1
|
Saha M, Dittami SM, Chan CX, Raina JB, Stock W, Ghaderiardakani F, Valathuparambil Baby John AM, Corr S, Schleyer G, Todd J, Cardini U, Bengtsson MM, Prado S, Skillings D, Sonnenschein EC, Engelen AH, Wang G, Wichard T, Brodie J, Leblanc C, Egan S. Progress and future directions for seaweed holobiont research. THE NEW PHYTOLOGIST 2024; 244:364-376. [PMID: 39137959 DOI: 10.1111/nph.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.
Collapse
Affiliation(s)
- Mahasweta Saha
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Simon M Dittami
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Willem Stock
- Phycology Research Group, Ghent University, Krijgslaan 281 Sterre S8, Ghent, 9000, Belgium
| | - Fatemeh Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | | | - Shauna Corr
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, Jena, 07745, Germany
| | - Jonathan Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ulisse Cardini
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, Greifswald, 17489, Germany
| | - Soizic Prado
- National Museum of Natural History, Unit Molecules of Communication and Adaptation of Microorganisms (UMR 7245), Paris, France
| | - Derek Skillings
- Department of Philosophy, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Eva C Sonnenschein
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | - Juliet Brodie
- Natural History Museum, Research, Cromwell Road, London, SW7 5BD, UK
| | - Catherine Leblanc
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Suhelen Egan
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences (BEES), UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Zhang X, Hua J, Song Z, Li K. A review: Marine aquaculture impacts marine microbial communities. AIMS Microbiol 2024; 10:239-254. [PMID: 38919720 PMCID: PMC11194620 DOI: 10.3934/microbiol.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement.
Collapse
Affiliation(s)
| | | | | | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Davison HR, Crozier J, Pirro S, Kampen H, Werner D, Hurst GDD. 'Candidatus Tisiphia' is a widespread Rickettsiaceae symbiont in the mosquito Anopheles plumbeus (Diptera: Culicidae). Environ Microbiol 2023; 25:3064-3074. [PMID: 37658745 PMCID: PMC10947512 DOI: 10.1111/1462-2920.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Symbiotic bacteria can alter host biology by providing protection from natural enemies, or alter reproduction or vectoral competence. Symbiont-linked control of vector-borne disease in Anopheles has been hampered by a lack of symbioses that can establish stable vertical transmission in the host. Previous screening found the symbiont 'Candidatus Tisiphia' in Anopheles plumbeus, an aggressive biter and potential secondary vector of malaria parasites and West Nile virus. We screened samples collected over 10-years across Germany and used climate databases to assess environmental influence on incidence. We observed a 95% infection rate, and that the frequency of infection did not fluctuate with broad environmental factors. Maternal inheritance is indicated by presence in the ovaries through FISH microscopy. Finally, we assembled a high-quality 1.6 Mbp draft genome of 'Ca. Tisiphia' to explore its phylogeny and potential metabolic competence. The infection is closely related to strains found in Culicoides biting midges and shows similar patterns of metabolism, providing no evidence of the capacity to synthesize B-vitamins. This infection offers avenues for onward research in anopheline mosquito symbioses. Additionally, it provides future opportunity to study the impact of 'Ca. Tisiphia' on natural and transinfected hosts, especially in relation to reproductive fitness and vectorial competence and capacity.
Collapse
Affiliation(s)
- Helen R. Davison
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| | - Jessica Crozier
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| | | | - Helge Kampen
- Institute of Infectology (IMED)Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthGreifswaldIsle of RiemsGermany
| | - Doreen Werner
- Land Use and GovernanceLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| |
Collapse
|
4
|
Massé A, Detang J, Duval C, Duperron S, Woo AC, Domart-Coulon I. Bacterial Microbiota of Ostreobium, the Coral-Isolated Chlorophyte Ectosymbiont, at Contrasted Salinities. Microorganisms 2023; 11:1318. [PMID: 37317290 DOI: 10.3390/microorganisms11051318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Microscopic filaments of the siphonous green algae Ostreobium (Ulvophyceae, Bryopsidales) colonize and dissolve the calcium carbonate skeletons of coral colonies in reefs of contrasted salinities. Here, we analyzed their bacterial community's composition and plasticity in response to salinity. Multiple cultures of Pocillopora coral-isolated Ostreobium strains from two distinct rbcL lineages representative of IndoPacific environmental phylotypes were pre-acclimatized (>9 months) to three ecologically relevant reef salinities: 32.9, 35.1, and 40.2 psu. Bacterial phylotypes were visualized for the first time at filament scale by CARD-FISH in algal tissue sections, within siphons, at their surface or in their mucilage. Ostreobium-associated microbiota, characterized by bacterial 16S rDNA metabarcoding of cultured thalli and their corresponding supernatants, were structured by host genotype (Ostreobium strain lineage), with dominant Kiloniellaceae or Rhodospirillaceae (Alphaproteobacteria, Rhodospirillales) depending on Ostreobium lineage, and shifted Rhizobiales' abundances in response to the salinity increase. A small core microbiota composed of seven ASVs (~1.5% of thalli ASVs, 19-36% cumulated proportions) was persistent across three salinities in both genotypes, with putative intracellular Amoebophilaceae and Rickettsiales_AB1, as well as Hyphomonadaceae and Rhodospirillaceae also detected within environmental (Ostreobium-colonized) Pocillopora coral skeletons. This novel knowledge on the taxonomic diversity of Ostreobium bacteria paves the way to functional interaction studies within the coral holobiont.
