1
|
Fablet L, Bonin A, Zarzoso‐Lacoste D, Dubut V, Walch L. Exploring Bird Gut Microbiota Through Opportunistic Fecal Sampling: Ecological and Evolutionary Perspectives. Ecol Evol 2025; 15:e71291. [PMID: 40230867 PMCID: PMC11995298 DOI: 10.1002/ece3.71291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Wetland ecosystems are facing alarming rates of destruction and degradation, posing significant challenges for avian populations reliant on these habitats. Bird health is closely linked to the composition of their intestinal microbiota, which is primarily influenced by local conditions, primarily through diet. Building on our previous work identifying dietary variations among bird populations in marshes within a Ramsar site along the Somme and Avre rivers (France), this pilot study aimed to assess the relevance of using fecal samples collected from the ground to characterize avian intestinal microbiota via 16S rRNA metabarcoding. We hypothesized that this noninvasive sampling method would capture how bird traits and environmental factors shape fecal microbiota composition. Sampling was conducted during the breeding season at seven locations (six within the Ramsar site and one on its outskirts) spanning rural or peri-urban environments. A total of 52 fecal samples from nine bird species or families, predominantly waterbirds, were analyzed for bacterial composition. At the phylum level, Firmicutes and Proteobacteria were predominant, with the relative abundance of genera such as Clostridium, Rothia, Bacillus, Caldilinea and Pseudomonas varying among bird species. The potential enteropathogen Campylobacter was primarily detected in samples from peri-urban sites. Multivariate analyses revealed significant variations in bacterial composition associated with bird trophic guild, ecology, body length, pond surface and habitat location. Additionally, a weak correlation was observed between host phylogeny and microbiota composition. Although the limited sample size, particularly for some species, constrains the robustness of these findings, the observed trends align with ecological expectations. This study highlights the potential of opportunistically collected fecal samples as a low-impact tool for exploring the relationship between bird gut microbiota and their habitat.
Collapse
Affiliation(s)
- Laura Fablet
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| | | | - Diane Zarzoso‐Lacoste
- UMR CNRS 7058 Ecologie et Dynamique Des Systèmes Anthropisés (EDYSAN)Université de Picardie Jules VerneAmiensFrance
| | - Vincent Dubut
- Aix Marseille UnivAvignon Université, CNRS, IRD, IMBEMarseilleFrance
- ADENEKOSaint‐GironsFrance
| | - Laurence Walch
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| |
Collapse
|
2
|
Lu Z, Wang Z, Jia H, Meng D, Wu D. Captivity Reduces Diversity and Shifts Composition of the Great Bustard ( Otis tarda dybowskii) Microbiome. Ecol Evol 2025; 15:e70836. [PMID: 39803193 PMCID: PMC11718221 DOI: 10.1002/ece3.70836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard (Otis tarda) is a globally recognized endangered bird species. Previous research on the gut microbiota of the great bustard has been limited, hindering effective conservation efforts. Therefore, this study utilized high-throughput sequencing of the 16S rRNA and Internal Transcribed Spacer (ITS) genes to compare the gut bacterial and fungal microbiota of great bustards in different environments. The results revealed a significant decline in alpha diversity and notable changes in microbial community structure in captive environments. Changes in diet and habitat are likely major factors contributing to these shifts. Consequently, managing rescued wild animals by increasing dietary diversity and exposure to natural environmental reservoirs may enhance the success rate of reintroduction efforts.
Collapse
Affiliation(s)
- Zhiyuan Lu
- College of Life SciencesCangzhou Normal UniversityCangzhouChina
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei ProvinceHengshui UniversityHengshuiChina
| | - Zhucheng Wang
- College of Life SciencesCangzhou Normal UniversityCangzhouChina
| | - Hexue Jia
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei ProvinceHengshui UniversityHengshuiChina
- Center for Wetland Conservation and ResearchHengshui UniversityHengshuiChina
| | - Derong Meng
- College of Life SciencesCangzhou Normal UniversityCangzhouChina
| | - Dayong Wu
- Hebei Key Laboratory of Wetland Ecology and ConservationHengshuiChina
| |
Collapse
|
3
|
Bathia J, Miklós M, Gyulai I, Fraune S, Tökölyi J. Environmental microbial reservoir influences the bacterial communities associated with Hydra oligactis. Sci Rep 2024; 14:32167. [PMID: 39741169 PMCID: PMC11688501 DOI: 10.1038/s41598-024-82944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome. Correlation analyses and neutral modeling revealed that differences in Hydra microbiota are associated with differences in environmental microbiota. To further investigate the influence of environmental bacterial community on the host microbiome, field-collected Hydra polyps from three populations were cultured in native water or foreign water. Our results show that lake water bacteria significantly contribute to Hydra microbial communities, but the compositional profile remained stable when cultured in different water sources. Longitudinal analysis of the in vitro experiment revealed a site-specific change in microbiome that correlated with the source water quality. Taken together, our findings demonstrate that while freshwater serves as a critical microbial reservoir, Hydra microbial communities exhibit remarkable resilience to environmental changes maintaining stability despite potential invasion. This dual approach highlights the complex interplay between environmental reservoirs and host microbiome integrity.
Collapse
Affiliation(s)
- Jay Bathia
- Institute of Zoology and Organismic Interactions, Heinrich-Heine University, Düsseldorf, Germany.
| | - Máté Miklós
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
- Centre for Eco-Epidemiology, National Laboratory for Health Security, Budapest, Hungary
| | - István Gyulai
- National Laboratory for Water Science and Water Security, Department of Hydrobiology, University of Debrecen, Debrecen, Hungary
| | - Sebastian Fraune
- Institute of Zoology and Organismic Interactions, Heinrich-Heine University, Düsseldorf, Germany
| | - Jácint Tökölyi
- MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Pereira H, Chakarov N, Caspers BA, Gilles M, Jones W, Mijoro T, Zefania S, Székely T, Krüger O, Hoffman JI. The gut microbiota of three avian species living in sympatry. BMC Ecol Evol 2024; 24:144. [PMID: 39574002 PMCID: PMC11580620 DOI: 10.1186/s12862-024-02329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Evolutionary divergence and genetic variation are often linked to differences in microbial community structure and diversity. While environmental factors and diet heavily influence gut microbial communities, host species contributions are harder to quantify. Closely related species living in sympatry provide a unique opportunity to investigate species differences without the confounding effects of habitat and dietary variation. We therefore compared and contrasted the gut microbiota of three sympatric plover species: the widespread Kittlitz's and white-fronted plovers (Anarhynchus pecuarius and A. marginatus) and the endemic and vulnerable Madagascar plover (A. thoracicus). RESULTS We found no significant differences in the beta diversity (composition) of the gut microbiota of the three species. However, A. thoracicus exhibited higher intraspecific compositional similarity (i.e. lower pairwise distances) than the other two species; this pattern was especially pronounced among juveniles. By contrast, microbial alpha diversity varied significantly among the species, being highest in A. pecuarius, intermediate in A. marginatus and lowest in A. thoracicus. This pattern was again stronger among juveniles. Geographical distance did not significantly affect the composition of the gut microbiota, but genetic relatedness did. CONCLUSION While patterns of microbial diversity varied across species, the lack of compositional differences suggests that habitat and diet likely exert a strong influence on the gut microbiota of plovers. This may be enhanced by their precocial, ground-dwelling nature, which could facilitate the horizontal transmission of microbes from the environment. We hypothesise that gut microbiota diversity in plovers primarily reflects the ecological pool of microbiota, which is subsequently modified by host-specific factors including genetics. The reduced microbial and genetic diversity of the endemic A. thoracicus may hinder its ability to adapt to environmental changes, highlighting the need for increased conservation efforts for this vulnerable species.
