagnosis and treatment. Based on the clinical data from ARDS patients, two major phenotypes have been proposed: hyper- and hypo-inflammatory. Here, we provide a comparative review of the pathophysiological pathway of trauma-/hemorrhagic shock-induced ARDS and coronavirus-induced ARDS, with an emphasis on the crucial key points in the pathogenesis of both these ARDS forms. Therefore, the manifold available data on trauma-/hemorrhagic shock-induced ARDS may help to better understand coronavirus-induced ARDS.
Collapse
Affiliation(s)
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
18
|
Li QC, Liang Y, Su ZB. Prophylactic treatment with MSC-derived exosomes attenuates traumatic acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1107-L1117. [PMID: 30892077 DOI: 10.1152/ajplung.00391.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mesenchymal stem cell (MSC) is a potential strategy in the pretreatment of traumatic acute lung injury (ALI), a disease that causes inflammation and oxidative stress. This study aimed to investigate whether MSC-exosomal microRNA-124-3p (miR-124-3p) affects traumatic ALI. Initially, a traumatic ALI rat model was established using the weight-drop method. Then, exosomes were obtained from MSCs of Sprague-Dawley rats, which were injected into the traumatic ALI rats. We found that miR-124-3p was abundantly-expressed in MSCs-derived exosomes and could directly target purinergic receptor P2X ligand-gated ion channel 7 (P2X7), which was overexpressed in traumatic ALI rats. After that, a loss- and gain-of-function study was performed in MSCs and traumatic ALI rats to investigate the role of miR-124-3p and P2X7 in traumatic ALI. MSC-derived exosomal miR-124-3p or silenced P2X7 was observed to increase the survival rate of traumatic ALI rats and enhance the glutathione/superoxide dismutase activity in their lung tissues. However, the wet/dry weight of lung tissues, activity of methylenedioxyamphetamine and H2O2, and levels of inflammatory factors (TNF-a, IL-6, and IL-8) were reduced. Similarly, the numbers of total cells, macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid were also reduced when treated with exosomal miR-124-3p or silenced P2X7. In conclusion, the results provide evidence that miR-124-3p transferred by MSC-derived exosomes inhibited P2X7 expression, thus improving oxidative stress injury and suppressing inflammatory response in traumatic ALI, highlighting a potential pretreatment for traumatic ALI.
Collapse
Affiliation(s)
- Qing-Chun Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun Liang
- Center of Physical Examination, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhen-Bo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
19
|
Abstract
BACKGROUND Pulmonary contusion (PC) is a common injury that often results in priming for exaggerated inflammatory responses to a second hit. Previous studies used a mouse model of pulmonary contusion and showed an early and sustained reduction of SIRT1 protein and activity in the lung and bronchoalveolar lavage (BAL) cells of injured mice. Sustained decrease in SIRT1 was associated with a primed phenotype in injured mice challenged with an inflammatory stimulus. This study tests the hypothesis that pulmonary contusion induces oxidant production that modifies and decreases SIRT1 and primes the lung for the second-hit response. METHODS A mouse model of pulmonary contusion was used to investigate injury-induced oxidant changes in SIRT1. Second-hit responses were evaluated by infection (Streptococcus pneumoniae) and inflammatory challenge using bacterial lipopolysaccharide. BAL, lung tissue, and blood were collected and used to evaluate inflammatory responses and SIRT1 levels, oxidant modification, and activity. Levels of NO in the BAL from mice and patients with PC were also assessed. RESULTS We found that oxidants produced as a result of pulmonary contusion resulted in modification of SIRT1. S-Nitrosylation was observed and correlated with increased inducible nitric oxide synthase expression after injury. Anti-oxidant treatment of injured mice preserved SIRT1 activity, decreased second hit responses and improved lung function. Elevated NO levels in the BAL of PC patients was associated with acute respiratory distress syndrome or diagnosis of pneumonia. CONCLUSIONS We conclude that oxidative stress in the lung after injury induces redox modification of SIRT1 and contributes to priming of the lung for a second-hit response. Antioxidant treatment suggests that SIRT1 activity after injury may be beneficial in suppressing second-hit responses.