Collapse
Affiliation(s)
- Anaïs Massé
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Juliette Detang
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Charlotte Duval
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Sébastien Duperron
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Anthony C Woo
- Pôle Analyse de Données UAR 2700 2AD, Muséum National d'Histoire Naturelle (MNHN), 43 Rue Cuvier, 75005 Paris, France
| | - Isabelle Domart-Coulon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| |
Collapse
|
5
|
Morrissey KL, Iveša L, Delva S, D'Hondt S, Willems A, De Clerck O. Impacts of environmental stress on resistance and resilience of algal-associated bacterial communities. Ecol Evol 2021; 11:15004-15019. [PMID: 34765156 PMCID: PMC8571626 DOI: 10.1002/ece3.8184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
Algal-associated bacteria are fundamental to the ecological success of marine green macroalgae such as Caulerpa. The resistance and resilience of algal-associated microbiota to environmental stress can promote algal health and genetic adaptation to changing environments. The composition of bacterial communities has been shown to be unique to algal morphological niches. Therefore, the level of response to various environmental perturbations may in fact be different for each niche-specific community. Factorial in situ experiments were set up to investigate the effect of nutrient enrichment and temperature stress on the bacterial communities associated with Caulerpa cylindracea. Bacteria were characterized using the 16S rRNA gene, and the community compositions were compared between different parts of the algal thallus (endo-, epi-, and rhizomicrobiome). Resistance and resilience were calculated to further understand the changes of microbial composition in response to perturbations. The results of this study provide evidence that nutrient enrichment has a significant influence on the taxonomic and functional structure of the epimicrobiota, with a low community resistance index observed for both. Temperature and nutrient stress had a significant effect on the rhizomicrobiota taxonomic composition, exhibiting the lowest overall resistance to change. The functional performance of the rhizomicrobiota had low resilience to the combination of stressors, indicating potential additive effects. Interestingly, the endomicrobiota had the highest overall resistance, yet the lowest overall resilience to environmental stress. This further contributes to our understanding of algal microbiome dynamics in response to environmental changes.
Collapse
Affiliation(s)
| | - Ljiljana Iveša
- Center for Marine ResearchRuđer Bošković InstituteRovinjCroatia
| | - Soria Delva
- Phycology Research GroupDepartment of BiologyGhent UniversityGhentBelgium
| | - Sofie D'Hondt
- Phycology Research GroupDepartment of BiologyGhent UniversityGhentBelgium
| | - Anne Willems
- Laboratory of MicrobiologyDepartment of Biochemistry and MicrobiologyGhent UniversityGhentBelgium
| | - Olivier De Clerck
- Phycology Research GroupDepartment of BiologyGhent UniversityGhentBelgium
| |
Collapse
|
6
|
Srinivasan R, Kannappan A, Shi C, Lin X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021; 19:md19100530. [PMID: 34677431 PMCID: PMC8539464 DOI: 10.3390/md19100530] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996–2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| | - Arunachalam Kannappan
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Chunlei Shi
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| |
Collapse
|
7
|
Microbiota of the Digestive Gland of Red Abalone ( Haliotis rufescens) Is Affected by Withering Syndrome. Microorganisms 2020; 8:microorganisms8091411. [PMID: 32933183 PMCID: PMC7565822 DOI: 10.3390/microorganisms8091411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Withering syndrome (WS), an infectious disease caused by intracellular bacteria Candidatus Xenohaliotis californiensis, has provoked significant economic losses in abalone aquaculture. The pathogen infects gastroenteric epithelia, including digestive gland, disrupting the digestive system and causing a progressive wilting in abalone. Nonetheless, our knowledge about WS implications in digestive gland microbiota, and its role in diseases progress remains largely unknown. This study aims to determine whether digestive gland-associated microbiota differs between healthy red abalone (Haliotis rufescens) and red abalone affected with WS. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, our results revealed differences in microbiota between groups. Bacterial genera, including Mycoplasma, Lactobacillus, Cocleimonas and Tateyamaria were significantly more abundant in healthy abalones, whilst Candidatus Xenohaliotis californiensis and Marinomonas were more abundant in WS-affected abalones. Whilst Mycoplasma was the dominant genus in the healthy group, Candidatus Xenohaliotis californiensis was dominant in the WS group. However, Candidatus Xenohaliotis californiensis was present in two healthy specimens, and thus the Mycoplasma/Candidatus Xenohaliotis californiensis ratio appears to be more determinant in specimens affected with WS. Further research to elucidate the role of digestive gland microbiota ecology in WS pathogenesis is required.
Collapse
|
8
|
Pasqualetti C, Szokoli F, Rindi L, Petroni G, Schrallhammer M. The Obligate Symbiont " Candidatus Megaira polyxenophila" Has Variable Effects on the Growth of Different Host Species. Front Microbiol 2020; 11:1425. [PMID: 32733401 PMCID: PMC7360802 DOI: 10.3389/fmicb.2020.01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
"Candidatus Megaira polyxenophila" is a recently described member of Rickettsiaceae which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed a high frequency of these bacteria especially in freshwater environments, most likely associated to eukaryotic hosts. The relationship of "Ca. Megaira polyxenophila" with their hosts and their impact on host fitness have not been studied so far. Even less is known regarding the responses of these intracellular bacteria to potential stressors. In this study, we used two phylogenetically close species of the freshwater ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora, Oligohymenophorea) naturally infected by "Ca. Megaira polyxenophila". In order to analyze the effect of the symbiont on the fitness of these two species, we compared the growth performance of both infected and aposymbiotic paramecia at different salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0, 2, and 4.5 ppt. For the elimination of "Ca. Megaira polyxenophila" we established an antibiotic treatment to obtain symbiont-free lines and confirmed its success by fluorescence in situ hybridization (FISH). The population and infection dynamics during the growth experiment were observed by cell density counts and FISH. Paramecia fitness was compared applying generalized additive mixed models. Surprisingly, both infected Paramecium species showed higher densities under all salinity concentrations. The tested salinity concentrations did not significantly affect the growth of any of the two species directly, but we observed the loss of the endosymbiont after prolonged exposure to higher salinity levels. This experimental data might explain the higher frequency of "Ca. M. polyxenophila" in freshwater habitats as observed from amplicon data.