Collapse
Grants
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- Universität Bielefeld (3146)
Collapse
Affiliation(s)
- Hugo Pereira
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Marc Gilles
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - William Jones
- Institut Supérieur de Technologie de Menabe, Université of Toliara & Morondava, Toliara, 601, Madagascar
| | - Tafitasoa Mijoro
- HUN-REN-Debrecen University Reproductive Strategies Research Group, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Sama Zefania
- HUN-REN-Debrecen University Reproductive Strategies Research Group, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Tamás Székely
- Institut Supérieur de Technologie de Menabe, Université of Toliara & Morondava, Toliara, 601, Madagascar
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Evolutionary Population Genetics, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| |
Collapse
|
5
|
Tang B, Wang Y, Dong Y, Cui Q, Zeng Z, He S, Zhao W, Lancuo Z, Li S, Wang W. The Catalog of Microbial Genes and Metagenome-Assembled Genomes from the Gut Microbiomes of Five Typical Crow Species on the Qinghai-Tibetan Plateau. Microorganisms 2024; 12:2033. [PMID: 39458342 PMCID: PMC11510465 DOI: 10.3390/microorganisms12102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
While considerable progress has been made in understanding the complex relationships between gut microbiomes and their hosts, especially in mammals and humans, the functions of these microbial communities in avian species remain largely unexplored. This gap in knowledge is particularly notable, given the critical roles gut microbiomes are known to play in facilitating crucial physiological functions, such as digestion, nutrient absorption, and immune system development. Corvidae birds are omnivorous and widely distributed across various habitats, exhibiting strong adaptability and often displaying the traits of accompanying humans. However, to date, information on species composition, sequenced genomes, and functional characteristics of crow gut microbes is lacking. Herein, we constructed the first relatively comprehensive crows gut microbial gene catalog (2.74 million genes) and 195 high-quality and medium-quality metagenome-assembled genomes using 53 metagenomic samples from five typical crow species (Pyrrhocorax pyrrhocorax, Corvus dauuricus, Corvus frugilegus, Corvus macrorhynchos, and Corvus corax) on the Qinghai-Tibetan Plateau. The species composition of gut microbiota at the phylum and genus levels was revealed for these five crow species. Simultaneously, numerous types of prevalent pathogenic bacteria were identified, indicating the potential of these crows to transmit diseases within the local community. At the functional level, we annotated a total of 356 KEGG functional pathways, six CAZyme categories, and 3607 virulence factor genes in the gut microbiomes of the crows. The gut microbiota of five distinct crow species underwent a comparative analysis, which uncovered significant differences in their composition, diversity, and functional structures. Over 36% of MAGs showed no overlap with existing databases, suggesting they might represent new species. Consequently, these findings enriched the dataset of microbial genomes associated with crows' digestive systems. Overall, this study offers crucial baseline information regarding the gut microbial gene catalog and genomes in crows, potentially aiding microbiome-based research, as well as an evaluation of the health risks to humans from the bacterial pathogens transmitted by wild birds.
Collapse
Affiliation(s)
- Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yonggang Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Quanchao Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Zhanhao Zeng
- Animal Disease Prevention and Control Center of Qinghai Province, Xining 810016, China;
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining 810016, China; (S.H.); (W.Z.)
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining 810016, China; (S.H.); (W.Z.)
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining 810016, China;
| | - Shaobin Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
| |
Collapse
|
6
|
Liukkonen M, Muriel J, Martínez-Padilla J, Nord A, Pakanen VM, Rosivall B, Tilgar V, van Oers K, Grond K, Ruuskanen S. Seasonal and environmental factors contribute to the variation in the gut microbiome: A large-scale study of a small bird. J Anim Ecol 2024; 93:1475-1492. [PMID: 39041321 DOI: 10.1111/1365-2656.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Environmental variation can shape the gut microbiome, but broad/large-scale data on among and within-population heterogeneity in the gut microbiome and the associated environmental factors of wild populations is lacking. Furthermore, previous studies have limited taxonomical coverage, and knowledge about wild avian gut microbiomes is still scarce. We investigated large-scale environmental variation in the gut microbiome of wild adult great tits across the species' European distribution range. We collected fecal samples to represent the gut microbiome and used the 16S rRNA gene sequencing to characterize the bacterial gut microbiome. Our results show that gut microbiome diversity is higher during winter and that there are compositional differences between winter and summer gut microbiomes. During winter, individuals inhabiting mixed forest habitat show higher gut microbiome diversity, whereas there was no similar association during summer. Also, temperature was found to be a small contributor to compositional differences in the gut microbiome. We did not find significant differences in the gut microbiome among populations, nor any association between latitude, rainfall and the gut microbiome. The results suggest that there is a seasonal change in wild avian gut microbiomes, but that there are still many unknown factors that shape the gut microbiome of wild bird populations.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jaime Muriel
- Department of Biology, University of Turku, Turku, Finland
| | - Jesús Martínez-Padilla
- Department of Biodiversity Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Andreas Nord
- Department of Biology, Lund University, Lund, Sweden
| | | | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vallo Tilgar
- Department of Zoology, Tartu University, Tartu, Estonia
| | - Kees van Oers
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Costantini M, Videvall E, Foster J, Medeiros M, Gillece J, Paxton E, Crampton L, Mounce H, Wang A, Fleischer R, Campana M, Reed F. The Role of Geography, Diet, and Host Phylogeny on the Gut Microbiome in the Hawaiian Honeycreeper Radiation. Ecol Evol 2024; 14:e70372. [PMID: 39416467 PMCID: PMC11480636 DOI: 10.1002/ece3.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The animal gut microbiome can have a strong influence on the health, fitness, and behavior of its hosts. The composition of the gut microbial community can be influenced by factors such as diet, environment, and evolutionary history (phylosymbiosis). However, the relative influence of these factors is unknown in most bird species. Furthermore, phylosymbiosis studies have largely focused on clades that diverged tens of millions of years ago, and little is known about the degree of gut microbiome divergence in more recent species radiations. This study explores the drivers of microbiome variation across the unique and recent Hawaiian honeycreeper radiation (Fringillidae: Drepanidinae). Fecal samples were collected from 14 extant species spanning the main islands of the Hawaiian archipelago and were sequenced using three metabarcoding markers to characterize the gut microbiome, invertebrate diet, and plant diet of Hawaiian honeycreepers. We then used these metabarcoding data and the honeycreeper host phylogeny to evaluate their relative roles in shaping the gut microbiome. Microbiome variation across birds was highly individualized; however, source island had a small but significant effect on microbiome structure. The microbiomes did not recapitulate the host phylogenetic tree, indicating that evolutionary history does not strongly influence microbiome structure in the honeycreeper clade. These results expand our understanding of the roles of diet, geography, and phylogeny on avian microbiome structure, while also providing important ecological information about the diet and gut microbiota of wild Hawaiian honeycreepers.
