1
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
2
|
Mao T, Bao L, Zhang H, Shi Z, Liu J, Wang D, Liu C, Zhan Y, Zhai Y. Mn 3O 4 Nanoenzyme Seed Soaking Enhanced Salt Tolerance in Soybean Through Modulating Homeostasis of Reactive Oxygen Species and ATPase Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:3011. [PMID: 39519929 PMCID: PMC11548499 DOI: 10.3390/plants13213011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Soybean, an important cash crop, is often affected by soil salinity, which is one of the important types of abiotic stress that affects its growth. Poly (acrylic) acid coated Mn3O4 (PMO) has been reported to play a vital role in defending against a variety of abiotic stresses in plants. To date, the effects of PMOs on soybean have not been reported; this study explored the mechanism of PMO-enhanced soybean germination under salt stress. In this experiment, 100 mg/L PMO was used as an immersion agent with a salt treatment of 150 mM NaCl. The results showed that when compared with the PMO treatment, salt stress significantly decreased the germination rate, fresh weight, carbohydrate content, and antioxidant enzyme activity of soybean and significantly increased the contents of reactive oxygen species, malondialdehyde, and osmoregulatory substances. However, PMO treatment enhanced the antioxidant defense system and significantly reduced the malondialdehyde content of soybean. Moreover, the activities of H+-ATPase and Ca2+-ATPase were significantly higher in treated soybean than in the control, and the content of ATP was also higher in treated soybean than in the control. Generally, PMO regulates the homeostasis of reactive oxygen species and reduces ATP consumption, thereby improving the ability of soybeans to germinate under salt stress. This study provides new insights into how nanomaterials improve plant salt tolerance.
Collapse
Affiliation(s)
- Tingyong Mao
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Linfeng Bao
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
| | - Hengbin Zhang
- Crops Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Zhilin Shi
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Chan Liu
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Yong Zhan
- Crops Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| |
Collapse
|
3
|
Milenkovic I, Borišev M, Zhou Y, Spasic SZ, Spasic D, Leblanc RM, Radotic K. Non-toxic orange carbon dots stimulate photosynthesis and CO 2 assimilation in hydroponically cultivated green beans ( Phaseolus vulgaris). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23164. [PMID: 38560925 DOI: 10.1071/fp23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Continuous increasing leaf photosynthesis may enhance plant yield. As an evolutionary property, plants use less photosynthetic capacity than is theoretically possible. Plant nanobionics is a bioengineering field that improves plant functions using nanoparticles. We applied orange carbon dots (o-CDs) onto the foliage of green beans (Phaseolus vulgaris ) grown in hydroponics to improve their photosynthetic performance and CO2 assimilation. Photosynthesis parameters, photosynthetic pigments content, total phenolic content (TPC) and antioxidative activity (TAA) were measured. Results show that photosynthetic pigments remained unchanged, while photosynthesis was improved. Both o-CDs concentrations decreased TPC and TAA. The light response curve showed higher CO2 assimilation at both o-CDs concentrations, particularly at lower light intensity. Correlation analysis confirmed increased CO2 binding and assimilation at 1mg L-1 . This study demonstrated the potential of using o-CDs as a safe biostimulator through photosynthesis increase and CO2 assimilation without toxic effects on plants. This may stimulate yield increase that paves the way for their agricultural application.
Collapse
Affiliation(s)
- Ivana Milenkovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Sladjana Z Spasic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia; and Singidunum University, Danijelova 32, Belgrade 11010, Serbia
| | - Dunja Spasic
- Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Ksenija Radotic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Jing X, Liu Y, Liu X, Zhang Y, Wang G, Yang F, Zhang Y, Chang D, Zhang ZL, You CX, Zhang S, Wang XF. Enhanced photosynthetic efficiency by nitrogen-doped carbon dots via plastoquinone-involved electron transfer in apple. HORTICULTURE RESEARCH 2024; 11:uhae016. [PMID: 38495032 PMCID: PMC10940122 DOI: 10.1093/hr/uhae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
Artificially enhancing photosynthesis is critical for improving crop yields and fruit qualities. Nanomaterials have demonstrated great potential to enhance photosynthetic efficiency; however, the mechanisms underlying their effects are poorly understood. This study revealed that the electron transfer pathway participated in nitrogen-doped carbon dots (N-CDs)-induced photosynthetic efficiency enhancement (24.29%), resulting in the improvements of apple fruit qualities (soluble sugar content: 11.43%) in the orchard. We also found that N-CDs alleviated mterf5 mutant-modulated photosystem II (PSII) defects, but not psa3 mutant-modulated photosystem I (PSI) defects, suggesting that the N-CDs-targeting sites were located between PSII and PSI. Measurements of chlorophyll fluorescence parameters suggested that plastoquinone (PQ), the mobile electron carrier in the photosynthesis electron transfer chain (PETC), was the photosynthesis component that N-CDs targeted. In vitro experiments demonstrated that plastoquinone-9 (PQ-9) could accept electrons from light-excited N-CDs to produce the reduced plastoquinone 9 (PQH2-9). These findings suggested that N-CDs, as electron donors, offer a PQ-9-involved complement of PETC to improve photosynthesis and thereby fruit quality. Our study uncovered a mechanism by which nanomaterials enhanced plant photosynthesis and provided some insights that will be useful in the design of efficient nanomaterials for agricultural/horticultural applications.
