1
|
Li M, Liu J, Chen S, Yao J, Shi L, Chen H, Chen X. VOC Characterization of Byasa hedistus (Lepidoptera: Papilionidae) and Its Visual and Olfactory Responses during Foraging and Courtship. INSECTS 2024; 15:548. [PMID: 39057280 PMCID: PMC11276791 DOI: 10.3390/insects15070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Color and odor are crucial cues for butterflies during foraging and courtship. While most sexual dimorphic butterflies rely more on vision, our understanding of how butterflies with similar coloration use different signals remains limited. This study investigated the visual and olfactory behavioral responses of the similarly colored butterfly Byasa hedistus during foraging and courtship. While visiting artificial flowers of different colors, we found that B. hedistus exhibits an innate color preference, with a sequence of preferences for red, purple, and blue. The frequency of flower visits by B. hedistus significantly increased when honey water was sprayed on the artificial flowers, but it hardly visited apetalous branches with honey water. This proves that locating nectar sources by odor alone is difficult in the absence of floral color guides. During courtship, males are active while females hardly chase; only two models were observed: males chasing males and males chasing females. The courtship process includes four behaviors: slowing approach, straight chasing, hovering, and spinning. B. hedistus cannot distinguish between sexes based on color, as there is no significant difference in color and shape between them. Twenty-three VOCs (>1%) were identified in B. hedistus, with 21 shared by both sexes, while ketones are specific to males. These VOCs are principally represented by cineole, β-pinene, and linalool. When cineole was added to butterfly mimics, many butterflies were attracted to them, but the butterflies did not seem to distinguish between males and females. This suggests that cineole may be the feature VOC for identifying conspecific groups. Adding β-pinene and linalool to mimics induced numerous butterflies to chase, hover, spin around, and attempt to mate with them. This suggests that β-pinene and linalool are crucial cues indicating the presence of females.
Collapse
Affiliation(s)
- Mingtao Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (M.L.); (S.C.); (J.Y.); (H.C.)
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China;
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Shunan Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (M.L.); (S.C.); (J.Y.); (H.C.)
| | - Jun Yao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (M.L.); (S.C.); (J.Y.); (H.C.)
| | - Lei Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (M.L.); (S.C.); (J.Y.); (H.C.)
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China;
| | - Hang Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (M.L.); (S.C.); (J.Y.); (H.C.)
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China;
| | - Xiaoming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China;
- Research Center of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China
| |
Collapse
|
2
|
Cama B, Heaton K, Thomas-Oates J, Schulz S, Dasmahapatra KK. Complexity of Chemical Emissions Increases Concurrently with Sexual Maturity in Heliconius Butterflies. J Chem Ecol 2024; 50:197-213. [PMID: 38478290 PMCID: PMC11233321 DOI: 10.1007/s10886-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/10/2024]
Abstract
Pheromone communication is widespread among animals. Since it is often involved in mate choice, pheromone production is often tightly controlled. Although male sex pheromones (MSPs) and anti-aphrodisiacs have been studied in some Heliconius butterfly species, little is known about the factors affecting their production and release in these long-lived butterflies. Here, we investigate the effect of post-eclosion age on chemical blends from pheromone-emitting tissues in Heliconius atthis and Heliconius charithonia, exhibiting respectively free-mating and pupal-mating strategies that are hypothesised to differently affect the timing of their pheromone emissions. We focus on two different tissues: the wing androconia, responsible for MSPs used in courtship, and the genital tip, the production site for anti-aphrodisiac pheromones that affect post-mating behaviour. Gas chromatography-mass spectrometric analysis of tissue extracts from virgin males and females of both species from day 0 to 8 post-eclosion demonstrates the following. Some ubiquitous fatty acid precursors are already detectable at day 0. The complexity of the chemical blends increases with age regardless of tissue or sex. No obvious difference in the time course of blend production was evident between the two species, but female tissues in H. charithonia were more affected by age than in H. atthis. We suggest that compounds unique to male androconia and genitals and whose amount increases with age are potential candidates for future investigation into their roles as pheromones. While this analysis revealed some of the complexity in Heliconius chemical ecology, the effects of other factors, such as the time of day, remain unknown.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK.
