1
|
Talaga S, Guidez A, de Thoisy B, Lavergne A, Carinci R, Gaborit P, Issaly J, Dusfour I, Duchemin JB. A DNA barcode library for Culex mosquitoes (Diptera: Culicidae) of South America with the description of two cryptic species of subgenus Melanoconion. PLoS One 2025; 20:e0310571. [PMID: 39982940 PMCID: PMC11845035 DOI: 10.1371/journal.pone.0310571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 02/23/2025] Open
Abstract
Among mosquitoes (Diptera: Culicidae), the genus Culex Linnaeus is one of the most diverse in the world and includes numerous known vector species of parasites and viruses to humans. Morphological identification of Culex species is notoriously difficult and relies mostly on the examination of properly dissected male genitalia which largely prevents female and immature identification during entomological, ecological or arboviral surveys. The aims of this study were (i) to establish a DNA barcode library for Culex mosquitoes of French Guiana based on the mitochondrial gene cytochrome c oxidase I (COI) marker, (ii) to compare three approaches of molecular delimitation of species to morphological identification, (iii) to test the effectiveness of the COI marker at a broader geographical scale across South America, and (iv) to discuss the internal classification of the genus Culex as regard to our phylogenetic analysis. Mosquitoes used in this study were sampled in French Guiana between 2013 and 2023. We provide 246 COI sequences for 90 morphologically identified species of Culex, including five new country records and two newly described species. Overall, congruence between morphological identification and molecular delimitations using the COI barcode was high. The Barcode of Life Data clustering approach into Barcode Index Numbers gives the best result in terms of species delimitation. Inconsistencies between morphological identification and molecular delimitation can be explained by introgression, incomplete lineage sorting, imperfect taxonomy or the effect of geographical gap in sampling. This increases by almost two-fold the number of mosquito species for which a DNA barcode is available in French Guiana, including 75% of the Culex species currently known in the territory. Finally, this study confirms the usefulness of the COI barcode in identifying Culex of South America, but also points the limits of this marker for some groups of species within the subgenera Culex and Melanoconion.
Collapse
Affiliation(s)
- Stanislas Talaga
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Amandine Guidez
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Benoît de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Romuald Carinci
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Pascal Gaborit
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Jean Issaly
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Isabelle Dusfour
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | |
Collapse
|
2
|
Bangher DN, Almirón WR, Stein M. Description of the larva and pupa of Culex (Melanoconion) dureti Casal & Garcia and redescription of the adult male (Diptera: Culicidae). Zootaxa 2024; 5443:253-262. [PMID: 39646682 DOI: 10.11646/zootaxa.5443.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 12/10/2024]
Abstract
Culex (Melanoconion) dureti Casal & García, 1968 was described based on the adult male. In this article, we describe and illustrate the pupa and the fourth-instar larva and provide a redescription of the adult male. Diagnostic characters of the male genitalia and fourth-instar larva are also provided to separate Cx. dureti from closely related species. Possible phylogenetic relationships of the immature stages of the Inhibitator Group are discussed. Information on distribution and bionomics of the species is also provided. The female remains unknown.
Collapse
Affiliation(s)
- Débora N Bangher
- Instituto de Medicina Regional; Universidad Nacional del Nordeste; Resistencia and Consejo Nacional de Investigaciones Científicas y Técnicas; Nordeste; Argentina.
| | - Walter R Almirón
- Centro de Investigaciones Entomológicas de Córdoba; Facultad de Ciencias Exactas; Físicas y Naturales; Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (CONICET-UNC); Córdoba; Argentina.
| | - Marina Stein
- Instituto de Medicina Regional; Universidad Nacional del Nordeste; Resistencia and Consejo Nacional de Investigaciones Científicas y Técnicas; Nordeste; Argentina.