Collapse
Affiliation(s)
- Xiuli Jing
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yankai Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Guanzhu Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Fei Yang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yani Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Dayong Chang
- Yantai Goodly Biotechnology Co., Ltd, Yantai 264000, Shandong, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| |
Collapse
|
5
|
Tombuloglu G, Aldahnem A, Tombuloglu H, Slimani Y, Akhtar S, Hakeem KR, Almessiere MA, Baykal A, Ercan I, Manikandan A. Uptake and bioaccumulation of iron oxide nanoparticles (Fe 3O 4) in barley (Hordeum vulgare L.): effect of particle-size. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22171-22186. [PMID: 38403831 DOI: 10.1007/s11356-024-32378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Root-to-shoot translocation of nanoparticles (NPs) is a matter of interest due to their possible unprecedented effects on biota. Properties of NPs, such as structure, surface charge or coating, and size, determine their uptake by cells. This study investigates the size effect of iron oxide (Fe3O4) NPs on plant uptake, translocation, and physiology. For this purpose, Fe3O4 NPs having about 10 and 100 nm in average sizes (namely NP10 and NP100) were hydroponically subjected to barley (Hordeum vulgare L.) in different doses (50, 100, and 200 mg/L) at germination (5 days) and seedling (3 weeks) stages. Results revealed that particle size does not significantly influence the seedlings' growth but improves germination. The iron content in root and leaf tissues gradually increased with increasing NP10 and NP100 concentrations, revealing their root-to-shoot translocation. This result was confirmed by vibrating sample magnetometry analysis, where the magnetic signals increased with increasing NP doses. The translocation of NPs enhanced chlorophyll and carotenoid contents, suggesting their contribution to plant pigmentation. On the other hand, catalase activity and H2O2 production were higher in NP10-treated roots compared to NP100-treated ones. Besides, confocal microscopy revealed that NP10 leads to cell membrane damages. These findings showed that Fe3O4 NPs were efficiently taken up by the roots and transported to the leaves regardless of the size factor. However, small-sized Fe3O4 NPs may be more reactive due to their size properties and may cause cell stress and membrane damage. This study may help us better understand the size effect of NPs in nanoparticle-plant interaction.
Collapse
Affiliation(s)
- Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Anwar Aldahnem
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, Istanbul, 34295, Türkiye
| | - Ismail Ercan
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81010, Duzce, Türkiye
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
6
|
Wang S, Wang X, Liu Y, Sun G, Kong D, Guo W, Sun H. Regulatory effect of graphene on growth and carbon/nitrogen metabolism of maize (Zea mays L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1572-1582. [PMID: 37819595 DOI: 10.1002/jsfa.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Leakage of graphene into the environment has resulted from its increasing use. Although the impact of graphene on ecosystems is already in full swing, information regarding its impact on plants is lacking. In particular, the effects of graphene on plant growth and development vary, and basic information on the regulation of carbon and nitrogen metabolism is missing. In the current study, the way in which graphene (0, 25, 50, 100, and 200 g kg-1 ) affects maize seedlings was studied in terms of morphological and biochemical indicators. The purpose of this study was to understand better how graphene regulates plant carbon and nitrogen metabolism and to understand its interactions with leaf structure and plant growth. RESULTS The results showed that 50 g kg-1 graphene increased plant height, stem diameter, leaf area, and dry weight; however, this was inhibited by the high level of graphene (200 g kg-1 ). Further studies indicated that different concentrations of graphene could increase leaf thickness and vascular bundle area as well as the net photosynthetic rate (Pn) of leaves; 25 and 50 g kg-1 graphene enhanced the leaves stomatal conductance (Cond), transpiration rate (Tr), intercellular carbon dioxide (Ci), and chlorophyll content. Higher concentrations decreased the above indicators. At 50 g kg-1 , graphene increased the activity of carbon/nitrogen metabolism enzymes by increasing carbon metabolites (fructose, sucrose, and soluble sugars) and soluble proteins (nitrogen metabolites). These enzymes included sucrose synthase (SS), sucrose phosphate synthase (SPS), nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT). CONCLUSION These results indicate that graphene can regulate the activities of key enzymes involved in carbon and nitrogen metabolism effectively and supplement nitrogen metabolism through substances produced by carbon metabolism by improving photosynthetic efficiency, thus maintaining the balance between carbon and nitrogen and promoting plant growth and development. The relationship between these indexes explained the mechanism by which graphene supported the growth of maize seedlings by enhancing photosynthetic carbon metabolism and maintaining metabolic balance. For maize seedling growth, graphene treatment with 50 g kg-1 soil is recommended. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiya Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Xinyi Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Ying Liu
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Guangxu Sun
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Deyong Kong
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Wei Guo
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, P. R. China, Daqing, China
| | - Haiyan Sun
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Germplasm Improvement, Daqing, China
| |
Collapse
|
7
|
Garcia-Millan T, Ramos-Soriano J, Ghirardello M, Liu X, Santi CM, Eloi JC, Pridmore N, Harniman RL, Morgan DJ, Hughes S, Davis SA, Oliver TAA, Kurian KM, Galan MC. Multicolor Photoluminescent Carbon Dots à La Carte for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44711-44721. [PMID: 37715711 PMCID: PMC10540137 DOI: 10.1021/acsami.3c08200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Dual-emission fluorescence probes that provide high sensitivity are key for biomedical diagnostic applications. Nontoxic carbon dots (CDs) are an emerging alternative to traditional fluorescent probes; however, robust and reproducible synthetic strategies are still needed to access materials with controlled emission profiles and improved fluorescence quantum yields (FQYs). Herein, we report a practical and general synthetic strategy to access dual-emission CDs with FQYs as high as 0.67 and green/blue, yellow/blue, or red/blue excitation-dependent emission profiles using common starting materials such as citric acid, cysteine, and co-dopants to bias the synthetic pathway. Structural and physicochemical analysis using nuclear magnetic resonance, absorbance and fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy in addition to transmission electron and atomic force microscopy (TEM and AFM) is used to elucidate the material's composition which is responsible for the unique observed photoluminescence properties. Moreover, the utility of the probes is demonstrated in the clinical setting by the synthesis of green/blue emitting antibody-CD conjugates which are used for the immunohistochemical staining of human brain tissues of glioblastoma patients, showing detection under two different emission channels.