Collapse
|
20
|
|
21
|
Serum miR-146a and miR-150 as Potential New Biomarkers for Hip Fracture-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:8101359. [PMID: 30510490 PMCID: PMC6230404 DOI: 10.1155/2018/8101359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Background Acute lung injury (ALI) and subsequent pulmonary infection are the most severe and usually fatal complications for elderly hip fracture patients. It is necessary to find some biomarkers for early diagnosis and prognosis of it. Objective This study is aimed at examining the differential expression of miR-146a, miR-150, and cytokines (IL-6 and IL-10) between younger and elderly rats suffering from hip fracture and investigating the possible meaning of them in early diagnosis and prognosis of ALI after hip fracture. Methods and Subjects Elderly rats and younger rats were randomly divided into sham group and fracture group, respectively. Two fracture groups received hip fracture operations. The damage degree of ALI was evaluated by histological observation and pathological score. Cytokines were measured by ELISA; miR-146a and miR-150 were analysed by qRT-PCR. Results After treatment, compared with the corresponding sham groups, the pulmonary histological score, the serum miR-146a concentrations, and the cytokine (IL-6 and IL-10) levels in serum and BALF were significantly higher (the miR-150 were lower) in the fracture groups (with the exception of IL-6 of the younger fracture group at 72 h, all P < 0.05). Meanwhile, compared with the younger fracture group, the aforementioned variables were significantly higher (the miR-150 levels were lower) in the elderly fracture group (with the exception of serum IL-10 and pulmonary histological score at 8 h, all P < 0.05). The results of linear regression analysis showed that serum miR-146a and miR-150 were significantly associated with pulmonary histological score. Conclusion Hip fracture can result in significant systemic inflammation and ALI in the rats. Compared to the younger rats, the elderly rats suffered a more remarkable ALI after hip fracture. It may be related to the abnormal expression of miR-146a and miR-150. Serum miR-146a and miR-150 are potential biomarkers for diagnosis and prognosis of ALI after hip fracture.
Collapse
|
22
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
23
|
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, Uppal N, Shoffstall A, Ustin J, Lavik E. Engineering Intravenously Administered Nanoparticles to Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of Trauma. Bioconjug Chem 2018; 29:2436-2447. [PMID: 29965731 DOI: 10.1021/acs.bioconjchem.8b00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bleeding from traumatic injury is the leading cause of death for young people across the world, but interventions are lacking. While many agents have shown promise in small animal models, translating the work to large animal models has been exceptionally difficult in great part because of infusion-associated complement activation to nanomaterials that leads to cardiopulmonary complications. Unfortunately, this reaction is seen in at least 10% of the population. We developed intravenously infusible hemostatic nanoparticles that were effective in stopping bleeding and improving survival in rodent models of trauma. To translate this work, we developed a porcine liver injury model. Infusion of the first generation of hemostatic nanoparticles and controls 5 min after injury led to massive vasodilation and exsanguination even at extremely low doses. In naïve animals, the physiological changes were consistent with a complement-associated infusion reaction. By tailoring the zeta potential, we were able to engineer a second generation of hemostatic nanoparticles and controls that did not exhibit the complement response at low and moderate doses but did at the highest doses. These second-generation nanoparticles led to cessation of bleeding within 10 min of administration even though some signs of vasodilation were still seen. While the complement response is still a challenge, this work is extremely encouraging in that it demonstrates that when the infusion-associated complement response is managed, hemostatic nanoparticles are capable of rapidly stopping bleeding in a large animal model of trauma.
