1
|
Yamakawa G, Brady R, Sun M, McDonald S, Shultz S, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2020; 9:100058. [PMID: 33364525 PMCID: PMC7752723 DOI: 10.1016/j.nbscr.2020.100058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex and costly worldwide phenomenon that can lead to many negative health outcomes including disrupted circadian function. There is a bidirectional relationship between the immune system and the circadian system, with mammalian coordination of physiological activities being controlled by the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN receives light information from the external environment and in turn synchronizes rhythms throughout the brain and body. The SCN is capable of endogenous self-sustained oscillatory activity through an intricate clock gene negative feedback loop. Following TBI, the response of the immune system can become prolonged and pathophysiological. This detrimental response not only occurs in the brain, but also within the periphery, where a leaky blood brain barrier can permit further infiltration of immune and inflammatory factors. The prolonged and pathological immune response that follows TBI can have deleterious effects on clock gene cycling and circadian function not only in the SCN, but also in other rhythmic areas throughout the body. This could bring about a state of circadian desynchrony where different rhythmic structures are no longer working together to promote optimal physiological function. There are many parallels between the negative symptomology associated with circadian desynchrony and TBI. This review discusses the significant contributions of an immune-disrupted circadian system on the negative symptomology following TBI. The implications of TBI symptomology as a disorder of circadian desynchrony are discussed.
Collapse
Affiliation(s)
- G.R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - R.D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - M. Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - S.J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - S.R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - R. Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Wang D. Tumor Necrosis Factor-Alpha Alters Electrophysiological Properties of Rabbit Hippocampal Neurons. J Alzheimers Dis 2020; 68:1257-1271. [PMID: 30909246 DOI: 10.3233/jad-190043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown tumor necrosis factor-alpha (TNF-α) may impact neurodegeneration in Alzheimer's disease (AD) by regulating amyloid-β and tau pathogenesis. However, it is unclear whether TNF-α has a role in a cholesterol-fed rabbit model of AD or TNF-α affects the electrophysiological properties of rabbit hippocampus. This study was designed to investigate whether long-term feeding of cholesterol diet known to induce AD pathology regulates TNF-α expression in the hippocampus and whether TNF-α would modulate electrophysiological properties of rabbit hippocampal CA1 neurons. TNF-α ELISA showed dietary cholesterol increased hippocampal TNF-α expression in a dose-dependent manner. Whole-cell recordings revealed TNF-α altered the membrane properties of rabbit hippocampal CA1 neurons, which was characterized by a decrease in after-hyperpolarization amplitudes; Field potential recordings showed TNF-α inhibited long-term potentiation but did not influence presynaptic function. Interestingly, TNF-α did not significantly affect the after-hyperpolarization amplitudes of hippocampal CA1 neurons from cholesterol fed rabbits compared to normal chow fed rabbits. In conclusion, dietary cholesterol generated an in vivo model of chronic TNF-α elevation and TNF-α may underlie the learning and memory changes previously seen in the rabbit model of AD by acting as a bridge between dietary cholesterol and brain function and directly modulating the electrophysiological properties of hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA.,Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
3
|
Tobinick E. Immediate Resolution of Hemispatial Neglect and Central Post-Stroke Pain After Perispinal Etanercept: Case Report. Clin Drug Investig 2020; 40:93-97. [PMID: 31642048 PMCID: PMC6962280 DOI: 10.1007/s40261-019-00864-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Edward Tobinick
- Institute of Neurological Recovery, 1877 S. Federal Highway, Suite 110, Boca Raton, FL, 33432, USA.
| |
Collapse
|
4
|
New Insights into Microglia-Neuron Interactions: A Neuron's Perspective. Neuroscience 2018; 405:103-117. [PMID: 29753862 DOI: 10.1016/j.neuroscience.2018.04.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research.