| |
Collapse
|
3
|
Laurito M, Arias-Alzate A. Current and future potential distribution of Culex (Melanoconion) (Diptera: Culicidae) of public health interest in the Neotropics. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:354-366. [PMID: 38339867 DOI: 10.1093/jme/tjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Anthropogenic activities are altering ecosystem stability and climate worldwide, which is disturbing and shifting arbovirus vector distributions. Although the overall geographic range of some epidemiologically important species is recognized, the spatiotemporal variation for other species in the context of climate change remains poorly understood. Here we predict the current potential distribution of 9 species of Culex (Melanoconion) based on an ecological niche modeling (ENM) approach and assess spatiotemporal variation in future climate change in the Neotropics. The most important environmental predictors were the mean temperature of the warmest season (27 °C), precipitation during the driest month (50 mm), and precipitation during the warmest season (>200 mm). The best current model for each species was transferred to the future general circulation model IPSL-CM6A-LR, using 2 shared socioeconomic pathway scenarios (ssp1-2.6, ssp5-8.5). Under both scenarios of climatic change, an expansion of suitable areas can be observed followed by a strong reduction for the medium-long future under the worst scenario. The multivariate environmental similarity surface analysis indicated future novel climates outside the current range. However, none of the species would occur in those areas. Even if many challenges remain in improving methods for forecasting species responses to global climate change and arbovirus transmission, ENM has strong potential to be applied to the geographic characterization of these systems. Our study can be used for the monitoring of Culex (Melanoconion) species populations and their associated arboviruses, contributing to develop region-specific public health surveillance programs.
Collapse
Affiliation(s)
- Magdalena Laurito
- Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito, 9 de julio 22, Chilecito, La Rioja, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Chilecito, La Rioja, Argentina
| | - Andrés Arias-Alzate
- Facultad de Ciencias y Biotecnología, Universidad CES, Calle 10A #22-04, Medellín, Antioquia, Colombia
| |
Collapse
|
4
|
Talaga S, Duchemin JB. Mosquitoes (Diptera: Culicidae) of the Amazonian savannas of French Guiana with a description of two new species. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 49:15-27. [PMID: 38147298 DOI: 10.52707/1081-1710-49.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 12/27/2023]
Abstract
Amazonian savannas are among the most noteworthy landscape components of the coastal plain of French Guiana. Although they cover only 0.22% of the territory, they bring together a large part of the animal and plant diversity of this overseas region of France. This article outlines the results of the first study dedicated to mosquitoes (Diptera: Culicidae) of Amazonian savannas. Samplings were conducted in eight independent savannas evenly distributed along a transect of 170 km on the coastal plain of French Guiana. A total of 50 mosquito species were recorded, which is about 20% of the culicid fauna currently known in French Guiana. Among them, Culex (Melanoconion) organaboensis sp. nov. and Cx. (Mel.) zabanicus sp. nov. are newly described based on both morphological features of the male genitalia and a DNA barcode obtained from type specimens. Diagnostic characters to assist their identification are provided and their placement within the infrasubgeneric classification of the subgenus Melanoconion is discussed.
Collapse
Affiliation(s)
- Stanislas Talaga
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 97300, Cayenne, French Guiana,
| | - Jean-Bernard Duchemin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 97300, Cayenne, French Guiana
| |
Collapse
|
5
|
Reis LAM, Pampolha ABO, do Nascimento BLS, Dias DD, Araújo PADS, da Silva FS, Silva LHDSE, Reis HCF, da Silva EVP, Nunes Neto JP. Genus Culex Linnaeus, 1758 (Diptera: Culicidae) as an Important Potential Arbovirus Vector in Brazil: An Integrative Review. Life (Basel) 2023; 13:2179. [PMID: 38004319 PMCID: PMC10672040 DOI: 10.3390/life13112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
The genus Culex has 817 species subdivided into 28 subgenera. It has a cosmopolitan distribution, being most abundant in countries with a tropical climate. Understanding the ecology and diversity of viruses circulating in the species of this genus is important for understanding their role as arbovirus vectors in Brazil. To conduct an integrative review to identify the importance of the Culex genus as arbovirus vectors in Brazil. A search was carried out for scientific papers in the PubMed, BVSalud, Patuá-IEC and International Catalogue of Arboviruses: including certain other viruses of vertebrates databases. 36 publications describing arbovirus detections in Culex mosquitoes collected in the field in Brazil were evaluated. A total of 42 arbovirus species were detected, as well as studies analyzing the vector competence of C. quinquefasciatus for the transmission of four different arboviruses. The study of the Culex genus and its role as a vector of arboviruses in Brazil is essential for understanding transmission cycles, with the main aim of reducing cases of human infection. Thus, entomovirological surveillance guides the implementation of actions to detect circulating arboviruses among vectors to anticipate measures aimed at preventing or reducing the risk of arbovirus outbreaks in the country.
