1
|
Bini F, Missori E, Pucci G, Pasini G, Marinozzi F, Forte GI, Russo G, Stefano A. Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model. J Imaging 2024; 10:290. [PMID: 39590754 PMCID: PMC11595506 DOI: 10.3390/jimaging10110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Radiomics provides a structured approach to support clinical decision-making through key steps; however, users often face difficulties when switching between various software platforms to complete the workflow. To streamline this process, matRadiomics integrates the entire radiomics workflow within a single platform. This study extends matRadiomics to preclinical settings and validates it through a case study focused on early malformation differentiation in a zebrafish model. The proposed plugin incorporates Pyradiomics and streamlines feature extraction, selection, and classification using machine learning models (linear discriminant analysis-LDA; k-nearest neighbors-KNNs; and support vector machines-SVMs) with k-fold cross-validation for model validation. Classifier performances are evaluated using area under the ROC curve (AUC) and accuracy. The case study indicated the criticality of the long time required to extract features from preclinical images, generally of higher resolution than clinical images. To address this, a feature analysis was conducted to optimize settings, reducing extraction time while maintaining similarity to the original features. As a result, SVM exhibited the best performance for early malformation differentiation in zebrafish (AUC = 0.723; accuracy of 0.72). This case study underscores the plugin's versatility and effectiveness in early biological outcome prediction, emphasizing its applicability across biomedical research fields.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Elisa Missori
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Gaia Pucci
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Giovanni Pasini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Giusi Irma Forte
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Giorgio Russo
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Alessandro Stefano
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| |
Collapse
|
2
|
Yaguchi K, Saito D, Menon T, Matsura A, Hosono M, Mizutani T, Kotani T, Nair S, Uehara R. Haploidy-linked cell proliferation defects limit larval growth in zebrafish. Open Biol 2024; 14:240126. [PMID: 39378986 PMCID: PMC11461072 DOI: 10.1098/rsob.240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 10/10/2024] Open
Abstract
Haploid larvae in non-mammalian vertebrates are lethal, with characteristic organ growth retardation collectively called 'haploid syndrome'. In contrast to mammals, whose haploid intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-linked defects in non-mammalian vertebrates remains unknown. Here, we investigated cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike diploid control larvae, haploid larvae manifested unscheduled cell death at the organogenesis stage, attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-3 days post-fertilization, causing spindle assembly checkpoint-mediated mitotic arrest throughout the entire body. High-resolution imaging revealed that this mitotic defect accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 partially improved organ growth in haploid larvae. Based on these results, we propose that haploidy-linked mitotic defects and cell death are parts of critical cellular causes shared among vertebrates that limit the larval growth in the haploid state, contributing to an evolutionary constraint on allowable ploidy status in the vertebrate life cycle.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Daiki Saito
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Triveni Menon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Akira Matsura
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Miyu Hosono
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Takeomi Mizutani
- Department of Life Science and Technology, Faculty of Engineering, Hokkai-Gakuen University, Minami 26, Nishi 11, Chuo-ku, Sapporo064-0926, Japan
| | - Tomoya Kotani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo060-0810, Japan
| | - Sreelaja Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| |
Collapse
|
3
|
Tonosaki M, Fujimori A, Yaoi T, Itoh K. Loss of Aspm causes increased apoptosis of developing neural cells during mouse cerebral corticogenesis. PLoS One 2023; 18:e0294893. [PMID: 38019816 PMCID: PMC10686469 DOI: 10.1371/journal.pone.0294893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Abnormal spindle-like microcephaly associated (ASPM) is a causative gene of primary autosomal recessive microcephaly. Microcephaly is considered to be a consequence of a small brain, but the associated molecular mechanisms are not fully understood. In this study, we generated brain-specific Aspm knockout mice to evaluate the fetal brain phenotype and observed cortical reduction in the late stage of murine cortical development. It has been reported that the total number of neurons is regulated by the number of neural stem and progenitor cells. In the Aspm knockout mice, no apparent change was shown in the neural progenitor cell proliferation and there was no obvious effect on the number of newly generated neurons in the developing cortex. On the other hand, the knockout mice showed a constant increase in apoptosis in the cerebral cortex from the early through the late stages of cortical development. Furthermore, apoptosis occurred in the neural progenitor cells associated with DNA damage. Overall, these results suggest that apoptosis of the neural progenitor cells is involved in the thinning of the mouse cerebral cortex, due to the loss of the Aspm gene in neocortical development.
Collapse
Affiliation(s)
- Madoka Tonosaki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
4
|
Iegiani G, Ferraro A, Pallavicini G, Di Cunto F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front Neurosci 2023; 17:1220010. [PMID: 37457016 PMCID: PMC10338886 DOI: 10.3389/fnins.2023.1220010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessia Ferraro
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| |
Collapse
|
5
|
Dell'Amico C, Angulo Salavarria MM, Takeo Y, Saotome I, Dell'Anno MT, Galimberti M, Pellegrino E, Cattaneo E, Louvi A, Onorati M. Microcephaly-associated protein WDR62 shuttles from the Golgi apparatus to the spindle poles in human neural progenitors. eLife 2023; 12:e81716. [PMID: 37272619 PMCID: PMC10241521 DOI: 10.7554/elife.81716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.
Collapse
Affiliation(s)
- Claudia Dell'Amico
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
| | | | - Yutaka Takeo
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Ichiko Saotome
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | | | - Maura Galimberti
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilanItaly
- INGM, Istituto Nazionale Genetica MolecolareMilanItaly
| | - Enrica Pellegrino
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Elena Cattaneo
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilanItaly
- INGM, Istituto Nazionale Genetica MolecolareMilanItaly
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Marco Onorati
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
| |
Collapse
|
6
|
Li Y, Xu B, Jin M, Zhang H, Ren N, Hu J, He J. Homophilic interaction of cell adhesion molecule 3 coordinates retina neuroepithelial cell proliferation. J Cell Biol 2023; 222:e202204098. [PMID: 37022761 PMCID: PMC10082328 DOI: 10.1083/jcb.202204098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Correct cell number generation is central to tissue development. However, in vivo roles of coordinated proliferation of individual neural progenitors in regulating cell numbers of developing neural tissues and the underlying molecular mechanism remain mostly elusive. Here, we showed that wild-type (WT) donor retinal progenitor cells (RPCs) generated significantly expanded clones in host retinae with G1-lengthening by p15 (cdkn2a/b) overexpression (p15+) in zebrafish. Further analysis showed that cell adhesion molecule 3 (cadm3) was reduced in p15+ host retinae, and overexpression of either full-length or ectodomains of Cadm3 in p15+ host retinae markedly suppressed the clonal expansion of WT donor RPCs. Notably, WT donor RPCs in retinae with cadm3 disruption recapitulated expanded clones that were found in p15+ retinae. More strikingly, overexpression of Cadm3 without extracellular ig1 domain in RPCs resulted in expanded clones and increased retinal total cell number. Thus, homophilic interaction of Cadm3 provides an intercellular mechanism underlying coordinated cell proliferation to ensure cell number homeostasis of the developing neuroepithelia.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baijie Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Jin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningxin Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Hu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
De la Cruz G, Nikolaishvili Feinberg N, Williams SE. Automated Immunofluorescence Staining for Analysis of Mitotic Stages and Division Orientation in Brain Sections. Methods Mol Biol 2023; 2583:63-79. [PMID: 36418726 DOI: 10.1007/978-1-0716-2752-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microcephaly often results from mitotic defects in neuronal progenitors, frequently by decreasing proliferation rates or shifting cell fates. During neurogenesis, oriented cell division-the molecular control of mitotic spindle positioning to control the axis of division-represents an important mechanism to balance expansion of the progenitor pool with generating cellular diversity. While mostly studied in the context of cortical development, more recently, spindle orientation has emerged as a key player in the formation of other brain regions such as the cerebellum. Here we describe methods to perform automated dual-color fluorescent immunohistochemistry on murine cerebellar sections using the mitotic markers phospho-Histone H3 and Survivin, and detail analytical and statistical approaches to display and compare division orientation datasets.