Collapse
|
5
|
Duhart JM, Brocardo L, Caldart CS, Marpegan L, Golombek DA. Circadian Alterations in a Murine Model of Hypothalamic Glioma. Front Physiol 2017; 8:864. [PMID: 29163208 PMCID: PMC5670357 DOI: 10.3389/fphys.2017.00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
The mammalian circadian system is controlled by a central oscillator located in the suprachiasmatic nuclei (SCN) of the hypothalamus, in which glia appears to play a prominent role. Gliomas originate from glial cells and are the primary brain tumors with the highest incidence and mortality. Optic pathway/hypothalamic gliomas account for 4–7% of all pediatric intracranial tumors. Given the anatomical location, which compromises both the circadian pacemaker and its photic input pathway, we decided to study whether the presence of gliomas in the hypothalamic region could alter circadian behavioral outputs. Athymic nude mice implanted with LN229 human glioma cells showed an increase in the endogenous period of the circadian clock, which was also less robust in terms of sustaining the free running period throughout 2 weeks of screening. We also found that implanted mice showed a slower resynchronization rate after an abrupt 6 h advance of the light-dark (LD) cycle, advanced phase angle, and a decreased direct effect of light in general activity (masking), indicating that hypothalamic tumors could also affect photic sensitivity of the circadian clock. Our work suggests that hypothalamic gliomas have a clear impact both on the endogenous pacemaking of the circadian system, as well as on the photic synchronization of the clock. These findings strongly suggest that the observation of altered circadian parameters in patients might be of relevance for glioma diagnosis.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Lucila Brocardo
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Carlos S Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Luciano Marpegan
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
6
|
Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR, Phillips CL. A circadian based inflammatory response – implications for respiratory disease and treatment. SLEEP SCIENCE AND PRACTICE 2017. [DOI: 10.1186/s41606-017-0019-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Popa-Wagner A, Buga AM, Dumitrascu DI, Uzoni A, Thome J, Coogan AN. How does healthy aging impact on the circadian clock? J Neural Transm (Vienna) 2015; 124:89-97. [PMID: 26175004 DOI: 10.1007/s00702-015-1424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Circadian rhythms are recurring patterns in a host of physiological and other parameters that recur with periods of near 24 h. These rhythms reflect the temporal organization of an organism's homeostatic control systems and as such are key processes in ensuring optimal physiological performance. Dysfunction of circadian processes is linked with adverse health conditions. In this review we highlight the evidence that normal, healthy aging is associated with changes in the circadian system; we examine the molecular mechanisms through which such changes may arise, discuss whether more robust circadian function is a predictor of longevity and highlight the role of circadian rhythms in age-related diseases. Overall, the literature shows that aging is associated with marked changes in circadian processes, both at the behavioral and molecular levels, and the molecular mechanisms through which such changes arise remain to be elucidated, but may involve inflammatory process, redox homeostasis and epigenetic modifications. Understanding the nature of age-related circadian dysfunction will allow for the design of chronotherapeutic intervention strategies to attenuate circadian dysfunction and thus improve health and quality of life.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine Rostock, Gehlsheimerstr. 20, 18147, Rostock, Germany.
| | - Ana-Maria Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Dinu Iuliu Dumitrascu
- Department of Anatomy and Embryology, UMF "Iuliu Hatieganu" Cluj, Cluj-Napoca, Romania
| | - Adriana Uzoni
- Department of Psychiatry, University of Medicine Rostock, Gehlsheimerstr. 20, 18147, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Medicine Rostock, Gehlsheimerstr. 20, 18147, Rostock, Germany
| | - Andrew N Coogan
- Maynooth University Department of Psychology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
8
|
Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators. Arch Immunol Ther Exp (Warsz) 2014; 62:303-18. [DOI: 10.1007/s00005-014-0286-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
|
9
|
Tobinick E. Perispinal etanercept: a new therapeutic paradigm in neurology. Expert Rev Neurother 2014; 10:985-1002. [DOI: 10.1586/ern.10.52] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Abstract
There is increasing recognition of the involvement of the immune signaling molecule, tumor necrosis factor (TNF), in the pathophysiology of stroke and chronic brain dysfunction. TNF plays an important role both in modulating synaptic function and in the pathogenesis of neuropathic pain. Etanercept is a recombinant therapeutic that neutralizes pathologic levels of TNF. Brain imaging has demonstrated chronic intracerebral microglial activation and neuroinflammation following stroke and other forms of acute brain injury. Activated microglia release TNF, which mediates neurotoxicity in the stroke penumbra. Recent observational studies have reported rapid and sustained improvement in chronic post-stroke neurological and cognitive dysfunction following perispinal administration of etanercept. The biological plausibility of these results is supported by independent evidence demonstrating reduction in cognitive dysfunction, neuropathic pain, and microglial activation following the use of etanercept, as well as multiple studies reporting improvement in stroke outcome and cognitive impairment following therapeutic strategies designed to inhibit TNF. The causal association between etanercept treatment and reduction in post-stroke disability satisfy all of the Bradford Hill Criteria: strength of the association; consistency; specificity; temporality; biological gradient; biological plausibility; coherence; experimental evidence; and analogy. Recognition that chronic microglial activation and pathologic TNF concentration are targets that may be therapeutically addressed for years following stroke and other forms of acute brain injury provides an exciting new direction for research and treatment.