Collapse
Affiliation(s)
- Lúcia Aline Moura Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Ana Beatriz Oliveira Pampolha
- Institute of Biological Sciences, Faculty of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Bruna Lais Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Daniel Damous Dias
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Pedro Arthur da Silva Araújo
- Graduate Program in Biology of Infectious and Parasitary Agents, Biological Sciences Institute, Federal University of Pará, Belém 66077-830, Brazil
| | - Fábio Silva da Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Lucas Henrique da Silva e Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Hanna Carolina Farias Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Eliana Vieira Pinto da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| |
Collapse
|
6
|
González CR, Reyes-Valenzuela C, Rossi GC, Laurito M. Revalidation of Phalangomyia Dyar & Knab as a subgenus of Culex L. (Diptera: Culicidae) based on morphological and molecular evidence. Zootaxa 2023; 5256:544-564. [PMID: 37044632 DOI: 10.11646/zootaxa.5256.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Culex apicinus Philippi, 1865 and its synonyms, Phalangomyia debilis Dyar & Knab, 1914, Cx. escomeli Brèthes, 1920 and Cx. alticola Martini, 1931, were re-examined employing molecular and morphological phylogenetic methods. Archival and fresh specimens were used for morphological diagnosis and to generate fragments of two single-copy nuclear genes (CAD, HB) and one mitochondrial gene (COI). Additional sequences of Cx. apicinus and species of the subgenus Culex of Culex Linnaeus, 1758 and other subgenera of the genus were obtained from GenBank for molecular analysis. Diagnostic morphological characteristics of Cx. apicinus and other species of the subgenus Culex were contrasted. Phylogenetic relationships were generated using DNA sequences of protein coding genes under both Maximum Likelihood and Bayesian approaches. Culex apicinus showed unique morphological traits that allow its classification in a separate subgenus. The subspecific status is supported by its recovery as a monophyletic clade within the genus Culex based on morphological and molecular characters. The synonymous Phalangomyia debilis provides an available subgeneric name. Consequently, Phalangomyia Dyar & Knab, 1914 is resurrected from synonymy with Culex Linnaeus, 1758 as a monobasic subgenus of Culex.
Collapse
Affiliation(s)
- Christian R González
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile..
| | - Carolina Reyes-Valenzuela
- Laboratorio de Entomología, Sub-departamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile. .
| | - Gustavo C Rossi
- 3Centro de Estudios Parasitológicos y de Vectores. (CEPAVE), CCT Conicet, La Plata, UNLP. La Plata, Argentina. .
| | - Magdalena Laurito
- 4Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito, La Rioja, Argentina. .
| |
Collapse
|
7
|
Identification of Neotropical Culex Mosquitoes by MALDI-TOF MS Profiling. Trop Med Infect Dis 2023; 8:tropicalmed8030168. [PMID: 36977169 PMCID: PMC10055718 DOI: 10.3390/tropicalmed8030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The mosquito (Diptera: Culicidae) fauna of French Guiana encompasses 242 species, of which nearly half of them belong to the genus Culex. Whereas several species of Culex are important vectors of arboviruses, only a limited number of studies focus on them due to the difficulties to morphologically identify field-caught females. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of mosquitoes. Culex females collected in French Guiana were morphologically identified and dissected. Abdomens were used for molecular identification using the COI (cytochrome oxidase 1) gene. Legs and thorax of 169 specimens belonging to 13 Culex species, (i.e., Cx. declarator, Cx. nigripalpus, Cx. quinquefasciatus, Cx. usquatus, Cx. adamesi, Cx. dunni, Cx. eastor, Cx. idottus, Cx. pedroi, Cx. phlogistus, Cx. portesi, Cx. rabanicolus and Cx. spissipes) were then submitted to MALDI-TOF MS analysis. A high intra-species reproducibility and inter-species specificity of MS spectra for each mosquito body part tested were obtained. A corroboration of the specimen identification was revealed between MALDI-TOF MS, morphological and molecular results. MALDI-TOF MS protein profiling proves to be a suitable tool for identification of neotropical Culex species and will permit the enhancement of knowledge on this highly diverse genus.