Collapse
Affiliation(s)
- Gabriela De la Cruz
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Nikolaishvili Feinberg
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E Williams
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Kolvenbach CM, Felger T, Schierbaum L, Thiffault I, Pastinen T, Szczepańska M, Zaniew M, Adamczyk P, Bayat A, Yilmaz Ö, Lindenberg TT, Thiele H, Hildebrandt F, Hinderhofer K, Moog U, Hilger AC, Sullivan B, Bartik L, Gnyś P, Grote P, Odermatt B, Reutter HM, Dworschak GC. X-linked variations in SHROOM4are implicated in congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems. J Med Genet 2022; 60:587-596. [PMID: 36379543 DOI: 10.1136/jmg-2022-108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
Abstract
BackgroundSHROOM4is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) inSHROOM4have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system.MethodsHere, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse andknockdown(KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role ofSHROOM4during embryonic development.ResultsIn this study, we identified putative disease-causing SNVs and CNVs inSHROOM4in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showedShroom4expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-typeSHROOM4mRNA and morpholino.ConclusionThe identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggestSHROOM4as a developmental gene for different organ systems.
Collapse
|
9
|
Fasano G, Muto V, Radio FC, Venditti M, Mosaddeghzadeh N, Coppola S, Paradisi G, Zara E, Bazgir F, Ziegler A, Chillemi G, Bertuccini L, Tinari A, Vetro A, Pantaleoni F, Pizzi S, Conti LA, Petrini S, Bruselles A, Prandi IG, Mancini C, Chandramouli B, Barth M, Bris C, Milani D, Selicorni A, Macchiaiolo M, Gonfiantini MV, Bartuli A, Mariani R, Curry CJ, Guerrini R, Slavotinek A, Iascone M, Dallapiccola B, Ahmadian MR, Lauri A, Tartaglia M. Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish. Nat Commun 2022; 13:6841. [PMID: 36369169 PMCID: PMC9652361 DOI: 10.1038/s41467-022-34354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.
Collapse
Affiliation(s)
- Giulia Fasano
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Muto
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Niloufar Mosaddeghzadeh
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simona Coppola
- grid.416651.10000 0000 9120 6856National Center for Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Graziamaria Paradisi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Erika Zara
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Università “Sapienza”, Rome, 00185 Italy
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alban Ziegler
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Giovanni Chillemi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Centro Nazionale delle Ricerche, 70126 Bari, Italy
| | - Lucia Bertuccini
- grid.416651.10000 0000 9120 6856Servizio grandi strumentazioni e core facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Tinari
- grid.416651.10000 0000 9120 6856Centro di riferimento per la medicina di genere, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Annalisa Vetro
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Francesca Pantaleoni
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Libenzio Adrian Conti
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessandro Bruselles
- grid.416651.10000 0000 9120 6856Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ingrid Guarnetti Prandi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Cecilia Mancini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Balasubramanian Chandramouli
- grid.431603.30000 0004 1757 1950Super Computing Applications and Innovation, CINECA, 40033 Casalecchio di Reno, Italy
| | - Magalie Barth
- grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Céline Bris
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Donatella Milani
- grid.414818.00000 0004 1757 8749Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelo Selicorni
- grid.512106.1Mariani Center for Fragile Children Pediatric Unit, Azienda Socio Sanitaria Territoriale Lariana, 22100 Como, Italy
| | - Marina Macchiaiolo
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Michaela V. Gonfiantini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Bartuli
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Riccardo Mariani
- grid.414603.4Department of Laboratories Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cynthia J. Curry
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Renzo Guerrini
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Anne Slavotinek
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Maria Iascone
- grid.460094.f0000 0004 1757 8431Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Bruno Dallapiccola
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Mohammad Reza Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonella Lauri
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| |
Collapse
|
10
|
Mikdache A, Boueid MJ, Lesport E, Delespierre B, Loisel-Duwattez J, Degerny C, Tawk M. Timely Schwann cell division drives peripheral myelination in vivo via the laminin/cAMP pathway. Development 2022; 149:276236. [DOI: 10.1242/dev.200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp−/−) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp−/− restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp−/− posterior lateral line nerve and that forcing Laminin 2 expression in csp−/− fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.
Collapse
Affiliation(s)
- Aya Mikdache
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marie-José Boueid
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Emilie Lesport
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marcel Tawk
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| |
Collapse
|
11
|
Bartoszewski S, Dawidziuk M, Kasica N, Durak R, Jurek M, Podwysocka A, Guilbride DL, Podlasz P, Winata CL, Gawlinski P. A Zebrafish/Drosophila Dual System Model for Investigating Human Microcephaly. Cells 2022; 11:cells11172727. [PMID: 36078134 PMCID: PMC9455030 DOI: 10.3390/cells11172727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Microcephaly presents in neurodevelopmental disorders with multiple aetiologies, including bi-allelic mutation in TUBGCP2, a component of the biologically fundamental and conserved microtubule-nucleation complex, γ-TuRC. Elucidating underlying principles driving microcephaly requires clear phenotype recapitulation and assay reproducibility, areas where go-to experimental models fall short. We present an alternative simple vertebrate/invertebrate dual system to investigate fundamental TUBGCP2-related processes driving human microcephaly and associated developmental traits. We show that antisense morpholino knockdown (KD) of the Danio rerio homolog, tubgcp2, recapitulates human TUBGCP2-associated microcephaly. Co-injection of wild type mRNA pre-empts microcephaly in 55% of KD zebrafish larvae, confirming causality. Body shortening observed in morphants is also rescued. Mitotic marker (pH3) staining further reveals aberrantly accumulated dividing brain cells in microcephalic tubgcp2 KD morphants, indicating that tubgcp2 depletion disrupts normal mitosis and/or proliferation in zebrafish neural progenitor brain cells. Drosophila melanogaster double knockouts (KO) for TUBGCP2 homologs Grip84/cg7716 also develop microcephalic brains with general microsomia. Exacerbated Grip84/cg7716-linked developmental aberration versus single mutations strongly suggests interactive or coinciding gene functions. We infer that tubgcp2 and Grip84/cg7716 affect brain size similarly to TUBGCP2 and recapitulate both microcephaly and microcephaly-associated developmental impact, validating the zebrafish/fly research model for human microcephaly. Given the conserved cross-phyla homolog function, the data also strongly support mitotic and/or proliferative disruption linked to aberrant microtubule nucleation in progenitor brain cells as key mechanistic defects for human microcephaly.