Collapse
|
11
|
Bardgett ME, Holbein WW, Herrera-Rosales M, Toney GM. Ang II-salt hypertension depends on neuronal activity in the hypothalamic paraventricular nucleus but not on local actions of tumor necrosis factor-α. Hypertension 2013; 63:527-34. [PMID: 24324037 DOI: 10.1161/hypertensionaha.113.02429] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of angiotensin II (Ang II)-dependent hypertension involves microglial activation and proinflammatory cytokine actions in the hypothalamic paraventricular nucleus (PVN). Cytokines activate receptor signaling pathways that can both acutely grade neuronal discharge and trigger long-term adaptive changes that modulate neuronal excitability through gene transcription. Here, we investigated contributions of PVN cytokines to maintenance of hypertension induced by subcutaneous infusion of Ang II (150 ng/kg per min) for 14 days in rats consuming a 2% NaCl diet. Results indicate that bilateral PVN inhibition with the GABA-A receptor agonist muscimol (100 pmol/50 nL) caused significantly greater reductions of renal and splanchnic sympathetic nerve activity (SNA) and mean arterial pressure in hypertensive than in normotensive rats (P<0.01). Thus, ongoing PVN neuronal activity seems required for support of hypertension. Next, the role of the prototypical cytokine tumor necrosis factor-α was investigated. Whereas PVN injection of tumor necrosis factor-α (0.3 pmol/50 nL) acutely increased lumbar and splanchnic SNA and mean arterial pressure, interfering with endogenous tumor necrosis factor-α by injection of etanercept (10 μg/50 nL) was without effect in hypertensive and normotensive rats. Next, we determined that although microglial activation in PVN was increased in hypertensive rats, bilateral injections of minocycline (0.5 μg/50 nL), an inhibitor of microglial activation, failed to reduce lumbar or splanchnic SNA or mean arterial pressure in hypertensive or in normotensive rats. Collectively, these findings indicate that established Ang II-salt hypertension is supported by PVN neuronal activity, but short term maintenance of SNA and arterial blood pressure does not depend on ongoing local actions of tumor necrosis factor-α.
Collapse
Affiliation(s)
- Megan E Bardgett
- Department of Physiology, MC7756, University of Texas Health Science Center-San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229.
| | | | | | | |
Collapse
|
12
|
Duhart JM, Leone MJ, Paladino N, Evans JA, Castanon-Cervantes O, Davidson AJ, Golombek DA. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α. THE JOURNAL OF IMMUNOLOGY 2013; 191:4656-64. [PMID: 24062487 DOI: 10.4049/jimmunol.1300450] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1876 Bernal, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
13
|
Leone MJ, Marpegan L, Duhart JM, Golombek DA. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm. Chronobiol Int 2012; 29:715-23. [PMID: 22734572 DOI: 10.3109/07420528.2012.682681] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome.