Collapse
Affiliation(s)
- Chiara Pasqualetti
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Franziska Szokoli
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Luca Rindi
- Dipartimento di Biologia, CoNISMa, Università di Pisa, Pisa, Italy
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
The Effect of Thermal Stress on the Bacterial Microbiome of Exaiptasia diaphana. Microorganisms 2019; 8:microorganisms8010020. [PMID: 31877636 PMCID: PMC7022623 DOI: 10.3390/microorganisms8010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Coral bleaching linked to climate change has generated interest in the response of coral’s bacterial microbiome to thermal stress. The sea anemone, Exaiptasia diaphana, is a popular coral model, but the response of its bacteria to thermal stress has been barely explored. To address this, we compared the bacterial communities of Great Barrier Reef (GBR) E. diaphana maintained at 26 °C or exposed to increasing temperature (26–33 °C) over two weeks. Communities were analyzed by metabarcoding of the bacterial 16S rRNA gene. Bleaching and Symbiodiniaceae health were assessed by Symbiodiniaceae cell density and dark-adapted quantum yield (Fv/Fm), respectively. Significant bleaching and reductions in Fv/Fm occurred in the heat-treated anemones above 29 °C. Overall declines in bacterial alpha diversity in all anemones were also observed. Signs of bacterial change emerged above 31 °C. Some initial outcomes may have been influenced by relocation or starvation, but collectively, the bacterial community and taxa-level data suggested that heat was the primary driver of change above 32 °C. Six bacterial indicator species were identified as potential biomarkers for thermal stress. We conclude that the bacterial microbiome of GBR E. diaphana is generally stable until a thermal threshold is surpassed, after which significant changes occur.
Collapse
|
10
|
Le Pennec G, Gall EA. The microbiome of Codium tomentosum: original state and in the presence of copper. World J Microbiol Biotechnol 2019; 35:167. [DOI: 10.1007/s11274-019-2740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/03/2019] [Indexed: 01/24/2023]
|
11
|
Morrissey KL, Çavaş L, Willems A, De Clerck O. Disentangling the Influence of Environment, Host Specificity and Thallus Differentiation on Bacterial Communities in Siphonous Green Seaweeds. Front Microbiol 2019; 10:717. [PMID: 31024496 PMCID: PMC6460459 DOI: 10.3389/fmicb.2019.00717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
Siphonous green seaweeds, such as Caulerpa, are among the most morphologically complex algae with differentiated algal structures (morphological niches). Caulerpa is also host to a rich diversity of bacterial endo- and epibionts. The degree to which these bacterial communities are species-, or even niche-specific remains largely unknown. To address this, we investigated the diversity of bacteria associated to different morphological niches of both native and invasive species of Caulerpa from different geographic locations along the Turkish coastline of the Aegean sea. Associated bacteria were identified using the 16S rDNA marker gene for three morphological niches, such as the endobiome, epibiome, and rhizobiome. Bacterial community structure was explored and deterministic factors behind bacterial variation were investigated. Of the total variation, only 21.5% could be explained. Pronounced differences in bacterial community composition were observed and variation was partly explained by a combination of host species, biogeography and nutrient levels. The majority of the explained bacterial variation within the algal holobiont was attributed to the micro-environments established by distinct morphological niches. This study further supports the hypothesis that the bacterial assembly is largely stochastic in nature and bacterial community structure is most likely linked to functional genes rather than taxonomy.
Collapse
Affiliation(s)
| | - Levent Çavaş
- Department of Chemistry, Biochemistry Division, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Castelli M, Serra V, Senra MVX, Basuri CK, Soares CAG, Fokin SI, Modeo L, Petroni G. The Hidden World of Rickettsiales Symbionts: "Candidatus Spectririckettsia obscura," a Novel Bacterium Found in Brazilian and Indian Paramecium caudatum. MICROBIAL ECOLOGY 2019; 77:748-758. [PMID: 30105505 DOI: 10.1007/s00248-018-1243-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Symbioses between bacteria and eukaryotes are widespread and may have significant impact on the evolutionary history of symbiotic partners. The order Rickettsiales is a lineage of intracellular Alphaproteobacteria characterized by an obligate association with a wide range of eukaryotic hosts, including several unicellular organisms, such as ciliates and amoebas. In this work, we characterized the Rickettsiales symbionts associated with two different genotypes of the freshwater ciliate Paramecium caudatum originated from freshwater environments in distant geographical areas. Phylogenetic analyses based on 16S rRNA gene showed that the two symbionts are closely related to each other (99.4% identity), belong to the family Rickettsiaceae, but are far-related with respect to previously characterized Rickettsiales. Consequently, they were assigned to a new species of a novel genus, namely "Candidatus Spectririckettsia obscura." Screening on a database of short reads from 16S rRNA gene amplicon-based profiling studies confirmed that bacterial sequences related to the new symbiont are preferentially retrieved from freshwater environments, apparently with extremely scarce occurrence (< 0.1% positive samples). The present work provides new information on the still under-explored biodiversity of Rickettsiales, in particular those associated to ciliate host cells.
Collapse
Affiliation(s)
- Michele Castelli
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biosciences, University of Milan, Milan, Italy.
- Department of Biology, University of Pisa, Pisa, Italy.
| | | | - Marcus V X Senra
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Charan K Basuri
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - Carlos A G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
13
|
Lanzoni O, Sabaneyeva E, Modeo L, Castelli M, Lebedeva N, Verni F, Schrallhammer M, Potekhin A, Petroni G. Diversity and environmental distribution of the cosmopolitan endosymbiont "Candidatus Megaira". Sci Rep 2019; 9:1179. [PMID: 30718604 PMCID: PMC6362216 DOI: 10.1038/s41598-018-37629-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Members of the order Rickettsiales are often found in association with ciliated protists. An interesting case is the bacterial endosymbiont “Candidatus Megaira”, which is phylogenetically closely related to the pathogen Rickettsia. “Candidatus Megaira” was first described as an intracellular bacterium in several ciliate species. Since then it has been found in association with diverse evolutionary distantly-related hosts, among them other unicellular eukaryotes, and also algae, and metazoa, such as cnidarians. We provide the characterization of several new strains of the type species “Candidatus Megaira polyxenophila”, and the multidisciplinary description of a novel species, “Candidatus Megaira venefica”, presenting peculiar features, which highlight the diversity and variability of these widespread bacterial endosymbionts. Screening of the 16S rRNA gene short amplicon database and phylogenetic analysis of 16S rRNA gene hypervariable regions revealed the presence of further hidden lineages, and provided hints on the possibility that these bacteria may be horizontally transmitted among aquatic protists and metazoa. The phylogenetic reconstruction supports the existence of at least five different separate species-level clades of “Candidatus Megaira”, and we designed a set of specific probes allowing easy recognition of the four major clades of the genus.