Collapse
Affiliation(s)
- Slawomir Bartoszewski
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Mateusz Dawidziuk
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Roma Durak
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Marta Jurek
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Aleksandra Podwysocka
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Cecilia Lanny Winata
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
- Correspondence:
| |
Collapse
|
12
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals' cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors' behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
13
|
Aljiboury A, Mujcic A, Curtis E, Cammerino T, Magny D, Lan Y, Bates M, Freshour J, Ahmed-Braimeh YH, Hehnly H. Pericentriolar matrix (PCM) integrity relies on cenexin and polo-like kinase (PLK)1. Mol Biol Cell 2022; 33:br14. [PMID: 35609215 PMCID: PMC9582643 DOI: 10.1091/mbc.e22-01-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022] Open
Abstract
Polo-like-kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome's pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa), zebrafish embryos, and phylogenic analysis to test the role of a PLK1 binding protein, cenexin, in regulating the PCM. Our studies identify that cenexin is required for tempering microtubule nucleation by maintaining PCM cohesion in a PLK1-dependent manner. PCM architecture in cenexin-depleted zebrafish embryos was rescued with wild-type human cenexin, but not with a C-terminal cenexin mutant (S796A) deficient in PLK1 binding. We propose a model where cenexin's C terminus acts in a conserved manner in eukaryotes, excluding nematodes and arthropods, to sequester PLK1 that limits PCM substrate phosphorylation events required for PCM cohesion.
Collapse
Affiliation(s)
- Abrar Aljiboury
- Biology Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Erin Curtis
- Biology Department, Syracuse University, Syracuse, NY 13244
| | | | - Denise Magny
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Yiling Lan
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Michael Bates
- Biology Department, Syracuse University, Syracuse, NY 13244
| | - Judy Freshour
- Biology Department, Syracuse University, Syracuse, NY 13244
| | | | - Heidi Hehnly
- Biology Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
14
|
Mytlis A, Kumar V, Qiu T, Deis R, Hart N, Levy K, Masek M, Shawahny A, Ahmad A, Eitan H, Nather F, Adar-Levor S, Birnbaum RY, Elia N, Bachmann-Gagescu R, Roy S, Elkouby YM. Control of meiotic chromosomal bouquet and germ cell morphogenesis by the zygotene cilium. Science 2022; 376:eabh3104. [PMID: 35549308 DOI: 10.1126/science.abh3104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope via microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet". Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery, extending throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies, and suggests that cilia can control chromosomal dynamics.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Vineet Kumar
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Tao Qiu
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore
| | - Rachael Deis
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Neta Hart
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Amal Shawahny
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Adam Ahmad
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Hagai Eitan
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Farouq Nather
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Shai Adar-Levor
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Ramon Y Birnbaum
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Natalie Elia
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore.,Department of Biological Sciences, National University of Singapore, 117543 Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119288 Singapore
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| |
Collapse
|
15
|
Serjanov D, Bachay G, Hunter DD, Brunken WJ. Laminin β2 Chain Regulates Cell Cycle Dynamics in the Developing Retina. Front Cell Dev Biol 2022; 9:802593. [PMID: 35096830 PMCID: PMC8790539 DOI: 10.3389/fcell.2021.802593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.
Collapse
Affiliation(s)
- Dmitri Serjanov
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Dale D Hunter
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
16
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
18
|
Viais R, Fariña-Mosquera M, Villamor-Payà M, Watanabe S, Palenzuela L, Lacasa C, Lüders J. Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. eLife 2021; 10:67989. [PMID: 34427181 PMCID: PMC8456695 DOI: 10.7554/elife.67989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Microtubules that assemble the mitotic spindle are generated by centrosomal nucleation, chromatin-mediated nucleation, and nucleation from the surface of other microtubules mediated by the augmin complex. Impairment of centrosomal nucleation in apical progenitors of the developing mouse brain induces p53-dependent apoptosis and causes non-lethal microcephaly. Whether disruption of non-centrosomal nucleation has similar effects is unclear. Here, we show, using mouse embryos, that conditional knockout of the augmin subunit Haus6 in apical progenitors led to spindle defects and mitotic delay. This triggered massive apoptosis and abortion of brain development. Co-deletion of Trp53 rescued cell death, but surviving progenitors failed to organize a pseudostratified epithelium, and brain development still failed. This could be explained by exacerbated mitotic errors and resulting chromosomal defects including increased DNA damage. Thus, in contrast to centrosomes, augmin is crucial for apical progenitor mitosis, and, even in the absence of p53, for progression of brain development.
Collapse
Affiliation(s)
- Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marcos Fariña-Mosquera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sadanori Watanabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cristina Lacasa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
19
|
Rgs4 is a regulator of mTOR activity required for motoneuron axon outgrowth and neuronal development in zebrafish. Sci Rep 2021; 11:13338. [PMID: 34172795 PMCID: PMC8233358 DOI: 10.1038/s41598-021-92758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.
Collapse
|
20
|
Huang J, Liang Z, Guan C, Hua S, Jiang K. WDR62 regulates spindle dynamics as an adaptor protein between TPX2/Aurora A and katanin. J Cell Biol 2021; 220:212395. [PMID: 34137789 PMCID: PMC8240853 DOI: 10.1083/jcb.202007167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
WDR62 is a microcephaly-related, microtubule (MT)-associated protein (MAP) that localizes to the spindle pole and regulates spindle organization, but the underlying mechanisms remain elusive. Here, we show that WDR62 regulates spindle dynamics by recruiting katanin to the spindle pole and further reveal a TPX2–Aurora A–WDR62–katanin axis in cells. By combining cellular and in vitro experiments, we demonstrate that WDR62 shows preference for curved segments of dynamic GDP-MTs, as well as GMPCPP- and paclitaxel-stabilized MTs, suggesting that it recognizes extended MT lattice. Consistent with this property, WDR62 alone is inefficient in recruiting katanin to GDP-MTs, while WDR62 complexed with TPX2/Aurora A can potently promote katanin-mediated severing of GDP-MTs in vitro. In addition, the MT-binding affinity of WDR62 is autoinhibited through JNK phosphorylation-induced intramolecular interaction. We propose that WDR62 is an atypical MAP and functions as an adaptor protein between its recruiting factor TPX2/Aurora A and the effector katanin to orchestrate the regulation of spindle dynamics.
Collapse
Affiliation(s)
- Junjie Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhuobi Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Cuirong Guan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shasha Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci 2021; 11:brainsci11050581. [PMID: 33946187 PMCID: PMC8145766 DOI: 10.3390/brainsci11050581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.
Collapse
|
22
|
Hall NA, Hehnly H. A centriole's subdistal appendages: contributions to cell division, ciliogenesis and differentiation. Open Biol 2021; 11:200399. [PMID: 33561384 PMCID: PMC8061701 DOI: 10.1098/rsob.200399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The centrosome is a highly conserved structure composed of two centrioles surrounded by pericentriolar material. The mother, and inherently older, centriole has distal and subdistal appendages, whereas the daughter centriole is devoid of these appendage structures. Both appendages have been primarily linked to functions in cilia formation. However, subdistal appendages present with a variety of potential functions that include spindle placement, chromosome alignment, the final stage of cell division (abscission) and potentially cell differentiation. Subdistal appendages are particularly interesting in that they do not always display a conserved ninefold symmetry in appendage organization on the mother centriole across eukaryotic species, unlike distal appendages. In this review, we aim to differentiate both the morphology and role of the distal and subdistal appendages, with a particular focus on subdistal appendages.