Collapse
Affiliation(s)
- Chimdiya Onwukwe
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Nuzhat Maisha
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Mark Holland
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Matt Varley
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Rebecca Groynom
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - DaShawn Hickman
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Nishant Uppal
- Harvard Medical School , 25 Shattuck Street , Boston , Massachusetts 02115 , United States
| | - Andrew Shoffstall
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey Ustin
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Erin Lavik
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| |
Collapse
|
24
|
Kanni T, Zenker O, Habel M, Riedemann N, Giamarellos-Bourboulis EJ. Complement activation in hidradenitis suppurativa: a new pathway of pathogenesis? Br J Dermatol 2018; 179:413-419. [PMID: 29405257 DOI: 10.1111/bjd.16428] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Despite the heavy purulence observed in hidradenitis suppurativa (HS), the kinetics of complement anaphylatoxins acting to prime chemotaxis of neutrophils has not been studied. OBJECTIVES To explore complement activation in HS. METHODS Circulating concentrations of complement factor C5a, as well as of membrane attack complex C5b-9, were determined in the plasma of 54 treatment-naïve patients and of 14 healthy controls, as well as in the pus of seven patients. Results were correlated with Hurley stage and International Hidradenitis Suppurativa Severity Score. Peripheral blood mononuclear cells (PBMCs) were isolated from seven patients with Hurley stage III HS and seven healthy volunteers and stimulated in the presence of 25% of plasma for the production of tumour necrosis factor-α (TNF-α). RESULTS Circulating C5a and C5b-9 were significantly greater in patient than in control plasma; however, concentrations in pus were very low. Circulating C5a levels exceeding 28 ng mL-1 were associated with a specificity > 90% with the occurrence of HS. Circulating levels of C5a and C5b-9 were greater in patients with more severe HS. PBMCs of patients produced high concentrations of TNF-α only when growth medium was enriched with patient plasma; this was reversed with the addition of the C5a blocker IFX-1. CONCLUSIONS Systemic complement activation occurs in HS and may be used as a surrogate biomarker of HS. C5a stimulates overproduction of TNF-α and may be a future therapeutic target.
Collapse
Affiliation(s)
- T Kanni
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | | | | | - E J Giamarellos-Bourboulis
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
25
|
Abstract
Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.
Collapse
|
26
|
Halbgebauer R, Schmidt CQ, Karsten CM, Ignatius A, Huber-Lang M. Janus face of complement-driven neutrophil activation during sepsis. Semin Immunol 2018; 37:12-20. [PMID: 29454576 DOI: 10.1016/j.smim.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Abstract
During local and systemic inflammation, the complement system and neutrophil granulocytes are activated not only by pathogens, but also by released endogenous danger signals. It is recognized increasingly that complement-mediated neutrophil activation plays an ambivalent role in sepsis pathophysiology. According to the current definition, the onset of organ dysfunction is a hallmark of sepsis. The preceding organ damage can be caused by excessive complement activation and neutrophil actions against the host, resulting in bystander injury of healthy tissue. However, in contrast, persistent and overwhelming inflammation also leads to a reduction in neutrophil responsiveness as well as complement components and thus may render patients at enhanced risk of spreading infection. This review provides an overview on the molecular and cellular processes that link complement with the two-faced functional alterations of neutrophils in sepsis. Finally, we describe novel tools to modulate this interplay beneficially in order to improve outcome.
Collapse
Affiliation(s)
- R Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Helmholtzstr. 8/1, 89081 Ulm, Germany.
| | - C Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstr. 20, 89081 Ulm, Germany.
| | - C M Karsten
- Institute for Systemic Inflammation Research, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany.
| | - A Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstr. 14, 89081 Ulm, Germany.
| | - M Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Helmholtzstr. 8/1, 89081 Ulm, Germany.
| |
Collapse
|
27
|
Auxiliary activation of the complement system and its importance for the pathophysiology of clinical conditions. Semin Immunopathol 2017; 40:87-102. [PMID: 28900700 PMCID: PMC5794838 DOI: 10.1007/s00281-017-0646-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological conditions, the activity of the generated proteases is controlled by endogenous protease inhibitors. Consequently, there is remarkable little crosstalk between the different systems in the fluid phase. This concept review article aims at identifying and describing conditions where the strict system-related control is circumvented. These include clinical settings where massive amounts of proteolytic enzymes are released from tissues, e.g., during pancreatitis or post-traumatic tissue damage, resulting in consumption of the natural substrates of the specific proteases and the available protease inhibitor. Another example of cascade system dysregulation is disseminated intravascular coagulation, with canonical activation of all cascade systems of the blood, also leading to specific substrate and protease inhibitor elimination. The present review explains basic concepts in protease biochemistry of importance to understand clinical conditions with extensive protease activation.