Collapse
|
8
|
Koh C, Frangeul L, Blanc H, Ngoagouni C, Boyer S, Dussart P, Grau N, Girod R, Duchemin JB, Saleh MC. Ribosomal RNA (rRNA) sequences from 33 globally distributed mosquito species for improved metagenomics and species identification. eLife 2023; 12:82762. [PMID: 36688360 PMCID: PMC10014081 DOI: 10.7554/elife.82762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Total RNA sequencing (RNA-seq) is an important tool in the study of mosquitoes and the RNA viruses they vector as it allows assessment of both host and viral RNA in specimens. However, there are two main constraints. First, as with many other species, abundant mosquito ribosomal RNA (rRNA) serves as the predominant template from which sequences are generated, meaning that the desired host and viral templates are sequenced far less. Second, mosquito specimens captured in the field must be correctly identified, in some cases to the sub-species level. Here, we generate mosquito rRNA datasets which will substantially mitigate both of these problems. We describe a strategy to assemble novel rRNA sequences from mosquito specimens and produce an unprecedented dataset of 234 full-length 28S and 18S rRNA sequences of 33 medically important species from countries with known histories of mosquito-borne virus circulation (Cambodia, the Central African Republic, Madagascar, and French Guiana). These sequences will allow both physical and computational removal of rRNA from specimens during RNA-seq protocols. We also assess the utility of rRNA sequences for molecular taxonomy and compare phylogenies constructed using rRNA sequences versus those created using the gold standard for molecular species identification of specimens-the mitochondrial cytochrome c oxidase I (COI) gene. We find that rRNA- and COI-derived phylogenetic trees are incongruent and that 28S and concatenated 28S+18S rRNA phylogenies reflect evolutionary relationships that are more aligned with contemporary mosquito systematics. This significant expansion to the current rRNA reference library for mosquitoes will improve mosquito RNA-seq metagenomics by permitting the optimization of species-specific rRNA depletion protocols for a broader range of species and streamlining species identification by rRNA sequence and phylogenetics.
Collapse
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Carine Ngoagouni
- Institut Pasteur de Bangui, Medical Entomology LaboratoryBanguiCentral African Republic
| | - Sébastien Boyer
- Institut Pasteur du Cambodge, Medical and Veterinary Entomology UnitPhnom PenhCambodia
| | | | - Nina Grau
- Institut Pasteur de Madagascar, Medical Entomology UnitAntananarivoMadagascar
| | - Romain Girod
- Institut Pasteur de Madagascar, Medical Entomology UnitAntananarivoMadagascar
| | - Jean-Bernard Duchemin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile AbonnencCayenneFrench Guiana
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| |
Collapse
|
9
|
Maquart PO, Chann L, Boyer S. Culex vishnui (Diptera: Culicidae): An Overlooked Vector of Arboviruses in South-East Asia. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1144-1153. [PMID: 35522221 DOI: 10.1093/jme/tjac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Culex vishnui Theobald, 1901, a main vector of Japanese encephalitis virus (JEV), is widely distributed in the Oriental region where it often accounts for a great part of the culicid fauna. This species also has been found naturally infected with at least 13 other arboviruses of medical and veterinary importance. Females blood feed predominantly upon pigs and birds, but may readily bite cattle and humans. Because of its abundance, medical importance, and presence throughout ecological gradients among urban, peri-urban, and rural areas, Cx. vishnui potentially may serve as a bridge vector transmitting viruses from natural and wild hosts to humans. Being zoo- and anthropophagic, omnipresent in the Oriental region, and presenting strong resistance to many insecticide families, this overlooked mosquito species may pose a serious health risk in one of the most densely populated regions of the world.
Collapse
Affiliation(s)
- Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Leakena Chann
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
10
|
Laurito M, Ayala AM, Arias-Builes DL, Almirón WR. Improving the DNA Barcode Library of Mosquito Species With New Identifications and Discoveries in North-Central Argentina. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:173-183. [PMID: 34661674 DOI: 10.1093/jme/tjab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The family Culicidae is represented by 244 species in Argentina, many of them with epidemiological importance. DNA barcodes are effective tools for identifying mosquito species, for knowing genetic variability, and for establishing phylogenetic relationships. This work aims to explore mosquito diversity employing different species delimitation approaches and to establish formally a DNA barcode library for the Argentinian mosquito fauna. Barcode fragments of 80 specimens of Argentinian mosquitoes of 28 species of the genera Aedeomyia Theobald (Diptera: Culicidae), Anopheles Meigen (Diptera: Culicidae), Coquillettidia Dyar (Diptera: Culicidae), Culex L. (Diptera: Culicidae), Haemagogus Williston (Diptera: Culicidae), Mansonia Blanchard (Diptera: Culicidae), Nyssorhynchus Blanchard (Diptera: Culicidae), Ochlerotatus Lynch-Arribálzaga (Diptera: Culicidae), Psorophora Robinneau-Desvoidy (Diptera: Culicidae) and Uranotaenia Lynch-Arribálzaga (Diptera: Culicidae) were sequenced. Another 82 sequences were obtained from public databases to establish the phylogenetic relationships using Maximum Likelihood and Bayesian Inference, and the species boundaries based on three approaches (ABGD, GMYC, and mPTP). Sixteen of the 28 species sequenced were recovered as monophyletic, of which 12 were also recognized as molecular operational taxonomic units according to the three methodologies. The disparity between morphology and barcode-based identifications could be explained by synonymy, species complexes occurrence, hybridization, incomplete lineage sorting, or the effect of the geographical scale of sampling. Twenty of the 28 sequenced species are new barcodes for Argentina and 11 are the first for science. This increases from 31 to 52 (12.7 to 21.31%) and from six to 10 (28.57 to 47.62%) the number of species and genera, respectively, with barcode sequences in Argentina. New species records are provided.