Collapse
Affiliation(s)
| | - Javier Ramos-Soriano
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Mattia Ghirardello
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Xia Liu
- Bristol
Medical School, Public Health Sciences, Southmead Hospital, University of Bristol, Southmead Road, Bristol BS8 NB, U.K.
| | | | - Jean-Charles Eloi
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Natalie Pridmore
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Robert L. Harniman
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - David J. Morgan
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
- HarwellXPS—The
EPSRC National Facility for Photoelectron, Spectroscopy, Research Complex at Harwell (RCaH), Didcot OX11 0FA, U.K.
| | - Stephen Hughes
- DST
Innovations Ltd, Unit
6a Bridgend Business Centre, Bennett Street, Bridgend CF31 3SH, U.K.
| | - Sean A. Davis
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Thomas A. A. Oliver
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Kathreena M. Kurian
- Bristol
Medical School, Public Health Sciences, Southmead Hospital, University of Bristol, Southmead Road, Bristol BS8 NB, U.K.
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
8
|
Kalisz A, Kornaś A, Skoczowski A, Oliwa J, Jurkow R, Gil J, Sękara A, Sałata A, Caruso G. Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles. BMC PLANT BIOLOGY 2023; 23:329. [PMID: 37340375 PMCID: PMC10283179 DOI: 10.1186/s12870-023-04305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Most nanoparticles (NPs) have a significant impact on the structure and function of the plant photosynthetic apparatus. However, their spectrum of action varies significantly, from beneficial stimulation to toxicity, depending on the type of NPs, the concentration used and plant genotypic diversity. Photosynthetic performance can be assessed through chlorophyll a fluorescence (ChlF) measurements. These data allow to indirectly obtain detailed information about primary light reactions, thylakoid electron transport reactions, dark enzymatic stroma reactions, slow regulatory processes, processes at the pigment level. It makes possible, together with leaf reflectance performance, to evaluate photosynthesis sensitivity to stress stimuli. RESULTS We investigated effects of different metal and metal(oid) oxide nanoparticles on photosynthesis of oakleaf lettuce seedlings by monitoring the chlorophyll a fluorescence light radiation and reflectance from the leaves. Observations of ChlF parameters and changes in leaf morphology were carried out for 9 days in two-day intervals. Spectrophotometric studies were performed at 9th day. Suspensions of NPs with the following concentrations were used: 6% TiO2, SiO2; 3% CeO2, SnO2, Fe2O3; 0.004% (40 ppm) Ag; 0.002% (20 ppm) Au. Nanoparticles were applied directly on the leaves which caused small symptoms of chlorosis, necrosis and leaf veins deformation, but the plants fully recovered to the initial morphological state at 9th day. Leaf reflectance analysis showed an increase in FRI for SiO2-NPs and CeO2-NPs treatments and ARI2 for Fe2O3, however, WBI and PRI coefficients for the latter nanoparticle were lower than in control. Chlorophyll a fluorescence parameters have changed due to NPs treatment. Fe2O3-NPs caused an increase in Fv/F0, PIABS, ET0/RC, DI0/RC, ABS/RC in different time points in comparison to control, also Ag, Au and SnO2 treatment caused an increase in Fv/F0, PIABS or ET0/RC, respectively. On the other hand, TiO2-NPs caused a decrease in Fv/Fm and Fv/F0 parameters, but an increase in DI0/RC value was observed. SnO2-NPs decreased PIABS, but increased ET0/RC than compared to control. Nanoparticles affected the shape of the O-J-I-P curve in slight manner, however, further analyses showed unfavourable changes within the PSII antenna, manifested by a slowdown in the transport of electrons between the Chl molecules of the light-harvesting complex II and the active center of PSII due to NPs application. CONCLUSION Changes in ChlF parameters and leaf reflectance values clearly proved the significant influence of NPs on the functioning of the photosynthetic apparatus, especially right after NPs application. The nature of these changes was strictly depended on the type of nanoparticles and sometimes underwent very significant changes over time. The greatest changes in ChlF parameters were caused by Fe2O3 nanoparticles, followed by TiO2-NPs. After slight response of O-J-I-P curves to treatment of the plants with NPs the course of the light phase of photosynthesis stabilized and at 9th day were comparable to the control curve.