Collapse
Affiliation(s)
- M Juliana Leone
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
O'Callaghan EK, Anderson ST, Moynagh PN, Coogan AN. Long-lasting effects of sepsis on circadian rhythms in the mouse. PLoS One 2012; 7:e47087. [PMID: 23071720 PMCID: PMC3469504 DOI: 10.1371/journal.pone.0047087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/07/2012] [Indexed: 12/26/2022] Open
Abstract
Daily patterns of activity and physiology are termed circadian rhythms and are driven primarily by an endogenous biological timekeeping system, with the master clock located in the suprachiasmatic nucleus. Previous studies have indicated reciprocal relationships between the circadian and the immune systems, although to date there have been only limited explorations of the long-term modulation of the circadian system by immune challenge, and it is to this question that we addressed ourselves in the current study. Sepsis was induced by peripheral treatment with lipopolysaccharide (5 mg/kg) and circadian rhythms were monitored following recovery. The basic parameters of circadian rhythmicity (free-running period and rhythm amplitude, entrainment to a light/dark cycle) were unaltered in post-septic animals compared to controls. Animals previously treated with LPS showed accelerated re-entrainment to a 6 hour advance of the light/dark cycle, and showed larger phase advances induced by photic stimulation in the late night phase. Photic induction of the immediate early genes c-FOS, EGR-1 and ARC was not altered, and neither was phase-shifting in response to treatment with the 5-HT-1a/7 agonist 8-OH-DPAT. Circadian expression of the clock gene product PER2 was altered in the suprachiasmatic nucleus of post-septic animals, and PER1 and PER2 expression patterns were altered also in the hippocampus. Examination of the suprachiasmatic nucleus 3 months after treatment with LPS showed persistent upregulation of the microglial markers CD-11b and F4/80, but no changes in the expression of various neuropeptides, cytokines, and intracellular signallers. The effects of sepsis on circadian rhythms does not seem to be driven by cell death, as 24 hours after LPS treatment there was no evidence for apoptosis in the suprachiasmatic nucleus as judged by TUNEL and cleaved-caspase 3 staining. Overall these data provide novel insight into how septic shock exerts chronic effects on the mammalian circadian system.
Collapse
Affiliation(s)
- Emma K. O'Callaghan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Sean T. Anderson
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Paul N. Moynagh
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
| | - Andrew N. Coogan
- Department of Psychology, National University of Ireland Maynooth, Maynooth, County Kildare, Republic of Ireland
- * E-mail:
| |
Collapse
|
15
|
Neurobiological studies of fatigue. Prog Neurobiol 2012; 99:93-105. [PMID: 22841649 DOI: 10.1016/j.pneurobio.2012.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/24/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023]
Abstract
Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments.
Collapse
|
16
|
Ren P, Zhang H, Qiu F, Liu YQ, Gu H, O'Dowd DK, Zhou QY, Hu WP. Prokineticin 2 regulates the electrical activity of rat suprachiasmatic nuclei neurons. PLoS One 2011; 6:e20263. [PMID: 21687716 PMCID: PMC3110640 DOI: 10.1371/journal.pone.0020263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022] Open
Abstract
Neuropeptide signaling plays roles in coordinating cellular activities and maintaining robust oscillations within the mammalian suprachiasmatic nucleus (SCN). Prokineticin2 (PK2) is a signaling molecule from the SCN and involves in the generation of circadian locomotor activity. Prokineticin receptor 2 (PKR2), a receptor for PK2, has been shown to be expressed in the SCN. However, very little is known about the cellular action of PK2 within the SCN. In the present study, we investigated the effect of PK2 on spontaneous firing and miniature inhibitory postsynaptic currents (mIPSCs) using whole cell patch-clamp recording in the SCN slices. PK2 dose-dependently increased spontaneous firing rates in most neurons from the dorsal SCN. PK2 acted postsynaptically to reduce γ-aminobutyric acid (GABA)-ergic function within the SCN, and PK2 reduced the amplitude but not frequency of mIPSCs. Furthermore, PK2 also suppressed exogenous GABA-induced currents. And the inhibitory effect of PK2 required PKC activation in the postsynaptic cells. Our data suggest that PK2 could alter cellular activities within the SCN and may influence behavioral and physiological rhythms.