Collapse
Affiliation(s)
- Maria S. Costantini
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- Department of Ecology, Evolution and Organismal BiologyBrown UniversityProvidenceRhode IslandUSA
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRhode IslandUSA
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Jeffrey T. Foster
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Matthew C. I. Medeiros
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Pacific Biosciences Research CenterUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - John D. Gillece
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research CenterU.S. Geological SurveyHawai'i National ParkHawai'iUSA
| | - Lisa H. Crampton
- Kaua'i Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - Hanna L. Mounce
- Maui Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaMakawaoHawai'iUSA
| | - Alex X. Wang
- Hawai'i Division of Forestry and WildlifeHiloHawai'iUSA
| | - Robert C. Fleischer
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Michael G. Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Floyd A. Reed
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| |
Collapse
|
8
|
Russell AC, Kenna MA, Huynh AV, Rice AM. Microbial DNA extraction method for avian feces and preen oil from diverse species. Ecol Evol 2024; 14:e70220. [PMID: 39224152 PMCID: PMC11368492 DOI: 10.1002/ece3.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
As DNA sequencing technology continues to rapidly improve, studies investigating the microbial communities of host organisms (i.e., microbiota) are becoming not only more popular but also more financially accessible. Across many taxa, microbiomes can have important impacts on organismal health and fitness. To evaluate the microbial community composition of a particular microbiome, microbial DNA must be successfully extracted. Fecal samples are often easy to collect and are a good source of gut microbial DNA. Additionally, interest in the avian preen gland microbiome is rapidly growing, due to the importance of preen oil for many aspects of avian life. Microbial DNA extractions from avian fecal and preen oil samples present multiple challenges, however. Here, we describe a modified PrepMan Ultra Sample Preparation Reagent microbial DNA extraction method that is less expensive than other commonly used methodologies and is highly effective for both fecal and preen oil samples collected from a broad range of avian species. We expect our method will facilitate microbial DNA extractions from multiple avian microbiome reservoirs, which have previously proved difficult and expensive. Our method therefore increases the feasibility of future studies of avian host microbiomes.
Collapse
Affiliation(s)
- Austin C. Russell
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Margaret A. Kenna
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Alex Van Huynh
- Department of BiologyDeSales UniversityCenter ValleyPennsylvaniaUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
9
|
Martínez-Renau E, Martín-Platero AM, Bodawatta KH, Martín-Vivaldi M, Martínez-Bueno M, Poulsen M, Soler JJ. Social environment influences microbiota and potentially pathogenic bacterial communities on the skin of developing birds. Anim Microbiome 2024; 6:47. [PMID: 39148142 PMCID: PMC11325624 DOI: 10.1186/s42523-024-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin. RESULTS We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies. CONCLUSIONS Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.
Collapse
Affiliation(s)
- Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Antonio M Martín-Platero
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
10
|
Worsley SF, Davies CS, Lee CZ, Mannarelli ME, Burke T, Komdeur J, Dugdale HL, Richardson DS. Longitudinal gut microbiome dynamics in relation to age and senescence in a wild animal population. Mol Ecol 2024; 33:e17477. [PMID: 39010794 DOI: 10.1111/mec.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
In humans, gut microbiome (GM) differences are often correlated with, and sometimes causally implicated in, ageing. However, it is unclear how these findings translate in wild animal populations. Studies that investigate how GM dynamics change within individuals, and with declines in physiological condition, are needed to fully understand links between chronological age, senescence and the GM, but have rarely been done. Here, we use longitudinal data collected from a closed population of Seychelles warblers (Acrocephalus sechellensis) to investigate how bacterial GM alpha diversity, composition and stability are associated with host senescence. We hypothesised that GM diversity and composition will differ, and become more variable, in older adults, particularly in the terminal year prior to death, as the GM becomes increasingly dysregulated due to senescence. However, GM alpha diversity and composition remained largely invariable with respect to adult age and did not differ in an individual's terminal year. Furthermore, there was no evidence that the GM became more heterogenous in senescent age groups (individuals older than 6 years), or in the terminal year. Instead, environmental variables such as season, territory quality and time of day, were the strongest predictors of GM variation in adult Seychelles warblers. These results contrast with studies on humans, captive animal populations and some (but not all) studies on non-human primates, suggesting that GM deterioration may not be a universal hallmark of senescence in wild animal species. Further work is needed to disentangle the factors driving variation in GM-senescence relationships across different host taxa.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Chuen Zhang Lee
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Nature Seychelles, Mahé, Republic of Seychelles
| |
Collapse
|
11
|
Hu B, Wang JM, Zhang QX, Xu J, Xing YN, Wang B, Han SY, He HX. Enterococcus faecalis provides protection during scavenging in carrion crow ( Corvus corone). Zool Res 2024; 45:451-463. [PMID: 38583936 PMCID: PMC11188602 DOI: 10.24272/j.issn.2095-8137.2023.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 04/09/2024] Open
Abstract
The gut microbiota significantly influences host physiology and provides essential ecosystem services. While diet can affect the composition of the gut microbiota, the gut microbiota can also help the host adapt to specific dietary habits. The carrion crow ( Corvus corone), an urban facultative scavenger bird, hosts an abundance of pathogens due to its scavenging behavior. Despite this, carrion crows infrequently exhibit illness, a phenomenon related to their unique physiological adaptability. At present, however, the role of the gut microbiota remains incompletely understood. In this study, we performed a comparative analysis using 16S rRNA amplicon sequencing technology to assess colonic content in carrion crows and 16 other bird species with different diets in Beijing, China. Our findings revealed that the dominant gut microbiota in carrion crows was primarily composed of Proteobacteria (75.51%) and Firmicutes (22.37%). Significant differences were observed in the relative abundance of Enterococcus faecalis among groups, highlighting its potential as a biomarker of facultative scavenging behavior in carrion crows. Subsequently, E. faecalis isolated from carrion crows was transplanted into model mice to explore the protective effects of this bacterial community against Salmonella enterica infection. Results showed that E. faecalis down-regulated the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6), prevented S. enterica colonization, and regulated the composition of gut microbiota in mice, thereby modulating the host's immune regulatory capacity. Therefore, E. faecalis exerts immunoregulatory and anti-pathogenic functions in carrion crows engaged in scavenging behavior, offering a representative case of how the gut microbiota contributes to the protection of hosts with specialized diets.