Collapse
Affiliation(s)
- Andrzej Kalisz
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084, Kraków, Poland.
| | - Andrzej Skoczowski
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Jakub Oliwa
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Rita Jurkow
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland
| | - Joanna Gil
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland.
| | - Agnieszka Sękara
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland
| | - Andrzej Sałata
- Department of Vegetable and Medicinal Plants, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici Naples, Italy
| |
Collapse
|
9
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
10
|
Suarez JV, Mudd EA, Day A. A Chloroplast-Localised Fluorescent Protein Enhances the Photosynthetic Action Spectrum in Green Algae. Microorganisms 2022; 10:microorganisms10091770. [PMID: 36144372 PMCID: PMC9504678 DOI: 10.3390/microorganisms10091770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 10/29/2022] Open
Abstract
Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon-optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.
Collapse
Affiliation(s)
- Julio V. Suarez
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carr. Transpeninsular 3917, Ensenada 22860, Mexico
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| | - Elisabeth A. Mudd
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| |
Collapse
|
11
|
Yang H, Wang C, Chen F, Yue L, Cao X, Li J, Zhao X, Wu F, Wang Z, Xing B. Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151105. [PMID: 34688768 DOI: 10.1016/j.scitotenv.2021.151105] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Improving maize drought tolerance is of great importance for scaling up production due to food security and population growth. Carbon dots (CDs) were synthesized by hydrothermal method with citric acid and ethylenediamine as carbon sources. Then, CDs (5 ml, 5 mg‧L-1) were sprayed on 25th day-old maize (Zea mays L., drought-stress, 35% soil moisture) for seven consecutive days (spraying ultra-pure water as control), after which the physiological parameters and rhizospheric properties of maize under drought were evaluated. Foliar sprayed CDs (5 mg‧L-1) could increase root exudates (e.g., succinic acid (14.5 folds), pyruvic acid (10.0 folds), and betaine (11.8 folds)), and modify microbial community. Particularly, the relative abundance of Pseudomonas, Sphingomonas, Nitrospira, and Conocybe were significantly increased by 344.4%, 233.3%, 126.2%, and 122.6%, respectively. The altered microbial abundance could improve soil available nitrogen and phosphorus by 33.5% and 16.8%, respectively, and increase plant water uptake by 37.2%. The change of exudate synthesis and microbial abundance could be driven by the significantly increased in net photosynthesis rate by 122.9%, and carbohydrate content by 35.4% in shoots and 113.6% in roots, respectively upon foliar application of CDs. Meanwhile, fresh weight of shoots and roots were increased by 62.1% and 50.6%, and dry weight of shoots and roots were increased by 29.2% and 37.5%, respectively. These results demonstrated that foliar application of CDs could improve the rhizosphere environment to enhance maize drought tolerance and even growth. Therefore, foliar application of CDs would be a promising strategy for sustainable nano-agriculture in response to drought stress.
Collapse
Affiliation(s)
- Hanyue Yang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Ghani MI, Saleem S, Rather SA, Rehmani MS, Alamri S, Rajput VD, Kalaji HM, Saleem N, Sial TA, Liu M. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. CHEMOSPHERE 2022; 289:133202. [PMID: 34890613 DOI: 10.1016/j.chemosphere.2021.133202] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 05/19/2023]
Abstract
Drought is a major environmental threat that affects plant growth and productivity. Strategies to mitigate the detrimental impacts of drought stress on plants are under scrutiny. Nanotechnology is considered an effective tool in resolving a wide range of environmental issues by offering novel and pragmatic solutions. A pot experiment was performed to determine the efficacy of zinc oxide nanoparticles (ZnO NPs) as a foliar application (25 mg L-1 and 100 mg L-1) on the growth performance of cucumber subjected to drought stress. Applied ZnO NPs under normal conditions resulted in significant growth and biomass enhancement while reducing drought-induced decline. Photosynthetic pigments, photosynthesis, and PSII activity enhanced due to ZnO NPs application, attaining maximal values at 100 mg L-1 of ZnO NPs. Drought stress restricted growth and biomass buildup in cucumber seedlings by stimulating oxidative stress, which was manifested to excessive buildup of reactive oxygen species (ROS) and peroxidation, thereby decreasing membrane functioning. Plants exposed to ZnO NPs exhibited a reduction in ROS accumulation and lipid peroxidation. The substantial reduction in oxidative damage was manifested with the enhancement of enzymatic and non-enzymatic antioxidant components. The phenol and mineral contents were reduced due to drought stress. In addition, the content of proline, glycine betaine, free amino acids, and sugars increased due to ZnO NPs under normal and drought conditions. Furthermore, the drought-induced decline in the content of phenol and mineral nutrients was mitigated by ZnO NPs foliar application. These findings reveal that exogenous ZnO NPs application may be a pragmatic option in dealing with the drought stress of cucumber seedlings.
