1
|
Tran GT, Bedi S, Rakesh P, Verma ND, Carter N, Robinson CM, Al-Atiyah R, Hall BM, Hodgkinson SJ. Autoantigen and IL-2 activated CD4 +CD25 +T regulatory cells are induced to express CD8 and are autoantigen specific in inhibiting experimental autoimmune encephalomyelitis. J Neuroimmunol 2025; 404:578611. [PMID: 40228404 DOI: 10.1016/j.jneuroim.2025.578611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/18/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin basic protein (MBP) is a self-limiting disease model of multiple sclerosis. CD4+CD25+Foxp3+T cells play a role in limiting autoimmune disease but treatment with antigen naïve CD4+CD25+ cells does not reduce EAE. This study examined if in vitro activation by MBP and rIL-2 induced CD4+CD25+Foxp3+ cells that could inhibit EAE. Culture of CD4+CD8-CD25+cells from naïve rats with MBP and rIL-2 induced activated Treg that reduced the severity of clinical EAE and infiltration of CD8+T cells and macrophage into brain stem. CD4+CD25+T cells activated by an irrelevant autoantigen and rIL-2 did not suppress EAE. Resting CD4+CD25+T cells activated by autoantigen and rIL-2 have mRNA for Infgr, Il12rb2, Il5 but not Tbet, Gata3, Ilr5ra or Ifng. These changes in mRNA expression are the markers of Ts1 cells. A proportion of CD4+CD8-CD25+ cells activated by MBP/rIL-2 were induced to express CD8α, CD8β and CD62L. Depletion of CD4+CD8α+CD25+ cells removed the capacity of MBP and rIL-2 activated CD4+CD25+T cells to suppress EAE. This study demonstrated that in vitro activation of CD4+CD8-CD25+ cells by MBP/rIL-2 induced relevant antigen-specific Treg within days, which expressed CD8α, CD8β and CD62L with a Ts1 phenotype and that had greater potency than freshly isolated antigen naive CD4+CD25+Treg in suppressing clinical severity of EAE and immune inflammation in CNS. These findings may guide development of antigen-specific Treg for therapy.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Rats
- Autoantigens/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Interleukin-2/pharmacology
- Interleukin-2/immunology
- Myelin Basic Protein/immunology
- Rats, Inbred Lew
- Female
- Interleukin-2 Receptor alpha Subunit/metabolism
- CD8 Antigens/biosynthesis
- CD8 Antigens/metabolism
- Cells, Cultured
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Sukhandep Bedi
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Prateek Rakesh
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Ranje Al-Atiyah
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
2
|
Khosravi-Maharlooei M, Li HW, Sykes M. T Cell Development and Responses in Human Immune System Mice. Annu Rev Immunol 2025; 43:83-112. [PMID: 39705163 PMCID: PMC12031645 DOI: 10.1146/annurev-immunol-082223-041615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Human Immune System (HIS) mice constructed with mature human immune cells or with human hematopoietic stem cells and thymic tissue have provided an important tool for human immunological research. In this article, we first review the different types of HIS mice based on human tissues transplanted and sources of the tissues. We then focus on knowledge of human T cell development and responses obtained using HIS mouse models. These areas include the development of human T cell subsets, with a focus on αβ conventional T cells and regulatory T cells, and human T cell responses in the settings of infection, transplantation rejection and tolerance, autoimmune disease, cancer immunotherapy, and regulatory T cell therapy. We also discuss the limitations and potential future applications of HIS mouse models.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| | - Megan Sykes
- Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| |
Collapse
|
3
|
Rubino G, Yörük E. Immunosenescence, immunotolerance and rejection: clinical aspects in solid organ transplantation. Transpl Immunol 2024; 86:102068. [PMID: 38844001 DOI: 10.1016/j.trim.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/21/2024]
Abstract
As a consequence of increased lifespan and rising number of elderly individuals developing end-stage organ disease, the higher demand for organs along with a growing availability for organs from older donors pose new challenges for transplantation. During aging, dynamic adaptations in the functionality and structure of the biological systems occur. Consistently, immunosenescence (IS) accounts for polydysfunctions within the lymphocyte subsets, and the onset of a basal but persistent systemic inflammation characterized by elevated levels of pro-inflammatory mediators. There is an emerging consensus about a causative link between such hallmarks and increased susceptibility to morbidities and mortality, however the role of IS in solid organ transplantation (SOT) remains loosely addressed. Dissecting the immune-architecture of immunologically-privileged sites may prompt novel insights to extend allograft survival. A deeper comprehension of IS in SOT might unveil key standpoints for the clinical management of transplanted patients.
Collapse
Affiliation(s)
- Graziella Rubino
- University Hospital Tübingen, Department of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; Institute for Transfusion Medicine, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany.
| | - Efdal Yörük
- Berit Klinik, Gastrointestinal Center, Florastrasse 1, 9403 Goldach, Switzerland; University Hospital Tübingen, Department of Ophthalmology, Elfriede-Alhorn-Straße 7, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Ekwe AP, Au R, Zhang P, McEnroe BA, Tan ML, Saldan A, Henden AS, Hutchins CJ, Henderson A, Mudie K, Kerr K, Fuery M, Kennedy GA, Hill GR, Tey SK. Clinical grade multiparametric cell sorting and gene-marking of regulatory T cells. Cytotherapy 2024; 26:719-728. [PMID: 38530690 DOI: 10.1016/j.jcyt.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AIMS Regulatory T cells (Tregs) are the main mediators of peripheral tolerance. Treg-directed therapy has shown promising results in preclinical studies of diverse immunopathologies. At present, the clinical applicability of adoptive Treg transfer is limited by difficulties in generating Tregs at sufficient cell dose and purity. METHODS We developed a Good Manufacturing Practice (GMP) compliant method based on closed-system multiparametric Fluorescence-Activated Cell Sorting (FACS) to purify Tregs, which are then expanded in vitro and gene-marked with a clinical grade retroviral vector to enable in vivo fate tracking. Following small-scale optimization, we conducted four clinical-scale processing runs. RESULTS We showed that Tregs could be enriched to 87- 92% purity following FACS-sorting, and expanded and transduced to yield clinically relevant cell dose of 136-732×106 gene-marked cells, sufficient for a cell dose of at least 2 × 106 cells/kg. The expanded Tregs were highly demethylated in the FOXP3 Treg-specific demethylated region (TSDR), consistent with bona fide natural Tregs. They were suppressive in vitro, but a small percentage could secrete proinflammatory cytokines, including interferon-γ and interleukin-17A. CONCLUSIONS This study demonstrated the feasibility of isolating, expanding and gene-marking Tregs in clinical scale, thus paving the way for future phase I trials that will advance knowledge about the in vivo fate of transferred Tregs and its relationship with concomitant Treg-directed pharmacotherapy and clinical response.
Collapse
Affiliation(s)
- Adaeze Precious Ekwe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Raymond Au
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ping Zhang
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Benjamin A McEnroe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mei Ling Tan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alda Saldan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S Henden
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Cheryl J Hutchins
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ashleigh Henderson
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kari Mudie
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Keri Kerr
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Madonna Fuery
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Glen A Kennedy
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Siok-Keen Tey
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
5
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
6
|
O'Neil A, Brook M, Abdul-Wahab S, Hester J, Lombardi G, Issa F. A GMP Protocol for the Manufacture of Tregs for Clinical Application. Methods Mol Biol 2023; 2559:205-227. [PMID: 36180635 DOI: 10.1007/978-1-0716-2647-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infusion of regulatory T cells is a promising therapeutic strategy in organ transplantation to modulate the immune system, prevent rejection, minimize the need for pharmaceutical immunosuppression, and improve long-term transplant outcomes. Here we describe a GMP-compliant method we have used for the manufacture of ex vivo expanded autologous regulatory T cells for use in clinical trials.