Collapse
Affiliation(s)
| | - Elena Sabaneyeva
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | - Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Natalia Lebedeva
- Core Facilities Centre "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | |
Collapse
|
14
|
Fu H, Jiang P, Zhao J, Wu C. Comparative Genomics of Pseudomonas sp. Strain SI-3 Associated With Macroalga Ulva prolifera, the Causative Species for Green Tide in the Yellow Sea. Front Microbiol 2018; 9:1458. [PMID: 30013544 PMCID: PMC6036183 DOI: 10.3389/fmicb.2018.01458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022] Open
Abstract
Algae-bacteria associations occurred widely in marine habitats, however, contributions of bacteria to macroalgal blooming were almost unknown. In this study, a potential endophytic strain SI-3 was isolated from Ulva prolifera, the causative species for the world's largest green tide in the Yellow Sea, following a strict bleaching treatment to eliminate epiphytes. The genomic sequence of SI-3 was determined in size of 4.8 Mb and SI-3 was found to be mostly closed to Pseudomonas stutzeri. To evaluate the characteristics of SI-3 as a potential endophyte, the genomes of SI-3 and other 20 P. stutzeri strains were compared. We found that SI-3 had more strain-specific genes than most of the 20 P. stutzeri strains. Clusters of Orthologous Groups (COGs) analysis revealed that SI-3 had a higher proportion of genes assigned to transcriptional regulation and signal transduction compared with the 20 P. stutzeri strains, including four rhizosphere bacteria, indicating a complicated interaction network between SI-3 and its host. P. stutzeri is renowned for its metabolic versatility in aromatic compounds degradation. However, significant gene loss was observed in several aromatic compounds degradation pathways in SI-3, which may be an evolutional adaptation that developed upon association with its host. KEGG analysis revealed that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, two competing dissimilatory nitrate reduction pathways, co-occurred in the genome of SI-3, like most of the other 20 P. stutzeri strains. We speculated that DNRA of SI-3 may contribute a competitive advantage in nitrogen acquisition of U. prolifera by conserving nitrogen in NH4+ form, as in the case of microalgae bloom. Collectively, these data suggest that Pseudomonas sp. strain SI-3 was a suitable candidate for investigation of the algae-bacteria interaction with U. prolifera and the ecological impacts on algal blooming.
Collapse
Affiliation(s)
- Huihui Fu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Peng Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jin Zhao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chunhui Wu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
15
|
Yurchenko T, Ševčíková T, Přibyl P, El Karkouri K, Klimeš V, Amaral R, Zbránková V, Kim E, Raoult D, Santos LMA, Eliáš M. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME JOURNAL 2018; 12:2163-2175. [PMID: 29880910 PMCID: PMC6092422 DOI: 10.1038/s41396-018-0177-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/21/2018] [Accepted: 04/14/2018] [Indexed: 11/09/2022]
Abstract
Rickettsiales are obligate intracellular bacteria originally found in metazoans, but more recently recognized as widespread endosymbionts of various protists. One genus was detected also in several green algae, but reports on rickettsialean endosymbionts in other algal groups are lacking. Here we show that several distantly related eustigmatophytes (coccoid algae belonging to Ochrophyta, Stramenopiles) are infected by Candidatus Phycorickettsia gen. nov., a new member of the family Rickettsiaceae. The genome sequence of Ca. Phycorickettsia trachydisci sp. nov., an endosymbiont of Trachydiscus minutus CCALA 838, revealed genomic features (size, GC content, number of genes) typical for other Rickettsiales, but some unusual aspects of the gene content were noted. Specifically, Phycorickettsia lacks genes for several components of the respiration chain, haem biosynthesis pathway, or c-di-GMP-based signalling. On the other hand, it uniquely harbours a six-gene operon of enigmatic function that we recently reported from plastid genomes of two distantly related eustigmatophytes and from various non-rickettsialean bacteria. Strikingly, the eustigmatophyte operon is closely related to the one from Phycorickettsia, suggesting a gene transfer event between the endosymbiont and host lineages in early eustigmatophyte evolution. We hypothesize an important role of the operon in the physiology of Phycorickettsia infection and a long-term eustigmatophyte-Phycorickettsia coexistence.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Pavel Přibyl
- Centre for Phycology and Biorefinery Research Centre of Competence, Institute of Botany CAS, Dukelská 135, Třeboň, CZ-379 82, Czech Republic
| | - Khalid El Karkouri
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille cedex 5, 13385, France
| | - Vladimír Klimeš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Raquel Amaral
- Department of Life Sciences, Coimbra Collection of Algae (ACOI), University of Coimbra, Coimbra, 3000-456, Portugal
| | - Veronika Zbránková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.,Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille cedex 5, 13385, France
| | - Lilia M A Santos
- Department of Life Sciences, Coimbra Collection of Algae (ACOI), University of Coimbra, Coimbra, 3000-456, Portugal
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic. .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic.
| |
Collapse
|
16
|
Song H, Yu ZL, Yang MJ, Zhang T, Wang HY. Analysis of microbial abundance and community composition in esophagus and intestinal tract of wild veined rapa whelk ( Rapana venosa) by 16S rRNA gene sequencing. J GEN APPL MICROBIOL 2018; 64:158-166. [DOI: 10.2323/jgam.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology
- University of Chinese Academy of Sciences
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology
- University of Chinese Academy of Sciences
| | - Mei-jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology
- University of Chinese Academy of Sciences
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology
| | - Hai-Yan Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
17
|
Xie X, He Z, Hu X, Yin H, Liu X, Yang Y. Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan'ao Island, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:97-108. [PMID: 28437776 DOI: 10.1016/j.scitotenv.2017.03.233] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Seaweed cultivation not only provides economy benefits, but also remediates the environment contaminated by mariculture of animals (e.g., fish, shrimps). However, the response of microbial communities to seaweed cultivation is poorly understood. In this study, we analyzed the diversity, composition, and structure of water and sediment microbial communities at a seaweed, Gracilaria lemaneiformis, cultivation zone and a control zone near Nan'ao Island, South China Sea by MiSeq sequencing of 16S rRNA gene amplicons. We found that large-scale cultivation of G. lemaneiformis increased dissolved oxygen (DO) and pH but decreased inorganic nutrients, possibly due to nutrient uptake, photosynthesis and other physiological processes of G. lemaneiformis. These environmental changes significantly (adonis, P<0.05) shifted the microbial community composition and structure of both water column and sediment samples in the G. lemaneiformis cultivation zone, compared to the control zone. Also, certain microbial taxa associated with seaweed, such as Arenibacter, Croceitalea, Glaciecola, Leucothrix and Maribacter were enriched at the cultivation zone. In addition, we have proposed a conceptual model to summarize the results in this study and guide future studies on relationships among seaweed processes, microbial communities and their environments. Thus, this study not only provides new insights into our understanding the effect of G. lemaneiformis cultivation on microbial communities, but also guides future studies on coastal ecosystems.