Collapse
Affiliation(s)
- Muhammad Imran Ghani
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sana Saleem
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Shabir A Rather
- StateKey Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, Xian, 710129, China
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland; Institute of Technology and Life Sciences - National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Noor Saleem
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengyun Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Heyang, Shaanxi, 714000, China.
| |
Collapse
|
13
|
Tombuloglu H, Albenayyan N, Slimani Y, Akhtar S, Tombuloglu G, Almessiere M, Baykal A, Ercan I, Sabit H, Manikandan A. Fate and impact of maghemite (γ-Fe 2O 3) and magnetite (Fe 3O 4) nanoparticles in barley (Hordeum vulgare L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4710-4721. [PMID: 34414536 DOI: 10.1007/s11356-021-15965-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for food in the world has made sustainable agriculture practices even more important. Nanotechnology applications in many areas have also been used in sustainable agriculture in recent years for the purposes to improve plant yield, pest control, etc. However, ecotoxicology and environmental safety of nanoparticles must be evaluated before large-scale applications. This study comparatively explores the efficacy and fate of different iron oxide NPs (γ-Fe2O3-maghemite and Fe3O4-magnetite) on barley (Hordeum vulgare L.). Various NP doses (50, 100, and 200 mg/L) were applied to the seeds in hydroponic medium for 3 weeks. Results revealed that γ-Fe2O3 and Fe3O4 NPs significantly improved the germination rate (~37% for γ-Fe2O3; ~63% for Fe3O4), plant biomass, and pigmentation (P < 0.005). Compared to the control, the iron content of tissues gradually raised by the increasing NPs doses revealing their translocation, which is confirmed by VSM analysis as well. The findings suggest that γ-Fe2O3 and Fe3O4 NPs have great potential to improve barley growth. They can be recommended for breeding programs as nanofertilizers. However, special care should be paid before the application due to their unknown effects on other living beings.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Norah Albenayyan
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Guzin Tombuloglu
- Mavisu evl., Adnan Kahveci Mah., Mimar Sinan Cad., 7/28 Beylikduzu, Istanbul, Turkey
| | - Munirah Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ismail Ercan
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
14
|
Wang C, Cheng B, Yue L, Chen F, Cao X, Liu Y, Wang Z, Lyu J, Xing B. Fluorescent g-C 3N 4 nanosheets enhanced photosynthetic efficiency in maize. NANOIMPACT 2021; 24:100363. [PMID: 35559822 DOI: 10.1016/j.impact.2021.100363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 06/15/2023]
Abstract
Nano-enabled agriculture becomes a new and rapidly evolving area of research, particularly, nanomaterials (NMs) with light-harvesting capacities for enhancing photosynthesis. However, mechanisms for the interactions between these NMs and plants are not fully understood. Herein, fluorescent and water-soluble graphitic carbon nitride (g-C3N4) nanosheets were prepared and used as artificial antenna to amplify light harvesting ability and enhance photosynthesis in maize. Upon root exposure to 10 mg·L-1 g-C3N4 nanosheets, the g-C3N4 can be taken up and distributed in leaves. Also, the nutrients (Mg, P, Fe, and Mn), chlorophyll content, electron transfer rate, net photosynthetic rate, and carbohydrates content in maize were increased significantly by 1.1%, 51.8%, 44.6%, 121.8%, 12.1%, 44.5%, 30.0% and 32.3%, respectively. In addition, the gene expressions of psbA (photosystem II reaction center protein A) and psaA (photosystem I P700 chlorophyll A apoprotein A1) were up-regulated by 56.3% and 26.8%, respectively. Moreover, the activities of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were significantly increased by 242.3% and 156.3%, respectively. This study provides a new perspective on the use of g-C3N4 nanosheets to promote plant growth and develop nano-enabled agricultural technology.
Collapse
Affiliation(s)
- Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinglin Liu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jinze Lyu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Wang C, Yang H, Chen F, Yue L, Wang Z, Xing B. Nitrogen-Doped Carbon Dots Increased Light Conversion and Electron Supply to Improve the Corn Photosystem and Yield. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12317-12325. [PMID: 34296850 DOI: 10.1021/acs.est.1c01876] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescent carbon dots (CDs) have been reported as an artificial antenna to amplify the harvesting ability of light and enhance photosynthesis in plants. However, the main mechanism of this promotive effect and contributions of CDs' structure are unclear. Herein, CDs and nitrogen (N)-doped CDs (N-CDs) with blue fluorescence were synthesized, and they could promote photosynthesis and growth of corn at an application concentration of 50 mg·L-1 or lower, compared to the control. Foliar application of N-CDs (5 mg·L-1) on corn could increase the net photosynthesis rate (21.51%), carbohydrate content (66.43% in roots and 42.03% in shoots), fresh weight (24.03% in roots and 34.56% in shoots), and dry weight (72.30% in roots and 55.75% in shoots), which were much higher than those of CDs. Principal component analysis and density functional theory calculation demonstrated that, compared with undoped CDs, N doping enhanced the light conversion and electron supply via altering the structure of CDs, making N-CDs effective light conversion materials and electron donors to promote the photoelectron transfer rate. Furthermore, foliar application of N-CDs could increase the yield and 1000-grain weight by 24.50 and 15.03%, respectively. Therefore, the application of N-CDs could be a promising approach for increasing agricultural production.