Collapse
Affiliation(s)
- Alice O'Neil
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Matthew Brook
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Seetha Abdul-Wahab
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
7
|
Faridar A, Vasquez M, Thome AD, Yin Z, Xuan H, Wang JH, Wen S, Li X, Thonhoff JR, Zhao W, Zhao H, Beers DR, Wong STC, Masdeu JC, Appel SH. Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer's disease. Acta Neuropathol Commun 2022; 10:144. [PMID: 36180898 PMCID: PMC9524037 DOI: 10.1186/s40478-022-01447-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background Regulatory T cells (Tregs) play a neuroprotective role by suppressing microglia and macrophage-mediated inflammation and modulating adaptive immune reactions. We previously documented that Treg immunomodulatory mechanisms are compromised in Alzheimer’s disease (AD). Ex vivo expansion of Tregs restores and amplifies their immunosuppressive functions in vitro. A key question is whether adoptive transfer of ex vivo expanded human Tregs can suppress neuroinflammation and amyloid pathology in a preclinical mouse model. Methods An immunodeficient mouse model of AD was generated by backcrossing the 5xFAD onto Rag2 knockout mice (5xFAD-Rag2KO). Human Tregs were expanded ex vivo for 24 days and administered to 5xFAD-Rag2KO. Changes in amyloid burden, microglia characteristics and reactive astrocytes were evaluated using ELISA and confocal microscopy. NanoString Mouse AD multiplex gene expression analysis was applied to explore the impact of ex vivo expanded Tregs on the neuroinflammation transcriptome. Results Elimination of mature B and T lymphocytes and natural killer cells in 5xFAD-Rag2KO mice was associated with upregulation of 95 inflammation genes and amplified number of reactive microglia within the dentate gyrus. Administration of ex vivo expanded Tregs reduced amyloid burden and reactive glial cells in the dentate gyrus and frontal cortex of 5xFAD-Rag2KO mice. Interrogation of inflammation gene expression documented down-regulation of pro-inflammatory cytokines (IL1A&B, IL6), complement cascade (C1qa, C1qb, C1qc, C4a/b), toll-like receptors (Tlr3, Tlr4 and Tlr7) and microglial activations markers (CD14, Tyrobp,Trem2) following Treg administration. Conclusions Ex vivo expanded Tregs with amplified immunomodulatory function, suppressed neuroinflammation and alleviated AD pathology in vivo. Our results provide preclinical evidences for Treg cell therapy as a potential treatment strategy in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40478-022-01447-z.
Collapse
Affiliation(s)
- Alireza Faridar
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Matthew Vasquez
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Aaron D Thome
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Zheng Yin
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Hui Xuan
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Jing Hong Wang
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Shixiang Wen
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, USA
| | - Jason R Thonhoff
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Weihua Zhao
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Hong Zhao
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - David R Beers
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Brook MO, Hester J, Petchey W, Rombach I, Dutton S, Bottomley MJ, Black J, Abdul-Wahab S, Bushell A, Lombardi G, Wood K, Friend P, Harden P, Issa F. Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients. BMJ Open 2022; 12:e061864. [PMID: 35428650 PMCID: PMC9014059 DOI: 10.1136/bmjopen-2022-061864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Regulatory T cell (Treg) therapy has been demonstrated to facilitate long-term allograft survival in preclinical models of transplantation and may permit reduction of immunosuppression and its associated complications in the clinical setting. Phase 1 clinical trials have shown Treg therapy to be safe and feasible in clinical practice. Here we describe a protocol for the TWO study, a phase 2b randomised control trial of Treg therapy in living donor kidney transplant recipients that will confirm safety and explore efficacy of this novel treatment strategy. METHODS AND ANALYSIS 60 patients will be randomised on a 1:1 basis to Treg therapy (TR001) or standard clinical care (control). Patients in the TR001 arm will receive an infusion of autologous polyclonal ex vivo expanded Tregs 5 days after transplantation instead of standard monoclonal antibody induction. Maintenance immunosuppression will be reduced over the course of the post-transplant period to low-dose tacrolimus monotherapy. Control participants will receive a standard basiliximab-based immunosuppression regimen with long-term tacrolimus and mycophenolate mofetil immunosuppression. The primary endpoint is biopsy proven acute rejection over 18 months; secondary endpoints include immunosuppression burden, chronic graft dysfunction and drug-related complications. ETHICS AND DISSEMINATION Ethical approval has been provided by the National Health Service Health Research Authority South Central-Oxford A Research Ethics Committee (reference 18/SC/0054). The study also received authorisation from the UK Medicines and Healthcare products Regulatory Agency and is being run in accordance with the principles of Good Clinical Practice, in collaboration with the registered trials unit Oxford Clinical Trials Research Unit. Results from the TWO study will be published in peer-reviewed scientific/medical journals and presented at scientific/clinical symposia and congresses. TRIAL REGISTRATION NUMBER ISRCTN: 11038572; Pre-results.
Collapse
Affiliation(s)
- Matthew Oliver Brook
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - William Petchey
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ines Rombach
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Susan Dutton
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Matthew James Bottomley
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Joanna Black
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Seetha Abdul-Wahab
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre GMP unit, Guy's Hospital, London, UK
| | - Andrew Bushell
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Giovanna Lombardi
- NIHR Biomedical Research Centre GMP unit, Guy's Hospital, London, UK
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, London, UK
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Harden
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Horwitz JK, Bin S, Fairchild RL, Keslar KS, Yi Z, Zhang W, Pavlov VI, Li Y, Madsen JC, Cravedi P, Heeger PS. Linking erythropoietin to regulatory T-cell-dependent allograft survival through myeloid cells. JCI Insight 2022; 7:158856. [PMID: 35389892 PMCID: PMC9220923 DOI: 10.1172/jci.insight.158856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Erythropoietin (EPO) has multiple nonerythropoietic functions, including immune modulation, but EPO’s effects in transplantation remain incompletely understood. We tested the mechanisms linking EPO administration to prolongation of murine heterotopic heart transplantation using WT and conditional EPO receptor–knockout (EPOR-knockout) mice as recipients. In WT controls, peritransplant administration of EPO synergized with CTLA4-Ig to prolong allograft survival (P < 0.001), reduce frequencies of donor-reactive effector CD8+ T cells in the spleen (P < 0.001) and in the graft (P < 0.05), and increase frequencies and total numbers of donor-reactive Tregs (P < 0.01 for each) versus CTLA4-Ig alone. Studies performed in conditional EPOR-knockout recipients showed that each of these differences required EPOR expression in myeloid cells but not in T cells. Analysis of mRNA isolated from spleen monocytes showed that EPO/EPOR ligation upregulated macrophage-expressed, antiinflammatory, regulatory, and pro-efferocytosis genes and downregulated selected proinflammatory genes. Taken together, the data support the conclusion that EPO promotes Treg-dependent murine cardiac allograft survival by crucially altering the phenotype and function of macrophages. Coupled with our previous documentation that EPO promotes Treg expansion in humans, the data support the need for testing the addition of EPO to costimulatory blockade-containing immunosuppression regimens in an effort to prolong human transplant survival.
Collapse
Affiliation(s)
- Julian K Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Sofia Bin
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Robert L Fairchild
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Karen S Keslar
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Zhengzi Yi
- Translational Transplant Research Center, Icahn School of medicine at Mount Sinai, New York, United States of America
| | - Weijia Zhang
- Translational Transplant Research Center, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Vasile I Pavlov
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Yansui Li
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Joren C Madsen
- Department of Surgery, Massachusetts General Hospital, Boston, United States of America
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
10
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Bernaldo-de-Quirós E, Pion M, Martínez-Bonet M, Correa-Rocha R. A New Generation of Cell Therapies Employing Regulatory T Cells (Treg) to Induce Immune Tolerance in Pediatric Transplantation. Front Pediatr 2022; 10:862807. [PMID: 35633970 PMCID: PMC9130702 DOI: 10.3389/fped.2022.862807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the preferred treatment for pediatric patients with end-stage renal disease, but it is still not a definitive solution due to immune graft rejection. Regulatory T cells (Treg) and their control over effector T cells is a crucial and intrinsic tolerance mechanism in limiting excessive immune responses. In the case of transplants, Treg are important for the survival of the transplanted organ, and their dysregulation could increase the risk of rejection in transplanted children. Chronic immunosuppression to prevent rejection, for which Treg are especially sensitive, have a detrimental effect on Treg counts, decreasing the Treg/T-effector balance. Cell therapy with Treg cells is a promising approach to restore this imbalance, promoting tolerance and thus increasing graft survival. However, the strategies used to date that employ peripheral blood as a Treg source have shown limited efficacy. Moreover, it is not possible to use this approach in pediatric patients due to the limited volume of blood that can be extracted from children. Here, we outline our innovative strategy that employs the thymus removed during pediatric cardiac surgeries as a source of therapeutic Treg that could make this therapy accessible to transplanted children. The advantageous properties and the massive amount of Treg cells obtained from pediatric thymic tissue (thyTreg) opens a new possibility for Treg therapies to prevent rejection in pediatric kidney transplants. We are recruiting patients in a clinical trial to prevent rejection in heart-transplanted children through the infusion of autologous thyTreg cells (NCT04924491). If its efficacy is confirmed, thyTreg therapy may establish a new paradigm in preventing organ rejection in pediatric transplants, and their allogeneic use would extend its application to other solid organ transplantation.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
12
|
Current Status, Barriers, and Future Directions for Humanized Mouse Models to Evaluate Stem Cell–Based Islet Cell Transplant. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:89-106. [DOI: 10.1007/5584_2022_711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Bergström M, Yao M, Müller M, Korsgren O, von Zur-Mühlen B, Lundgren T. Autologous regulatory T cells in clinical intraportal allogenic pancreatic islet transplantation. Transpl Int 2021; 34:2816-2823. [PMID: 34787936 DOI: 10.1111/tri.14163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 01/19/2023]
Abstract
Allogeneic islet transplantation in type 1 diabetes requires lifelong immunosuppression to prevent graft rejection. This medication can cause adverse effects and increases the susceptibility for infections and malignancies. Adoptive therapies with regulatory T cells (Tregs) have shown promise in reducing the need for immunosuppression in human transplantation settings but have previously not been evaluated in islet transplantation. In this study, five patients with type 1 diabetes undergoing intraportal allogeneic islet transplantation were co-infused with polyclonal autologous Tregs under a standard immunosuppressive regimen. Patients underwent leaukapheresis from which Tregs were purified by magnetic-activated cell sorting (MACS) and cryopreserved until transplantation. Dose ranges of 0.14-1.27 × 106 T cells per kilo bodyweight were transplanted. No negative effects were seen related to the Treg infusion, regardless of cell dose. Only minor complications related to the immunosuppressive drugs were reported. This first-in-man study of autologous Treg infusion in allogenic pancreatic islet transplantation shows that the treatment is safe and feasible. Based on these results, future efficacy studies will be developed under the label of advanced therapeutic medical products (ATMP), using modified or expanded Tregs with the aim of minimizing the need for chronic immunosuppressive medication in islet transplantation.