| | - Karl Heaton
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig, 38106, Germany
| | | |
Collapse
|
3
|
Adams SA, Gurajapu A, Qiang A, Gerbaulet M, Schulz S, Tsutsui ND, Ramirez SR, Gillespie RG. Chemical species recognition in an adaptive radiation of Hawaiian Tetragnatha spiders (Araneae: Tetragnathidae). Proc Biol Sci 2024; 291:20232340. [PMID: 38593845 PMCID: PMC11003775 DOI: 10.1098/rspb.2023.2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Studies of adaptive radiations have played a central role in our understanding of reproductive isolation. Yet the focus has been on human-biased visual and auditory signals, leaving gaps in our knowledge of other modalities. To date, studies on chemical signals in adaptive radiations have focused on systems with multimodal signalling, making it difficult to isolate the role chemicals play in reproductive isolation. In this study we examine the use of chemical signals in the species recognition and adaptive radiation of Hawaiian Tetragnatha spiders by focusing on entire communities of co-occurring species, and conducting behavioural assays in conjunction with chemical analysis of their silks using gas chromatography-mass spectrometry. Male spiders significantly preferred the silk extracts of conspecific mates over those of sympatric heterospecifics. The compounds found in the silk extracts, long chain alkyl methyl ethers, were remarkably species-specific in the combination and quantity. The differences in the profile were greatest between co-occurring species and between closely related sibling species. Lastly, there were significant differences in the chemical profile between two populations of a particular species. These findings provide key insights into the role chemical signals play in the attainment and maintenance of reproductive barriers between closely related co-occurring species.
Collapse
Affiliation(s)
- Seira A. Adams
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
- Center for Population Biology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
| | - Anjali Gurajapu
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Albert Qiang
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Moritz Gerbaulet
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Neil D. Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Santiago R. Ramirez
- Center for Population Biology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Rosser N, Seixas F, Queste LM, Cama B, Mori-Pezo R, Kryvokhyzha D, Nelson M, Waite-Hudson R, Goringe M, Costa M, Elias M, Mendes Eleres de Figueiredo C, Freitas AVL, Joron M, Kozak K, Lamas G, Martins ARP, McMillan WO, Ready J, Rueda-Muñoz N, Salazar C, Salazar P, Schulz S, Shirai LT, Silva-Brandão KL, Mallet J, Dasmahapatra KK. Hybrid speciation driven by multilocus introgression of ecological traits. Nature 2024; 628:811-817. [PMID: 38632397 PMCID: PMC11041799 DOI: 10.1038/s41586-024-07263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of York, York, UK.
| | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Bruna Cama
- Department of Biology, University of York, York, UK
| | - Ronald Mori-Pezo
- URKU Estudios Amazónicos, Tarapoto, Perú
- Universidad Nacional Autónoma de Alto Amazona, Yurimaguas, Perú
| | - Dmytro Kryvokhyzha
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | | | | | - Matt Goringe
- Department of Biology, University of York, York, UK
| | | | - Marianne Elias
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Clarisse Mendes Eleres de Figueiredo
- Institute for Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Centre for Advanced Studies of Biodiversity (CEABIO), Belém, Brazil
| | - André Victor Lucci Freitas
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, Université de Montpellier-Université Paul Valéry Montpellier-EPHE, Montpellier, France
| | - Krzysztof Kozak
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jonathan Ready
- Institute for Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Centre for Advanced Studies of Biodiversity (CEABIO), Belém, Brazil
| | - Nicol Rueda-Muñoz
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Patricio Salazar
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leila T Shirai
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Karina L Silva-Brandão
- Leibniz Institute for the Analysis of Biodiversity Change, Museum de Natur Hamburg Zoology, Hamburg, Germany
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Kanchon K Dasmahapatra
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, UK
| |
Collapse
|
5
|