Collapse
Affiliation(s)
- M Laurito
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Avenida Velez Sarsfield 1611, X5016GCA, Córdoba, Argentina
| | - A M Ayala
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Diversidad y Ecología Animal (IDEA), Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - D L Arias-Builes
- Centro de Investigación e Innovación Tecnológica (CENIIT), CONICET, Universidad Nacional de La Rioja. Gdor. Luis Vernet and Apostol Felipe, La Rioja, Argentina
| | - W R Almirón
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Avenida Velez Sarsfield 1611, X5016GCA, Córdoba, Argentina
| |
Collapse
|
11
|
Emergence potential of mosquito-borne arboviruses from the Florida Everglades. PLoS One 2021; 16:e0259419. [PMID: 34807932 PMCID: PMC8608345 DOI: 10.1371/journal.pone.0259419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The Greater Everglades Region of South Florida is one of the largest natural wetlands and the only subtropical ecosystem found in the continental United States. Mosquitoes are seasonally abundant in the Everglades where several potentially pathogenic mosquito-borne arboviruses are maintained in natural transmission cycles involving vector-competent mosquitoes and reservoir-competent vertebrate hosts. The fragile nature of this ecosystem is vulnerable to many sources of environmental change, including a wetlands restoration project, climate change, invasive species and residential development. In this study, we obtained baseline data on the distribution and abundance of both mosquitos and arboviruses occurring in the southern Everglades region during the summer months of 2013, when water levels were high, and in 2014, when water levels were low. A total of 367,060 mosquitoes were collected with CO2-baited CDC light traps at 105 collection sites stratified among the major landscape features found in Everglades National Park, Big Cypress National Preserve, Fakahatchee State Park Preserve and Picayune State Forest, an area already undergoing restoration. A total of 2,010 pools of taxonomically identified mosquitoes were cultured for arbovirus isolation and identification. Seven vertebrate arboviruses were isolated: Everglades virus, Tensaw virus, Shark River virus, Gumbo Limbo virus, Mahogany Hammock virus, Keystone virus, and St. Louis encephalitis virus. Except for Tensaw virus, which was absent in 2013, the remaining viruses were found to be most prevalent in hardwood hammocks and in Fakahatchee, less prevalent in mangroves and pinelands, and absent in cypress and sawgrass. In contrast, in the summer of 2014 when water levels were lower, these arboviruses were far less prevalent and only found in hardwood hammocks, but Tensaw virus was present in cypress, sawgrass, pinelands, and a recently burned site. Major environmental changes are anticipated in the Everglades, many of which will result in increased water levels. How these might lead to the emergence of arboviruses potentially pathogenic to both humans and wildlife is discussed.