Collapse
Affiliation(s)
- Xinfei Xie
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA; School of Environmental Science and Engineering, Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaojuan Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yufeng Yang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, China.
| |
Collapse
|
18
|
Zaila KE, Doak TG, Ellerbrock H, Tung CH, Martins ML, Kolbin D, Yao MC, Cassidy-Hanley DM, Clark TG, Chang WJ. Diversity and Universality of Endosymbiotic Rickettsia in the Fish Parasite Ichthyophthirius multifiliis. Front Microbiol 2017; 8:189. [PMID: 28232825 PMCID: PMC5299013 DOI: 10.3389/fmicb.2017.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/25/2017] [Indexed: 01/04/2023] Open
Abstract
Although the presence of endosymbiotic rickettsial bacteria, specifically Candidatus Megaira, has been reported in diverse habitats and a wide range of eukaryotic hosts, it remains unclear how broadly Ca. Megaira are distributed in a single host species. In this study we seek to address whether Ca. Megaira are present in most, if not all isolates, of the parasitic ciliate Ichthyophthirius multifiliis. Conserved regions of bacterial 16S rRNA genes were either PCR amplified, or assembled from deep sequencing data, from 18 isolates/populations of I. multifiliis sampled worldwide (Brazil, Taiwan, and USA). We found that rickettsial rRNA sequences belonging to three out of four Ca. Megaira subclades could be consistently detected in all I. multifiliis samples. I. multifiliis collected from local fish farms tend to be inhabited by the same subclade of Ca. Megaira, whereas those derived from pet fish are often inhabited by more than one subclade of Ca. Megaira. Distributions of Ca. Megaira in I. multifiliis thus better reflect the travel history, but not the phylogeny, of I. multifiliis. In summary, our results suggest that I. multifiliis may be dependent on this endosymbiotic relationship, and the association between Ca. Megaira and I. multifiliis is more diverse than previously thought.
Collapse
Affiliation(s)
| | - Thomas G. Doak
- Department of Biology, Indiana University, BloomingtonIN, USA
- National Center for Genome Analysis Support, Indiana University, BloomingtonIN, USA
| | | | - Che-Huang Tung
- Department of Aquatic Biosciences, National Chyai UniversityChyai City, Taiwan
| | - Mauricio L. Martins
- Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Daniel Kolbin
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia SinicaTaipei, Taiwan
| | - Donna M. Cassidy-Hanley
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Theodore G. Clark
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, ClintonNY, USA
- Institute of Molecular Biology, Academia SinicaTaipei, Taiwan
| |
Collapse
|
19
|
Molecular identification of bacterial endosymbionts of Sappinia strains. Parasitol Res 2016; 116:549-558. [PMID: 27830372 DOI: 10.1007/s00436-016-5319-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
The genus Sappinia comprises free-living amoebae occurring worldwide in a variety of habitats such as soils, plant matter and freshwater ponds, but also animal faeces, and includes at present three species, S. pedata, S. diploidea and S. platani. The genus is potentially pathogenic, as indicated by the identification of S. pedata in a case of human amoebic encephalitis. Electron microscopy studies on some strains already revealed intracellular bacteria in Sappinia. In the current study, we performed 16S ribosomal RNA gene (rDNA) analysis of these bacterial endosymbionts. We first inferred relationships among Sappinia strains on the basis of 18S rDNA, demonstrating that S. pedata emerged as sister to a larger clade including S. diploidea, S. platani and a few 'S. diploidea-like' strains. Thus, bacterial 16S rDNA was searched for in representative strains of each Sappinia species/subgroup. We found that Sappinia strains were associated to distinct species of Flavobacterium or Pedobacter (phylum Bacteroidetes). These appear to be distributed following the amoebal host subgroups, and are not directly related to other Bacteroidetes species known as interacting with free-living amoebae. While all the endosymbionts' close relatives are known to grow on agar, bacteriological media inoculated with amoebal extracts remained negative. Overall, results indicate that the recovered bacteria are likely specific obligate endosymbionts of Sappinia species. Further studies, including additional amoebal strains and deep morphological and molecular analyses, will be necessary to confirm this hypothesis.
Collapse
|
20
|
Aires T, Serrão EA, Engelen AH. Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis). Front Microbiol 2016; 7:559. [PMID: 27148239 PMCID: PMC4839258 DOI: 10.3389/fmicb.2016.00559] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/04/2016] [Indexed: 11/29/2022] Open
Abstract
As habitats change due to global and local pressures, population resilience, and adaptive processes depend not only on their gene pools but also on their associated bacteria communities. The hologenome can play a determinant role in adaptive evolution of higher organisms that rely on their bacterial associates for vital processes. In this study, we focus on the associated bacteria of the two most invasive seaweeds in southwest Iberia (coastal mainland) and nearby offshore Atlantic islands, Asparagopsis taxiformis and Asparagopsis armata. Bacterial communities were characterized using 16S rRNA barcoding through 454 next generation sequencing and exploratory shotgun metagenomics to provide functional insights and a backbone for future functional studies. The bacterial community composition was clearly different between the two species A. taxiformis and A. armata and between continental and island habitats. The latter was mainly due to higher abundances of Acidimicrobiales, Sphingomonadales, Xanthomonadales, Myxococcales, and Alteromonadales on the continent. Metabolic assignments for these groups contained a higher number of reads in functions related to oxidative stress and resistance to toxic compounds, more precisely heavy metals. These results are in agreement with their usual association with hydrocarbon degradation and heavy-metals detoxification. In contrast, A. taxiformis from islands contained more bacteria related to oligotrophic environments which might putatively play a role in mineralization of dissolved organic matter. The higher number of functional assignments found in the metagenomes of A. taxiformis collected from Cape Verde Islands suggest a higher contribution of bacteria to compensate nutrient limitation in oligotrophic environments. Our results show that Asparagopsis-associated bacterial communities have host-specificity and are modulated by environmental conditions. Whether this environmental effect reflects the host's selective requirements or the locally available bacteria remains to be addressed. However, the known functional capacities of these bacterial communities indicate their potential for eco-physiological functions that could be valuable for the host fitness.