Ehlers S, Blow R, Szczerbowski D, Jiggins C, Schulz S. Variation of Clasper Scent Gland Composition of Heliconius Butterflies from a Biodiversity Hotspot. Chembiochem 2023; 24:e202300537. [PMID: 37650217 DOI: 10.1002/cbic.202300537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Male Heliconius butterflies possess two pheromone emitting structures, wing androconia and abdominal clasper scent glands. The composition of the clasper scent gland of males of 17 Heliconius and Eueides species from an overlapping area in Ecuador, comprising three mimicry groups, was investigated by GC/MS. The chemical signal serves as an anti-aphrodisiac signal that is transferred from males to females during mating, indicating the mating status of the female to prevent them from harassment by other males. In addition, the odour may also serve in predator defence. There is potential for convergence driven by mimicry, although, such convergence might be detrimental for species recognition of the butterflies within the mimicry ring, making mating more difficult. More than 500 compounds were detected, consisting of volatile, semi-volatile or non-volatile compounds, including terpenes, fatty acid esters or aromatic compounds. Several novel esters were identified by GC/MS and GC/IR data, microderivatisation and synthesis, including butyl (Z)-3-dodecenoate and other (Z)-3-alkenoates, 3-oxohexyl citronellate and 5-methylhexa-3,5-dienyl (E)-2,3-dihydrofarnesoate. The secretions were found to be species specific, potentially allowing for species differentiation. Statistical analysis of the compounds showed differentiation by phylogenetic clade and species, but not by mimicry group.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Rachel Blow
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Chris Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
6
|
Gauthier J, Meier J, Legeai F, McClure M, Whibley A, Bretaudeau A, Boulain H, Parrinello H, Mugford ST, Durbin R, Zhou C, McCarthy S, Wheat CW, Piron-Prunier F, Monsempes C, François MC, Jay P, Noûs C, Persyn E, Jacquin-Joly E, Meslin C, Montagné N, Lemaitre C, Elias M. First chromosome scale genomes of ithomiine butterflies (Nymphalidae: Ithomiini): Comparative models for mimicry genetic studies. Mol Ecol Resour 2023; 23:872-885. [PMID: 36533297 PMCID: PMC7617422 DOI: 10.1111/1755-0998.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.
Collapse
Affiliation(s)
| | - Joana Meier
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Melanie McClure
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony Bretaudeau
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Hélène Boulain
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Sam T. Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Shane McCarthy
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | - Florence Piron-Prunier
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | - Christelle Monsempes
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Marie-Christine François
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Paul Jay
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | | | - Emma Persyn
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
- CIRAD, UMR PVBMT, St Pierre, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | | | - Marianne Elias
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| |
Collapse
|
7
|
Visual cues and body volatile β-ocimene are used by the blue tiger butterfly Tirumala limniace to identify conspecifics during courtship. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Maisonneuve L, Smadi C, Llaurens V. Evolutionary origins of sexual dimorphism: Lessons from female-limited mimicry in butterflies. Evolution 2022; 76:2404-2423. [PMID: 36005294 DOI: 10.1111/evo.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/18/2022] [Indexed: 01/22/2023]
Abstract
The striking female-limited mimicry observed in some butterfly species is a text-book example of sexually dimorphic trait submitted to intense natural selection. Two main evolutionary hypotheses, based on natural and sexual selection respectively, have been proposed. Predation pressure favoring mimicry toward defended species could be higher in females because of their slower flight, and thus overcome developmental constraints favoring the ancestral trait that limits the evolution of mimicry in males but not in females. Alternatively, the evolution of mimicry in males could be limited by female preference for non-mimetic males. However, the evolutionary origin of female preference for non-mimetic males remains unclear. Here, we hypothesize that costly sexual interactions between individuals from distinct sympatric species might intensify because of mimicry, therefore promoting female preference for non-mimetic trait. Using a mathematical model, we compare the evolution of female-limited mimicry when assuming either alternative selective hypotheses. We show that the patterns of divergence of male and female trait from the ancestral traits can differ between these selection regimes. We specifically highlight that divergence in female trait is not a signature of the effect of natural selection. Our results also evidence why female-limited mimicry is more frequently observed in Batesian mimics.