Collapse
Affiliation(s)
- Marcus Bergström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Ming Yao
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Müller
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Bengt von Zur-Mühlen
- Department of Surgical Sciences, Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Torbjörn Lundgren
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Jarvis LB, Rainbow DB, Coppard V, Howlett SK, Georgieva Z, Davies JL, Mullay HK, Hester J, Ashmore T, Van Den Bosch A, Grist JT, Coles AJ, Mousa HS, Pluchino S, Mahbubani KT, Griffin JL, Saeb-Parsy K, Issa F, Peruzzotti-Jametti L, Wicker LS, Jones JL. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun Biol 2021; 4:1186. [PMID: 34650224 PMCID: PMC8516976 DOI: 10.1038/s42003-021-02721-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.
Collapse
Affiliation(s)
- Lorna B Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel B Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Valerie Coppard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sarah K Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jessica L Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Joanna Hester
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | | | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hani S Mousa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Imperial College London Dementia Research Institute & Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Fadi Issa
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Pilat N, Lefsihane K, Brouard S, Kotsch K, Falk C, Steiner R, Thaunat O, Fusil F, Montserrat N, Amarelli C, Casiraghi F. T- and B-cell therapy in solid organ transplantation: current evidence and future expectations. Transpl Int 2021; 34:1594-1606. [PMID: 34448274 DOI: 10.1111/tri.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023]
Abstract
Cell therapy has emerged as an attractive therapeutic option in organ transplantation. During the last decade, the therapeutic potency of Treg immunotherapy has been shown in various preclinical animal models and safety was demonstrated in first clinical trials. However, there are still critical open questions regarding specificity, survival, and migration to the target tissue so the best Treg population for infusion into patients is still under debate. Recent advances in CAR technology hold the promise for Treg-functional superiority. Another exciting strategy is the generation of B-cell antibody receptor (BAR) Treg/cytotoxic T cells to specifically regulate or deplete alloreactive memory B cells. Finally, B cells are also capable of immune regulation, making them promising candidates for immunomodulatory therapeutic strategies. This article summarizes available literature on cell-based innovative therapeutic approaches aiming at modulating alloimmune response for transplantation. Crucial areas of investigation that need a joined effort of the transplant community for moving the field toward successful achievement of tolerance are highlighted.
Collapse
Affiliation(s)
- Nina Pilat
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Katia Lefsihane
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sophie Brouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Katja Kotsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department for General and Visceral Surgery, Berlin Institute of Health, Berlin, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Olivier Thaunat
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Floriane Fusil
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristiano Amarelli
- Department of Cardiac Surgery and Transplants Monaldi, A.O. dei Colli, Naples, Italy
| | | |
Collapse
|
16
|
Baeten P, Van Zeebroeck L, Kleinewietfeld M, Hellings N, Broux B. Improving the Efficacy of Regulatory T Cell Therapy. Clin Rev Allergy Immunol 2021; 62:363-381. [PMID: 34224053 PMCID: PMC8256646 DOI: 10.1007/s12016-021-08866-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Autoimmunity is caused by an unbalanced immune system, giving rise to a variety of organ-specific to system disorders. Patients with autoimmune diseases are commonly treated with broad-acting immunomodulatory drugs, with the risk of severe side effects. Regulatory T cells (Tregs) have the inherent capacity to induce peripheral tolerance as well as tissue regeneration and are therefore a prime candidate to use as cell therapy in patients with autoimmune disorders. (Pre)clinical studies using Treg therapy have already established safety and feasibility, and some show clinical benefits. However, Tregs are known to be functionally impaired in autoimmune diseases. Therefore, ex vivo manipulation to boost and stably maintain their suppressive function is necessary when considering autologous transplantation. Similar to autoimmunity, severe coronavirus disease 2019 (COVID-19) is characterized by an exaggerated immune reaction and altered Treg responses. In light of this, Treg-based therapies are currently under investigation to treat severe COVID-19. This review provides a detailed overview of the current progress and clinical challenges of Treg therapy for autoimmune and hyperinflammatory diseases, with a focus on recent successes of ex vivo Treg manipulation.
Collapse
Affiliation(s)
- Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Lauren Van Zeebroeck
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium. .,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Regulatory T Cells for the Induction of Transplantation Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33523454 DOI: 10.1007/978-981-15-6407-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Organ transplantation is the optimal treatment for terminal and irreversible organ failure. Achieving transplantation tolerance has long been the ultimate goal in the field of transplantation. Regulatory T cell (Treg)-based therapy is a promising novel approach for inducing donor organ-specific tolerance. Tregs play critical roles in the maintenance of immune homeostasis and self-tolerance, by promoting transplantation tolerance through a variety of mechanisms on different target cells, including anti-inflammatory cytokine production, induction of apoptosis, disruption of metabolic pathways, and mutual interaction with dendritic cells. The continued success of Treg-based therapy in the clinical setting is critically dependent on preclinical studies that support its translational potential. However, although some initial clinical trials of adoptive Treg therapy have successively demonstrated safety and efficacy for immunosuppressant minimization and transplantation tolerance induction, most Treg-based hematopoietic stem cell and solid organ clinical trials are still in their infancy. These clinical trials have not only focused on safety and efficacy but also included optimization and standardization protocols of good manufacturing practice regarding cell isolation, expansion, dosing, timing, specificity, quality control, concomitant immunosuppressants, and post-administration monitoring. We herein report a brief introduction of Tregs, including their phenotypic and functional characterization, and focus on the clinical translation of Treg-based therapeutic applications in the setting of transplantation.
Collapse
|
18
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
19
|
Mohammadi S, Abdollahi E, Nezamnia M, Esmaeili SA, Tavasolian F, Sathyapalan T, Sahebkar A. Adoptive transfer of Tregs: A novel strategy for cell-based immunotherapy in spontaneous abortion: Lessons from experimental models. Int Immunopharmacol 2021; 90:107195. [PMID: 33278746 DOI: 10.1016/j.intimp.2020.107195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023]
Abstract
Since half of the genes are inherited from the paternal side, the maternal immune system has to tolerate the presence of foreign paternal antigens. Regulatory T cells facilitate the development and maintenance of peripheral tissue tolerance of the fetus during pregnancy. Reduction in regulatory T cells is associated with complications of pregnancy, including spontaneous abortion. Recent studies in mouse models have shown that the adoptive transfer of Tregs can prevent spontaneous abortion in mouse models through improving maternal tolerance. Thus, adoptive cell therapy using autologous Tregs could potentially be a novel therapeutic approach for cell-based immunotherapy in women with unexplained spontaneous abortion. Besides, strategies for activating and expanding antigen-specific Tregs ex vivo and in vivo based on pharmacological agents can pave the foundation for an approach incorporating immunotherapy and pharmacotherapy. This review aims to elaborate on the current understanding of the therapeutic potential of the adoptive transfer of Tregs in the treatment of spontaneous abortion disease.
Collapse
Affiliation(s)
- Sasan Mohammadi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Mater Research Institute-University of Queensland, Translational Research Institute, South Brisbane, Australia.
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
20
|
Du Y, Fang Q, Zheng SG. Regulatory T Cells: Concept, Classification, Phenotype, and Biological Characteristics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:1-31. [PMID: 33523440 DOI: 10.1007/978-981-15-6407-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.