Collapse
|
28
|
Nakamura DS, Hollander JM, Uchimura T, Nielsen HC, Zeng L. Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskelet Disord 2017; 18:39. [PMID: 28122611 PMCID: PMC5264335 DOI: 10.1186/s12891-017-1410-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 01/16/2017] [Indexed: 02/04/2023] Open
Abstract
Background Inflammation is a major cause of cartilage destruction and leads to the imbalance of metabolic activities in the arthritic joint. Pigment epithelium-derived factor (PEDF) has been reported to have both pro- and anti-inflammatory activities in various cell types and to be upregulated in the arthritic joint, but its role in joint destruction is unclear. Our aim was to investigate the role of PEDF in cartilage degeneration under inflammatory conditions. Methods PEDF was ectopically expressed in primary human articular chondrocytes, and catabolic gene expression and protein secretion in response to the pro-inflammatory cytokine interleukin 1 beta (IL-1β) were evaluated. Metatarsal bones from PEDF-deficient and wild type mice were cultured in the presence or absence of IL-1β. Cartilage matrix integrity and matrix metalloproteinases MMP-1, MMP-3, and MMP-13 were evaluated. PEDF-deficient and wild type mice were evaluated in the monosodium iodoacetate (MIA) inflammatory joint destruction animal model to determine the role of PEDF in inflammatory arthritis in vivo. Student’s t-tests and Mann–Whitney tests were employed where appropriate, for parametric and non-parametric data, respectively. Results We showed that PEDF protein levels were higher in human osteoarthritis samples compared to normal samples. We demonstrated that ectopic PEDF expression in primary human articular chondrocytes exacerbated catabolic gene expression in the presence of IL-1β. In whole bone organ cultures, IL-1β induced MMP-1, MMP-3 and MMP-13 protein production, and caused significant cartilage matrix loss. Interestingly, Toluidine Blue staining showed that PEDF-deficient bones from 29 week old animals, but not 10 week old animals, had reduced matrix loss in response to IL-1β compared to their wild type counterparts. In addition, PEDF-deficiency in 29 week old animals preserved matrix integrity and protected against cell loss in the MIA joint destruction model in vivo. Conclusion We conclude that PEDF exacerbates cartilage degeneration in an age-dependent manner under an inflammatory setting. This is the first study identifying a specific role for PEDF in joint inflammation and highlights the multi-faceted activities of PEDF. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1410-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisy S Nakamura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Judith M Hollander
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Tomoya Uchimura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Heber C Nielsen
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pediatrics, Tufts Medical Center, Boston, MA, USA.
| | - Li Zeng
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
29
|
Kalbitz M, Karbach M, Braumueller S, Kellermann P, Gebhard F, Huber-Lang M, Perl M. Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI). PLoS One 2016; 11:e0159417. [PMID: 27437704 PMCID: PMC4954719 DOI: 10.1371/journal.pone.0159417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. METHODS 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak's multiple comparison test (significance, p≤ 0.05). RESULTS In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. CONCLUSIONS In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent.
Collapse
Affiliation(s)
- Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Michael Karbach
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Sonja Braumueller
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Philipp Kellermann
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Mario Perl
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
- Orthopedic Trauma, BG-Trauma Center Murnau, Murnau, Germany
| |
Collapse
|
30
|
Foley JH. Examining coagulation-complement crosstalk: complement activation and thrombosis. Thromb Res 2016; 141 Suppl 2:S50-4. [DOI: 10.1016/s0049-3848(16)30365-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Abstract
Acute lung injury is the most serious and fatal complication of the elderly patients with hip fracture, but the mechanisms are unknown. Recent studies demonstrated the mitochondrial DNA (mtDNA) release was associated with lung injury after trauma. This study aimed to examine the differential release of mtDNA between younger and elderly rats suffering from hip fracture and to investigate the possible mechanism of mtDNA in the lung injury induced by hip fracture. In the first part of the study, we investigated the effects of hip fracture on the rats. The elderly and younger rats, respectively, received hip fracture operations. The degree of lung injury was evaluated, toll-like receptor 9 (TLR9) and nuclear factor kappa B (NF-κB) were determined using Western blot, and mtDNA were analyzed by fluorescent quantitative polymerase chain reaction. In the second part of the study, we investigated the effects of mtDNA on the rats. The elderly and younger rats directly received intravenous injections with mtDNA. After 24 h, the specimens were collected and detected as the first part. Hip fracture resulted in significant mtDNA release, TLR9 and NF-κB p65 expression, and lung injury in the rats. Meanwhile, the mtDNA injection could indirectly induce lung injury. Compared to the younger ones, the elderly rats suffered more serious lung injury after hip fracture and mtDNA injection. These results suggest that the lung injury induced by hip fracture may be involved with the mtDNA release and its TLR9/NF-κB pathway.