Collapse
Affiliation(s)
- Bin Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Min Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Xun Zhang
- Beijing Milu Ecological Research Center, Beijing 102600, China
| | - Jing Xu
- Beijing Capital International Airport Co., Ltd., Beijing 101300, China
| | - Ya-Nan Xing
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Yi Han
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan He
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
12
|
Baiz MD, Wood AW, Toews DPL. Association between the gut microbiome and carotenoid plumage phenotype in an avian hybrid zone. Proc Biol Sci 2024; 291:20240238. [PMID: 38628125 PMCID: PMC11022011 DOI: 10.1098/rspb.2024.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Vertebrates host complex microbiomes that impact their physiology. In many taxa, including colourful wood-warblers, gut microbiome similarity decreases with evolutionary distance. This may suggest that as host populations diverge, so do their microbiomes, because of either tight coevolutionary dynamics, or differential environmental influences, or both. Hybridization is common in wood-warblers, but the effects of evolutionary divergence on the microbiome during secondary contact are unclear. Here, we analyse gut microbiomes in two geographically disjunct hybrid zones between blue-winged warblers (Vermivora cyanoptera) and golden-winged warblers (Vermivora chrysoptera). We performed 16S faecal metabarcoding to identify species-specific bacteria and test the hypothesis that host admixture is associated with gut microbiome disruption. Species identity explained a small amount of variation between microbiomes in only one hybrid zone. Co-occurrence of species-specific bacteria was rare for admixed individuals, yet microbiome richness was similar among admixed and parental individuals. Unexpectedly, we found several bacteria that were more abundant among admixed individuals with a broader deposition of carotenoid-based plumage pigments. These bacteria are predicted to encode carotenoid biosynthesis genes, suggesting birds may take advantage of pigments produced by their gut microbiomes. Thus, host admixture may facilitate beneficial symbiotic interactions which contribute to plumage ornaments that function in sexual selection.
Collapse
Affiliation(s)
- Marcella D. Baiz
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Andrew W. Wood
- Department of Biology, Pennylvania State University, University Park, PA 16802, USA
| | - David P. L. Toews
- Department of Biology, Pennylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
14
|
Vijayan N, McAnulty SJ, Sanchez G, Jolly J, Ikeda Y, Nishiguchi MK, Réveillac E, Gestal C, Spady BL, Li DH, Burford BP, Kerwin AH, Nyholm SV. Evolutionary history influences the microbiomes of a female symbiotic reproductive organ in cephalopods. Appl Environ Microbiol 2024; 90:e0099023. [PMID: 38315021 PMCID: PMC10952459 DOI: 10.1128/aem.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.
Collapse
Affiliation(s)
- Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah J. McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
| | - Jeffrey Jolly
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Yuzuru Ikeda
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of Ryukyus, Ryukyus, Japan
| | - Michele K. Nishiguchi
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Elodie Réveillac
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS–La Rochelle Université, La Rochelle, France
| | - Camino Gestal
- Institute of Marine Research (IIM), CSIC, Vigo, Spain
| | - Blake L. Spady
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- U.S. National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, Center for Satellite Applications and Research, Coral Reef Watch, College Park, Maryland, USA
| | - Diana H. Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Benjamin P. Burford
- Institute of Marine Sciences, University of California, affiliated with the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Allison H. Kerwin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Biology, McDaniel College, Westminster, Maryland, USA
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
15
|
Ahmad AR, Ridgeway S, Shibl AA, Idaghdour Y, Jha AR. Falcon gut microbiota is shaped by diet and enriched in Salmonella. PLoS One 2024; 19:e0293895. [PMID: 38289900 PMCID: PMC10826950 DOI: 10.1371/journal.pone.0293895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/20/2023] [Indexed: 02/01/2024] Open
Abstract
The gut microbiome is increasingly being appreciated as a master regulator of animal health. However, avian gut microbiome studies commonly focus on birds of economic importance and the gut microbiomes of raptors remain underexplored. Here we examine the gut microbiota of 29 captive falcons-raptors of historic importance-in the context of avian evolution by sequencing the V4 region of the 16S rRNA gene. Our results reveal that evolutionary histories and diet are significantly associated with avian gut microbiota in general, whereas diet plays a major role in shaping the falcon gut microbiota. Multiple analyses revealed that gut microbial diversity, composition, and relative abundance of key diet-discriminating bacterial genera in the falcon gut closely resemble those of carnivorous raptors rather than those of their closest phylogenetic relatives. Furthermore, the falcon microbiota is dominated by Firmicutes and contains Salmonella at appreciable levels. Salmonella presence was associated with altered functional capacity of the falcon gut microbiota as its abundance is associated with depletion of multiple predicted metabolic pathways involved in protein mass buildup, muscle maintenance, and enrichment of antimicrobial compound degradation, thus increasing the pathogenic potential of the falcon gut. Our results point to the necessity of screening for Salmonella and other human pathogens in captive birds to safeguard both the health of falcons and individuals who come in contact with these birds.
Collapse
Affiliation(s)
- Anique R. Ahmad
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel Ridgeway
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
16
|
Brinker P, Chen F, Chehida YB, Beukeboom LW, Fontaine MC, Salles JF. Microbiome composition is shaped by geography and population structure in the parasitic wasp Asobara japonica, but not in the presence of the endosymbiont Wolbachia. Mol Ecol 2023; 32:6644-6658. [PMID: 36125236 DOI: 10.1111/mec.16699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Fangying Chen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- Department of Biology, University of York, York, UK
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Guerrini M, Tanini D, Vannini C, Barbanera F. Wild Avian Gut Microbiome at a Small Spatial Scale: A Study from a Mediterranean Island Population of Alectoris rufa. Animals (Basel) 2023; 13:3341. [PMID: 37958097 PMCID: PMC10648672 DOI: 10.3390/ani13213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
This research is one of the few comparative descriptions at an intraspecific level of wild non-passerine microbiomes. We investigated for the first time the gut microbiome of red-legged partridges (Alectoris rufa) using fecal pellets in order to provide a more informed management. We focused on a small Italian population consisting of two demes (WEST, EAST) separated by about 20 km on the opposite sides of Elba Island. Given the small spatial scale, we set up a sampling protocol to minimize contamination from environmental bacteria, as well as differences due to variations in-among others-habitat, season, and age of feces, that could possibly affect the investigation of the three Elban sites. We found a significant divergence between the WEST and EAST Elban subpopulations in terms of microbial composition and alpha diversity. Although most represented bacterial phyla were the same in all the sites (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes), microbiomes displayed a much higher diversity in western than in eastern partridges. This result might be related to locally diverging individual physiological needs and/or to different intensities in past releases of captive-bred birds between the two sides of Elba. We suggest that the two subpopulations should be treated as distinct management units.