Collapse
Affiliation(s)
- Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanyue Yang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
17
|
Ramos-Soriano J, Ghirardello M, Galan MC. Recent advances in multivalent carbon nanoform-based glycoconjugates. Curr Med Chem 2021; 29:1232-1257. [PMID: 34269658 DOI: 10.2174/0929867328666210714160954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Multivalent carbohydrate-mediated interactions are fundamental to many biological processes, including disease mechanisms. To study these significant glycan-mediated interactions at a molecular level, carbon nanoforms such as fullerenes, carbon nanotubes, or graphene and their derivatives have been identified as promising biocompatible scaffolds that can mimic the multivalent presentation of biologically relevant glycans. In this minireview, we will summarize the most relevant examples of the last few years in the context of their applications.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
18
|
Milenković I, Borišev M, Zhou Y, Spasić SZ, Leblanc RM, Radotić K. Photosynthesis Enhancement in Maize via Nontoxic Orange Carbon Dots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5446-5451. [PMID: 33960776 DOI: 10.1021/acs.jafc.1c01094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sustained increase in leaf photosynthesis may increase crop yield. Due to many limitations, plants use much less photosynthetic capacity than is theoretically possible. Plant nanobionics investigates nanoparticle application in living plants, which improves certain plant functions. We synthesized and tested nontoxic orange carbon dots (o-CDs) for the photosynthetic efficiency increase in maize (Zea mays L.). We applied o-CDs foliarly or by adding to the growth solution. The photosynthetic parameters and content of photosynthetic pigments were recorded. The total phenolic content (TPC) and total antioxidant activity (TAA) were measured to monitor the plant antioxidant response to o-CDs. The photosynthetic parameters' values were higher for foliar than for solution application. The 1 mg/L o-CDs applied foliarly and 5 mg/L in solution increased photosynthetic parameters in leaves. The o-CDs raised photosynthetic pigments. The TAA and TPC results indicate reduced antioxidant activity in the plant organs more exposed to o-CDs, depending on the way of application.
Collapse
Affiliation(s)
- Ivana Milenković
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
- Singidunum University, Danijelova 32, 11010 Belgrade, Serbia
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| |
Collapse
|
19
|
Saitanis CJ, Agathokleous E. Exogenous application of chemicals for protecting plants against ambient ozone pollution: What should come next? CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2021; 19:100215. [PMID: 33073070 PMCID: PMC7553877 DOI: 10.1016/j.coesh.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Elevated ground-level ozone (O3) pollution can adversely affect plants and inhibit plant growth and productivity, threatening food security and ecological health. It is therefore essential to develop measures to protect plants against O3-induced adverse effects. Here we summarize the current status of phytoprotection against O3-induced adverse effects and consider recent scientific and engineering advances, to provide a novel perspective for maximizing plant health while reducing environmental/ecological risks in an O3-polluted world. We suggest that nanoscience and nanotechnology can provide a new dimension in the protection of plants against O3-induced adverse effects, and recommend that new studies are based upon a green chemistry perspective.