Collapse
Affiliation(s)
- Yang Du
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China.,Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Kim J, Hope CM, Perkins GB, Stead SO, Scaffidi JC, Kette FD, Carroll RP, Barry SC, Coates PT. Rapamycin and abundant TCR stimulation are required for the generation of stable human induced regulatory T cells. Clin Transl Immunology 2020; 9:e1223. [PMID: 33425354 PMCID: PMC7780108 DOI: 10.1002/cti2.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are a vital sub-population of CD4+ T cells with major roles in immune tolerance and homeostasis. Given such properties, the use of regulatory T cells for immunotherapies has been extensively investigated, with a focus on adoptive transfer of ex vivo expanded natural Tregs (nTregs). For immunotherapies, induced Tregs (iTregs), generated in vitro from naïve CD4+ T cells, provide an attractive alternative, given the ease of generating cell numbers required for clinical dosage. While the combination of TGF-β, ATRA and rapamycin has been shown to generate highly suppressive iTregs, the challenge for therapeutic iTreg generation has been their instability. Here, we investigate the impact of rapamycin concentrations and α-CD3/CD28 bead ratios on human iTreg stability. METHODS We assess iTregs generated with various concentrations of rapamycin and differing ratios of α-CD3/CD28 beads for their differentiation, stability, expression of Treg signature molecules and T helper effector cytokines, and Treg-specific demethylation region (TSDR) status. RESULTS iTregs generated in the presence of TGF-β, ATRA, rapamycin and a higher ratio of α-CD3/CD28 beads were highly suppressive and stable upon in vitro re-stimulation. These iTregs exhibited a similar expression profile of Treg signature molecules and T helper effector cytokines to nTregs, in the absence of TSDR demethylation. CONCLUSION This work establishes a method to generate human iTregs which maintain stable phenotype and function upon in vitro re-stimulation. Further validation in pre-clinical models will be needed to ensure its suitability for applications in adoptive transfer.
Collapse
Affiliation(s)
- Juewan Kim
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Christopher M Hope
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Griffith B Perkins
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Sebastian O Stead
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Jacqueline C Scaffidi
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Francis D Kette
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Robert P Carroll
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
- Division of Medical SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Simon C Barry
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Patrick Toby Coates
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
| |
Collapse
|
22
|
Identification, selection, and expansion of non-gene modified alloantigen-reactive Tregs for clinical therapeutic use. Cell Immunol 2020; 357:104214. [PMID: 32977154 PMCID: PMC8482792 DOI: 10.1016/j.cellimm.2020.104214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/29/2022]
Abstract
Transplantation is limited by the need for life-long pharmacological immunosuppression, which carries significant morbidity and mortality. Regulatory T cell (Treg) therapy holds significant promise as a strategy to facilitate immunosuppression minimization. Polyclonal Treg therapy has been assessed in a number of Phase I/II clinical trials in both solid organ and hematopoietic transplantation. Attention is now shifting towards the production of alloantigen-reactive Tregs (arTregs) through co-culture with donor antigen. These allospecific cells harbour potent suppressive function and yet their specificity implies a theoretical reduction in off-target effects. This review will cover the progress in the development of arTregs including their potential application for clinical use in transplantation, the knowledge gained so far from clinical trials of Tregs in transplant patients, and future directions for Treg therapy.
Collapse
|
23
|
Successful Regulatory T Cell-Based Therapy Relies on Inhibition of T Cell Effector Function and Enrichment of FOXP3+ Cells in a Humanized Mouse Model of Skin Inflammation. J Immunol Res 2020; 2020:7680131. [PMID: 32509883 PMCID: PMC7244960 DOI: 10.1155/2020/7680131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background Recent clinical trials using regulatory T cells (Treg) support the therapeutic potential of Treg-based therapy in transplantation and autoinflammatory diseases. Despite these clinical successes, the effect of Treg on inflamed tissues, as well as their impact on immune effector function in vivo, is poorly understood. Therefore, we here evaluated the effect of human Treg injection on cutaneous inflammatory processes in vivo using a humanized mouse model of human skin inflammation (huPBL-SCID-huSkin). Methods SCID beige mice were transplanted with human skin followed by intraperitoneal (IP) injection of 20‐40 × 106 allogeneic human PBMCs. This typically results in human skin inflammation as indicated by epidermal thickening (hyperkeratosis) and changes in dermal inflammatory markers such as the antimicrobial peptide hBD2 and epidermal barrier cytokeratins K10 and K16, as well as T cell infiltration in the dermis. Ex vivo-expanded human Treg were infused intraperitoneally. Human cutaneous inflammation and systemic immune responses were analysed by immunohistochemistry and flow cytometry. Results We confirmed that human Treg injection inhibits skin inflammation and the influx of effector T cells. As a novel finding, we demonstrate that human Treg injection led to a reduction of IL-17-secreting cells while promoting a relative increase in immunosuppressive FOXP3+ Treg in the human skin, indicating active immune regulation in controlling the local proinflammatory response. Consistent with the local control (skin), systemically (splenocytes), we observed that Treg injection led to lower frequencies of IFNγ and IL-17A-expressing human T cells, while a trend towards enrichment of FOXP3+ Treg was observed. Conclusion Taken together, we demonstrate that inhibition of skin inflammation by Treg infusion, next to a reduction of infiltrating effector T cells, is mediated by restoring both the local and systemic balance between cytokine-producing effector T cells and immunoregulatory T cells. This work furthers our understanding of Treg-based immunotherapy.
Collapse
|
24
|
Furlan SN, Singh K, Lopez C, Tkachev V, Hunt DJ, Hibbard J, Betz KM, Blazar BR, Trapnell C, Kean LS. IL-2 enhances ex vivo-expanded regulatory T-cell persistence after adoptive transfer. Blood Adv 2020; 4:1594-1605. [PMID: 32311015 PMCID: PMC7189290 DOI: 10.1182/bloodadvances.2019001248] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
As regulatory T cell (Treg) adoptive therapy continues to develop clinically, there is a need to determine which immunomodulatory agents pair most compatibly with Tregs to enable persistence and stabilize suppressor function. Prior work has shown that mechanistic target of rapamycin inhibition can increase the stability of thymic Tregs. In this study, we investigated the transcriptomic signatures of ex vivo-expanded Tregs after adoptive transfer in the setting of clinically relevant immunosuppression using a nonhuman primate (NHP) model as a prelude to future transplant studies. Here, we found that adding interleukin-2 (IL-2) to rapamycin in vivo supported a logarithmic increase in the half-life of adoptively transferred carboxyfluorescein diacetate succinimidyl ester-labeled, autologous NHP Tregs, effectively doubling the number of cells in the peripheral blood Treg compartment compared with Treg infusion when rapamycin was given alone. Using single-cell transcriptomics, we found that transferred ex vivo-expanded Tregs initially exhibit a gene expression signature consistent with an activated state. Moreover, those cells with the highest levels of activation also expressed genes associated with p53-mediated apoptosis. In contrast, transferred Tregs interrogated at day +20 posttransfer demonstrated a gene signature more similar to published profiles of resting Tregs. Together, these preclinical data further support combining IL-2 and rapamycin in vivo as adjunctive therapy for ex vivo-expanded adoptively transferred Tregs and suggest that the activation status of ex vivo-expanded Tregs is critical to their persistence.
Collapse
Affiliation(s)
- Scott N Furlan
- Fred Hutchinson Cancer Research Center and Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Christina Lopez
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA
| | - Victor Tkachev
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Daniel Joel Hunt
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - James Hibbard
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA
| | - Kayla M Betz
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN; and
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leslie S Kean
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Fukasaku Y, Goto R, Ganchiku Y, Emoto S, Zaitsu M, Watanabe M, Kawamura N, Fukai M, Shimamura T, Taketomi A. Novel immunological approach to asses donor reactivity of transplant recipients using a humanized mouse model. Hum Immunol 2020; 81:342-353. [PMID: 32345498 DOI: 10.1016/j.humimm.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
In organ transplantation, a reproducible and robust immune-monitoring assay has not been established to determine individually tailored immunosuppressants (IS). We applied humanized mice reconstituted with human (hu-) peripheral blood mononuclear cells (PBMCs) obtained from living donor liver transplant recipients to evaluate their immune status. Engraftment of 2.5 × 106 hu-PBMCs from healthy volunteers and recipients in the NSG mice was achieved successfully. The reconstituted lymphocytes consisted mainly of hu-CD3+ lymphocytes with predominant CD45RA-CD62Llo TEM and CCR6-CXCR3+CD4+ Th1 cells in hu-PBMC-NSG mice. Interestingly, T cell allo-reactivity of hu-PBMC-NSG mice was amplified significantly compared with that of freshly isolated PBMCs (p < 0.05). Furthermore, magnified hu-T cell responses to donor antigens (Ag) were observed in 2/10 immunosuppressed recipients with multiple acute rejection (AR) experiences, suggesting that the immunological assay in hu-PBMC-NSG mice revealed hidden risks of allograft rejection by IS. Furthermore, donor Ag-specific hyporesponsiveness was maintained in recipients who had been completely weaned off IS (n = 4), despite homeostatic proliferation of hu-T cells in the hu-PBMC-NSG mice. The immunological assay in humanized mice provides a new tool to assess recipient immunity in the absence of IS and explore the underlying mechanisms to maintaining operational tolerance.