Collapse
Affiliation(s)
- Tânia Aires
- Centro de Ciências do Mar-CIMAR, Universidade do Algarve Faro, Portugal
| | - Ester A Serrão
- Centro de Ciências do Mar-CIMAR, Universidade do Algarve Faro, Portugal
| | - Aschwin H Engelen
- Centro de Ciências do Mar-CIMAR, Universidade do Algarve Faro, Portugal
| |
Collapse
|
21
|
Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gaubert J, Serrão EA, De Clerck O, Payri CE. Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales, Phaeophyceae) and Their Potential for Induction of Rapid Coral Bleaching in Acropora muricata. Front Microbiol 2016; 7:316. [PMID: 27047453 PMCID: PMC4800410 DOI: 10.3389/fmicb.2016.00316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
Abstract
While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.
Collapse
Affiliation(s)
- Christophe Vieira
- IFD, Sorbonne Universités, UPMC Univ Paris 06Paris, France; UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le DéveloppementNouméa, New Caledonia; Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent UniversityGhent, Belgium
| | | | - Linda Guentas
- Laboratoire MAPIEM EA 4323, Université de ToulonLa Garde, France; Laboratoire LIVE, Université de Nouvelle-CalédonieNouméa, New Caledonia
| | - Tânia Aires
- Centre of Marine Sciences, University of the Algarve Portugal
| | - Fanny Houlbreque
- UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le Développement Nouméa, New Caledonia
| | - Julie Gaubert
- UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le Développement Nouméa, New Caledonia
| | - Ester A Serrão
- Centre of Marine Sciences, University of the Algarve Portugal
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University Ghent, Belgium
| | - Claude E Payri
- UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le Développement Nouméa, New Caledonia
| |
Collapse
|
22
|
Singh RP, Reddy CRK. Unraveling the Functions of the Macroalgal Microbiome. Front Microbiol 2016; 6:1488. [PMID: 26779144 PMCID: PMC4700259 DOI: 10.3389/fmicb.2015.01488] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 01/11/2023] Open
Abstract
Macroalgae are a diverse group of photosynthetic eukaryotic lower organisms and offer indispensable ecosystem services toward sustainable productivity of rocky coastal areas. The earlier studies have mainly focused on elucidation of the roles of the epiphytic bacterial communities in the ecophysiology of the host macroalga. However, mutualistic interactions have become topic of current interest. It is evident from recent studies that a fraction of epiphytic bacterial communities can be categorized as “core microbial species”, suggesting an obligate association. Epiphytic bacterial communities have also been reported to protect macroalgal surfaces from biofouling microorganisms through production of biologically active metabolites. Because of their intrinsic roles in the host life cycle, the host in turn may provide necessary organic nutrients in order to woo pelagic microbial communities to settle on the host surfaces. However, the precise composition of microbiomes and their functional partnership with hosts are hardly understood. In contrast, the microbial studies associated with human skin and gut and plants have significantly advanced our knowledge on microbiome and their functional interactions with the host. This has led to manipulation of the microbial flora of the human gut and of agricultural plants for improving health and performance. Therefore, it is highly imperative to investigate the functional microbiome that is closely involved in the life cycles of the host macroalgae using high-throughput techniques (metagenomics and metatranscriptomics). The findings from such investigations would help in promoting health and productivity in macroalgal species through regulation of functionally active microbiome.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu UniversityFukuoka, Japan; Seaweed Biology and Cultivation, Division of Marine Biotechnology and Ecology, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - C R K Reddy
- Seaweed Biology and Cultivation, Division of Marine Biotechnology and Ecology, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
23
|
Szokoli F, Sabaneyeva E, Castelli M, Krenek S, Schrallhammer M, Soares CAG, da Silva-Neto ID, Berendonk TU, Petroni G. "Candidatus Fokinia solitaria", a Novel "Stand-Alone" Symbiotic Lineage of Midichloriaceae (Rickettsiales). PLoS One 2016; 11:e0145743. [PMID: 26731731 PMCID: PMC4701390 DOI: 10.1371/journal.pone.0145743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022] Open
Abstract
Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, "Candidatus Fokinia solitaria", retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 x 0.25-0.35 μm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as "Ca. Midichloria" and "Ca. Lariskella", have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, "Ca. Anadelfobacter", "Ca. Defluviella" and the presently described "Ca. Fokinia solitaria", have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named "stand-alone lineages", are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.