Collapse
Affiliation(s)
- Ludovic Maisonneuve
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Charline Smadi
- Univ. Grenoble Alpes, INRAE, LESSEM, France, Saint-Martin-d'Hères, 38402.,Univ. Grenoble Alpes, CNRS, Institut Fourier, Gières, 38610, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| |
Collapse
|
9
|
Szczerbowski D, Ehlers S, Darragh K, Jiggins C, Schulz S. Head and Tail Oxidized Terpenoid Esters from Androconia of Heliconius erato Butterflies. JOURNAL OF NATURAL PRODUCTS 2022; 85:1428-1435. [PMID: 35587731 DOI: 10.1021/acs.jnatprod.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heliconius erato is a neotropical butterfly species that is part of a complex mimicry ring, with colorful wing patterns. For intraspecific communication, males use pheromones that are released from two different scent-emitting structures. Scent glands located near the abdominal claspers of males, containing antiaphrodisiac pheromones, release a highly complex mixture of compounds that is transferred to females during mating, rendering them unattractive to other males. On the other hand, androconia, scent-emitting scale areas on the wings of male butterflies, release a structurally more restricted set of compounds that likely serves an aphrodisiac role. We report here on two structurally related compounds that are the major androconial constituents, produced in high amounts and are not volatile due to their high molecular mass. Their structures were established by extensive analysis of mass, infrared, and NMR spectra, as well as microderivatization reactions of the natural extract. After establishing synthetic access, the compounds were unequivocally identified as two unusual head and tail oxidized terpenoids, (4E,8E,12E)-4,8,12-trimethyl-16-oxoheptadeca-4,8,12-trien-1-yl oleate (1) and stearate (2). Although behavioral assays are necessary to fully comprehend their role in the chemical communication of the species, hypotheses for their use by the butterflies are also discussed.
Collapse
Affiliation(s)
- Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig Germany
| | - Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig Germany
| | - Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, California 95616, United States
| | - Chris Jiggins
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, Cambridge, United Kingdom
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig Germany
| |
Collapse
|
10
|
Omura H, Noguchi T, Ohta S. Chemical identity of cuticular lipid components in the mimetic swallowtail butterfly Papilio polytes. Chem Biodivers 2022; 19:e202100879. [PMID: 35037384 DOI: 10.1002/cbdv.202100879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022]
Abstract
The swallowtail Papilio polytes shows Batesian and female-limited polymorphic mimicry. In Japan, P . polytes females have two different forms: the cyrus form is non-mimetic and resembles males, whereas the polytes form mimics Pachliopta aristolochiae and Byasa ( Atrophaneura ) alcinous as unpalatable models. During mating, P . polytes males use cuticular lipids to distinguish non-mimetic females from conspecific males and sympatric sister species. In this study, we investigated whether compositional differences in cuticular lipids exist between mimetic and non-mimetic females of P . polytes and between mimetic females and their model species. The mimetic and non-mimetic females had nearly identical cuticular lipid profiles, which differed from those of males. The two model species exhibited sexually dimorphic and species-specific cuticular lipid compositions, which were distinctly different from those of mimetic P . polytes females. These results strongly suggest that P . polytes females maintain the identity of cuticular lipid profiles regardless of the mimicry type, and this feature helps males recognize mimetic females as the correct mating partners.