Collapse
Affiliation(s)
- Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Shin Emoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Watanabe
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Norio Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Pancreatic islet cell transplantation is currently the only curative cell therapy for type 1 diabetes mellitus. However, its potential to treat many more patients is limited by several challenges. The emergence of 3D bioprinting technology from recent advances in 3D printing, biomaterials, and cell biology has provided the means to overcome these challenges. RECENT FINDINGS 3D bioprinting allows for the precise fabrication of complex 3D architectures containing spatially distributed cells, biomaterials (bioink), and bioactive factors. Different strategies to capitalize on this ability have been investigated for the 3D bioprinting of pancreatic islets. In particular, with co-axial bioprinting technology, the co-printability of islets with supporting cells such as endothelial progenitor cells and regulatory T cells, which have been shown to accelerate revascularization of islets and improve the outcome of various transplantations, respectively, has been achieved. 3D bioprinting of islets for generation of an artificial pancreas is a newly emerging field of study with a vast potential to improve islet transplantation.
Collapse
Affiliation(s)
- Juewan Kim
- Department of Molecular & Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Kyungwon Kang
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher J Drogemuller
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterial Science, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia.
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
27
|
Christoffersson G, von Herrath M. Regulatory Immune Mechanisms beyond Regulatory T Cells. Trends Immunol 2019; 40:482-491. [DOI: 10.1016/j.it.2019.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
|
28
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Issa F, Milward K, Goto R, Betts G, Wood KJ, Hester J. Transiently Activated Human Regulatory T Cells Upregulate BCL-XL Expression and Acquire a Functional Advantage in vivo. Front Immunol 2019; 10:889. [PMID: 31068951 PMCID: PMC6491764 DOI: 10.3389/fimmu.2019.00889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs) can control excessive or undesirable immune responses toward autoantigens, alloantigens, and pathogens. In transplantation, host immune responses against the allograft are suppressed through the use of immunosuppressive drugs, however this often results in life-threatening side effects including nephrotoxicity and an increased incidence of cancer and opportunistic infections. Tregs can control graft-vs.-host disease and transplant rejection in experimental models, providing impetus for the use of Tregs as a cellular therapy in clinical transplantation. One of the major barriers to the widespread use of Treg cellular therapy is the requirement to expand cells ex vivo to large numbers in order to alter the overall balance between regulatory and effector cells. Methods that enhance suppressive capacity thereby reducing the need for expansion are therefore of interest. Here, we have compared the function of freshly-isolated and ex vivo-manipulated human Tregs in a pre-clinical humanized mouse model of skin transplantation. Sorted human CD127loCD25+CD4+ Tregs were assessed in three different conditions: freshly-isolated, following transient in vitro activation with antiCD3/antiCD28 beads or after ex vivo-expansion for 2 weeks in the presence of antiCD3/antiCD28 beads and recombinant human IL2. While ex vivo-expansion of human Tregs increased their suppressive function moderately, transient in vitro-activation of freshly isolated Tregs resulted in a powerful enhancement of Treg activity sufficient to promote long-term graft survival of all transplants in vivo. In order to investigate the mechanisms responsible for these effects, we measured the expression of Treg-associated markers and susceptibility to apoptosis in activated Tregs. Transiently activated Tregs displayed enhanced survival and proliferation in vitro and in vivo. On a molecular level, Treg activation resulted in an increased expression of anti-apoptotic BCL2L1 (encoding BCL-XL) which may be at least partially responsible for the observed enhancement in function. Our results suggest that in vitro activation of human Tregs arms them with superior proliferative and survival abilities, enabling them to more effectively control alloresponses. Importantly, this transient activation results in a rapid functional enhancement of freshly-isolated Tregs, thereby providing an opportunity to eliminate the need for in vitro expansion in select circumstances. A protocol employing this technique would therefore benefit from a reduced requirement for large cell numbers for effective therapy.
Collapse
|
30
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
31
|
Landman S, de Oliveira VL, van Erp PEJ, Fasse E, Bauland SCG, Joosten I, Koenen HJPM. Intradermal injection of low dose human regulatory T cells inhibits skin inflammation in a humanized mouse model. Sci Rep 2018; 8:10044. [PMID: 29968819 PMCID: PMC6030170 DOI: 10.1038/s41598-018-28346-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Recent regulatory T cell (Treg) based clinical trials support their therapeutic potential in transplantation and auto-inflammatory diseases. However, large numbers of Treg are needed to accomplish therapeutic efficacy. Local injection at the site of inflammation (targeted delivery) may lower the numbers needed for therapy. We evaluated if local delivery of low numbers of human Treg by intradermal injection was able to prevent skin inflammation, using the humanized mouse huPBL-SCID-huSkin allograft model. A dose of only 1 × 105 freshly isolated, non expanded Treg injected intradermally in close proximity to the transplanted human skin prevented inflammation of the grafted tissue induced by 4 × 107 IP injected human allogeneic PBMCs, (ratio Treg:PBMC = 1:400), as indicated by the inhibition of epidermal thickening, sustained Keratin-10 expression, the absence of Keratin-16 up regulation and prevention of human CD3+ T cell influx. A concomitant reduction of human T cells was observed in lymph nodes and spleen of the mice. Injection of Treg at the contralateral side was also shown to inhibit skin inflammation, suggesting that the inflammatory response was regulated both locally and systemically. In conclusion, local application of Treg may be an attractive way to suppress inflammation in vivo without the need for prior ex vivo expansion.
Collapse
Affiliation(s)
- Sija Landman
- Radboud university medical center, department of Laboratory Medicine-Medical Immunology, Nijmegen, The Netherlands
| | - Vivian L de Oliveira
- Radboud university medical center, department of Laboratory Medicine-Medical Immunology, Nijmegen, The Netherlands
| | - Piet E J van Erp
- Radboud university medical center, department of Dermatology, Nijmegen, The Netherlands
| | - Esther Fasse
- Radboud university medical center, department of Laboratory Medicine-Medical Immunology, Nijmegen, The Netherlands
| | | | - Irma Joosten
- Radboud university medical center, department of Laboratory Medicine-Medical Immunology, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Radboud university medical center, department of Laboratory Medicine-Medical Immunology, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Kawai K, Uchiyama M, Hester J, Wood K, Issa F. Regulatory T cells for tolerance. Hum Immunol 2018; 79:294-303. [DOI: 10.1016/j.humimm.2017.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
|
33
|
Abstract
CD4+CD25highFoxP3+ T regulatory cells (Tregs) are immunodominant suppressors in the immune system. Tregs use various mechanisms to control immune responses. Preclinical data from animal models have confirmed the huge therapeutic potential of Tregs in many immune-mediated diseases. Hence, these cells are now on the road to translation to cell therapy in the clinic as the first clinical trials are accomplished. To date, clinical research has involved mainly hematopoietic stem cell transplantations, solid organ transplantations, and autoimmunity. Despite difficulties with legislation and technical issues, treatment is constantly evolving and may soon represent a valid alternative for patients with diseases that are currently incurable. This review focuses on the basic and clinical experience with Tregs with adoptive transfer of these cells, primarily from clinical trials, as well as on perspectives on clinical use and technical problems with implementing the therapy.
Collapse
|
34
|
DNA Methyltransferase Inhibition Promotes Th1 Polarization in Human CD4 +CD25 high FOXP3 + Regulatory T Cells but Does Not Affect Their Suppressive Capacity. J Immunol Res 2018; 2018:4973964. [PMID: 29850630 PMCID: PMC5924998 DOI: 10.1155/2018/4973964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Treg) can show plasticity whereby FOXP3 expression, the master transcription factor for Treg suppressor function, is lost and proinflammatory cytokines are produced. Optimal FOXP3 expression strongly depends on hypomethylation of the FOXP3 gene. 5-Azacytidine (Aza) and its derivative 5-aza-2'-deoxycytidine (DAC) are DNA methyltransferase inhibitors (DNMTi) that are therapeutically used in hematological malignancies, which might be an attractive strategy to promote Treg stability. Previous in vitro research primarily focused on Treg induction by DAC from naïve conventional CD4+ T cells (Tconv). Here, we examined the in vitro effect of DAC on the stability and function of FACS-sorted human naturally occurring CD4+CD25high FOXP3+ Treg. We found that in vitro activation of Treg in the presence of DAC led to a significant inhibition of Treg proliferation, but not of Tconv. Although Treg activation in the presence of DAC led to increased IFNγ expression and induction of a Thelper-1 phenotype, the Treg maintained their suppressive capacity. DAC also induced a trend towards increased IL-10 expression. In vivo studies in patients with hematological malignancies that were treated with 5-azacytidine (Vidaza) supported the in vitro findings. In conclusion, despite its potential to increase IFNγ expression, DAC does preserve the suppressor phenotype of naturally occurring Treg.