Collapse
Affiliation(s)
- Franziska Szokoli
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Sascha Krenek
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Martina Schrallhammer
- Mikrobiologie, Biologisches Institut II, Albert-Ludwigs Universität Freiburg, Freiburg, Germany
| | - Carlos A. G. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thomas U. Berendonk
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
24
|
Aires T, Moalic Y, Serrao EA, Arnaud-Haond S. Hologenome theory supported by cooccurrence networks of species-specific bacterial communities in siphonous algae (Caulerpa). FEMS Microbiol Ecol 2015; 91:fiv067. [PMID: 26099965 DOI: 10.1093/femsec/fiv067] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 11/14/2022] Open
Abstract
The siphonous algae of the Caulerpa genus harbor internal microbial communities hypothesized to play important roles in development, defense and metabolic activities of the host. Here, we characterize the endophytic bacterial community of four Caulerpa taxa in the Mediterranean Sea, through 16S rRNA amplicon sequencing. Results reveal a striking alpha diversity of the bacterial communities, similar to levels found in sponges and coral holobionts. These comprise (1) a very small core community shared across all hosts (< 1% of the total community), (2) a variable portion (ca. 25%) shared by some Caulerpa taxa but not by all, which might represent environmentally acquired bacteria and (3) a large (>70%) species-specific fraction of the community, forming very specific clusters revealed by modularity in networks of cooccurrence, even in areas where distinct Caulerpa taxa occurred in sympatry. Indirect inferences based on sequence homology suggest that these communities may play an important role in the metabolism of their host, in particular on their ability to grow on anoxic sediment. These findings support the hologenome theory and the need for a holistic framework in ecological and evolutionary studies of these holobionts that frequently become invasive.
Collapse
Affiliation(s)
- Tania Aires
- CCMAR, Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - Yann Moalic
- IFREMER- Technopole de Brest-Iroise, BP 70, 29280 Plouzané, France UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale (UBO) Institut Universitaire Européen de la Mer (IUEM), CNRS, Plouzané, France
| | - Ester A Serrao
- CCMAR, Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - Sophie Arnaud-Haond
- CCMAR, Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal UMR MARBEC (Marine Biodiversity, Exploitation and Conservation) Bd Jean Monnet, BP 171, 34203 Sète Cedex - France
| |
Collapse
|
25
|
Leliaert F, Lopez-Bautista JM. The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin. BMC Genomics 2015; 16:204. [PMID: 25879186 PMCID: PMC4487195 DOI: 10.1186/s12864-015-1418-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/28/2015] [Indexed: 12/31/2022] Open
Abstract
Background Species of Bryopsidales form ecologically important components of seaweed communities worldwide. These siphonous macroalgae are composed of a single giant tubular cell containing millions of nuclei and chloroplasts, and harbor diverse bacterial communities. Little is known about the diversity of chloroplast genomes (cpDNAs) in this group, and about the possible consequences of intracellular bacteria on genome composition of the host. We present the complete cpDNAs of Bryopsis plumosa and Tydemania expeditiones, as well as a re-annotated cpDNA of B. hypnoides, which was shown to contain a higher number of genes than originally published. Chloroplast genomic data were also used to evaluate phylogenetic hypotheses in the Chlorophyta, such as monophyly of the Ulvophyceae (the class in which the order Bryopsidales is currently classified). Results Both DNAs are circular and lack a large inverted repeat. The cpDNA of B. plumosa is 106,859 bp long and contains 115 unique genes. A 13 kb region was identified with several freestanding open reading frames (ORFs) of putative bacterial origin, including a large ORF (>8 kb) closely related to bacterial rhs-family genes. The cpDNA of T. expeditiones is 105,200 bp long and contains 125 unique genes. As in B. plumosa, several regions were identified with ORFs of possible bacterial origin, including genes involved in mobile functions (transposases, integrases, phage/plasmid DNA primases), and ORFs showing close similarity with bacterial DNA methyltransferases. The cpDNA of B. hypnoides differs from that of B. plumosa mainly in the presence of long intergenic spacers, and a large tRNA region. Chloroplast phylogenomic analyses were largely inconclusive with respect to monophyly of the Ulvophyceae, and the relationship of the Bryopsidales within the Chlorophyta. Conclusions The cpDNAs of B. plumosa and T. expeditiones are amongst the smallest and most gene dense chloroplast genomes in the core Chlorophyta. The presence of bacterial genes, including genes typically found in mobile elements, suggest that these have been acquired through horizontal gene transfer, which may have been facilitated by the occurrence of obligate intracellular bacteria in these siphonous algae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1418-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederik Leliaert
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA. .,Department of Biology, Marine Biology Research Group, Ghent University, Krijgslaan 281-S8, Ghent, 9000, Belgium.
| | | |
Collapse
|
26
|
Kawafune K, Hongoh Y, Hamaji T, Sakamoto T, Kurata T, Hirooka S, Miyagishima SY, Nozaki H. Two different rickettsial bacteria invading Volvox carteri. PLoS One 2015; 10:e0116192. [PMID: 25671568 PMCID: PMC4324946 DOI: 10.1371/journal.pone.0116192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE. METHODOLOGY/PRINCIPAL FINDINGS Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial gene-like sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180. CONCLUSION/SIGNIFICANCE At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and likely have often been lost during host evolution.
Collapse
Affiliation(s)
- Kaoru Kawafune
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Takashi Hamaji
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Tomoaki Sakamoto
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tetsuya Kurata
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Shunsuke Hirooka
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
27
|
Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl Microbiol Biotechnol 2014; 99:1571-86. [PMID: 25549621 DOI: 10.1007/s00253-014-6334-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
In recent decade, seaweeds-associated microbial communities have been significantly evaluated for functional and chemical analyses. Such analyses let to conclude that seaweeds-associated microbial communities are highly diverse and rich sources of bioactive compounds of exceptional molecular structure. Extracting bioactive compounds from seaweed-associated microbial communities have been recently increased due to their broad-spectrum antimicrobial activities including antibacterial, antifungal, antiviral, anti-settlement, antiprotozoan, antiparasitic, and antitumor. These allelochemicals not only provide protection to host from other surrounding pelagic microorganisms, but also ensure their association with the host. Antimicrobial compounds from marine sources are promising and priority targets of biotechnological and pharmaceutical applications. This review describes the bioactive metabolites reported from seaweed-associated bacterial and fungal communities and illustrates their bioactivities. Biotechnological application of metagenomic approach for identifying novel bioactive metabolites is also dealt, in view of their future development as a strong tool to discover novel drug targets from seaweed-associated microbial communities.