Collapse
Affiliation(s)
| | | | - Claudia Vannini
- Department of Biology, University of Pisa, Via A. Volta 4, 56126 Pisa, Italy (F.B.)
| | | |
Collapse
|
18
|
Herder EA, Skeen HR, Lutz HL, Hird SM. Body Size Poorly Predicts Host-Associated Microbial Diversity in Wild Birds. Microbiol Spectr 2023; 11:e0374922. [PMID: 37039681 PMCID: PMC10269867 DOI: 10.1128/spectrum.03749-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/12/2023] [Indexed: 04/12/2023] Open
Abstract
The composition and diversity of avian microbiota are shaped by many factors, including host ecologies and environmental variables. In this study, we examine microbial diversity across 214 bird species sampled in Malawi at five major body sites: blood, buccal cavity, gizzard, intestinal tract, and cloaca. Microbial community dissimilarity differed significantly across body sites. Ecological theory predicts that as area increases, so does diversity. We tested the hypothesis that avian microbiota diversity is correlated with body size, used as a proxy for area, using comparative phylogenetic methods. Using Pagel's lambda, we found that few microbial diversity metrics had significant phylogenetic signals. Phylogenetic generalized least squares identified a significant but weak negative correlation between host size and microbial diversity of the blood and a similarly significant but weakly positive correlation between the cloacal microbiota and host size among birds within the order Passeriformes. Phylosymbiosis, or a congruent branching pattern between host phylogeny and their associated microbiota similarity, was tested and found to be weak or not significant in four of the body sites with sufficient sample size (blood, buccal, cloaca, and intestines). Taken together, these results suggest that the avian microbiome is highly variable, with microbiota diversity demonstrating few clear associations with bird size. Finally, the blood microbiota have a unique relationship with host size. IMPORTANCE All animals coexist and interact with microorganisms, including bacteria, archaea, microscopic eukaryotes, and viruses. These microorganisms can have an enormous influence on the biology and health of macro-organisms. However, the general rules that govern these host-associated microbial communities are poorly described, especially in wild animals. In this paper, we investigate the microbial communities of over 200 species of birds from Malawi and characterize five body site bacterial microbiota in depth. Because the evolutionary relationships of the host underlie the relationship between any host-associated microbiota relationships, we use phylogenetic comparative methods to account for this relationship. We find that the size of a host (the bird) and the diversity and composition of the microbiota are largely uncorrelated. We also find that the general pattern of similarity between host phylogeny and microbiota similarity is weak. Together, we see that bird microbiota are not strongly tied to host size or evolutionary history.
Collapse
Affiliation(s)
- Elizabeth A. Herder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Heather R. Skeen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Holly L. Lutz
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
19
|
Diez-Méndez D, Bodawatta KH, Freiberga I, Klečková I, Jønsson KA, Poulsen M, Sam K. Indirect maternal effects via nest microbiome composition drive gut colonization in altricial chicks. Mol Ecol 2023. [PMID: 37096441 DOI: 10.1111/mec.16959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Gut microbial communities are complex and heterogeneous and play critical roles for animal hosts. Early-life disruptions to microbiome establishment can negatively impact host fitness and development. However, the consequences of such early-life disruptions remain unknown in wild birds. To help fill this gap, we investigated the effect of continuous early-life gut microbiome disruptions on the establishment and development of gut communities in wild Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nestlings by applying antibiotics and probiotics. Treatment neither affected nestling growth nor their gut microbiome composition. Independent of treatment, nestling gut microbiomes of both species grouped by brood, which shared the highest numbers of bacterial taxa with both nest environment and their mother. Although fathers showed different gut communities than their nestlings and nests, they still contributed to structuring chick microbiomes. Lastly, we observed that the distance between nests increased inter-brood microbiome dissimilarity, but only in Great tits, indicating that species-specific foraging behaviour and/or microhabitat influence gut microbiomes. Overall, the strong maternal effect, driven by continuous recolonization from the nest environment and vertical transfer of microbes during feeding, appears to provide resilience towards early-life disruptions in nestling gut microbiomes.
Collapse
Affiliation(s)
- David Diez-Méndez
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Inga Freiberga
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Irena Klečková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
20
|
Liukkonen M, Hukkanen M, Cossin-Sevrin N, Stier A, Vesterinen E, Grond K, Ruuskanen S. No evidence for associations between brood size, gut microbiome diversity and survival in great tit (Parus major) nestlings. Anim Microbiome 2023; 5:19. [PMID: 36949549 PMCID: PMC10031902 DOI: 10.1186/s42523-023-00241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The gut microbiome forms at an early stage, yet data on the environmental factors influencing the development of wild avian microbiomes is limited. As the gut microbiome is a vital part of organismal health, it is important to understand how it may connect to host performance. The early studies with wild gut microbiome have shown that the rearing environment may be of importance in gut microbiome formation, yet the results vary across taxa, and the effects of specific environmental factors have not been characterized. Here, wild great tit (Parus major) broods were manipulated to either reduce or enlarge the original brood soon after hatching. We investigated if brood size was associated with nestling bacterial gut microbiome, and whether gut microbiome diversity predicted survival. Fecal samples were collected at mid-nestling stage and sequenced with the 16S rRNA gene amplicon sequencing, and nestling growth and survival were measured. RESULTS Gut microbiome diversity showed high variation between individuals, but this variation was not significantly explained by brood size or body mass. Additionally, we did not find a significant effect of brood size on body mass or gut microbiome composition. We also demonstrated that early handling had no impact on nestling performance or gut microbiome. Furthermore, we found no significant association between gut microbiome diversity and short-term (survival to fledging) or mid-term (apparent juvenile) survival. CONCLUSIONS We found no clear association between early-life environment, offspring condition and gut microbiome. This suggests that brood size is not a significantly contributing factor to great tit nestling condition, and that other environmental and genetic factors may be more strongly linked to offspring condition and gut microbiome. Future studies should expand into other early-life environmental factors e.g., diet composition and quality, and parental influences.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyvaskyla, Finland.
| | - Mikaela Hukkanen
- Department of Biology, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | | | - Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622, Lyon, France
- Institut Pluridisciplinaire Hubert Curien, UMR7178, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, 99508, USA
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyvaskyla, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Kim JE, Tun HM, Bennett DC, Leung FC, Cheng KM. Microbial diversity and metabolic function in duodenum, jejunum and ileum of emu (Dromaius novaehollandiae). Sci Rep 2023; 13:4488. [PMID: 36934111 PMCID: PMC10024708 DOI: 10.1038/s41598-023-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.