Collapse
Affiliation(s)
- Hisashi Omura
- Hiroshima University: Hiroshima Daigaku, Graduate School of Integrated Sciences for Life, 1-7-1 Kagamiyama, 7398521, Higashihiroshima, JAPAN
| | - Taro Noguchi
- Hiroshima University: Hiroshima Daigaku, Graduate School of Biosphere Science, 1-7-1 Kagamiyama, 7398521, Higashihiroshima, JAPAN
| | - Shinji Ohta
- Hiroshima University: Hiroshima Daigaku, Graduate School of Integrated Sciences for Life, 1-7-1 Kagamiyama, 7398521, Higashihiroshima, JAPAN
| |
Collapse
|
11
|
Rather PA, Herzog AE, Ernst DA, Westerman EL. Effect of experience on mating behaviour in male Heliconius melpomene butterflies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Le Roy C, Roux C, Authier E, Parrinello H, Bastide H, Debat V, Llaurens V. Convergent morphology and divergent phenology promote the coexistence of Morpho butterfly species. Nat Commun 2021; 12:7248. [PMID: 34903755 PMCID: PMC8668891 DOI: 10.1038/s41467-021-27549-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
The coexistence of closely-related species in sympatry is puzzling because ecological niche proximity imposes strong competition and reproductive interference. A striking example is the widespread wing pattern convergence of several blue-banded Morpho butterfly species with overlapping ranges of distribution. Here we perform a series of field experiments using flying Morpho dummies placed in a natural habitat. We show that similarity in wing colour pattern indeed leads to interspecific territoriality and courtship among sympatric species. In spite of such behavioural interference, demographic inference from genomic data shows that sympatric closely-related Morpho species are genetically isolated. Mark-recapture experiments in the two most closely-related species unravel a strong temporal segregation in patrolling activity of males. Such divergence in phenology reduces the costs of reproductive interference while simultaneously preserving the benefits of convergence in non-reproductive traits in response to common ecological pressures. Henceforth, the evolution of multiple traits may favour species diversification in sympatry by partitioning niche in different dimensions.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France.
- Sorbonne Paris Cité, Université Paris Descartes, 12 rue de l'École de Médecine, 75006, Paris, France.
- Department of Experimental Zoology, Wageningen University, 6709 PG, Wageningen, The Netherlands.
| | - Camille Roux
- CNRS, UMR 8198 - Evo-Eco-Paleo, Univ. Lille, F-59000, Lille, France
| | | | - Hugues Parrinello
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Héloïse Bastide
- CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| |
Collapse
|
13
|
Ehlers S, Szczerbowski D, Harig T, Stell M, Hötling S, Darragh K, Jiggins CD, Schulz S. Identification and Composition of Clasper Scent Gland Components of the Butterfly Heliconius erato and Its Relation to Mimicry. Chembiochem 2021; 22:3300-3313. [PMID: 34547164 PMCID: PMC9293309 DOI: 10.1002/cbic.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Indexed: 12/01/2022]
Abstract
The butterfly Heliconius erato occurs in various mimetic morphs. The male clasper scent gland releases an anti‐aphrodisiac pheromone and additionally contains a complex mixture of up to 350 components, varying between individuals. In 114 samples of five different mimicry groups and their hybrids 750 different compounds were detected by gas chromatography/mass spectrometry (GC/MS). Many unknown components occurred, which were identified using their mass spectra, gas chromatography/infrared spectroscopy (GC/IR)‐analyses, derivatization, and synthesis. Key compounds proved to be various esters of 3‐oxohexan‐1‐ol and (Z)‐3‐hexen‐1‐ol with (S)‐2,3‐dihydrofarnesoic acid, accompanied by a large variety of other esters with longer terpene acids, fatty acids, and various alcohols. In addition, linear terpenes with up to seven uniformly connected isoprene units occur, e. g. farnesylfarnesol. A large number of the compounds have not been reported before from nature. Discriminant analyses of principal components of the gland contents showed that the iridescent mimicry group differs strongly from the other, mostly also separated, mimicry groups. Comparison with data from other species indicated that Heliconius recruits different biosynthetic pathways in a species‐specific manner for semiochemical formation.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Daiane Szczerbowski
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Tim Harig
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Matthew Stell
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Susan Hötling
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Kathy Darragh
- Department of Evolution and Ecology, Storer Hall University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, Cambridge, UK
| | - Stefan Schulz
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
14
|
Gupta S, Alluri RK, Rose GJ, Bee MA. Neural basis of acoustic species recognition in a cryptic species complex. J Exp Biol 2021; 224:jeb243405. [PMID: 34796902 PMCID: PMC10658901 DOI: 10.1242/jeb.243405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022]
Abstract
Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
| | - Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Piron-Prunier F, Persyn E, Legeai F, McClure M, Meslin C, Robin S, Alves-Carvalho S, Mohammad A, Blugeon C, Jacquin-Joly E, Montagné N, Elias M, Gauthier J. Comparative transcriptome analysis at the onset of speciation in a mimetic butterfly-The Ithomiini Melinaea marsaeus. J Evol Biol 2021; 34:1704-1721. [PMID: 34570954 DOI: 10.1111/jeb.13940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera.