Collapse
|
28
|
Singh RP, Reddy CRK. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol 2014; 88:213-30. [PMID: 24512602 DOI: 10.1111/1574-6941.12297] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 01/03/2023] Open
Abstract
Seaweed-associated bacteria play a crucial role in morphogenesis and growth of seaweeds (macroalgae) in direct and/or indirect ways. Bacterial communities belonging to the phyla Proteobacteria and Firmicutes are generally the most abundant on seaweed surfaces. Associated bacterial communities produce plant growth-promoting substances, quorum sensing signalling molecules, bioactive compounds and other effective molecules that are responsible for normal morphology, development and growth of seaweeds. Also, bioactive molecules of associated bacteria determine the presence of other bacterial strains on seaweeds and protect the host from harmful entities present in the pelagic realm. The ecological functions of cross-domain signalling between seaweeds and bacteria have been reported as liberation of carpospores in the red seaweeds and settlement of zoospores in the green seaweeds. In the present review, the role of extracellular polymeric substances in growth and settlement of seaweeds spores is also highlighted. To elucidate the functional roles of associated bacteria and the molecular mechanisms underlying reported ecological phenomena in seaweeds requires a combined ecological, microbiological and biochemical approach.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India; Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
29
|
Schrallhammer M, Ferrantini F, Vannini C, Galati S, Schweikert M, Görtz HD, Verni F, Petroni G. 'Candidatus Megaira polyxenophila' gen. nov., sp. nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae. PLoS One 2013; 8:e72581. [PMID: 23977321 PMCID: PMC3748036 DOI: 10.1371/journal.pone.0072581] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/10/2013] [Indexed: 01/23/2023] Open
Abstract
"Neglected Rickettsiaceae" (i.e. those harboured by non-hematophagous eukaryotic hosts) display greater phylogenetic variability and more widespread dispersal than pathogenic ones; yet, the knowledge about their actual host range and host shift mechanism is scarce. The present work reports the characterization following the full-cycle rRNA approach (SSU rRNA sequence, specific in situ hybridization, and ultrastructure) of a novel rickettsial bacterium, herewith proposed as 'Candidatus Megaira polyxenophila' gen. nov., sp. nov. We found it in association with four different free-living ciliates (Diophrys oligothrix, Euplotes octocarinatus, Paramecium caudatum, and Spirostomum sp., all belonging to Alveolata, Ciliophora); furthermore it was recently observed as intracellular occurring in Carteria cerasiformis and Pleodorina japonica (Chlorophyceae, Chlorophyta). Phylogenetic analyses demonstrated the belonging of the candidate new genus to the family Rickettsiaceae (Alphaproteobacteria, Rickettsiales) as a sister group of the genus Rickettsia. In situ observations revealed the ability of the candidate new species to colonize either nuclear or cytoplasmic compartments, depending on the host organism. The presence of the same bacterial species within different, evolutionary distant, hosts indicates that 'Candidatus Megaira polyxenophila' recently underwent several distinct host shifts, thus suggesting the existence of horizontal transmission pathways. We consider these findings as indicative of an unexpected spread of rickettsial infections in aquatic communities, possibly by means of trophic interactions, and hence propose a new interpretation of the origin and phylogenetic diversification of rickettsial bacteria.
Collapse
Affiliation(s)
- Martina Schrallhammer
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Biologisches Institut, Universität Stuttgart, Stuttgart, Germany
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
- * E-mail: (GP); (MS)
| | | | | | - Stefano Galati
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | | - Franco Verni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- * E-mail: (GP); (MS)
| |
Collapse
|
30
|
Aires T, Serrão EA, Kendrick G, Duarte CM, Arnaud-Haond S. Invasion is a community affair: Clandestine followers in the bacterial community associated to green algae, Caulerpa racemosa, track the invasion source. PLoS One 2013; 8:e68429. [PMID: 23874625 PMCID: PMC3713043 DOI: 10.1371/journal.pone.0068429] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
Biological invasions rank amongst the most deleterious components of global change inducing alterations from genes to ecosystems. The genetic characteristics of introduced pools of individuals greatly influence the capacity of introduced species to establish and expand. The recently demonstrated heritability of microbial communities associated to individual genotypes of primary producers makes them a potentially essential element of the evolution and adaptability of their hosts. Here, we characterized the bacterial communities associated to native and non-native populations of the marine green macroalga Caulerparacemosa through pyrosequencing, and explored their potential role on the strikingly invasive trajectory of their host in the Mediterranean. The similarity of endophytic bacterial communities from the native Australian range and several Mediterranean locations confirmed the origin of invasion and revealed distinct communities associated to a second Mediterranean variety of C. racemosa long reported in the Mediterranean. Comparative analysis of these two groups demonstrated the stability of the composition of bacterial communities through the successive steps of introduction and invasion and suggested the vertical transmission of some major bacterial OTUs. Indirect inferences on the taxonomic identity and associated metabolism of bacterial lineages showed a striking consistency with sediment upheaval conditions associated to the expansion of their invasive host and to the decline of native species. These results demonstrate that bacterial communities can be an effective tracer of the origin of invasion and support their potential role in their eukaryotic host’s adaptation to new environments. They put forward the critical need to consider the 'meta-organism' encompassing both the host and associated micro-organisms, to unravel the origins, causes and mechanisms underlying biological invasions.
Collapse
Affiliation(s)
- Tania Aires
- Center for Marine Sciences, University of Algarve, Faro, Portugal
| | - Ester A. Serrão
- Center for Marine Sciences, University of Algarve, Faro, Portugal
| | - Gary Kendrick
- School of Plant Biology, The University of Western Australia, Crawley, Australia
| | - Carlos M. Duarte
- School of Plant Biology, The University of Western Australia, Crawley, Australia
- Department of Global Change Research, Institut Mediterráni d’Estudis Avançats, Esporles, Mallorca, Spain
| | - Sophie Arnaud-Haond
- Institut Français de Recherche pour l’Exploitation de la Mer - Technopole de Brest-Iroise, Plouzané, France
- * E-mail:
| |
Collapse
|
31
|
Hollants J, Leliaert F, Verbruggen H, De Clerck O, Willems A. Host specificity and coevolution of Flavobacteriaceae endosymbionts within the siphonous green seaweed Bryopsis. Mol Phylogenet Evol 2013; 67:608-14. [DOI: 10.1016/j.ympev.2013.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/24/2013] [Accepted: 02/26/2013] [Indexed: 11/30/2022]
|