Collapse
|
35
|
Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scottá C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G. A Rapamycin-Based GMP-Compatible Process for the Isolation and Expansion of Regulatory T Cells for Clinical Trials. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 8:198-209. [PMID: 29552576 PMCID: PMC5850906 DOI: 10.1016/j.omtm.2018.01.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/16/2018] [Indexed: 01/09/2023]
Abstract
The concept of regulatory T cell (Treg)-based immunotherapy has enormous potential for facilitating tolerance in autoimmunity and transplantation. Clinical translation of Treg cell therapy requires production processes that satisfy the rigors of Good Manufacturing Practice (GMP) standards. In this regard, we report our findings on the implementation of a robust GMP compliant process for the ex vivo expansion of clinical grade Tregs, demonstrating the feasibility of this developed process for the manufacture of a final product for clinical application. This Treg isolation procedure ensured the selection of a pure Treg population that underwent a 300-fold expansion after 36 days of culture, while maintaining a purity of more than 75% CD4+CD25+FOXP3+ cells and a suppressive function of above 80%. Furthermore, we report the successful cryopreservation of the final product, demonstrating the maintenance of phenotype and function. The process outlined in this manuscript has been implemented in the ONE study, a multicenter phase I/IIa clinical trial in which cellular therapy is investigated in renal transplantation.
Collapse
Affiliation(s)
- Henrieta Fraser
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Niloufar Safinia
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Nathali Grageda
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Sarah Thirkell
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Katie Lowe
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Laura J Fry
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Cristiano Scottá
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Andrew Hope
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Christopher Fisher
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Rachel Hilton
- The Department of Nephrology and Transplantation, Guy's Hospital, Guy's and St. Thomas NHS Foundation Trust
| | - David Game
- The Department of Nephrology and Transplantation, Guy's Hospital, Guy's and St. Thomas NHS Foundation Trust
| | | | - Andrew Bushell
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Kathryn Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Robert I Lechler
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| | - Giovanna Lombardi
- Division of Transplantation, Immunology and Mucosal Biology, King's College London, London, UK
| |
Collapse
|
36
|
Fuchs A, Gliwiński M, Grageda N, Spiering R, Abbas AK, Appel S, Bacchetta R, Battaglia M, Berglund D, Blazar B, Bluestone JA, Bornhäuser M, Ten Brinke A, Brusko TM, Cools N, Cuturi MC, Geissler E, Giannoukakis N, Gołab K, Hafler DA, van Ham SM, Hester J, Hippen K, Di Ianni M, Ilic N, Isaacs J, Issa F, Iwaszkiewicz-Grześ D, Jaeckel E, Joosten I, Klatzmann D, Koenen H, van Kooten C, Korsgren O, Kretschmer K, Levings M, Marek-Trzonkowska NM, Martinez-Llordella M, Miljkovic D, Mills KHG, Miranda JP, Piccirillo CA, Putnam AL, Ritter T, Roncarolo MG, Sakaguchi S, Sánchez-Ramón S, Sawitzki B, Sofronic-Milosavljevic L, Sykes M, Tang Q, Vives-Pi M, Waldmann H, Witkowski P, Wood KJ, Gregori S, Hilkens CMU, Lombardi G, Lord P, Martinez-Caceres EM, Trzonkowski P. Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Front Immunol 2018; 8:1844. [PMID: 29379498 PMCID: PMC5775516 DOI: 10.3389/fimmu.2017.01844] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Cellular therapies with CD4+ T regulatory cells (Tregs) hold promise of efficacious treatment for the variety of autoimmune and allergic diseases as well as posttransplant complications. Nevertheless, current manufacturing of Tregs as a cellular medicinal product varies between different laboratories, which in turn hampers precise comparisons of the results between the studies performed. While the number of clinical trials testing Tregs is already substantial, it seems to be crucial to provide some standardized characteristics of Treg products in order to minimize the problem. We have previously developed reporting guidelines called minimum information about tolerogenic antigen-presenting cells, which allows the comparison between different preparations of tolerance-inducing antigen-presenting cells. Having this experience, here we describe another minimum information about Tregs (MITREG). It is important to note that MITREG does not dictate how investigators should generate or characterize Tregs, but it does require investigators to report their Treg data in a consistent and transparent manner. We hope this will, therefore, be a useful tool facilitating standardized reporting on the manufacturing of Tregs, either for research purposes or for clinical application. This way MITREG might also be an important step toward more standardized and reproducible testing of the Tregs preparations in clinical applications.
Collapse
Affiliation(s)
- Anke Fuchs
- GMP facility, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), and Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mateusz Gliwiński
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Nathali Grageda
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Rachel Spiering
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rosa Bacchetta
- Pediatric Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, and TrialNet Clinical Center, San Raffaele Hospital, Milan, Italy
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bruce Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minnesota, MN, United States
| | - Jeffrey A Bluestone
- Hormone Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Bornhäuser
- GMP facility, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), and Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Maria Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Edward Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nick Giannoukakis
- Allegheny Health Network, Institute of Cellular Therapeutics, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Karolina Gołab
- Transplant Institute, Department of Surgery, The University of Chicago, Chicago, IL, United States
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Keli Hippen
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minnesota, MN, United States
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Natasa Ilic
- Department for Immunology and Immunoparasitology, National Reference Laboratory for Trichinellosis, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - John Isaacs
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Endocrinology, Diabetology, Transplantationsforschungszentrum, Medical School of Hannover (MHH), Hannover, Germany
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboudumc, Nijmegen, Netherlands
| | - David Klatzmann
- Immunology-Immunopathology-Immunotherapy (i3), UPMC Univ Paris 06, UMRS 959, Sorbonne Université, and Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hans Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboudumc, Nijmegen, Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, Uppsala, Sweden.,Transplantation Immunology, Gothenburg University, Gothenburg, Sweden
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, and Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Hospital and Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Megan Levings
- Department of Surgery, Faculty of Medicine, The University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Natalia Maria Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marc Martinez-Llordella
- Medical Research Council Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Djordje Miljkovic
- Department of Immunology, IBISS, University of Belgrade, Belgrade, Serbia
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joana P Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Ciriaco A Piccirillo
- Departments of Microbiology & Immunology and Medicine, Faculty of Medicine, McGill University, Program in Infectious Disease and Immunity in Global Health, Centre of Excellence in Translational Immunology (CETI), Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - Amy L Putnam
- Hormone Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute (REMEDI), Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, ISCBRM, Stanford School of Medicine, Stanford, CA, United States
| | - Shimon Sakaguchi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Hospital Clínico San Carlos, Universidad Complutense of Madrid, Madrid, Spain
| | - Birgit Sawitzki
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ljiljana Sofronic-Milosavljevic
- Department for Immunology and Immunoparasitology, National Reference Laboratory for Trichinellosis, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, Bone Marrow Transplantation Research, Division of Hematology/Oncology, Columbia University Medical Center, Columbia University, New York, NY, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Marta Vives-Pi
- Immunology of Diabetes Unit, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Piotr Witkowski
- Transplant Institute, Department of Surgery, The University of Chicago, Chicago, IL, United States
| | - Kathryn J Wood
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Group, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Phillip Lord
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eva M Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital - Can Ruti, Department Cellular Biology, Physiology, Immunology, Universitat Autònoma Barcelona, Badalona, Spain
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
37
|
Anti-donor regulatory T cell therapy in liver transplantation. Hum Immunol 2017; 79:288-293. [PMID: 29292027 DOI: 10.1016/j.humimm.2017.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Liver transplantation is accepted as the most reliable therapeutic option for patients with end-stage liver failure, but lifelong administration of immunosuppressive agents continues to be problematic due to various drug-induced morbidities and the risk of mortality. Complete cessation of immunosuppressive drugs while maintaining normal graft function and histology, called operational tolerance, has the potential to overcome these long-standing problems. Previously, we reported the results of a pilot study of anti- donor regulatory T cell therapy in 10 consecutive adult patients who underwent living donor liver transplantation (LDLT), of whom 7 patients successfully stopped immunosuppression for nearly 2 years. Described herein are the clinical follow-ups of these patients, a brief description of the protocol and its theoretical background, and a possible explanation for the immunological findings.