Collapse
|
32
|
Foley JH, Walton BL, Aleman MM, O'Byrne AM, Lei V, Harrasser M, Foley KA, Wolberg AS, Conway EM. Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin. EBioMedicine 2016; 5:175-82. [PMID: 27077125 PMCID: PMC4816834 DOI: 10.1016/j.ebiom.2016.02.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/20/2022] Open
Abstract
Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. Thrombin is not a major direct contributor to C5a generation during venous thrombosis in mice. Plasmin, a protease generated in response to thrombin generation and fibrin deposition, efficiently cleaves C5 to C5a. In an arterial thrombosis model, administration of a plasminogen activator augments C5a plasma levels. Plasmin participates in immunothrombosis, liberating chemotactic C5a and inducing assembly of the procoagulant C5b-9.
Venous and arterial thrombosis are major causes of death and morbidity. Leukocytes are early and active participants in thrombus formation, recruited partly by complement factor C5a. We examined how C5a is generated in the setting of thrombosis. In venous thrombosis in mice, we show that thrombin, a key clot-promoting enzyme, is not a major contributor to C5a generation. Rather, plasmin, a fibrinolytic enzyme formed in response to thrombin generation and clot formation, efficiently generates C5a. The findings were validated in an arterial thrombosis model in mice. These insights may be valuable in developing therapeutic strategies to limit thrombus formation.
Collapse
Key Words
- Complement
- FDP, fibrin degradation product
- FeCl3, ferric chloride
- Fibrinolysis
- IL-8, interleukin-8
- IVC, inferior vena cava
- Leukocytes
- MAC, membrane attack complex
- MCP1-1, monocyte chemoattracant protein-1
- NETs, neutrophil extracellular traps
- PAR1, protease activated receptor 1
- PPACK, Phe-Pro-Arg-chloromethylketone
- R751, arginine 751
- TAT, thrombin antithrombin
- Thrombin
- Thrombosis
- VFKck, Val-Phe-Lys-chloromethylketone
- VWF, von Willebrand factor
- tPA, tissue-type plasminogen activator
Collapse
Affiliation(s)
- Jonathan H. Foley
- Centre for Blood Research, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, LSC4306, Vancouver V6T 1Z3, Canada
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom
| | - Bethany L. Walton
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, CB# 7525, Chapel Hill, NC 27599-7525, USA
| | - Maria M. Aleman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, CB# 7525, Chapel Hill, NC 27599-7525, USA
| | - Alice M. O'Byrne
- Centre for Blood Research, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, LSC4306, Vancouver V6T 1Z3, Canada
| | - Victor Lei
- Centre for Blood Research, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, LSC4306, Vancouver V6T 1Z3, Canada
| | - Micaela Harrasser
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Kimberley A. Foley
- Cancer Care and Epidemiology, Queen's Cancer Research Institute, Queen's University, Kingston, Canada
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, CB# 7525, Chapel Hill, NC 27599-7525, USA
| | - Edward M. Conway
- Centre for Blood Research, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, LSC4306, Vancouver V6T 1Z3, Canada
- Corresponding author at: Centre for Blood Research, 4306-2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.Centre for Blood Research4306-2350 Health Sciences MallUniversity of British ColumbiaVancouverBCV6T 1Z3Canada
| |
Collapse
|
33
|
Li H, Wu B, Geng J, Zhou J, Zheng R, Chai J, Li F, Peng J, Jiang S. Integrated analysis of miRNA/mRNA network in placenta identifies key factors associated with labor onset of Large White and Qingping sows. Sci Rep 2015; 5:13074. [PMID: 26272496 PMCID: PMC4536519 DOI: 10.1038/srep13074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022] Open
Abstract
Labour onset is a very complex physiological process, and its mechanism is poorly understood. Here, we obtained the mRNA and miRNA expression profiles from the placentas of four groups of sows: Qingping sows 112 days after insemination with signs of labour onset (QS), Qingping sows 114 days after insemination with signs of labour onset (QL), Large White sows 114 days after insemination with signs of labour onset (LL) and Large White sows 112 days after insemination without signs of labour onset (LN). A set of differentially expressed genes, including 2164 mRNAs and 39 miRNAs, were found. A DAVID analysis of these differentially expressed genes revealed their critical roles in response to hormone stimulus, immune response. Cytoscape Network analysis of the functional genes found node mRNAs and that the regulatory network between the node mRNAs and miRNAs was established. A comparison of the sequencing data from the shorter gestation period (QS) and the normal gestation period (QL) indicated that these genes were responsible for the quicker and more sensitive reaction to the regulation of labour onset. This research not only detected the key factors that were involved in labour onset but also provided useful information for the research of gynaecological diseases.