Collapse
Affiliation(s)
- Ji Eun Kim
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hein M Tun
- School of Public Health, Li Ka Shing, Faculty of Medicine, HKU-Pasteur Research Pole, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
22
|
Schmiedová L, Kreisinger J, Kubovčiak J, Těšický M, Martin JF, Tomášek O, Kauzálová T, Sedláček O, Albrecht T. Gut microbiota variation between climatic zones and due to migration strategy in passerine birds. Front Microbiol 2023; 14:1080017. [PMID: 36819027 PMCID: PMC9928719 DOI: 10.3389/fmicb.2023.1080017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Decreasing biotic diversity with increasing latitude is an almost universal macroecological pattern documented for a broad range of taxa, however, there have been few studies focused on changes in gut microbiota (GM) across climatic zones. Methods Using 16S rRNA amplicon profiling, we analyzed GM variation between temperate (Czechia) and tropical (Cameroon) populations of 99 passerine bird species and assessed GM similarity of temperate species migrating to tropical regions with that of residents/short-distance migrants and tropical residents. Our study also considered the possible influence of diet on GM. Results We observed no consistent GM diversity differences between tropical and temperate species. In the tropics, GM composition varied substantially between dry and rainy seasons and only a few taxa exhibited consistent differential abundance between tropical and temperate zones, irrespective of migration behavior and seasonal GM changes. During the breeding season, trans-Saharan migrant GM diverged little from species not overwintering in the tropics and did not show higher similarity to tropical passerines than temperate residents/short-distance migrants. Interestingly, GM of two temperate-breeding trans-Saharan migrants sampled in the tropical zone matched that of tropical residents and converged with other temperate species during the breeding season. Diet had a slight effect on GM composition of tropical species, but no effect on GM of temperate hosts. Discussion Consequently, our results demonstrate extensive passerine GM plasticity, the dominant role of environmental factors in its composition and limited effect of diet.
Collapse
Affiliation(s)
- Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,*Correspondence: Jakub Kreisinger,
| | - Jan Kubovčiak
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Oldřich Tomášek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Tereza Kauzálová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Ondřej Sedláček
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
23
|
Joakim RL, Irham M, Haryoko T, Rowe KMC, Dalimunthe Y, Anita S, Achmadi AS, McGuire JA, Perkins S, Bowie RCK. Geography and elevation as drivers of cloacal microbiome assemblages of a passerine bird distributed across Sulawesi, Indonesia. Anim Microbiome 2023; 5:4. [PMID: 36647179 PMCID: PMC9841722 DOI: 10.1186/s42523-022-00219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Empirical field studies allow us to view how ecological and environmental processes shape the biodiversity of our planet, but collecting samples in situ creates inherent challenges. The majority of empirical vertebrate gut microbiome research compares multiple host species against abiotic and biotic factors, increasing the potential for confounding environmental variables. To minimize these confounding factors, we focus on a single species of passerine bird found throughout the geologically complex island of Sulawesi, Indonesia. We assessed the effects of two environmental factors, geographic Areas of Endemism (AOEs) and elevation, as well as host sex on the gut microbiota assemblages of the Sulawesi Babbler, Pellorneum celebense, from three different mountains across the island. Using cloacal swabs, high-throughput-amplicon sequencing, and multiple statistical models, we identified the core microbiome and determined the signal of these three factors on microbial composition. RESULTS The five most prevalent bacterial phyla within the gut microbiome of P. celebense were Proteobacteria (32.6%), Actinobacteria (25.2%), Firmicutes (22.1%), Bacteroidetes (8.7%), and Plantomycetes (2.6%). These results are similar to those identified in prior studies of passeriform microbiomes. Overall, microbiota diversity decreased as elevation increased, irrespective of sex or AOE. A single ASV of Clostridium was enriched in higher elevation samples, while lower elevation samples were enriched with the genera Perlucidibaca (Family Moraxellaceae), Lachnoclostridium (Family Lachnospiraceae), and an unidentified species in the Family Pseudonocardiaceae. CONCLUSIONS While the core microbiota families recovered here are consistent with other passerine studies, the decreases in diversity as elevation increases has only been seen in non-avian hosts. Additionally, the increased abundance of Clostridium at high elevations suggests a potential microbial response to lower oxygen levels. This study emphasizes the importance of incorporating multiple statistical models and abiotic factors such as elevation in empirical microbiome research, and is the first to describe an avian gut microbiome from the island of Sulawesi.
Collapse
Affiliation(s)
- Rachael L Joakim
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.
| | - Mohammad Irham
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Karen M C Rowe
- Sciences Department, Museums Victoria, Carlton, VIC, Australia
- BioSciences Department, University of Melbourne, Parkville, VIC, Australia
| | - Yohanna Dalimunthe
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Syahfitri Anita
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Susan Perkins
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Baiz MD, Benavides C A, Miller ET, Wood AW, Toews DPL. Gut microbiome composition better reflects host phylogeny than diet diversity in breeding wood-warblers. Mol Ecol 2023; 32:518-536. [PMID: 36325817 DOI: 10.1111/mec.16762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Understanding the factors that shape microbiomes can provide insight into the importance of host-symbiont interactions and on co-evolutionary dynamics. Unlike for mammals, previous studies have found little or no support for an influence of host evolutionary history on avian gut microbiome diversity and instead have suggested a greater influence of the environment or diet due to fast gut turnover. Because effects of different factors may be conflated by captivity and sampling design, examining natural variation using large sample sizes is important. Our goal was to overcome these limitations by sampling wild birds to compare environmental, dietary and evolutionary influences on gut microbiome structure. We performed faecal metabarcoding to characterize both the gut microbiome and diet of 15 wood-warbler species across a 4-year period and from two geographical localities. We find host taxonomy generally explained ~10% of the variation between individuals, which is ~6-fold more variation of any other factor considered, including diet diversity. Further, gut microbiome similarity was more congruent with the host phylogeny than with host diet similarity and we found little association between diet diversity and microbiome diversity. Together, our results suggest evolutionary history is the strongest predictor of gut microbiome differentiation among wood-warblers. Although the phylogenetic signal of the warbler gut microbiome is not very strong, our data suggest that a stronger influence of diet (as measured by diet diversity) does not account for this pattern. The mechanism underlying this phylogenetic signal is not clear, but we argue host traits may filter colonization and maintenance of microbes.