Collapse
Affiliation(s)
- Florence Piron-Prunier
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Emma Persyn
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France.,Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Melanie McClure
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Laboratoire Écologie, Évolution,Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Stéphanie Robin
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France.,Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | | | - Ammara Mohammad
- Département de Biologie, Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Corinne Blugeon
- Département de Biologie, Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jérémy Gauthier
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France.,Geneva Natural History Museum, Geneva, Switzerland
| |
Collapse
|
16
|
Valencia-Montoya WA, Quental TB, Tonini JFR, Talavera G, Crall JD, Lamas G, Busby RC, Carvalho APS, Morais AB, Oliveira Mega N, Romanowski HP, Liénard MA, Salzman S, Whitaker MRL, Kawahara AY, Lohman DJ, Robbins RK, Pierce NE. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc Biol Sci 2021; 288:20202512. [PMID: 33975481 PMCID: PMC8113907 DOI: 10.1098/rspb.2020.2512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.
Collapse
Affiliation(s)
- Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Tiago B. Quental
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Instituto de Biociências, Universidade de São Paulo, Brazil
| | - João Filipe R. Tonini
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), 08038 Barcelona, Catalonia, Spain
| | - James D. Crall
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Ana Paula S. Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ana B. Morais
- Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Nicolás Oliveira Mega
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil
| | - Helena Piccoli Romanowski
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil
| | | | - Shayla Salzman
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R. L. Whitaker
- Entomological Collection, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Entomology Section, Zoology Division, Philippine National Museum of Natural History, Manila 1000, Philippines
| | - Robert K. Robbins
- Department of Entomology, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
18
|
Mann F, Szczerbowski D, de Silva L, McClure M, Elias M, Schulz S. 3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly Ithomia salapia. Beilstein J Org Chem 2020; 16:2776-2787. [PMID: 33281981 PMCID: PMC7684689 DOI: 10.3762/bjoc.16.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022] Open
Abstract
Male ithomiine butterflies (Nymphalidae: Danainae) have hairpencils on the forewings (i.e., androconia) that disseminate semiochemicals during courtship. While most ithomiines are known to contain derivatives of pyrrolizidine alkaloids, dihydropyrrolizines, or γ-lactones in these androconia, here we report on a new class of fatty acid esters identified in two subspecies, Ithomia salapia aquinia and I. s. derasa. The major components were identified as isoprenyl (3-methyl-3-butenyl) (Z)-3-acetoxy-11-octadecenoate, isoprenyl (Z)-3-acetoxy-13-octadecenoate (12) and isoprenyl 3-acetoxyoctadecanoate (11) by GC/MS and GC/IR analyses, microderivatizations, and synthesis of representative compounds. The absolute configuration of 12 was determined to be R. The two subspecies differed not only in the composition of the ester bouquet, but also in the composition of more volatile androconial constituents. While some individuals of I. s. aquinia contained ithomiolide A (3), a pyrrolizidine alkaloid derived γ-lactone, I. s. derasa carried the sesquiterpene α-elemol (8) in the androconia. These differences might be important for the reproductive isolation of the two subspecies, in line with previously reported low gene exchange between the two species in regions where they co-occur. Furthermore, the occurrence of positional isomers of unsaturated fatty acid derivatives indicates activity of two different desaturases within these butterflies, Δ9 and Δ11, which has not been reported before in male Lepidoptera.