Collapse
Affiliation(s)
- Huanan Li
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bin Wu
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Junnan Geng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiawei Zhou
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jin Chai
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jian Peng
- 1] Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China [2] The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China People's Republic of China
| | - Siwen Jiang
- 1] Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China [2] The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China People's Republic of China
| |
Collapse
|
34
|
The Immediate Intramedullary Nailing Surgery Increased the Mitochondrial DNA Release That Aggravated Systemic Inflammatory Response and Lung Injury Induced by Elderly Hip Fracture. Mediators Inflamm 2015; 2015:587378. [PMID: 26273137 PMCID: PMC4530272 DOI: 10.1155/2015/587378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/08/2015] [Accepted: 02/20/2015] [Indexed: 02/04/2023] Open
Abstract
Conventional concept suggests that immediate surgery is the optimal choice for elderly hip fracture patients; however, few studies focus on the adverse effect of immediate surgery. This study aims to examine the adverse effect of immediate surgery, as well as to explore the meaning of mtDNA release after trauma. In the experiment, elderly rats, respectively, received hip fracture operations or hip fracture plus intramedullary nail surgery. After fracture operations, the serum mtDNA levels as well as the related indicators of systemic inflammatory response and lung injury significantly increased in the rats. After immediate surgery, the above variables were further increased. The serum mtDNA levels were significantly related with the serum cytokine (TNF-α and IL-10) levels and pulmonary histological score. In order to identify the meaning of mtDNA release following hip fracture, the elderly rats received injections with mtDNA. After treatment, the related indicators of systemic inflammatory response and lung injury significantly increased in the rats. These results demonstrated that the immediate surgery increased the mtDNA release that could aggravate systemic inflammatory response and lung injury induced by elderly hip fracture; serum mtDNA might serve as a potential biomarker of systemic inflammatory response and lung injury following elderly hip fracture.
Collapse
|
35
|
Smith LM, Wells JD, Vachharajani VT, Yoza BK, McCall CE, Hoth JJ. SIRT1 mediates a primed response to immune challenge after traumatic lung injury. J Trauma Acute Care Surg 2015; 78:1034-8. [PMID: 25909427 PMCID: PMC4410426 DOI: 10.1097/ta.0000000000000598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pulmonary contusion (PC) is a common, potentially lethal injury that results in priming for exaggerated inflammatory responses to subsequent immune challenge like infection (second hit). The molecular mechanism of priming and the second hit phenomenon after PC remain obscure. With the use of a mouse model of PC, this study explores the role of sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, in priming for a second hit after injury. METHODS With the use of a mouse model of PC, injury-primed second-hit host responses were tested at 24 hours after PC by (1) in vivo infectious challenge of injured mice or (2) ex vivo inflammatory challenge of isolated immune cells from injured mice. SIRT activators or repressors were used to test for SIRT1 participation in these second-hit responses. RESULTS PC-injured mice given an in vivo infectious challenge by cecal ligation and puncture (CLP) had significantly increased mortality compared with injury or infectious challenge alone. Isolated bronchoalveolar lavage (BAL) cells from injured mice given an ex vivo inflammatory challenge with bacterial lipopolysaccharide (LPS) had increased levels of tumor necrosis factor α messenger RNA compared with uninjured mice. We found that PC reduced SIRT1 protein, messenger RNA, and SIRT1 enzymatic activity in injured lung tissue. We also found decreased SIRT1 protein levels in BAL cells from injured mice. We further found that injured mice treated with a SIRT1 activator, resveratrol, showed significantly decreased polymorphonuclear leukocytes (PMN) in the BAL in response to intratracheal LPS and increased survival from CLP. CONCLUSION These results showed that PC decreased SIRT1 levels in the lung correlated with enhanced responses to infectious or inflammatory stimuli in injured mice. Treatment of injured mice with a SIRT1 activator, resveratrol, decreased LPS inflammatory response and increased survival after CLP. Our results suggest that SIRT1 participates in the second-hit response after injury.