Collapse
Affiliation(s)
- Marcella D Baiz
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| | - Andrea Benavides C
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| | | | - Andrew W Wood
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| | - David P L Toews
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
25
|
Worsley SF, Davies CS, Mannarelli ME, Komdeur J, Dugdale HL, Richardson DS. Assessing the causes and consequences of gut mycobiome variation in a wild population of the Seychelles warbler. MICROBIOME 2022; 10:242. [PMID: 36575553 PMCID: PMC9795730 DOI: 10.1186/s40168-022-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Considerable research has focussed on the importance of bacterial communities within the vertebrate gut microbiome (GM). However, studies investigating the significance of other microbial kingdoms, such as fungi, are notably lacking, despite their potential to influence host processes. Here, we characterise the fungal GM of individuals living in a natural population of Seychelles warblers (Acrocephalus sechellensis). We evaluate the extent to which fungal GM structure is shaped by environment and host factors, including genome-wide heterozygosity and variation at key immune genes (major histocompatibility complex (MHC) and Toll-like receptor (TLR)). Importantly, we also explore the relationship between fungal GM differences and subsequent host survival. To our knowledge, this is the first time that the genetic drivers and fitness consequences of fungal GM variation have been characterised for a wild vertebrate population. RESULTS Environmental factors, including season and territory quality, explain the largest proportion of variance in the fungal GM. In contrast, neither host age, sex, genome-wide heterozygosity, nor TLR3 genotype was associated with fungal GM differences in Seychelles warblers. However, the presence of four MHC-I alleles and one MHC-II allele was associated with changes in fungal GM alpha diversity. Changes in fungal richness ranged from between 1 and 10 sequencing variants lost or gained; in some cases, this accounted for 20% of the fungal variants carried by an individual. In addition to this, overall MHC-I allelic diversity was associated with small, but potentially important, changes in fungal GM composition. This is evidenced by the fact that fungal GM composition differed between individuals that survived or died within 7 months of being sampled. CONCLUSIONS Our results suggest that environmental factors play a primary role in shaping the fungal GM, but that components of the host immune system-specifically the MHC-may also contribute to the variation in fungal communities across individuals within wild populations. Furthermore, variation in the fungal GM can be associated with differential survival in the wild. Further work is needed to establish the causality of such relationships and, thus, the extent to which components of the GM may impact host evolution. Video Abstract.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Maria-Elena Mannarelli
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles.
| |
Collapse
|
26
|
Wang B, Zhong H, Liu Y, Ruan L, Kong Z, Mou X, Wu L. Diet drives the gut microbiome composition and assembly processes in winter migratory birds in the Poyang Lake wetland, China. Front Microbiol 2022; 13:973469. [PMID: 36212828 PMCID: PMC9537367 DOI: 10.3389/fmicb.2022.973469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The complex gut bacterial communities may facilitate the function, distribution, and diversity of birds. For migratory birds, long-distance traveling poses selection pressures on their gut microbiota, ultimately affecting the birds’ health, fitness, ecology, and evolution. However, our understanding of mechanisms that underlie the assembly of the gut microbiome of migratory birds is limited. In this study, the gut microbiota of winter migratory birds in the Poyang Lake wetland was characterized using MiSeq sequencing of 16S rRNA genes. The sampled bird included herbivorous, carnivorous, and omnivorous birds from a total of 17 species of 8 families. Our results showed that the gut microbiota of migratory birds was dominated by four major bacterial phyla: Firmicutes (47.8%), Proteobacteria (18.2%), Fusobacteria (12.6%), and Bacteroidetes (9.1%). Dietary specialization outweighed the phylogeny of birds as an important factor governing the gut microbiome, mainly through regulating the deterministic processes of homogeneous selection and stochastic processes of homogeneous dispersal balance. Moreover, the omnivorous had more bacterial diversity than the herbivorous and carnivorous. Microbial networks for the gut microbiome of the herbivorous and carnivorous were less integrated, i.e., had lower average node degree and greater decreased network stability upon node attack removal than those of the omnivorous birds. Our findings advance the understanding of host-microbiota interactions and the evolution of migratory bird dietary flexibility and diversification.
Collapse
Affiliation(s)
- Binhua Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Hui Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Yajun Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Luzhang Ruan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Zhaoyu Kong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, OH, United States
- *Correspondence: Xiaozhen Mou,
| | - Lan Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
- Lan Wu,
| |
Collapse
|
27
|
Lu Z, Li S, Wang M, Wang C, Meng D, Liu J. Comparative Analysis of the Gut Microbiota of Three Sympatric Terrestrial Wild Bird Species Overwintering in Farmland Habitats. Front Microbiol 2022; 13:905668. [PMID: 35928156 PMCID: PMC9343720 DOI: 10.3389/fmicb.2022.905668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota of wild birds are affected by complex factors, and cross-species transmission may pose challenges for the host to maintain stable gut symbionts. Farmland habitats are environments strongly manipulated by humans, and the environmental characteristics within a large area are highly consistent. These features provide the ideal natural conditions for conducting cross-species comparative studies on gut microbiota among wild birds. This study aimed to investigate and compare the gut microbiota of three common farmland-dependent bird species, Great Bustard (Otis tarda dybowskii), Common Crane (Grus grus), and Common Coot (Fulica atra), in a homogeneous habitat during the wintering period. The results indicated that under the combined action of similar influencing factors, the gut microbiota of different host species did not undergo adaptive convergence, maintained relatively independent structures, and exhibited host-driven signals. In addition, we also detected various pathogenic genera that may cause outbreaks of periodic infections among sympatric migratory birds. We conclude that phylosymbiosis may occur between some wild birds and their gut microbiota. Usage of non-invasive methods to monitor the changes in the gut microbiota of wild bird fecal samples has important implications for the conservation of endangered species.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China
| | - Sisi Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Derong Meng
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Jingze Liu,
| |
Collapse
|
28
|
Kubovčiak J, Schmiedová L, Albrecht T, Těšický M, Tomášek O, Kauzálová T, Kreisinger J. Within-community variation of interspecific divergence patterns in passerine gut microbiota. Ecol Evol 2022; 12:e9071. [PMID: 35813907 PMCID: PMC9251858 DOI: 10.1002/ece3.9071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota (GM) often exhibit variation between different host species and co-divergence with hosts' phylogeny. Identifying these patterns is a key for understanding the mechanisms that shaped symbiosis between GM and its hosts. Therefore, both GM-host species specificity and GM-host co-divergence have been investigated by numerous studies. However, most of them neglected a possibility that different groups of bacteria within GM can vary in the tightness of their association with the host. Consequently, unlike most of these studies, we aimed to directly address how the strength of GM-host species specificity and GM-host co-divergence vary across different GM clades. We decomposed GM communities of 52 passerine species (394 individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of host species specificity and correlation with host phylogeny separately for resulting BTUs. We found that most BTUs exhibited significant host-species specificity in their composition. Notably, BTUs exhibiting high host-species specificity comprised bacterial taxa known to impact host's physiology and immune system. However, BTUs rarely displayed significant co-divergence with host phylogeny, suggesting that passerine GM evolution is not shaped primarily through a shared evolutionary history between the host and its gut microbes.