Collapse
Affiliation(s)
- Nicole A Hall
- Department of Biology, Syracuse University, Syracuse NY, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse NY, USA
| |
Collapse
|
23
|
de Abreu MS, Genario R, Giacomini AC, Demin KA, Lakstygal AM, Amstislavskaya TG, Fontana BD, Parker MO, Kalueff AV. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience 2020; 445:3-11. [DOI: 10.1016/j.neuroscience.2019.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
24
|
Zeng WJ, Cheng Q, Wen ZP, Wang JY, Chen YH, Zhao J, Gong ZC, Chen XP. Aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes the progression of gliomas. J Cell Mol Med 2020; 24:9613-9626. [PMID: 32667745 PMCID: PMC7520292 DOI: 10.1111/jcmm.15435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common form of malignant tumour in the central nervous system. However, the molecular mechanism of the tumorigenesis and progression of gliomas remains unclear. In this study, we used the GEO database to identify genes differentially expressed in gliomas and predict the prognosis of glioma. We observed that ASPM mRNA was increased obviously in glioma tissue, and higher ASPM mRNA expression predicted worse disease prognosis. ASPM was highly expressed in glioma cell lines U87‐MG and U251, and knockdown of ASPM expression in these cells significantly repressed the proliferation, migration and invasion ability and induced G0/G1 phase arrest. In addition, down‐regulation of ASPM suppressed the growth of glioma in nude mice. Five potential binding sites for transcription factor FoxM1 were predicted in the ASPM promoter. FoxM1 overexpression significantly increased the expression of ASPM and promoted the proliferation and migration of glioma cells, which was abolished by ASPM ablation. ChIP and dual‐luciferase reporter analysis confirmed that FoxM1 bound to the ASPM promoter at −236 to ‐230 bp and −1354 to ‐1348 bp and activated the transcription of ASPM directly. Collectively, our results demonstrated for the first time that aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes the malignant properties of glioma cells.
Collapse
Affiliation(s)
- Wen-Jing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Peng Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jie-Ya Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Yan-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jie Zhao
- Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Da Palma MM, Motta FL, Takitani GEDS, Salles MV, Lima LH, Ferraz Sallum JM. TUBGCP4 - associated microcephaly and chorioretinopathy. Ophthalmic Genet 2020; 41:189-193. [PMID: 32270730 DOI: 10.1080/13816810.2020.1747084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background Microcephaly and chorioretinopathy (MCCRP) is a rare neuro-ophthalmologic disorder that causes microcephaly and chorioretinopathy. In a recessive inheritance pattern, there are three types: MCCRP1; MCCRP2 and MCCRP3. MCCRP3 results from pathogenic variants in the tubulin-gamma complex-associated protein 4 (TUBGCP4) gene.Materials and Methods This is a case report of a patient with a molecular diagnosis defined by mutations in the TUBGCP4 gene. Segregation analyses were carried out.Results The molecular investigation found two heterozygous variants c.1380 G > A (p.Trp460*) a novel nonsense variant, and c.1746 G > T (p Leu582=) a synonymous variant in TUBGCP4. The clinical phenotype was characterized by microcephaly, microphthalmia, chorioretinopathy, a punched-out retinal appearance, dysmorphic facial features, decreased visual acuity, and learning difficulties. The clinical features were similar to those described previously in children with MCCRP3. The proband also had additional features including centripetal obesity, stretch marks, acanthosis nigricans, scoliosis, and hypercholesterolemia. These other features could be part of a ciliopathy syndrome.Conclusions MCCRP2 caused by pathogenic variants in PLK4 is well established as a ciliopathy disease. The role of TUBGCP4 is not well established in the cilium physiology. MCCRP3 may be part of the ciliopathy spectrum.
Collapse
Affiliation(s)
| | | | | | | | - Luiz Henrique Lima
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil.,Department of Ocular Genetics, Instituto De Genética Ocular, São Paulo, Brazil
| |
Collapse
|
26
|
Johnson CA, Ghashghaei HT. Sp2 regulates late neurogenic but not early expansive divisions of neural stem cells underlying population growth in the mouse cortex. Development 2020; 147:dev186056. [PMID: 32001437 PMCID: PMC7044455 DOI: 10.1242/dev.186056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Cellular and molecular mechanisms underlying the switch from self-amplification of cortical stem cells to neuronal and glial generation are incompletely understood, despite their importance for neural development. Here, we have investigated the role of the transcription factor specificity protein 2 (Sp2) in expansive and neurogenic divisions of the developing cerebral cortex by combining conditional genetic deletion with the mosaic analysis with double markers (MADM) system in mice. We find that loss of Sp2 in progenitors undergoing neurogenic divisions results in prolonged mitosis due to extension of early mitotic stages. This disruption is correlated with depletion of the populations of upper layer neurons in the cortex. In contrast, early cortical neural stem cells proliferate and expand normally in the absence of Sp2. These results indicate a stage-specific requirement for Sp2 in neural stem and progenitor cells, and reveal mechanistic differences between the early expansive and later neurogenic periods of cortical development.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
27
|
Duerinckx S, Jacquemin V, Drunat S, Vial Y, Passemard S, Perazzolo C, Massart A, Soblet J, Racapé J, Desmyter L, Badoer C, Papadimitriou S, Le Borgne YA, Lefort A, Libert F, De Maertelaer V, Rooman M, Costagliola S, Verloes A, Lenaerts T, Pirson I, Abramowicz M. Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways. Hum Mutat 2019; 41:512-524. [PMID: 31696992 PMCID: PMC7496698 DOI: 10.1002/humu.23948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/30/2022]
Abstract
Primary microcephaly (PM) is characterized by a small head since birth and is vastly heterogeneous both genetically and phenotypically. While most cases are monogenic, genetic interactions between Aspm and Wdr62 have recently been described in a mouse model of PM. Here, we used two complementary, holistic in vivo approaches: high throughput DNA sequencing of multiple PM genes in human patients with PM, and genome‐edited zebrafish modeling for the digenic inheritance of PM. Exomes of patients with PM showed a significant burden of variants in 75 PM genes, that persisted after removing monogenic causes of PM (e.g., biallelic pathogenic variants in CEP152). This observation was replicated in an independent cohort of patients with PM, where a PM gene panel showed in addition that the burden was carried by six centrosomal genes. Allelic frequencies were consistent with digenic inheritance. In zebrafish, non‐centrosomal gene casc5 −/− produced a severe PM phenotype, that was not modified by centrosomal genes aspm or wdr62 invalidation. A digenic, quadriallelic PM phenotype was produced by aspm and wdr62. Our observations provide strong evidence for digenic inheritance of human PM, involving centrosomal genes. Absence of genetic interaction between casc5 and aspm or wdr62 further delineates centrosomal and non‐centrosomal pathways in PM.