Collapse
|
38
|
Zongyi Y, Funian Z, Hao L, Xin W, Ying C, Jialin Z, Yongfeng L, Baifeng L. Interleukin-35 mitigates the function of murine transplanted islet cells via regulation of Treg/Th17 ratio. PLoS One 2017; 12:e0189617. [PMID: 29236782 PMCID: PMC5728515 DOI: 10.1371/journal.pone.0189617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic islet transplantation is a promising treatment for type 1 diabetes (T1D). Interleukin-35 (IL-35) is a recently discovered cytokine that exhibits potent immunosuppressive functions. However, the role of IL-35 in islet transplant rejection remains to be elucidated. In this study, we isolated islet cells of BALB/c mouse and purified CD4+ T cell subsets of a C57BL/6 mouse. The model for islet transplantation was established in vitro by co-culture of the islet cells and CD4+ T cells. IL-35 (20 ng/ml) was administered every other day. Following co-culture, the islet function and Treg/Th17 ratio were analyzed on days 1, 3, and 5. Furthermore, the Th17/Treg ratio was modulated (1:0–2), and the function of islet cells as well as proliferation of Th17 cells were analyzed. T cell sorting was performed using the magnetic bead sorting method; Treg and Th17 count using flow cytometry; cell proliferation detection using the carboxyfluorescein diacetate succinimidyl ester (CFSE) method, and islet function test using the sugar stimulation test. Results showed that Th17 counts increased in the co-culture system. However, after administration of IL-35, the number of Treg cells increased significantly compared to that in the control group (50.7% of total CD4+ T cells on day 5 in IL-35 group vs. 9.5% in control group) whereas the proliferation rate of Th17 cells was significantly inhibited (0.3% in IL-35 group vs. 7.2% in control group on day 5). Reducing the Th17/Treg ratio significantly improved the function of transplanted islets. Treg inhibited Th17 proliferation and IL-35 enhanced this inhibitory effect. IL-35 mitigates the function of murine transplanted islet cells via regulation of the Treg/Th17 ratio. This might serve as a potential therapeutic strategy for in-vivo islet transplant rejection and T1D.
Collapse
Affiliation(s)
- Yin Zongyi
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Zou Funian
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Li Hao
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Wang Xin
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Cheng Ying
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Zhang Jialin
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Liu Yongfeng
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Li Baifeng
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
- National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China
- Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
39
|
Zaitsu M, Issa F, Hester J, Vanhove B, Wood KJ. Selective blockade of CD28 on human T cells facilitates regulation of alloimmune responses. JCI Insight 2017; 2:89381. [PMID: 28978798 DOI: 10.1172/jci.insight.89381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/29/2017] [Indexed: 01/05/2023] Open
Abstract
T cells are central to the detrimental alloresponses that develop in autoimmunity and transplantation, with CD28 costimulatory signals being key to T cell activation and proliferation. CTLA4-Ig molecules that bind CD80/86 and inhibit CD28 costimulation offer an alternative immunosuppressive treatment, free from some of the chronic toxicities associated with calcineurin inhibition. However, CD80/86 blockade by CTLA4-Ig also results in the loss of coinhibitory CTLA4 signals that are critical to the regulation of T cell activation. Here, we show that a nonactivating monovalent anti-CD28 that spares CTLA4 signaling is an effective immunosuppressant in a clinically relevant humanized mouse transplant model. We demonstrate that selective CD28 blockade prolongs human skin allograft survival through a mechanism that includes a reduction in the cellular graft infiltrate. Critically, selective CD28 blockade promotes Treg function in vivo and synergizes with adoptive Treg therapy to promote transplant survival. In contrast to CTLA4-Ig treatment, selective CD28 blockade promotes regulation of alloimmune responses and facilitates Treg-based cellular therapy.
Collapse
Affiliation(s)
- Masaaki Zaitsu
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,OSE Immunotherapeutics, Nantes, France
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
40
|
Huang D, Wang Y, Hawthorne WJ, Hu M, Hawkes J, Burns H, Davies S, Gao F, Chew YV, Yi S, O'Connell PJ. Ex vivo-expanded baboon CD39 + regulatory T cells prevent rejection of porcine islet xenografts in NOD-SCID IL-2rγ -/- mice reconstituted with baboon peripheral blood mononuclear cells. Xenotransplantation 2017; 24. [PMID: 28963731 DOI: 10.1111/xen.12344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND A high immunosuppressive burden is required for long-term islet xenograft survival in non-human primates even using genetically modified donor pigs. AIMS We aimed to investigate the capacity of baboon regulatory T cells (Treg) to suppress islet xenograft rejection, thereby developing a potential immunoregulatory or tolerance therapy that could be evaluated in NHP models of xenotransplantation. MATERIALS & METHODS Baboon Treg expanded with stimulation by porcine peripheral blood mononuclear cells (PBMC) were characterized by cell phenotyping and suppressive activity assays in vitro. Their function in vivo was evaluated in neonatal porcine islet cell clusters (NICC) transplanted NOD-SCID IL-2rγ-/- (NSG) mice receiving baboon PBMC alone or with expanded autologous Treg. RESULTS The majority of expanded Treg coexpressed Foxp3 and CD39 and were highly suppressive of the baboon anti-pig xenogeneic T cell response in vitro. Reconstitution of mice with baboon PBMC alone resulted in NICC xenograft rejection within 35 days. Cotransfer with baboon PBMC and Treg prolonged islet xenograft survival beyond 100 days, correlating with Treg engraftment, intragraft CD39 and Foxp3 gene expression, and reduced graft infiltrating effector T cells and reduced interferon-γ production. DISCUSSION & CONCLUSION Our data supports the capacity of ex vivo expanded CD39+ baboon Treg to suppress islet xenograft rejection in primatized mice, suggesting it has potential as an adjunctive immunotherapy in preclinical NHP models of xenotransplantation.
Collapse
Affiliation(s)
- Dandan Huang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Joanne Hawkes
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Heather Burns
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Sussan Davies
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Feng Gao
- Cell Transplantation and Gene Therapy, 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
41
|
Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci U S A 2017; 114:9337-9342. [PMID: 28814629 DOI: 10.1073/pnas.1619216114] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transplantation of pancreatic islets, following the Edmonton Protocol, is a promising treatment for type I diabetics. However, the need for multiple donors to achieve insulin independence reflects the large loss of islets that occurs when islets are infused into the portal vein. Finding a less hostile transplantation site that is both minimally invasive and able to support a large transplant volume is necessary to advance this approach. Although the s.c. site satisfies both these criteria, the site is poorly vascularized, precluding its utility. To address this problem, we demonstrate that modular tissue engineering results in an s.c. vascularized bed that enables the transplantation of pancreatic islets. In streptozotocin-induced diabetic SCID/beige mice, the injection of 750 rat islet equivalents embedded in endothelialized collagen modules was sufficient to restore and maintain normoglycemia for 21 days; the same number of free islets was unable to affect glucose levels. Furthermore, using CLARITY, we showed that embedded islets became revascularized and integrated with the host's vasculature, a feature not seen in other s.c. STUDIES Collagen-embedded islets drove a small (albeit not significant) shift toward a proangiogenic CD206+MHCII-(M2-like) macrophage response, which was a feature of module-associated vascularization. While these results open the potential for using s.c. islet delivery as a treatment option for type I diabetes, the more immediate benefit may be for the exploration of revascularized islet biology.
Collapse
|
42
|
Iuamoto LR, Franco AS, Suguita FY, Essu FF, Oliveira LT, Kato JM, Torsani MB, Meyer A, Andraus W, Chaib E, D'Albuquerque LAC. Human islet xenotransplantation in rodents: A literature review of experimental model trends. Clinics (Sao Paulo) 2017; 72:238-243. [PMID: 28492724 PMCID: PMC5401612 DOI: 10.6061/clinics/2017(04)08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Among the innovations for the treatment of type 1 diabetes, islet transplantation is a less invasive method of treatment, although it is still in development. One of the greatest barriers to this technique is the low number of pancreas donors and the low number of pancreases that are available for transplantation. Rodent models have been chosen in most studies of islet rejection and type 1 diabetes prevention to evaluate the quality and function of isolated human islets and to identify alternative solutions to the problem of islet scarcity. The purpose of this study is to conduct a review of islet xenotransplantation experiments from humans to rodents, to organize and analyze the parameters of these experiments, to describe trends in experimental modeling and to assess the viability of this procedure. In this study, we reviewed recently published research regarding islet xenotransplantation from humans to rodents, and we summarized the findings and organized the relevant data. The included studies were recent reports that involved xenotransplantation using human islets in a rodent model. We excluded the studies that related to isotransplantation, autotransplantation and allotransplantation. A total of 34 studies that related to xenotransplantation were selected for review based on their relevance and current data. Advances in the use of different graft sites may overcome autoimmunity and rejection after transplantation, which may solve the problem of the scarcity of islet donors in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Leandro Ryuchi Iuamoto
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | | | | | | | | | | | - Alberto Meyer
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Wellington Andraus
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Eleazar Chaib
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
43
|
Bender C, Christen S, Scholich K, Bayer M, Pfeilschifter JM, Hintermann E, Christen U. Islet-Expressed CXCL10 Promotes Autoimmune Destruction of Islet Isografts in Mice With Type 1 Diabetes. Diabetes 2017; 66:113-126. [PMID: 27797910 DOI: 10.2337/db16-0547] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/21/2016] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing β-cells in the pancreas. Thereby, the chemokine CXC-motif ligand 10 (CXCL10) plays an important role in the recruitment of autoaggressive lymphocytes to the islets of Langerhans. Transplantation of isolated islets as a promising therapy for T1D has been hampered by early graft rejection. Here, we investigated the influence of CXCL10 on the autoimmune destruction of islet isografts using RIP-LCMV mice expressing a lymphocytic choriomeningitis virus (LCMV) protein in the β-cells. RIP-LCMV islets express CXCL10 after isolation and maintain CXCL10 production after engraftment. Thus, we isolated islets from either normal or CXCL10-deficient RIP-LCMV mice and transferred them under the kidney capsule of diabetic RIP-LCMV mice. We found that the autoimmune destruction of CXCL10-deficient islet isografts was significantly reduced. The autoimmune destruction was also diminished in mice administered with an anti-CXCL10 antibody. The persistent protection from autoimmune destruction was paralleled by an increase in FoxP3+ regulatory T cells within the cellular infiltrates around the islet isografts. Consequently, CXCL10 might influence the cellular composition locally in the islet graft, thereby playing a role in the autoimmune destruction. CXCL10 might therefore constitute a potential therapeutic target to prolong islet graft survival.