Collapse
Affiliation(s)
- Costas J Saitanis
- Agricultural University of Athens, Lab of Ecology and Environmental Sciences, 75 Iera Odos Str., TK 11855, Athens, Greece
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
20
|
Tombuloglu H, Slimani Y, AlShammari TM, Tombuloglu G, Almessiere MA, Sozeri H, Baykal A, Ercan I. Delivery, fate and physiological effect of engineered cobalt ferrite nanoparticles in barley (Hordeum vulgare L.). CHEMOSPHERE 2021; 265:129138. [PMID: 33279234 DOI: 10.1016/j.chemosphere.2020.129138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Cobalt ferrite nanoparticles (CoFe2O4 NPs) have received increasing attention in a widespread application. This work examines the fate and impact of terbium (Tb) substituted CoFe2O4 NPs on the growth, physiological indices, and magnetic character of barley (Hordeum vulgare L.). Sonochemically synthesized NPs were hydroponically applied on barley with changing doses (125-1000 mg/L) at germination and seedling (three weeks) stages. Results revealed a significant reduction in germination rate (∼37% at 1000 mg/L); however, a remarkable growth (∼38-65%) and biomass (∼72-133%) increase were detected at three weeks of exposure (p < 0.05). The elements that make up the NPs (i.e., Tb, Co, and Fe) increased significantly in both root and leaf tissues, indicating the translocation of NPs from the root to leaf. Vibrating-sample magnetometer (VSM) analysis confirmed this finding, where magnetic signals in the root and leaf samples of the control were respectively about 26 and 75 times lower than that of NPs-treated tissues. Also, the accumulation of NPs altered the leaf photoluminescence (PL) behavior, which may have contributed to the biomass increase. Overall, Tb-doped CoFe2O4 NPs translocate from root-to-leaf and enhance plant growth, possibly due to i) incorporation of iron within tissues, and ii) changes in photoluminescence. However, since its effects on other living things are not known yet, its agricultural use and release to nature should be considered well.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Thamer Marhoon AlShammari
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Guzin Tombuloglu
- Adnan Kahveci Mah., Mimar Sinan Cad., Mavisu Evl., 7/28 Beylikduzu, Istanbul, Turkey
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Huseyin Sozeri
- TUBITAK-UME, National Metrology Institute, P.O. Box 54, Gebze, Kocaeli, 41470, Turkey
| | - Abdulhadi Baykal
- Department of Nanomedicine, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ismail Ercan
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
21
|
Swift TA, Fagan D, Benito-Alifonso D, Hill SA, Yallop ML, Oliver TAA, Lawson T, Galan MC, Whitney HM. Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. THE NEW PHYTOLOGIST 2021; 229:783-790. [PMID: 32813888 DOI: 10.1111/nph.16886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
From global food security to textile production and biofuels, the demands currently made on plant photosynthetic productivity will continue to increase. Enhancing photosynthesis using designer, green and sustainable materials offers an attractive alternative to current genetic-based strategies and promising work with nanomaterials has recently started to emerge. Here we describe the in planta use of carbon-based nanoparticles produced by low-cost renewable routes that are bioavailable to mature plants. Uptake of these functionalised nanoparticles directly from the soil improves photosynthesis and also increases crop production. We show for the first time that glucose functionalisation enhances nanoparticle uptake, photoprotection and pigment production, unlocking enhanced yields. This was demonstrated in Triticum aestivum 'Apogee' (dwarf bread wheat) and resulted in an 18% increase in grain yield. This establishes the viability of a functional nanomaterial to augment photosynthesis as a route to increased crop productivity.
Collapse
Affiliation(s)
- Thomas A Swift
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Daniel Fagan
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | | | - Stephen A Hill
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Marian L Yallop
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Thomas A A Oliver
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - M Carmen Galan
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Heather M Whitney
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
22
|
Tombuloglu H, Slimani Y, Tombuloglu G, Alshammari T, Almessiere M, Korkmaz AD, Baykal A, Samia ACS. Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34311-34321. [PMID: 32542569 DOI: 10.1007/s11356-020-09693-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the impact of an engineered magnetic nanoparticle (MNP) on a crop plant. For this purpose, a sonochemical synthetic approach was utilized in order to dope magnetic elements (Co and Nd) into technologically important iron oxide NPs. After being characterized by using TEM, SEM, and XRD instruments, the MNPs were hydroponically applied to barley plants with varying doses (from 125 to 1000 mg/L) both in germination (4 days) and early growing stages (3 weeks). Physiological responses, as well as expression of photosystem marker genes, were assessed. Compared to the untreated control, MNP treatment enhanced germination rate (~ 31%), tissue growth (8% in roots, 16% in shoots), biomass (~ 21%), and chlorophyll (a, b) (~ 20%), and carotenoids (~ 22%) pigments. In general, plants showed the highest growth enhancement at 125 or 250 mg/L treatment. However, higher doses diminished the growth indices. Compared to the control, the catalase activity was significantly reduced in the leaves (~ 33%, p < 0.005) but stimulated in the roots (~ 46%, p < 0.005). All tested photosystem marker genes (BCA, psbA, and psaA) were overexpressed in MNP-treated leaves than non-treated control. Moreover, the gene expressions were found to be proportionally increased with increasing MNP doses, indicating a positive correlation between MNPs and the photosynthetic machinery, which could contribute to the enhancement of plant growth.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| | - Guzin Tombuloglu
- Adnan Kahveci Mah., Mimar Sinan Cad., Mavisu evl, 7/28 Beylikduzu-, Istanbul, Turkey
| | - Thamer Alshammari
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| | - Munirah Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ayşe Demir Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700 Uskudar, Istanbul, Turkey
| | - Abdulhadi Baykal
- Department of Nanomedicine, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| | | |
Collapse
|
23
|
Wang A, Jin Q, Xu X, Miao A, White JC, Gardea-Torresdey JL, Ji R, Zhao L. High-Throughput Screening for Engineered Nanoparticles That Enhance Photosynthesis Using Mesophyll Protoplasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3382-3389. [PMID: 32091884 DOI: 10.1021/acs.jafc.9b06429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Certain engineered nanoparticles (NPs) have unique properties that have exhibited significant potential for promoting photosynthesis and enhancing crop productivity. Understanding the fundamental interactions between NPs and plants is crucial for the sustainable development of nanoenabled agriculture. Leaf mesophyll protoplasts, which maintain similar physiological response and cellular activity as intact plants, were selected as a model system to study the impact of NPs on photosynthesis. The mesophyll protoplasts isolated from spinach were cultivated with different NMs (Fe, Mn3O4, SiO2, Ag, and MoS2) dosing at 50 mg/L for 2 h under illumination. The potential maximum quantum yield and adenosine triphosphate (ATP) production of mesophyll protoplasts were significantly increased by Mn3O4 and Fe NPs (23% and 43%, respectively), and were decreased by Ag and MoS2 NPs. The mechanism for the photosynthetic enhancement by Mn3O4 and Fe is to increase the photocurrent and electron transfer rate, as revealed by photoelectrochemical measurement. GC-MS based single cell type metabolomics reveal that NPs (Fe and MoS2) altered the metabolic profiles of mesophyll cells during 2 h of illumination period. Separately, the effect of NPs exposure on photosynthesis and biomass were also conducted at the whole plant level. A strong correlation was observed with protoplast data; plant biomass was significantly increased by Mn3O4 exposure (57%) but was decreased (24%) by treatment of Ag NPs. The use of mesophyll protoplasts can be a fast and reliable tool for screening NPs to enhance photosynthesis for potential nanofertilizer use. Importantly, inclusion of a metabolic analysis can provide mechanistic toxicity data to ensure the development "safer-by-design" nanoenabled platforms.