Collapse
Affiliation(s)
- Sarah Duerinckx
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Valérie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Séverine Drunat
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Yoann Vial
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Sandrine Passemard
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Camille Perazzolo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Annick Massart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, ULB Center of Human Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Judith Racapé
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Desmyter
- Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Cindy Badoer
- Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yann-Aël Le Borgne
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Frédérick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Viviane De Maertelaer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Verloes
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.,Present Address: Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Li G, Jin D, Zhong TP. Tubgcp3 Is Required for Retinal Progenitor Cell Proliferation During Zebrafish Development. Front Mol Neurosci 2019; 12:126. [PMID: 31178691 PMCID: PMC6543929 DOI: 10.3389/fnmol.2019.00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
The centrosomal protein γ-tubulin complex protein 3 (Tubgcp3/GCP3) is required for the assembly of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs), which play critical roles in mitotic spindle formation during mitosis. However, its function in vertebrate embryonic development is unknown. Here, we generated the zebrafish tubgcp3 mutants using the CRISPR/Cas9 system and found that the tubgcp3 mutants exhibited the small eye phenotype. Tubgcp3 is required for the cell cycle progression of retinal progenitor cells (RPCs), and its depletion caused cell cycle arrest in the mitotic (M) phase. The M-phase arrested RPCs exhibited aberrant monopolar spindles and abnormal distributed centrioles and γ-tubulin. Moreover, these RPCs underwent apoptosis finally. Our study provides the in vivo model for the functional study of Tubgcp3 and sheds light on the roles of centrosomal γ-tubulin complexes in vertebrate development.
Collapse
Affiliation(s)
- Guobao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Daqing Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
29
|
Reilly ML, Stokman MF, Magry V, Jeanpierre C, Alves M, Paydar M, Hellinga J, Delous M, Pouly D, Failler M, Martinovic J, Loeuillet L, Leroy B, Tantau J, Roume J, Gregory-Evans CY, Shan X, Filges I, Allingham JS, Kwok BH, Saunier S, Giles RH, Benmerah A. Loss-of-function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish. Hum Mol Genet 2019; 28:778-795. [PMID: 30388224 PMCID: PMC6381319 DOI: 10.1093/hmg/ddy381] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Diderot University, Department of Life Sciences, Paris, France
| | - Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, JE Utrecht, Netherlands
| | - Virginie Magry
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Cecile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marine Alves
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Jacqueline Hellinga
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Daniel Pouly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marion Failler
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Antoine Béclère Hospital, AP-HP, Clamart, France
- INSERM U-788, Génétique/Neurogénétique, 94270 Le Kremlin-Bicêtre, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker–Enfants Malades, AP-HP, Paris, France
| | - Brigitte Leroy
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Julia Tantau
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Joelle Roume
- Service de Génétique, Centre hospitalier intercommunal de Poissy, 78100 Saint Germain en Laye, France
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xianghong Shan
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
30
|
Papageorgiou E, Pilat A, Proudlock F, Lee H, Purohit R, Sheth V, Vasudevan P, Gottlob I. Retinal and optic nerve changes in microcephaly: An optical coherence tomography study. Neurology 2018; 91:e571-e585. [PMID: 29997194 PMCID: PMC6105049 DOI: 10.1212/wnl.0000000000005950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/27/2018] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To investigate the morphology of the retina and optic nerve (ON) in microcephaly. METHODS This was a prospective case-control study including 27 patients with microcephaly and 27 healthy controls. All participants underwent ophthalmologic examination and handheld optical coherence tomography (OCT) of the macula and ON head. The thickness of individual retinal layers was quantified at the foveal center and the parafovea (1,000 μm nasal and temporal to the fovea). For the ON head, disc diameter, cup diameter, cup-to-disc ratio, cup depth, horizontal rim diameter, rim area, peripapillary retinal thickness, and retinal nerve fiber layer thickness were measured. RESULTS Seventy-eight percent of patients had ophthalmologic abnormalities, mainly nystagmus (56%) and strabismus (52%). OCT abnormalities were found in 85% of patients. OCT revealed disruption of the ellipsoid zone, persistent inner retinal layers, and irregular foveal pits. Parafoveal retinal thickness was significantly reduced in patients with microcephaly compared to controls, nasally (307 ± 44 vs 342 ± 19 μm, p = 0.001) and temporally (279 ± 56 vs 325 ± 16 μm, p < 0.001). There was thinning of the ganglion cell layer and the inner segments of the photoreceptors in microcephaly. Total peripapillary retinal thickness was smaller in patients with microcephaly compared to controls for both temporal (275 vs 318 μm, p < 0.001) and nasal sides (239 vs 268 μm, p = 0.013). CONCLUSIONS Retinal and ON anomalies in microcephaly likely reflect retinal cell reduction and lamination alteration due to impaired neurogenic mitosis. OCT allows diagnosis and quantification of retinal and ON changes in microcephaly even if they are not detected on ophthalmoscopy.
Collapse
Affiliation(s)
- Eleni Papageorgiou
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK
| | - Anastasia Pilat
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK
| | - Frank Proudlock
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK
| | - Helena Lee
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK
| | - Ravi Purohit
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK
| | - Viral Sheth
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK
| | - Pradeep Vasudevan
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK
| | - Irene Gottlob
- From the Department of Ophthalmology (E.P., A.P., F.P., H.L., R.P., V.S., I.G.), Leicester Royal Infirmary, University of Leicester; and Department of Clinical Genetics (P.V.), University Hospitals of Leicester, Leicester Royal Infirmary, UK.
| |
Collapse
|
31
|
Yaguchi K, Yamamoto T, Matsui R, Tsukada Y, Shibanuma A, Kamimura K, Koda T, Uehara R. Uncoordinated centrosome cycle underlies the instability of non-diploid somatic cells in mammals. J Cell Biol 2018; 217:2463-2483. [PMID: 29712735 PMCID: PMC6028549 DOI: 10.1083/jcb.201701151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/27/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian somatic cells are more stable as diploids, but the mechanisms underlying this stability are unclear. Yaguchi et al. show that changes in centriole licensing compromise the control of centrosome number in haploid or tetraploid human cells, suggesting that the ploidy-dependent control of the centrosome cycle explains the instability of non-diploid karyotypes. In animals, somatic cells are usually diploid and are unstable when haploid for unknown reasons. In this study, by comparing isogenic human cell lines with different ploidies, we found frequent centrosome loss specifically in the haploid state, which profoundly contributed to haploid instability through subsequent mitotic defects. We also found that the efficiency of centriole licensing and duplication changes proportionally to ploidy level, whereas that of DNA replication stays constant. This caused gradual loss or frequent overduplication of centrioles in haploid and tetraploid cells, respectively. Centriole licensing efficiency seemed to be modulated by astral microtubules, whose development scaled with ploidy level, and artificial enhancement of aster formation in haploid cells restored centriole licensing efficiency to diploid levels. The ploidy–centrosome link was observed in different mammalian cell types. We propose that incompatibility between the centrosome duplication and DNA replication cycles arising from different scaling properties of these bioprocesses upon ploidy changes underlies the instability of non-diploid somatic cells in mammals.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Yamamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryo Matsui
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Tsukada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Atsuko Shibanuma
- Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Keiko Kamimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Toshiaki Koda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan .,Creative Research Institution, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
33
|
Patwardhan D, Mani S, Passemard S, Gressens P, El Ghouzzi V. STIL balancing primary microcephaly and cancer. Cell Death Dis 2018; 9:65. [PMID: 29352115 PMCID: PMC5833631 DOI: 10.1038/s41419-017-0101-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022]
Abstract
Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.