Collapse
|
12
|
Hoyos J, Carrasquilla MC, León C, Montgomery JM, Salyer SJ, Komar N, González C. Host selection pattern and flavivirus screening of mosquitoes in a disturbed Colombian rainforest. Sci Rep 2021; 11:18656. [PMID: 34545162 PMCID: PMC8452662 DOI: 10.1038/s41598-021-98076-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/20/2021] [Indexed: 11/08/2022] Open
Abstract
Studies on the feeding behavior of hematophagous insects, particularly those of medical importance, are relevant for tracking possible pathogen transmission routes and identifying biases in the choice of vertebrates. We evaluated host selection of blood-feeding mosquitoes in a disturbed forest in the Magdalena Medio valley in Colombia from March 2017 to April 2018, after the introduction of Zika virus to the Americas from the 2015-2016 outbreak. We estimated vertebrate diversity and collected blood-engorged female mosquitoes. Genomic DNA/RNA was extracted from the mosquito's abdomen for vertebrate host identification and pathogen detection. We performed conventional PCR and sequencing, using universal primers targeting vertebrate regions of the eukaryotic mitochondrial genome to determine bloodmeal host. Additionally, we tested for the presence of flaviviruses in all mosquito samples with RT-PCR. Based on the identity and quantity of detected bloodmeals, we performed mosquito-vertebrate interaction network analysis and estimated topology metrics. In total, we collected 292 engorged female mosquitoes representing 20 different species. Bloodmeal analyses identified 26 vertebrate species, the majority of which were mammals (N = 16; 61.5%). No flaviviruses of medical importance were detected from the samples. Although feeding patterns varied, network analyses showed a high degree of specialization by mosquitoes and revealed ecological and phylogenetic relationships among the host community. We conclude that host selection or preference by mosquitoes is species specific.
Collapse
Affiliation(s)
- Juliana Hoyos
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia.
| | - María Cristina Carrasquilla
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia
| | - Cielo León
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephanie J Salyer
- Global Epidemiology, Laboratory, and Surveillance Branch, Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nicholas Komar
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Ft. Collins, CO, USA
| | - Camila González
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia.
| |
Collapse
|
13
|
Sá ILRD, Hutchings RSG, Hutchings RW, Sallum MAM. Revision of the Atratus Group of Culex (Melanoconion) (Diptera: Culicidae). Parasit Vectors 2020; 13:269. [PMID: 32460878 PMCID: PMC7251747 DOI: 10.1186/s13071-020-3982-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/18/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Despite the importance of some species of Culex (Melanoconion) (Diptera: Culicidae) as vectors of several arboviruses that cause diseases in humans and other animals, there are few taxonomic studies focusing on species of the subgenus, especially providing morphological keys for species identification. RESULTS Thirteen species of the Atratus Group of Culex (Melanoconion) were reviewed, five new species are described, and two taxonomic changes are proposed: Cx. (Mel.) exedrus Root, 1927 and Cx. (Mel.) loturus Dyar, 1925 are resurrected from synonymy with Cx. (Mel.) dunni Dyar, 1918 and Cx. (Mel.) zeteki Dyar, 1918, respectively. The Atratus Group now includes fourteen species: Cx. (Mel.) atratus Theobald, 1901; Cx. (Mel.) caribeanus Galindo & Blanton, 1954; Cx. (Mel.) columnaris Sá & Hutchings n. sp.; Cx. (Mel.) commevynensis Bonne-Wepster & Bonne, 1919; Cx. (Mel.) comptus Sá & Sallum n. sp.; Cx. (Mel.) dunni; Cx. (Mel.) ensiformis Bonne-Wepster & Bonne, 1919; Cx. (Mel.) exedrus; Cx. (Mel.) longisetosus Sá & Sallum n. sp.; Cx. (Mel.) longistylus Sá & Sallum n. sp.; Cx. (Mel.) loturus; Cx. (Mel.) spinifer Sá & Sallum n. sp.; Cx. (Mel.) trigeminatus Clastrier, 1970; and Cx. (Mel.) zeteki. Keys, descriptions and illustrations for the identification of the male, female, pupal and fourth-instar larval stages of each species are provided. The treatment of each species includes a complete synonymy, descriptions of available life stages, a taxonomic discussion, updated bionomics and geographical distribution, and a list of material examined. CONCLUSIONS The taxonomy of the Atratus Group of Culex (Melanoconion) is updated, including descriptions of five new species. The number of valid species is greater than the number recognized in the previous taxonomic study of the group, increasing from seven to 14 species. Distributional and bionomical data are updated. Morphology-based identification keys for females, males, fourth-instar larvae and pupae provided in this study will facilitate species identification.
Collapse
Affiliation(s)
- Ivy Luizi Rodrigues de Sá
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Doutor Arnaldo 715, São Paulo, SP 01246-904 Brazil
| | - Rosa Sá Gomes Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2.936, Manaus, AM 69067-375 Brazil
| | - Roger William Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2.936, Manaus, AM 69067-375 Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Doutor Arnaldo 715, São Paulo, SP 01246-904 Brazil
| |
Collapse
|