Collapse
Affiliation(s)
- Christine Bender
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Selina Christen
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute for Clinical Pharmacology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Edith Hintermann
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Urs Christen
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Schwarz C, Unger L, Mahr B, Aumayr K, Regele H, Farkas AM, Hock K, Pilat N, Wekerle T. The Immunosuppressive Effect of CTLA4 Immunoglobulin Is Dependent on Regulatory T Cells at Low But Not High Doses. Am J Transplant 2016; 16:3404-3415. [PMID: 27184870 DOI: 10.1111/ajt.13872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
B7.1/2-targeted costimulation blockade (CTLA4 immunoglobulin [CTLA4-Ig]) is available for immunosuppression after kidney transplantation, but its potentially detrimental impact on regulatory T cells (Tregs) is of concern. We investigated the effects of CTLA4-Ig monotherapy in a fully mismatched heart transplant model (BALB/c onto C57BL/6). CTLA4-Ig was injected chronically (on days 0, 4, 14, and 28 and every 4 weeks thereafter) in dosing regimens paralleling clinical use, shown per mouse: low dose (LD), 0.25 mg (≈10 mg/kg body weight); high dose (HD), 1.25 mg (≈50 mg/kg body weight); and very high dose (VHD), 6.25 mg (≈250 mg/kg body weight). Chronic CTLA4-Ig therapy showed dose-dependent efficacy, with the LD regimen prolonging graft survival and with the HD and VHD regimens leading to >95% long-term graft survival and preserved histology. CTLA4-Ig's effect was immunosuppressive rather than tolerogenic because treatment cessation after ≈3 mo led to rejection. FoxP3-positive Tregs were reduced in naïve mice to a similar degree, independent of the CTLA4-Ig dose, but recovered to normal values in heart recipients under chronic CTLA4-Ig therapy. Treg depletion (anti-CD25) resulted in an impaired outcome under LD therapy but had no detectable effect under HD therapy. Consequently, the immunosuppressive effect of partially effective LD CTLA4-Ig therapy is impaired when Tregs are removed, whereas CTLA4-Ig monotherapy at higher doses effectively maintains graft survival independent of Tregs.
Collapse
Affiliation(s)
- C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - L Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Aumayr
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - H Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - A M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
|
46
|
Safa K, Chandran S, Wojciechowski D. Pharmacologic targeting of regulatory T cells for solid organ transplantation: current and future prospects. Drugs 2016; 75:1843-52. [PMID: 26493288 DOI: 10.1007/s40265-015-0487-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last three decades have witnessed significant advances in the development of immunosuppressive medications used in kidney transplantation leading to a remarkable gain in short-term graft function and outcomes. Despite these major breakthroughs, improvements in long-term outcomes lag behind due to a stalemate between drug-related nephrotoxicity and chronic rejection typically due to donor-specific antibodies. Regulatory T cells (Tregs) have been shown to modulate the alloimmune response and can exert suppressive activity preventing allograft rejection in kidney transplantation. Currently available immunosuppressive agents impact Tregs in the alloimmune milieu with some of these interactions being deleterious to the allograft while others may be beneficial. Variable effects are seen with common antibody induction agents such that basiliximab, an IL-2 receptor blocker, decreases Tregs while lymphocyte depleting agents such as antithymocyte globulin increase Tregs. Calcineurin inhibitors, a mainstay of maintenance immunosuppression since the mid-1980s, seem to suppress Tregs while mammalian targets of rapamycin (less commonly used in maintenance regimens) expand Tregs. The purpose of this review is to provide an overview of Treg biology in transplantation, identify in more detail the interactions between commonly used immunosuppressive agents and Tregs in kidney transplantation and lastly describe future directions in the use of Tregs themselves as therapy for tolerance induction.
Collapse
Affiliation(s)
- Kassem Safa
- Division of Nephrology and Transplant Center, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA
| | - Sindhu Chandran
- Division of Nephrology, Department of Medicine, University of California San Francisco Medical center, San Francisco, CA, USA
| | - David Wojciechowski
- Division of Nephrology and Transplant Center, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Transplantation tolerance, successful acceptance of an organ without the perils of immunosuppression, has been a central goal of transplant research. Many strategies to achieve this tolerance have been examined over the past three decades, culminating in several human trials of transplant tolerance. This progression from the 'benchtop to the clinic' has depended on the successful implementation of these tolerance strategies in nonhuman primates. This review will examine the described methods of transplant tolerance induction in nonhuman primates. RECENT FINDINGS Although costimulatory blockade and mixed chimerism have an established record of achieving transplant tolerance in nonhuman primates, some of the most innovative recent techniques of tolerance induction have relied on cellular transfer. This review will fully examine the role of regulatory T-cell transfer and the use of mesenchymal stem/stromal cells to promote tolerance of organ allografts in nonhuman primates. SUMMARY Use of translational nonhuman primate transplant models is a vital intermediate step to advance new approaches of transplant tolerance induction from the lab to the clinic. This review will explore numerous techniques of tolerance induction that have been piloted in primates, including depletional techniques, induction of mixed hematopoietic chimerism, costimulation blockade, and adoptive transfer of tolerogenic cell populations.
Collapse
|
48
|
Juvet SC, Sanderson S, Hester J, Wood KJ, Bushell A. Quantification of CD4(+) T Cell Alloreactivity and Its Control by Regulatory T Cells Using Time-Lapse Microscopy and Immune Synapse Detection. Am J Transplant 2016; 16:1394-407. [PMID: 26603026 PMCID: PMC4855688 DOI: 10.1111/ajt.13607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 10/07/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
Abstract
Assays designed to select transplant recipients for immunosuppression withdrawal have met with limited success, perhaps because they measure events downstream of T cell-alloantigen interactions. Using in vitro time-lapse microscopy in a mouse transplant model, we investigated whether transplant outcome would result in changes in the proportion of CD4(+) T cells forming prolonged interactions with donor dendritic cells. By blocking CD4-MHC class II and CD28-B7 interactions, we defined immunologically relevant interactions as those ≥500 s. Using this threshold, T cell-dendritic cell (T-DC) interactions were examined in rejection, tolerance and T cell control mediated by regulatory T cells. The frequency of T-DC contacts ≥500 s increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. Regulatory T cells reduced prolonged T-DC contacts. Importantly, this effect was replicated with human polyclonally expanded naturally occurring regulatory T cells, which we have previously shown can control rejection of human tissues in humanized mouse models. Finally, in a proof-of-concept translational context, we were able to visualize differential allogeneic immune synapse formation in polyclonal CD4(+) T cells using high-throughput imaging flow cytometry.
Collapse
Affiliation(s)
- S. C. Juvet
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK,Toronto Lung Transplant Program and Division of RespirologyDepartment of MedicineUniversity Health Network and University of TorontoTorontoOntarioCanada,Present address: Toronto General HospitalTorontoOntarioCanada
| | - S. Sanderson
- NIHR BRC Translational Immunology LaboratoryNuffield Department of MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - J. Hester
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - K. J. Wood
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - A. Bushell
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
49
|
|
50
|
Schmidt A, Eriksson M, Shang MM, Weyd H, Tegnér J. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate. PLoS One 2016; 11:e0148474. [PMID: 26886923 PMCID: PMC4757416 DOI: 10.1371/journal.pone.0148474] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/19/2016] [Indexed: 01/02/2023] Open
Abstract
Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-β in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Matilda Eriksson
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Ming-Mei Shang
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Heiko Weyd
- Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|