Collapse
Affiliation(s)
- Ping Ren
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fang Qiu
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
| | - Yu-Qiang Liu
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
| | - Huaiyu Gu
- Departments of Anatomy and Neurobiology, Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Diane K. O'Dowd
- Departments of Anatomy and Neurobiology, Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Wang-Ping Hu
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
- * E-mail:
| |
Collapse
|
17
|
Deng XH, Bertini G, Palomba M, Xu YZ, Bonaconsa M, Nygård M, Bentivoglio M. Glial transcripts and immune-challenged glia in the suprachiasmatic nucleus of young and aged mice. Chronobiol Int 2010; 27:742-67. [PMID: 20560709 DOI: 10.3109/07420521003681498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biological rhythms are frequently disturbed with advancing age, and aging-related changes of glia in the hypothalamic suprachiasmatic nucleus (SCN), the master circadian pacemaker, require special attention. In particular, astrocytes contribute to SCN function, and aging is associated with increased inflammatory activity in the brain, in which microglia could be especially implicated. On this basis, we investigated in the SCN of young and old mice glial transcripts and cell features, and the glial cell response to a central inflammatory challenge. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to analyze the expression of mRNAs encoding the astrocytic glial fibrillary acidic protein and the microglial antigen CD11b. Both these transcripts, here investigated in the SCN for the first time, were significantly increased in the old SCN. Glial cell phenotyping with immunohistochemistry revealed hypertrophic and intensely stained astrocytes and microglia in the aged SCN. In both age groups, microglia were scattered throughout the SCN and astrocytes were prominent in the ventral portion, where retinal fibers are densest; in the aged SCN, astrocytes were also numerous in the dorsal portion. After intracerebroventricular injections of a mixture of interferon-gamma and tumor necrosis factor-alpha, or phosphate-buffered saline as control, immunolabeling was evaluated with stereological cell counts and confocal microscopy. Phenotypic features of astrocyte and microglia activation in response to cytokine injections were markedly enhanced in the aged SCN. Subregional variations in glial cell density were also documented in the aged compared to the young SCN. Altogether, the findings show increases in the expression of glial transcripts and hypertrophy of astrocytes and microglia in the aged SCN, as well as age-dependent variation in the responses of immune-challenged SCN glia. The data thus point out an involvement of glia in aging-related changes of the biological clock.
Collapse
Affiliation(s)
- Xiao-Hua Deng
- Department of Neuroscience, University of Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Beynon AL, Coogan AN. DIURNAL, AGE, AND IMMUNE REGULATION OF INTERLEUKIN-1β AND INTERLEUKIN-1 TYPE 1 RECEPTOR IN THE MOUSE SUPRACHIASMATIC NUCLEUS. Chronobiol Int 2010; 27:1546-63. [DOI: 10.3109/07420528.2010.501927] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Amy L. Beynon
- Neuroscience and Molecular Psychiatry, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
| | - Andrew N. Coogan
- Neuroscience and Molecular Psychiatry, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
- Department of Psychology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Republic of Ireland
| |
Collapse
|
19
|
Wyse CA, Coogan AN. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res 2010; 1337:21-31. [PMID: 20382135 DOI: 10.1016/j.brainres.2010.03.113] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Mammalian circadian rhythms are generated by a network of transcriptional and translational loops in the expression of a panel of clock genes in various brain and peripheral sites. Many of the output rhythms controlled by this system are significantly affected by ageing, although the mechanisms of age-related circadian dysfunction remain opaque. The aim of this study was to investigate the effect of aging on the daily oscillation of two clock gene proteins (CLOCK, BMAL1) in the mouse brain. Clock gene protein expression in the brain was measured by means of immunohistochemistry in groups of young (4 months) and older (16 months) mice sampled every 4h over a 24-h cycle. CLOCK and BMAL1 were constitutively expressed in the suprachiasmatic nucleus (SCN; the master circadian pacemaker) in young adult animals. We report novel rhythmic expression of CLOCK and BMAL1 in a number of extra-SCN sites in the young mouse brain, including the hippocampus, amygdala and the paraventricular, arcuate and dorsomedial nuclei of the hypothalamus. Aging altered the amplitude and/or phase of expression in these regions. These results indicate hitherto unreported expression patterns of CLOCK and BMAL1 in non-SCN brain circadian oscillators, and suggest that alterations of these patterns may contribute to age-related circadian dysfunction.