Collapse
Affiliation(s)
- Dhruti Patwardhan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for Neuroscience, IISC Bangalore, India
| | - Shyamala Mani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Curadev Pharma, B 87, Sector 83, Noida, UP, 201305,, India
| | - Sandrine Passemard
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP HP, Hôpital Robert Debré, Service de Génétique Clinique, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Vincent El Ghouzzi
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
34
|
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates. Curr Biol 2017; 26:R1001-R1009. [PMID: 27780043 DOI: 10.1016/j.cub.2016.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar 'conveyor belt neurogenesis' could play an essential role in generating the topographically ordered circuitry of the visual system.
Collapse
|
35
|
Hung CY, Volkmar B, Baker JD, Bauer JW, Gussoni E, Hainzl S, Klausegger A, Lorenzo J, Mihalek I, Rittinger O, Tekin M, Dallman JE, Bodamer OA. A defect in the inner kinetochore protein CENPT causes a new syndrome of severe growth failure. PLoS One 2017; 12:e0189324. [PMID: 29228025 PMCID: PMC5724856 DOI: 10.1371/journal.pone.0189324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
Primordial growth failure has been linked to defects in the biology of cell division and replication. The complex processes involved in microtubule spindle formation, organization and function have emerged as a dominant patho-mechanism in these conditions. The majority of reported disease genes encode for centrosome and centriole proteins, leaving kinetochore proteins by which the spindle apparatus interacts with the chromosomes largely unaccounted for. We report a novel disease gene encoding the constitutive inner kinetochore member CENPT, which is involved in kinetochore targeting and assembly, resulting in severe growth failure in two siblings of a consanguineous family. We herein present studies on the molecular and cellular mechanisms that explain how genetic mutations in this gene lead to primordial growth failure. In both, affected human cell lines and a zebrafish knock-down model of Cenpt, we observed aberrations in cell division with abnormal accumulation of micronuclei and of nuclei with increased DNA content arising from incomplete and/or irregular chromosomal segregation. Our studies underscore the critical importance of kinetochore function for overall body growth and provide new insight into the cellular mechanisms implicated in the spectrum of these severe growth disorders.
Collapse
Affiliation(s)
- Christina Y. Hung
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Volkmar
- Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - James D. Baker
- Department of Biology, University of Miami, Coral Gables, Florida, United States of America
| | - Johann W. Bauer
- Department of Dermatology, EB House Austria, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stefan Hainzl
- Department of Dermatology, EB House Austria, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Alfred Klausegger
- Department of Dermatology, EB House Austria, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Jose Lorenzo
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Ivana Mihalek
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Olaf Rittinger
- Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, Florida, United States of America
| | - Olaf A. Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Moawia A, Shaheen R, Rasool S, Waseem SS, Ewida N, Budde B, Kawalia A, Motameny S, Khan K, Fatima A, Jameel M, Ullah F, Akram T, Ali Z, Abdullah U, Irshad S, Höhne W, Noegel AA, Al-Owain M, Hörtnagel K, Stöbe P, Baig SM, Nürnberg P, Alkuraya FS, Hahn A, Hussain MS. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann Neurol 2017; 82:562-577. [PMID: 28892560 DOI: 10.1002/ana.25044] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Autosomal recessive primary microcephaly (MCPH) is a rare condition characterized by a reduced cerebral cortex accompanied with intellectual disability. Mutations in 17 genes have been shown to cause this phenotype. Recently, mutations in CIT, encoding CRIK (citron rho-interacting kinase)-a component of the central spindle matrix-were added. We aimed at identifying novel MCPH-associated genes and exploring their functional role in pathogenesis. METHODS Linkage analysis and whole exome sequencing were performed in consanguineous and nonconsanguineous MCPH families to identify disease-causing variants. Functional consequences were investigated by RNA studies and on the cellular level using immunofluorescence and microscopy. RESULTS We identified homozygous mutations in KIF14 (NM_014875.2;c.263T>A;pLeu88*, c.2480_2482delTTG; p.Val827del, and c.4071G>A;p.Gln1357=) as the likely cause in 3 MCPH families. Furthermore, in a patient presenting with a severe form of primary microcephaly and short stature, we identified compound heterozygous missense mutations in KIF14 (NM_014875.2;c.2545C>G;p.His849Asp and c.3662G>T;p.Gly1221Val). Three of the 5 identified mutations impaired splicing, and 2 resulted in a truncated protein. Intriguingly, Kif14 knockout mice also showed primary microcephaly. Human kinesin-like protein KIF14, a microtubule motor protein, localizes at the midbody to finalize cytokinesis by interacting with CRIK. We found impaired localization of both KIF14 and CRIK at the midbody in patient-derived fibroblasts. Furthermore, we observed a large number of binucleated and apoptotic cells-signs of failed cytokinesis that we also observed in experimentally KIF14-depleted cells. INTERPRETATION Our data corroborate the role of an impaired cytokinesis in the etiology of primary and syndromic microcephaly, as has been proposed by recent findings on CIT mutations. Ann Neurol 2017;82:562-577.
Collapse
Affiliation(s)
- Abubakar Moawia
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sajida Rasool
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Institute of Biochemistry and Biotechnology, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Syeda Seema Waseem
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Birgit Budde
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Amit Kawalia
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Kamal Khan
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Ambrin Fatima
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Jameel
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Farid Ullah
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Talia Akram
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Zafar Ali
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Uzma Abdullah
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Saba Irshad
- Institute of Biochemistry and Biotechnology, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Wolfgang Höhne
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Angelika Anna Noegel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Petra Stöbe
- Center for Genomics and Transcriptomics, Tübingen, Germany
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Fowzan Sami Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Andreas Hahn
- Department of Child Neurology, University of Giessen, Giessen, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Cavallin M, Rujano MA, Bednarek N, Medina-Cano D, Bernabe Gelot A, Drunat S, Maillard C, Garfa-Traore M, Bole C, Nitschké P, Beneteau C, Besnard T, Cogné B, Eveillard M, Kuster A, Poirier K, Verloes A, Martinovic J, Bidat L, Rio M, Lyonnet S, Reilly ML, Boddaert N, Jenneson-Liver M, Motte J, Doco-Fenzy M, Chelly J, Attie-Bitach T, Simons M, Cantagrel V, Passemard S, Baffet A, Thomas S, Bahi-Buisson N. WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells. Brain 2017; 140:2597-2609. [PMID: 28969387 DOI: 10.1093/brain/awx218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
Microlissencephaly is a rare brain malformation characterized by congenital microcephaly and lissencephaly. Microlissencephaly is suspected to result from abnormalities in the proliferation or survival of neural progenitors. Despite the recent identification of six genes involved in microlissencephaly, the pathophysiological basis of this condition remains poorly understood. We performed trio-based whole exome sequencing in seven subjects from five non-consanguineous families who presented with either microcephaly or microlissencephaly. This led to the identification of compound heterozygous mutations in WDR81, a gene previously associated with cerebellar ataxia, intellectual disability and quadrupedal locomotion. Patient phenotypes ranged from severe microcephaly with extremely reduced gyration with pontocerebellar hypoplasia to moderate microcephaly with cerebellar atrophy. In patient fibroblast cells, WDR81 mutations were associated with increased mitotic index and delayed prometaphase/metaphase transition. Similarly, in vivo, we showed that knockdown of the WDR81 orthologue in Drosophila led to increased mitotic index of neural stem cells with delayed mitotic progression. In summary, we highlight the broad phenotypic spectrum of WDR81-related brain malformations, which include microcephaly with moderate to extremely reduced gyration and cerebellar anomalies. Our results suggest that WDR81 might have a role in mitosis that is conserved between Drosophila and humans.