Collapse
Affiliation(s)
- Jan Kubovčiak
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Lucie Schmiedová
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Martin Těšický
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Tereza Kauzálová
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
29
|
Bodawatta KH, Klečková I, Klečka J, Pužejová K, Koane B, Poulsen M, Jønsson KA, Sam K. Specific gut bacterial responses to natural diets of tropical birds. Sci Rep 2022; 12:713. [PMID: 35027664 PMCID: PMC8758760 DOI: 10.1038/s41598-022-04808-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
The composition of gut bacterial communities is strongly influenced by the host diet in many animal taxa. For birds, the effect of diet on the microbiomes has been documented through diet manipulation studies. However, for wild birds, most studies have drawn on literature-based information to decipher the dietary effects, thereby, overlooking individual variation in dietary intake. Here we examine how naturally consumed diets influence the composition of the crop and cloacal microbiomes of twenty-one tropical bird species, using visual and metabarcoding-based identification of consumed diets and bacterial 16S rRNA microbiome sequencing. We show that diet intakes vary markedly between individuals of the same species and that literature-based dietary guilds grossly underestimate intraspecific diet variability. Furthermore, despite an effect of literature-based dietary guild assignment of host taxa, the composition of natural diets does not align with crop and cloacal microbiome similarity. However, host-taxon specific gut bacterial lineages are positively correlated with specific diet items, indicating that certain microbes associate with different diet components in specific avian hosts. Consequently, microbiome composition is not congruent with the overall consumed diet composition of species, but specific components of a consumed diet lead to host-specific effects on gut bacterial taxa.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Irena Klečková
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Jan Klečka
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Kateřina Pužejová
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Bonny Koane
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
30
|
Worsley SF, Davies CS, Mannarelli ME, Hutchings MI, Komdeur J, Burke T, Dugdale HL, Richardson DS. Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population. Anim Microbiome 2021; 3:84. [PMID: 34930493 PMCID: PMC8685825 DOI: 10.1186/s42523-021-00149-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The vertebrate gut microbiome (GM) can vary substantially across individuals within the same natural population. Although there is evidence linking the GM to health in captive animals, very little is known about the consequences of GM variation for host fitness in the wild. Here, we explore the relationship between faecal microbiome diversity, body condition, and survival using data from the long-term study of a discrete natural population of the Seychelles warbler (Acrocephalus sechellensis) on Cousin Island. To our knowledge, this is the first time that GM differences associated with survival have been fully characterised for a natural vertebrate species, across multiple age groups and breeding seasons. RESULTS We identified substantial variation in GM community structure among sampled individuals, which was partially explained by breeding season (5% of the variance), and host age class (up to 1% of the variance). We also identified significant differences in GM community membership between adult birds that survived, versus those that had died by the following breeding season. Individuals that died carried increased abundances of taxa that are known to be opportunistic pathogens, including several ASVs in the genus Mycobacterium. However, there was no association between GM alpha diversity (the diversity of bacterial taxa within a sample) and survival to the next breeding season, or with individual body condition. Additionally, we found no association between GM community membership and individual body condition. CONCLUSIONS These results demonstrate that components of the vertebrate GM can be associated with host fitness in the wild. However, further research is needed to establish whether changes in bacterial abundance contribute to, or are only correlated with, differential survival; this will add to our understanding of the importance of the GM in the evolution of host species living in natural populations.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Maria-Elena Mannarelli
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles.
| |
Collapse
|
31
|
Harrison XA, McDevitt AD, Dunn JC, Griffiths SM, Benvenuto C, Birtles R, Boubli JP, Bown K, Bridson C, Brooks DR, Browett SS, Carden RF, Chantrey J, Clever F, Coscia I, Edwards KL, Ferry N, Goodhead I, Highlands A, Hopper J, Jackson J, Jehle R, da Cruz Kaizer M, King T, Lea JMD, Lenka JL, McCubbin A, McKenzie J, de Moraes BLC, O'Meara DB, Pescod P, Preziosi RF, Rowntree JK, Shultz S, Silk MJ, Stockdale JE, Symondson WOC, de la Pena MV, Walker SL, Wood MD, Antwis RE. Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc Biol Sci 2021; 288:20210552. [PMID: 34403636 PMCID: PMC8370808 DOI: 10.1098/rspb.2021.0552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.
Collapse
Affiliation(s)
| | - Allan D. McDevitt
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jenny C. Dunn
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, UK
| | - Sarah M. Griffiths
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Chiara Benvenuto
- School of Science, Engineering and Environment, University of Salford, UK
| | - Richard Birtles
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jean P. Boubli
- School of Science, Engineering and Environment, University of Salford, UK
| | - Kevin Bown
- School of Science, Engineering and Environment, University of Salford, UK
| | - Calum Bridson
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - Darren R. Brooks
- School of Science, Engineering and Environment, University of Salford, UK
| | - Samuel S. Browett
- School of Science, Engineering and Environment, University of Salford, UK
| | - Ruth F. Carden
- School of Archaeology, University College Dublin, Ireland
- Wildlife Ecological and Osteological Consultancy, Wicklow, Ireland
| | - Julian Chantrey
- Institute of Veterinary Science, University of Liverpool, UK
| | - Friederike Clever
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
- Smithsonian Tropical Research Institute, Ancon, Republic of Panama
| | - Ilaria Coscia
- School of Science, Engineering and Environment, University of Salford, UK
| | - Katie L. Edwards
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, UK
| | - Ian Goodhead
- School of Science, Engineering and Environment, University of Salford, UK
| | - Andrew Highlands
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jane Hopper
- The Aspinall Foundation, Port Lympne Reserve, Hythe, Kent, UK
| | - Joseph Jackson
- School of Science, Engineering and Environment, University of Salford, UK
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Tony King
- The Aspinall Foundation, Port Lympne Reserve, Hythe, Kent, UK
- School of Anthropology and Conservation, University of Kent, UK
| | - Jessica M. D. Lea
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - Jessica L. Lenka
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Jack McKenzie
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Denise B. O'Meara
- School of Science and Computing, Waterford Institute of Technology, Ireland
| | - Poppy Pescod
- School of Science, Engineering and Environment, University of Salford, UK
| | - Richard F. Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Jennifer K. Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | | | - Jennifer E. Stockdale
- School of Biosciences, University of Cardiff, UK
- School of Life Sciences, University of Nottingham, UK
| | | | | | - Susan L. Walker
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Michael D. Wood
- School of Science, Engineering and Environment, University of Salford, UK
| | - Rachael E. Antwis
- School of Science, Engineering and Environment, University of Salford, UK
| |
Collapse
|