Collapse
Affiliation(s)
- Cathy A Wyse
- Neuroscience and Molecular Psychiatry, Institute of Life Sciences, School of Medicine, University of Swansea, Singleton Park, Swansea, SA2 8PP, UK
| | | |
Collapse
|
20
|
Norman E, Cutler RG, Flannery R, Wang Y, Mattson MP. Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. J Neurochem 2010; 114:430-9. [PMID: 20456020 DOI: 10.1111/j.1471-4159.2010.06779.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins that control the excitability of neurons, including voltage-dependent ion channels and neurotransmitter receptors, reside in a membrane lipid environment that includes sphingomyelin, but the influence of the metabolism of this lipid on excitability is unknown. Sphingomyelin in the plasma membrane can be cleaved by neutral sphingomyelinases (nSMase) to generate ceramides and sphingosine-1-phosphate (S1P) which have been shown to play a variety of roles in cellular signaling processes. We found that application of nSMase to hippocampal slices results in a selective enhancement in the population spike amplitude, resulting in fEPSP-PS potentiation of the CA3-CA1 schaeffer collateral synapse. Single cell recordings showed that nSMase activity increases action potential frequency in CA1 neurons in a reversible manner. Additional current clamp recordings showed that nSMase reduces the slow after-hyperpolarization after a burst of action potentials. Mass spectrometry-based measurements demonstrated that nSMase activity induces a rapid increase in the levels of ceramides and S1P in cells in hippocampal slices. The ability of nSMase to increase CA1 neuron excitability was blocked by an inhibitor of sphingosine kinase, the enzyme that converts ceramide to S1P. Moreover, direct intracellular application of S1P to CA1 neurons increased action potential firing. Our findings suggest roles for sphingomyelin metabolism and S1P in the positive regulation of the excitability of hippocampal neurons.
Collapse
Affiliation(s)
- Eric Norman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
21
|
Heme reversibly damps PERIOD2 rhythms in mouse suprachiasmatic nucleus explants. Neuroscience 2009; 164:832-41. [PMID: 19698763 DOI: 10.1016/j.neuroscience.2009.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/13/2009] [Indexed: 11/20/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), which in mammals serves as the master circadian pacemaker by synchronizing autonomous clocks in peripheral tissues, is composed of coupled single-cell oscillators that are driven by interlocking positive/negative transcriptional/translational feedback loops. Several studies have suggested that heme, a common prosthetic group that is synthesized and degraded in a circadian manner in the SCN, may modulate the function of several feedback loop components, including the REV-ERB nuclear receptors and PERIOD2 (PER2). We found that ferric heme (hemin, 3-100 microM) dose-dependently and reversibly damped luminescence rhythms in SCN explants from mice expressing a PER2::LUCIFERASE (PER2::LUC) fusion protein. Inhibitors of heme oxygenases (HOs, which degrade heme to biliverdin, carbon monoxide, and iron) mimicked heme's effects on PER2 rhythms. In contrast, heme and HO inhibition did not damp luminescence rhythms in thymus and esophagus explants and had only a small effect on PER2::LUC damping in spleen explants, suggesting that heme's effects are tissue-specific. Analysis of the effects of heme's degradation products on SCN PER2::LUC rhythms indicated that they probably were not responsible for heme's effects on rhythms. The heme synthesis inhibitor N-methylprotoporphyrinIX (NMP) lengthened the circadian period of SCN PER2::LUC rhythms by about an hour. These data are consistent with an important role for heme in the circadian system.
Collapse
|