Collapse
Affiliation(s)
- Mara Cavallin
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France
| | - Maria A Rujano
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Epithelial biology and disease, INSERM UMR 1163, Imagine Institute, Paris, France
| | | | - Daniel Medina-Cano
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Antoinette Bernabe Gelot
- AP-HP, Hôpital Armand Trousseau, Laboratoire d'Anatomie Pathologique, Neuropathologie, Paris, France.,INMED, INSERM U 901 Campus de Luminy, Marseille, France
| | - Severine Drunat
- Department of Medical Genetics and INSERM UMR1141, APHP-Robert DEBRE Universitary Hospital, Paris, France
| | - Camille Maillard
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Christine Bole
- Genomic Core Facility, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Patrick Nitschké
- Bioinformatics Core Facility, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Claire Beneteau
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Thomas Besnard
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Benjamin Cogné
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Marion Eveillard
- CHU Nantes, Service d'Hématologie Biologique, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Alice Kuster
- CHU Nantes, Service de réanimation Pédiatrique, Centre de compétence des maladies héréditaires du métabolisme, 38 boulevard Jean Monet, 44093 Nantes, France
| | - Karine Poirier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Alain Verloes
- Department of Medical Genetics and INSERM UMR1141, APHP-Robert DEBRE Universitary Hospital, Paris, France.,Sorbonne-Paris Cité University, Denis Diderot School of Medicine, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology Hospital Antoine Béclère, AP-HP, Clamart, France
| | - Laurent Bidat
- Department of Prenatal Diagnosis, Department of Obstetrics and Gynecology, René Dubos Hospital, Pontoise, France
| | - Marlene Rio
- Service de Génétique, Necker Enfants Malades University Hospital, AP-HP, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - M Louise Reilly
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Inherited Kidney Disease, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Diderot University, 75013 Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology, Necker Enfants Malades University Hospital, APHP, Paris, France.,Image - Institut Imagine, INSERM UMR1163, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | | | - Jacques Motte
- University of Reims Champagne Ardennes, UFR médecine, Reims, France
| | | | - Jamel Chelly
- IGBMC, INSERM U964, CNRS UMR 7104, Université de Strasbourg. 67404 Illkirch Cedex, France.,Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Tania Attie-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Service de Génétique, Necker Enfants Malades University Hospital, AP-HP, Paris, France
| | - Matias Simons
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Epithelial biology and disease, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Vincent Cantagrel
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sandrine Passemard
- Department of Medical Genetics and INSERM UMR1141, APHP-Robert DEBRE Universitary Hospital, Paris, France.,Sorbonne-Paris Cité University, Denis Diderot School of Medicine, Paris, France
| | - Alexandre Baffet
- Institut Curie. CNRS UMR144, PSL Research University, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Nadia Bahi-Buisson
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France
| |
Collapse
|
38
|
Shohayeb B, Lim NR, Ho U, Xu Z, Dottori M, Quinn L, Ng DCH. The Role of WD40-Repeat Protein 62 (MCPH2) in Brain Growth: Diverse Molecular and Cellular Mechanisms Required for Cortical Development. Mol Neurobiol 2017; 55:5409-5424. [DOI: 10.1007/s12035-017-0778-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
|
39
|
Duerinckx S, Abramowicz M. The genetics of congenitally small brains. Semin Cell Dev Biol 2017; 76:76-85. [PMID: 28912110 DOI: 10.1016/j.semcdb.2017.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Primary microcephaly (PM) refers to a congenitally small brain, resulting from insufficient prenatal production of neurons, and serves as a model disease for brain volumic development. Known PM genes delineate several cellular pathways, among which the centriole duplication pathway, which provide interesting clues about the cellular mechanisms involved. The general interest of the genetic dissection of PM is illustrated by the convergence of Zika virus infection and PM gene mutations on congenital microcephaly, with CENPJ/CPAP emerging as a key target. Physical (protein-protein) and genetic (digenic inheritance) interactions of Wdr62 and Aspm have been demonstrated in mice, and should now be sought in humans using high throughput parallel sequencing of multiple PM genes in PM patients and control subjects, in order to categorize mutually interacting genes, hence delineating functional pathways in vivo in humans.
Collapse
Affiliation(s)
- Sarah Duerinckx
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Marc Abramowicz
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; Department of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| |
Collapse
|
40
|
The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2017; 44:1253-1263. [PMID: 27911707 PMCID: PMC5095913 DOI: 10.1042/bst20160116] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
Abstract
Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.
Collapse
|
41
|
de Saram P, Iqbal A, Murdoch JN, Wilkinson CJ. BCAP is a centriolar satellite protein and inhibitor of ciliogenesis. J Cell Sci 2017; 130:3360-3373. [DOI: 10.1242/jcs.196642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
The centrosome and cilium are organelles with important roles in microtubule organisation, cell division, cell signalling, embryogenesis, and tissue homeostasis. The two organelles are mutually exclusive. The centriole/basal body is found at the core of the centrosome (centriole) or at the base of the cilium (basal body) and changing which organelle is present in a cell requires modification to the centriole/basal body both in terms of composition and sub-cellular localisation. While many protein components required for centrosome and cilium biogenesis have been described, there are far fewer known inhibitors of ciliogenesis. Here we show that a protein called BCAP and labelled in the sequence databases as ODF2-like (ODF2L) is a ciliation inhibitor. We show that it is a centriolar satellite protein. Furthermore, our data suggest BCAP exists as two isoforms with subtly different roles in inhibition of ciliogenesis. Both are required to prevent ciliogenesis and one additionally controls cilium length after ciliogenesis has completed.
Collapse
Affiliation(s)
- Paul de Saram
- Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Anila Iqbal
- Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Jennifer N. Murdoch
- Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Christopher J. Wilkinson
- Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| |
Collapse
|
42
|
Nano M, Basto R. Consequences of Centrosome Dysfunction During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:19-45. [PMID: 28600781 DOI: 10.1007/978-3-319-57127-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
43
|
Li H, Bielas S, Zaki M, Ismail S, Farfara D, Um K, Rosti R, Scott E, Tu S, Chi N, Gabriel S, Erson-Omay E, Ercan-Sencicek A, Yasuno K, Çağlayan A, Kaymakçalan H, Ekici B, Bilguvar K, Gunel M, Gleeson J. Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly. Am J Hum Genet 2016; 99:501-10. [PMID: 27453578 DOI: 10.1016/j.ajhg.2016.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022] Open
Abstract
Cell division terminates with cytokinesis and cellular separation. Autosomal-recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a reduction in brain and head size at birth in addition to non-progressive intellectual disability. MCPH is genetically heterogeneous, and 16 loci are known to be associated with loss-of-function mutations predominantly affecting centrosomal-associated proteins, but the multiple roles of centrosomes in cellular function has left questions about etiology. Here, we identified three families affected by homozygous missense mutations in CIT, encoding citron rho-interacting kinase (CIT), which has established roles in cytokinesis. All mutations caused substitution of conserved amino acid residues in the kinase domain and impaired kinase activity. Neural progenitors that were differentiated from induced pluripotent stem cells (iPSCs) derived from individuals with these mutations exhibited abnormal cytokinesis with delayed mitosis, multipolar spindles, and increased apoptosis, rescued by CRISPR/Cas9 genome editing. Our results highlight the importance of cytokinesis in the pathology of primary microcephaly.