Collapse
Affiliation(s)
- Lane M. Smith
- Department of Emergency Medicine (LS), the Department of General Surgery (JH, JW, BY), the Department of Anesthesiology/Critical Care (VV), and the Department of Internal Medicine, Section on Molecular Medicine (CM), Wake Forest School of Medicine, Winston-Salem, NC
| | - Jonathan D. Wells
- Department of Emergency Medicine (LS), the Department of General Surgery (JH, JW, BY), the Department of Anesthesiology/Critical Care (VV), and the Department of Internal Medicine, Section on Molecular Medicine (CM), Wake Forest School of Medicine, Winston-Salem, NC
| | - Vidula T. Vachharajani
- Department of Emergency Medicine (LS), the Department of General Surgery (JH, JW, BY), the Department of Anesthesiology/Critical Care (VV), and the Department of Internal Medicine, Section on Molecular Medicine (CM), Wake Forest School of Medicine, Winston-Salem, NC
| | - Barbara K. Yoza
- Department of Emergency Medicine (LS), the Department of General Surgery (JH, JW, BY), the Department of Anesthesiology/Critical Care (VV), and the Department of Internal Medicine, Section on Molecular Medicine (CM), Wake Forest School of Medicine, Winston-Salem, NC
| | - Charles E. McCall
- Department of Emergency Medicine (LS), the Department of General Surgery (JH, JW, BY), the Department of Anesthesiology/Critical Care (VV), and the Department of Internal Medicine, Section on Molecular Medicine (CM), Wake Forest School of Medicine, Winston-Salem, NC
| | - J. Jason Hoth
- Department of Emergency Medicine (LS), the Department of General Surgery (JH, JW, BY), the Department of Anesthesiology/Critical Care (VV), and the Department of Internal Medicine, Section on Molecular Medicine (CM), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
36
|
Cai K, Wan Y, Wang Z, Wang Y, Zhao X, Bao X. C5a promotes the proliferation of human nasopharyngeal carcinoma cells through PCAF-mediated STAT3 acetylation. Oncol Rep 2014; 32:2260-6. [PMID: 25174320 DOI: 10.3892/or.2014.3420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
The anaphylatoxin C5a is a chemoattractant that can induce various inflammatory responses in vivo via the C5a receptor (C5aR). There is emerging evidence that C5a is generated in the cancer microenvironment. However, the role of C5a in human nasopharyngeal carcinoma (NPC) remains largely unclear. Thus, the present study aimed to examine the direct influence of C5a stimulation on the proliferation of human NPC cells and to identify the underlying molecular mechanisms. The effects of C5a stimulation on the proliferation of human NPC cells were studied in vitro, and P300/CBP-associated factor (PCAF)‑mediated signal transducer and activator of transcription 3 (STAT3) acetylation and its role in regulating the proliferation of NPC cells was subsequently explored. Our results demonstrated that C5a stimulation increased the proliferation of human NPC cells in vitro. STAT3 acetylation was further found to be enhanced in human NPC cells induced by C5a. Moreover, PCAF induction was required for STAT3 acetylation in human NPC cells by exposure to C5a. Functionally, PCAF-mediated STAT3 acetylation contributed to the proliferation of human NPC cells stimulated by C5a. These results illustrate the novel activity of the C5a-C5aR axis that promotes human NPC cell proliferation through PCAF‑mediated STAT3 acetylation. This may provide a potential strategy for treating human NPC through inhibition of C5a or its receptors.
Collapse
Affiliation(s)
- Kemin Cai
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Yi Wan
- Department of Neurosurgery, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215021, P.R. China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215021, P.R. China
| | - Yu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaojun Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xueli Bao
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|