Collapse
Affiliation(s)
- Aodi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qijie Jin
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xin Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Aijun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06504, United States
| | - Jorge L Gardea-Torresdey
- Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B, Wang Z, Ji R. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1935-1947. [PMID: 32003987 DOI: 10.1021/acs.jafc.9b06615] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a promising tool for sustainable agriculture. However, rather than acting as nanocarriers, some nanoparticles (NPs) with unique physiochemical properties inherently enhance plant growth and stress tolerance. This biological role of nanoparticles depends on their physiochemical properties, application method (foliar delivery, hydroponics, soil), and the applied concentration. Here we review the effects of the different types, properties, and concentrations of nanoparticles on plant growth and on various abiotic (salinity, drought, heat, high light, and heavy metals) and biotic (pathogens and herbivores) stresses. The ability of nanoparticles to stimulate plant growth by positive effects on seed germination, root or shoot growth, and biomass or grain yield is also considered. The information presented herein will allow researchers within and outside the nano-biotechnology field to better select the appropriate nanoparticles as starting materials in agricultural applications. Ultimately, a shift from testing/utilizing existing nanoparticles to designing specific nanoparticles based on agriculture needs will facilitate the use of nanotechnology in sustainable agriculture.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Li Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Aodi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Huiling Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Honghong Wu
- College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , China
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst 01003 , Massachusetts , United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering , Jiangnan University , Wuxi 214122 , China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
25
|
O'Connor MB, Bennie SJ, Deeks HM, Jamieson-Binnie A, Jones AJ, Shannon RJ, Walters R, Mitchell TJ, Mulholland AJ, Glowacki DR. Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: An open-source multi-person framework. J Chem Phys 2019; 150:220901. [PMID: 31202243 DOI: 10.1063/1.5092590] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As molecular scientists have made progress in their ability to engineer nanoscale molecular structure, we face new challenges in our ability to engineer molecular dynamics (MD) and flexibility. Dynamics at the molecular scale differs from the familiar mechanics of everyday objects because it involves a complicated, highly correlated, and three-dimensional many-body dynamical choreography which is often nonintuitive even for highly trained researchers. We recently described how interactive molecular dynamics in virtual reality (iMD-VR) can help to meet this challenge, enabling researchers to manipulate real-time MD simulations of flexible structures in 3D. In this article, we outline various efforts to extend immersive technologies to the molecular sciences, and we introduce "Narupa," a flexible, open-source, multiperson iMD-VR software framework which enables groups of researchers to simultaneously cohabit real-time simulation environments to interactively visualize and manipulate the dynamics of molecular structures with atomic-level precision. We outline several application domains where iMD-VR is facilitating research, communication, and creative approaches within the molecular sciences, including training machines to learn potential energy functions, biomolecular conformational sampling, protein-ligand binding, reaction discovery using "on-the-fly" quantum chemistry, and transport dynamics in materials. We touch on iMD-VR's various cognitive and perceptual affordances and outline how these provide research insight for molecular systems. By synergistically combining human spatial reasoning and design insight with computational automation, technologies such as iMD-VR have the potential to improve our ability to understand, engineer, and communicate microscopic dynamical behavior, offering the potential to usher in a new paradigm for engineering molecules and nano-architectures.
Collapse
Affiliation(s)
- Michael B O'Connor
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Simon J Bennie
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Helen M Deeks
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Alexander Jamieson-Binnie
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Alex J Jones
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Robin J Shannon
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Rebecca Walters
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Thomas J Mitchell
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - David R Glowacki
- Intangible Realities Laboratory, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
26
|
Wilts BD, Vignolini S. Living light: optics, ecology and design principles of natural photonic structures. Interface Focus 2019; 9:20180071. [PMCID: PMC6304005 DOI: 10.1098/rsfs.2018.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 11/09/2023] Open
Affiliation(s)
- Bodo D. Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|