Collapse
Affiliation(s)
- Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lisa de Silva
- Institut de Systématique Evolution Biodiversité, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, 45 rue Buffon, CP 50, 75005 Paris, France
| | - Melanie McClure
- Institut de Systématique Evolution Biodiversité, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, 45 rue Buffon, CP 50, 75005 Paris, France.,Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300 Cayenne, France
| | - Marianne Elias
- Institut de Systématique Evolution Biodiversité, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, 45 rue Buffon, CP 50, 75005 Paris, France
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
19
|
Rossi M, Hausmann AE, Thurman TJ, Montgomery SH, Papa R, Jiggins CD, McMillan WO, Merrill RM. Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nat Commun 2020; 11:4763. [PMID: 32958765 PMCID: PMC7506007 DOI: 10.1038/s41467-020-18609-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Many animal species remain separate not because their individuals fail to produce viable hybrids but because they "choose" not to mate. However, we still know very little of the genetic mechanisms underlying changes in these mate preference behaviours. Heliconius butterflies display bright warning patterns, which they also use to recognize conspecifics. Here, we couple QTL for divergence in visual preference behaviours with population genomic and gene expression analyses of neural tissue (central brain, optic lobes and ommatidia) across development in two sympatric Heliconius species. Within a region containing 200 genes, we identify five genes that are strongly associated with divergent visual preferences. Three of these have previously been implicated in key components of neural signalling (specifically an ionotropic glutamate receptor and two regucalcins), and overall our candidates suggest shifts in behaviour involve changes in visual integration or processing. This would allow preference evolution without altering perception of the wider environment.
Collapse
Affiliation(s)
- Matteo Rossi
- Division of Evolutionary Biology, LMU, Munich, Germany.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| | | | - Timothy J Thurman
- Smithsonian Tropical Research Institute, Panama City, Panama
- Division of Biological Sciences, University of Montana, Montana, USA
| | | | - Riccardo Papa
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Richard M Merrill
- Division of Evolutionary Biology, LMU, Munich, Germany.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
20
|
van Schooten B, Meléndez-Rosa J, Van Belleghem SM, Jiggins CD, Tan JD, McMillan WO, Papa R. Divergence of chemosensing during the early stages of speciation. Proc Natl Acad Sci U S A 2020; 117:16438-16447. [PMID: 32601213 PMCID: PMC7371972 DOI: 10.1073/pnas.1921318117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chemosensory communication is essential to insect biology, playing indispensable roles during mate-finding, foraging, and oviposition behaviors. These traits are particularly important during speciation, where chemical perception may serve to establish species barriers. However, identifying genes associated with such complex behavioral traits remains a significant challenge. Through a combination of transcriptomic and genomic approaches, we characterize the genetic architecture of chemoperception and the role of chemosensing during speciation for a young species pair of Heliconius butterflies, Heliconius melpomene and Heliconius cydno We provide a detailed description of chemosensory gene-expression profiles as they relate to sensory tissue (antennae, legs, and mouthparts), sex (male and female), and life stage (unmated and mated female butterflies). Our results untangle the potential role of chemical communication in establishing barriers during speciation and identify strong candidate genes for mate and host plant choice behaviors. Of the 252 chemosensory genes, HmOBP20 (involved in volatile detection) and HmGr56 (a putative synephrine-related receptor) emerge as strong candidates for divergence in pheromone detection and host plant discrimination, respectively. These two genes are not physically linked to wing-color pattern loci or other genomic regions associated with visual mate preference. Altogether, our results provide evidence for chemosensory divergence between H. melpomene and H. cydno, two rarely hybridizing butterflies with distinct mate and host plant preferences, a finding that supports a polygenic architecture of species boundaries.
Collapse
Affiliation(s)
- Bas van Schooten
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925;
- Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama
| | - Jesyka Meléndez-Rosa
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925;
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, CB2 8PQ Cambridge, United Kingdom
| | | | - W Owen McMillan
- Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925;
- Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico 00907
| |
Collapse
|