Collapse
|
44
|
Pilaz LJ, McMahon JJ, Miller EE, Lennox AL, Suzuki A, Salmon E, Silver DL. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain. Neuron 2016; 89:83-99. [PMID: 26748089 DOI: 10.1016/j.neuron.2015.12.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/27/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022]
Abstract
Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Emily E Miller
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley L Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aussie Suzuki
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Edward Salmon
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Marshall RA, Osborn DPS. Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function. Cilia 2016; 5:16. [PMID: 27168933 PMCID: PMC4862167 DOI: 10.1186/s13630-016-0036-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/01/2016] [Indexed: 02/27/2023] Open
Abstract
Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies.
Collapse
Affiliation(s)
- Ryan A Marshall
- Cell Sciences and Genetics Research Centre, St George's University of London, London, SW17 0RE UK
| | - Daniel P S Osborn
- Cell Sciences and Genetics Research Centre, St George's University of London, London, SW17 0RE UK
| |
Collapse
|
46
|
Mishra HK, Prots I, Havlicek S, Kohl Z, Perez-Branguli F, Boerstler T, Anneser L, Minakaki G, Wend H, Hampl M, Leone M, Brückner M, Klucken J, Reis A, Boyer L, Schuierer G, Behrens J, Lampert A, Engel FB, Gage FH, Winkler J, Winner B. GSK3ß-dependent dysregulation of neurodevelopment in SPG11-patient induced pluripotent stem cell model. Ann Neurol 2016; 79:826-840. [PMID: 26971897 PMCID: PMC5084783 DOI: 10.1002/ana.24633] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Objective Mutations in the spastic paraplegia gene 11 (SPG11), encoding spatacsin, cause the most frequent form of autosomal‐recessive complex hereditary spastic paraplegia (HSP) and juvenile‐onset amyotrophic lateral sclerosis (ALS5). When SPG11 is mutated, patients frequently present with spastic paraparesis, a thin corpus callosum, and cognitive impairment. We previously delineated a neurodegenerative phenotype in neurons of these patients. In the current study, we recapitulated early developmental phenotypes of SPG11 and outlined their cellular and molecular mechanisms in patient‐specific induced pluripotent stem cell (iPSC)‐derived cortical neural progenitor cells (NPCs). Methods We generated and characterized iPSC‐derived NPCs and neurons from 3 SPG11 patients and 2 age‐matched controls. Results Gene expression profiling of SPG11‐NPCs revealed widespread transcriptional alterations in neurodevelopmental pathways. These include changes in cell‐cycle, neurogenesis, cortical development pathways, in addition to autophagic deficits. More important, the GSK3ß‐signaling pathway was found to be dysregulated in SPG11‐NPCs. Impaired proliferation of SPG11‐NPCs resulted in a significant diminution in the number of neural cells. The decrease in mitotically active SPG11‐NPCs was rescued by GSK3 modulation. Interpretation This iPSC‐derived NPC model provides the first evidence for an early neurodevelopmental phenotype in SPG11, with GSK3ß as a potential novel target to reverse the disease phenotype. Ann Neurol 2016;79:826–840
Collapse
Affiliation(s)
- Himanshu K Mishra
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Iryna Prots
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Steven Havlicek
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Francesc Perez-Branguli
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Tom Boerstler
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Lukas Anneser
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Holger Wend
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Martin Hampl
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Martina Brückner
- Department of Experimental Medicine II, Nikolaus-Fiebiger-Centre for Molecular Medicine, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Leah Boyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gerhard Schuierer
- Institute of Neuroradiology, Center of Neuroradiology, Regensburg, Germany
| | - Jürgen Behrens
- Department of Experimental Medicine II, Nikolaus-Fiebiger-Centre for Molecular Medicine, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany.,Institute of Physiology, RWTH University, Aachen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| |
Collapse
|
47
|
Engerer P, Plucinska G, Thong R, Trovò L, Paquet D, Godinho L. Imaging Subcellular Structures in the Living Zebrafish Embryo. J Vis Exp 2016:e53456. [PMID: 27078038 DOI: 10.3791/53456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München;
| | - Gabriela Plucinska
- Institute of Neuronal Cell Biology, Technische Universität München; Cell Biology, Department of Biology, Faculty of Science, Utrecht University
| | - Rachel Thong
- Institute of Neuronal Cell Biology, Technische Universität München; Faculty of Biology, Ludwig-Maximilians-Universität-München
| | - Laura Trovò
- Institute of Neuronal Cell Biology, Technische Universität München
| | - Dominik Paquet
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München; German Center for Neurodegenerative Diseases; Laboratory of Brain Development and Repair, The Rockefeller University
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München;
| |
Collapse
|
48
|
Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nat Commun 2015; 6:8894. [PMID: 26573328 PMCID: PMC4660207 DOI: 10.1038/ncomms9894] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophila. We show that aneuploidy causes brain size reduction due to a decrease in the number of proliferative neural stem cells (NSCs), but not through apoptosis. Instead, aneuploid NSCs present an extended G1 phase, which leads to cell cycle exit and premature differentiation. Moreover, we show that this response to aneuploidy is also present in adult intestinal stem cells but not in the wing disc. Our work highlights a neural and intestine stem cell-specific response to aneuploidy, which prevents their proliferation and expansion. It is unclear why certain tissues are more susceptible to the consequences of aneuploidy. Here, in Drosophila, Gogendeau et al. identify aneuploidy as the cause of lengthened G1 and premature differentiation in both neural and adult intestinal stem cells, which prevents cells with abnormal genomes from cycling.
Collapse
|
49
|
Williams SE, Garcia I, Crowther AJ, Li S, Stewart A, Liu H, Lough KJ, O'Neill S, Veleta K, Oyarzabal EA, Merrill JR, Shih YYI, Gershon TR. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice. Development 2015; 142:3921-32. [PMID: 26450969 DOI: 10.1242/dev.124271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/28/2015] [Indexed: 01/06/2023]
Abstract
Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.
Collapse
Affiliation(s)
- Scott E Williams
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Idoia Garcia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew J Crowther
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shiyi Li
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Alyssa Stewart
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kendall J Lough
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sean O'Neill
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine Veleta
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Esteban A Oyarzabal
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph R Merrill
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nat Commun 2015; 6:7676. [PMID: 26158450 PMCID: PMC4499871 DOI: 10.1038/ncomms8676] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/30/2015] [Indexed: 12/24/2022] Open
Abstract
CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63 deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63 deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.
Collapse
|